WO2003032832A1 - Dispositif et procede de determination d'une condition de la demarche - Google Patents

Dispositif et procede de determination d'une condition de la demarche Download PDF

Info

Publication number
WO2003032832A1
WO2003032832A1 PCT/JP2002/008528 JP0208528W WO03032832A1 WO 2003032832 A1 WO2003032832 A1 WO 2003032832A1 JP 0208528 W JP0208528 W JP 0208528W WO 03032832 A1 WO03032832 A1 WO 03032832A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedestrian
walking state
plot
pattern
determination
Prior art date
Application number
PCT/JP2002/008528
Other languages
English (en)
French (fr)
Inventor
Jun Ashihara
Hisashi Kato
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to EP02760730.8A priority Critical patent/EP1442703B1/en
Priority to US10/491,853 priority patent/US7220231B2/en
Publication of WO2003032832A1 publication Critical patent/WO2003032832A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1071Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring angles, e.g. using goniometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2203/00Additional characteristics concerning the patient
    • A61H2203/04Position of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/008Appliances for aiding patients or disabled persons to walk about using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses

Definitions

  • the present invention relates to an apparatus and a method for determining a walking state of a pedestrian having a plurality of legs.
  • Japanese Patent Laid-Open Publication No. Hei 7-16607 proposes a method of determining a walking state based on the pressure on the pedestrian's sole measured by a pressure sensor.
  • Japanese Patent Application Laid-Open No. 2000-32525 / 29 proposes a method of determining a walking state based on the angle of a pedestrian's leg.
  • the determination method based on the pressure applied to the sole, a situation that tends to occur particularly when going up and down stairs, the part of the sole where the pressure sensor is provided is not landed, and the walking state May be erroneously determined. For example, there is a case where a person touches the floor with a toe even though a pressure sensor is provided on the heel. In addition, since the distribution of pressure to the sole differs depending on the shape of the bottom of the footwear, the walking state may be similarly erroneously determined. Furthermore, when footwear provided with a pressure sensor at the bottom is used, every time the footwear is attached or detached, the pressure sensor is connected to a processing device for determining walking status by a communication line or electric wire, or the connection is established.
  • the walking state may not be accurately determined due to the length of the leg of the pedestrian.
  • the degree of raising the thigh during walking differs depending on the length of the legs, so that a small pedestrian is judged to be walking on the stairs, Pedestrians may be erroneously determined to be walking on flat ground.
  • erroneous determination of the walking state may result in an excessive or insufficient assisting force applied to the pedestrian. It will cause trouble.
  • an object of the present invention is to provide a device and a method capable of easily and accurately determining a walking state irrespective of a difference in a landing position on a sole of a pedestrian or a length of a leg. Disclosure of the invention
  • a walking state determination apparatus for solving the above-mentioned problems includes: a measuring unit that measures a parameter representing an amount of displacement of a lower end portion of the pedestrian's leg; and a pattern of a plot in a determination space corresponding to the parameter.
  • First storage means for storing and holding the walking state of the pedestrian in association with each other; and generating means for generating a plot specified by the parameter measured by the measuring means in the determination space.
  • determining the walking state of the pedestrian based on a comparison between the pattern of the plot stored and held in association with the walking state by the first storage means and the pattern of the plot generated by the generating means. Determining means for determining.
  • a method for determining a walking state according to the present invention for solving the above-mentioned problems includes: a measurement step for measuring a parameter representing a displacement amount of a lower end portion of the pedestrian's leg; and a plotting step in a determination space corresponding to the parameter.
  • An associating step for associating the pattern with the walking state of the pedestrian includes: a measurement step for measuring a parameter representing a displacement amount of a lower end portion of the pedestrian's leg; and a plotting step in a determination space corresponding to the parameter.
  • An associating step for associating the pattern with the walking state of the pedestrian;
  • a generation step for generating a plot specified by the parameter measured in the measurement step; a pattern of a plot associated with the walking state in the association step; and a plotting step of the plot generated in the generation step. Determining a walking state of the pedestrian based on a comparison with the pattern.
  • the displacement of the lower end of the leg measured in the present invention mainly depends on the walking place such as a flat ground or a step, and the difference in the landing position on the sole of the pedestrian and the length of the leg are not considered. Almost no dependence. For this reason, the pattern of the plot in the determination space specified by the parameter representing the amount of displacement is substantially the same in the same walking state regardless of the difference in the landing position on the sole of the pedestrian or the length of the leg. Becomes Also, there is no need for the complicated connection / disconnection of wiring associated with attachment / detachment of special footwear as in pressure measurement.
  • the first storage means stores and holds the shape pattern of the plot in the determination space as the pattern of the plot, and the determination means stores the shape pattern stored and held by the first storage means; It is characterized in that the pedestrian's walking state is determined on the basis of a determination as to whether or not the pedestrian is similar to or similar to the generated plot pattern.
  • a walking state can be determined based on a “shape pattern”, that is, a pattern drawn by the plot in the determination space.
  • the first storage means stores and holds the pattern of the plot in the determination space as the pattern of the plot
  • the determination means stores the presence pattern stored and held by the first storage means and the generation means. Based on the similarity or similarity judgment with the existing pattern of the generated plot, The walking state of the pedestrian is determined.
  • a preence pattern that is, a pattern indicating in which region of the determination space the plot exists.
  • the measuring means includes first measuring means for measuring a difference between a length of the pedestrian's leg and a height difference between a leg upper end portion and a leg lower end portion as a first parameter. Determines that the pedestrian is in the normal walking state when the plot in the determination space has an existence pattern in which the first parameter is located in a low range below the predetermined threshold, and the first parameter is equal to or higher than the predetermined threshold. It is characterized in that it is determined that the pedestrian is in an inclined walking state when there is a presence pattern of being in a high range.
  • the measuring means includes second measuring means for measuring a front-rear position of a lower end portion of the pedestrian with respect to an upper end portion of the pedestrian as a second parameter, and the determining means determines that the pedestrian is in the inclined walking state. Is determined, the plot in the determination space is in an ascending walking state when the second parameter is in a predetermined positive range that is equal to or greater than the positive threshold, and is determined to be in the ascending walking state. It is characterized in that it is determined that the vehicle is in a descending walking state when the existence pattern is in a predetermined negative range.
  • the walking state can be accurately determined.
  • the “normal walking state” means a state where the user is walking on a flat ground, a gentle slope, or a stair with a low step.
  • Incline walking means walking on steep slopes or stairs with high steps.
  • the grade of the slope of the slope or the grade of the step is determined by setting the “predetermined threshold value”.
  • the present invention comprises: a second storage means for storing and holding a joint distance between the legs of the pedestrian; and an angle sensor for measuring a joint angle of the legs, wherein the first and second measurement means are The first and second parameters are measured based on the joint-to-leg distance of the legs stored and held by the second storage means and the joint angle measured by the angle sensor.
  • the first and second parameters can be measured based on the inter-joint distance and joint angle of the leg and simple geometric considerations as described later.
  • the determining means determines the walking state of the pedestrian based on a series of plots generated by the generating means over the immediately preceding walking cycle of the pedestrian.
  • An acceleration sensor for measuring a vertical acceleration of the upper part of the pedestrian's leg, and a walking cycle measuring means for measuring a walking cycle of the pedestrian based on the vertical acceleration measured by the acceleration sensor. It is characterized by.
  • the walking state of a pedestrian can be determined based on a plot pattern drawn for each walking cycle in the determination space.
  • FIG. 1 is an explanatory diagram of a configuration of a walking state determination device of the present embodiment.
  • FIG. 2 is an explanatory diagram of a procedure of the walking state determination method according to the present embodiment.
  • FIG. 3 is an explanatory diagram of a measurement method for the first and second parameters in the present embodiment.
  • FIG. 4 is an explanatory diagram of the correspondence between the judgment space and the walking state in the present embodiment.
  • FIG. 5 is an explanatory diagram of a walking state determination result in the present embodiment.
  • the walking state determination device 1 shown in FIG. 1 constitutes a part of a walking assistance device 2 used by being attached to a pedestrian.
  • the walking assist device 2 is mounted on the pedestrian's abdomen, thighs, and shins. 1b, which applies the torque around the hip joint via 1b, and 2nd, which applies the torque around the knee joint via the supporters 21b and 21c at the pedestrian's knee. 2)
  • Control unit 2 2 2 and control unit 2 4 which is stored in a backpack 2 3 carried on the back of the pedestrian and controls the operation of the control unit 2 2 1 and 2 2 2 2
  • the battery pack 25 also includes a battery 25 that is housed in a pack pack 23 and supplies electric power to the actuators 221, 222.
  • the walking assist device 2 is located on the pedestrian's waist and measures the hip joint angle 0, and the second angle sensor 26 is located on the pedestrian's knee and measures the knee joint angle 02. 2 and a G sensor (acceleration sensor) 2 63 3 that measures vertical acceleration at the waist of the pedestrian.
  • G sensor acceleration sensor
  • the hip joint angle 01 is the angle formed by the thigh having a length with respect to the vertical plane including the hip joint H. The forward and backward are when the thigh is in front of the plane. It is defined as an angle where the point at is negative. Also, the knee joint angle 0 2 is an angle formed shin portion of the length 1 2 with respect to the plane including the thigh, a negative when the shin is in front of the plane, the rear near Rutoki positive Is defined as an angle.
  • the walking state determination device 1 includes a storage unit 11, a measurement unit 12, a generation unit 13, and a determination unit 14, each of which forms a part of the control unit 24.
  • the storage means 11 is composed of ROM, RAM, etc., and stores the pattern of the presence of the plot in the decision space (see Fig. 4) and the walking state in association with each other.
  • the measuring means 12 includes a first measuring means 122, a second measuring means 122, and a walking cycle measuring means 123.
  • the first measuring means 121 includes a first angle sensor 261, a second angle sensor 2622, and a second storage means 112 as constituent elements.
  • the pedestrian's hip joint angle 0 and knee joint angle 0 2 measured by the first and second angle sensors 26 1 and 26 2, and the joint distance li stored and held in the second storage means 112 Based on, 1 2 , the difference between the leg length 1 1 + 1 2 from the hip joint to the ankle joint of the pedestrian and the height difference of the hip joint and the ankle joint (1st parameter: see Fig. 3) Measure xi.
  • the second measuring means 122 also includes a first angle sensor 261, a second angle sensor 262, and a second storage means 112 as constituent elements.
  • the first, second angle sensor 2 6 1, 2 6 2 pedestrian hip joint angle 01 measured by the knee joint angle 0 2 and the second storage means 1 1 for 2 to that have been stored and held joint distance li based on the 1 2, longitudinal position of the pedestrian hip (leg upper portion) in pairs ankle (leg bottom section) (second parameter Isseki: see FIG. 3) for measuring the X 2.
  • the walking cycle measuring means 123 includes the G sensor 263 as a component, and measures the pedestrian's walking cycle based on the change in the vertical acceleration generated at the waist of the pedestrian measured by the G sensor 263 I do.
  • Generating means 1 3 denotes a CPU, a signal input circuit, RAM, consists a ROM or the like, the first parameter Isseki xi, described later in the "decision space" of the corresponding two-dimensional second parameter Isseki x 2 "Plot (Plot data) ”.
  • the determination means 14 is similarly constituted by a CPU, a signal input / output circuit, a first storage means 11 1, etc., and as will be described later, the existence pattern of the plot generated by the generation means 13, the first storage means 11 1 The pedestrian's walking state is determined based on the plot existence pattern stored and held in step 1.
  • the first and second measuring means 12 1 and 12 2 measure the first and second parameters X 1 and x 2 (FIG. 2 s 1). The measurement is based on the distance li, 1 2 between the pedestrian's hip and knee and knee and ankle joint, which are stored and held by the second storage means 1 1 2, and the first and second angle sensors 2 6 1, 2 6 2 Is performed according to the following equations (1) and (2) using the hip and knee joint angles 2 measured by
  • Equations (1) and (2) are based on simple geometric considerations in the leg model shown in Figure 3.
  • the first parameter X l joint Eta, kappa, Alpha represents the variation of the height difference between the ankle A with respect to the hip joint H in comparison with the upright Ru near the vertical line (dotted line in FIG. 3).
  • the second parameter x 2 represents the variation of the longitudinal direction of the ankle A with respect to the hip joint H in comparison with the upright (3 midpoint line).
  • the generation means 13 performs the first and second parameter measurement (X; L, X 2) measured by the first and second measurement means 12 1 and 12 2 in the two-dimensional “judgment space”. Generate a “plot” specified by (Fig. 2 s2).
  • the walking cycle measuring means 123 determines whether or not the immediately preceding walking cycle has ended based on the change in the vertical acceleration generated at the waist measured by the G sensor 263 (FIG. 2 s 3). Specifically, the vertical acceleration increases twice more than when leaving the floor due to the landing of one leg and the subsequent landing of the other leg. Each time it is greater, it is determined that the previous walking cycle has ended. Until this judgment is made (N ⁇ in Fig. 2 s3), measurement of the first and second parameters xi and X2 (Fig. 2 s1), and plot generation (Fig. 2 s2) are repeated. It is. 1 walking period over plot (X ⁇ , x 2) is the locus of FIG. 5 (a) ⁇ FIG. 5
  • the determination means 14 determines the walking state. At the time of this determination, an existence pattern stored in the first storage means 111 in association with the walking state, that is, a pattern indicating in which area of the determination space the plot exists is used.
  • the determination space is divided into a “low range” where the first parameter X 1 is less than a predetermined threshold value c (> 0) and a “high range” where the first parameter value X is equal to or more than the predetermined threshold value c. Also, the decision space is such that the second parameter X 2 has a positive threshold c +
  • the pattern in which the plot exists only in the low range ⁇ c ⁇ is the “normal walking state”, and the pattern in which the high range overlaps with the predetermined negative range ⁇ xi ⁇ c, x 2 ⁇ c- ⁇ .
  • the pattern existing in the “falling walking state” and the pattern in the overlapping region of the high region and the predetermined normal region ⁇ xi ⁇ c, x 2 ⁇ c + ⁇ is respectively associated with the “ascending walking condition”.
  • Fig. 2 s 4 Upon walking condition determining first, whether the flop lots in the high range of the determination space ⁇ X l ⁇ c ⁇ (x 1 x 2) is determined (Fig. 2 s 4). As shown in Fig. 5 (a), when all the plots (X i, x 2 ) are judged not to be in the high range ⁇ X i ⁇ c ⁇ but to be in the low range ⁇ xi x c ⁇ (No in Figure 2 s4), the pedestrian is determined to be in the “normal walking state” ( Figure 2 s6a) 0
  • the plot in the high frequency range ⁇ 3d ⁇ c ⁇ At least a part of them is within the specified negative threshold ⁇ x 2 ⁇ , or the specified normal range
  • the walking state is determined for each walking cycle (Fig. 2 sl to s6). Then, the control unit 24 determines the torque to be applied to the leg based on the determination of the walking state, and the torque is applied via the first and second factories 2 1 and 2 2. .
  • the first parameter xi is the ankle joint (leg upper part) with respect to the hip joint (upper end of the leg) H based on the upright state (dotted line) in which the joints H, K :, and A are on a vertical line in FIG. Lower part of the body) Indicates the amount of change in the height difference of A.
  • the second parameter x 2 represents the amount of displacement of the ankle joint (lower leg portion) A with respect to the hip joint (upper leg portion) H in the front-rear direction with respect to the upright state.
  • the presence or absence of a plot in the overlapping region of the high region ⁇ X 1 ⁇ c ⁇ and the predetermined negative threshold ⁇ x 2 ⁇ c- ⁇ or the predetermined positive region ⁇ x 2 ⁇ c + ⁇ is due to ascending or descending stairs.
  • the lower end of the leg is greatly displaced, it depends on whether the lower end of the leg is in front or behind, It hardly depends on the length of the body.
  • the pedestrian is a human, but in other embodiments, the pedestrian may be a variety of animals that can walk on two or four legs, a humanoid mouth port, and an animal type lopot. Good.
  • x 2 is the walking state based on the plot that put in a two-dimensional determination space is determined
  • one parameter for example, X i ZX 2
  • the walking state may be determined based on a plot in a one-dimensional determination space.
  • Three or more parameters for example, X i, x 2 of all the legs
  • the walking state may be determined based on a plot in a three-dimensional or more determination space.
  • the walking state is determined according to the existence pattern of the area in the determination space in which the plot is located.
  • the plot drawn in the determination space over a predetermined period such as one walking period.
  • the walking state may be determined according to the shape pattern of the object.
  • the judgment space is divided into a larger number of regions, and more walking states corresponding to the respective regions are determined as shown in FIG. 23 and FIG. May be determined. For example, if the degree of gentleness of a slope or the height difference of stairs is determined in more stages, the walking state can be determined more precisely. Then, the control unit 24 of the walking assist device 2 can appropriately determine how much torque should be applied to the pedestrian based on more precise walking state determination.
  • the walking state is determined every time one walking cycle elapses (see s3 in FIG. 2).
  • the walking state may be determined constantly. For example, immediately after the plot (XI, 2 ) is determined to be in the region ⁇ X1 ⁇ C, X2 ⁇ c + ⁇ in the determination space, the pedestrian is determined to be in the "ascending walking state", The pedestrian may be determined to be in the “downward walking state” immediately after being determined to be in the region ⁇ X] L ⁇ C, X 2 ⁇ C- ⁇ .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)
  • Prostheses (AREA)
  • Manipulator (AREA)

Description

明 細 書 歩行状態判定装置及び方法 技術分野
本発明は、 複数の脚体を有する歩行者の歩行状態を判定する装置及び 方法に関する。 背景技術
筋力が低下した者の歩行を補助する装置が使用される場合、 当該装置 による適切な歩行補助のためにはその者が平地を歩行しているか階段を 上り下りしているか等の歩行状態を的確に判定する必要がある。 そこで, 特開平 7— 1 6 3 6 0 7号公報等において、 圧力センサにより測定され る歩行者の足裏の圧力に基づいて歩行状態を判定する方法が提案されて いる。 また、 特開 2 0 0 0— 3 2 5 3 2 9号公報等において、 歩行者の 脚体の角度に基づいて歩行状態を判定する方法が提案されている。
しかし、 足裏の圧'力に基づく判定方法によれば、 特に階段の上り下り に際して生じがちな事態であるが、 足裏のうち圧力センサが設けられて いる部分が着床されず、 歩行状態が誤判定されるおそれがある。 例えば. 踵部分に圧力センサが設けられているにも関わらず爪先部分で着床する ような場合である。 また、 履物の底部の形状によって足裏への圧力の分 布が相違するため、 同様に歩行状態が誤判定されるおそれがある。 さら に、 底部に圧力センサが設けられた履物が使用される場合、 この履物の 着脱のたびに圧力センサと歩行状態判定用の演算処理装置等とを通信線 や電線により接続したり、 接続を解除する作業が必要となり、 歩行者に 煩わしさを感じさせるおそれがある。 一方、 脚体の角度に基づく判定方法によれば、 歩行者の脚体の長短の ため歩行状態が的確に判定されないおそれがある。 例えば、 同一の階段 でも脚体の長さにより歩行時の大腿部の上げ具合が相違するため、 小柄 な歩行者については階段を歩行していると判定されるにも関わらず、 長 身の歩行者については平地を歩行していると誤判定されるおそれがある, 特に歩行補助装置においては、 歩行状態の誤判定は歩行者に付与され る補助力の過大又は過少をもたらし、 当該歩行に支障をきたすことにな る。
そこで、 本発明は歩行者の足裏における着床箇所の相違や脚体の長短 に関わらず、 歩行状態を簡易且つ的確に判定可能な装置及び方法を提供 することを解決課題とする。 発明の開示
前記課題を解決するための本発明の歩行状態判定装置は、 前記歩行者 の脚体下端部の変位量を表すパラメータを測定する測定手段と、 該パラ メータに対応する判定空間におけるプロッ トのパターンと、 該歩行者の 歩行状態とを対応付けて記憶保持する第 1記憶手段と、 該判定空間にお いて、 該測定手段により測定されたパラメ一夕により特定されるプロッ トを生成する生成手段と、 第 1記憶手段により歩行状態と対応付けられ て記憶保持されているプロッ トのパターンと、 該生成手段により生成さ れたプロッ トのパターンとの比較に基づいて該歩行者の歩行状態を判定 する判定手段とを備えていることを特徴とする。
前記課題を解決するための本発明の歩行状態判定方法は、 前記歩行者 の脚体下端部の変位量を表すパラメ一タを測定する測定ステツプと、 該 パラメータに対応する判定空間におけるプロッ トのパターンと、 該歩行 者の歩行状態とを対応付ける対応付けステツプと、 該判定空間において, 該測定ステップにおいて測定'されたパラメータにより特定されるプロッ トを生成する生成ステツプと、 該対応付けステツプにおいて歩行状態と 対応付けられたプロットのパターンと、 該生成ステツプにおいて生成さ れたプロッ トのパターンとの比較に基づいて該歩行者の歩行状態を判定 する判定ステップとを備えていることを特徴とする。
本発明において測定される脚体下端部の変位量は、 主として平地か階 段であるか等の歩行場所に依存し、 歩行者の足裏における着床箇所の相 違や脚体の長短にはほとんど依存しない。 このため、 当該変位量を表す パラメ一夕により特定される判定空間のプロッ トのパターンは、 歩行者 の足裏における着床箇所の相違や脚体の長短に関わらず同一歩行状態で は略同一となる。 また、 圧力測定のように特殊な履物の着脱に伴う配線 の接続 · 解除という煩雑さを伴わない。 従って、 本発明によれば、 歩行 者の足裏における着床箇所の相違や脚体の長短に関わらず、 判定空間に おけるプロッ トのパターンに基づいて歩行状態を簡易且つ的確に判定す ることができる。
また、 第 1記憶手段は前記プロッ トのパターンとして前記判定空間に おけるプロッ トの形状パターンを記憶保持し、 前記判定手段は第 1記憶 手段により記憶保持されている形状パターンと、 前記生成手段により生 成されたプロッ トの形状パターンとの同否又は類否判断に基づいて前記 歩行者の歩行状態を判定することを特徴とする。
本発明によれば、 「形状パターン」 即ちプロッ トが判定空間に描く形 状のパターンに基づいて歩行状態を判定することができる。
さらに、 第 1記憶手段は前記プロッ 卜のパターンとして前記判定空間 におけるプロッ トの存在パターンを記憶保持し、 前記判定手段は第 1記 憶手段により記憶保持されている存在パターンと、 前記生成手段により 生成されたプロッ トの存在パターンとの同否又は類否判断に基づいて前 記歩行者の歩行状態を判定することを特徴とする。
本発明によれば、 「存在パターン」 即ちプロッ トが判定空間のどの領 域に存在するかというパターンに基づいて歩行状態を判定することがで ぎる。
また、 前記測定手段は前記歩行者の脚体の長さと、 脚体上端部及び脚 体下端部の高低差との差を第 1パラメ一夕として測定する第 1測定手段 を備え、 前記判定手段は前記判定空間におけるプロッ トが、 第 1パラメ 一夕が所定閾値未満の低域にあるという存在パターンのとき該歩行者が 通常歩行状態であると判定し、 第 1パラメータが該所定閾値以上の高域 にあるという存在パターンのとき該歩行者が傾斜歩行状態にあると判定 することを特徴とする。
さらに、 前記測定手段は前記歩行者の脚体上端部に対する脚体下端部 の前後位置を第 2パラメータとして測定する第 2測定手段を備え、 前記 判定手段は該歩行者が前記傾斜歩行状態にあると判定した場合、 前記判 定空間におけるプロッ トが、 第 2パラメータが正閾値以上の所定正域に あるという存在パターンのとき上昇歩行状態であると判定し、 第 2パラ メータが負閾値以下の所定負域にあるという存在パターンのとき下降歩 行状態にあると判定することを特徴とする。
本発明によれば、 詳細は後述するが、 第 1、 第 2パラメ一夕により表 され、 判定空間のプロッ トの存在パターンに反映される脚体下端部の変 位量の定性的考察に基づき、 歩行状態を的確に判定することができる。 なお 「通常歩行状態」 とは平地、 傾斜の緩やかな坂道、 又は段差の低 い階段を歩行している状態を意味する。 また 「傾斜歩行状態」 とは傾斜 の急な坂道、 又は段差が高い階段を歩行している状態を意味する。 ここ で坂道の傾斜の緩急又は階段の段差の高低の区分は 「所定閾値」 の設定 により決定される。 また、 本発明は、 前記歩行者の脚体の関節間距離を記憶保持する第 2 記憶手段と、 該脚体の関節角度を測定する角度センサとを備え、 第 1及 び第 2測定手段は、 第 2記憶手段により記憶保持されている脚体の関節 間距離と、 該角度センサにより測定される関節角度とに基づいて第 1及 び第 2パラメータを測定することを特徴とする。
本発明によれば、 後述のように脚体の関節間距離及び関節角度と、 簡 単な幾何学的考察に基づいて第 1、 第 2パラメ一夕を測定することがで さる。
前記判定手段は前記歩行者の直前回の歩行周期にわたり前記生成手段 により生成された一連のプロッ トに基づいて該歩行者の歩行状態を判定 することを特徴とする。
前記歩行者の脚体の上部の鉛直加速度を測定する加速度センサと、 該 加速度センサにより測定される鉛直加速度に基づいて該歩行者の歩行周 期を測定する歩行周期測定手段とを備えていることを特徴とする。
本発明によれば、 判定空間において歩行周期ごとに描かれるプロッ ト のパターンに基づき、 歩行者の歩行状態を判定することができる。 図面の簡単な説明
図 1は本実施形態の歩行状態判定装置の構成説明図である。 図 2は本 実施形態の歩行状態判定方法の手順説明図である。 図 3は本実施形態に おける第 1、 第 2パラメ一夕の測定方法説明図である。 図 4は本実施形 態における判定空間と歩行状態との対応関係説明図である。 図 5は本実 施形態における歩行状態判定結果の説明図である。 発明を実施するための最良の形態
本発明の歩行状態判定装置及び方法の実施形態について図面を用い説 明する。 図 1に示す歩行状態判定装置 1は、 歩行者である人間に取り付 けられて使用される歩行補助装置 2の一部を構成する。
歩行補助装置 2は歩行者の腹部、 大腿部、 脛部に装着されるサボ一夕 一 2 1 a、 2 1 b、 2 1 cと、 歩行者の腰部にあってサポーター 2 1 a . 2 1 bを介して股関節回りのトルクを付与する第 1ァクチユエ一夕 2 2 1 と、 歩行者の膝部にあってサポーター 2 1 b、 2 1 cを介して膝関節 回りのトルクを付与する第 2ァクチユエ一夕 2 2 2と、 歩行者の背中に 担がれるバックパック 2 3の中に収納され、 ァクチユエ一夕 2 2 1、 2 2 2の作動等を制御する制御ュニッ ト 2 4と、 同じくパックパック 2 3 に収納され、 ァクチユエ一夕 2 2 1、 2 2 2に電力を供給するパッテリ 2 5 とを備えている。
また、 歩行補助装置 2は歩行者の腰部にあって股関節角度 0 を測定 する第 1角度センサ 2 6 1 と、 歩行者の膝部にあって膝関節角度 02 を 測定する第 2角度センサ 2 6 2 と、 歩行者の腰部にあって鉛直加速度を 測定する Gセンサ (加速度センサ) 2 6 3とを備えている。
図 3に示す脚体モデルに従い、 股関節角度 01 は股関節 Hを含む鉛直 平面に対して長さ の大腿部がなす角度であり、 大腿部が当該平面よ り前方にあるときを正、 後方にあるときを負とする角度として定義され る。 また、 膝関節角度 02 は大腿部を含む平面に対して長さ 12 の脛部 がなす角度であり、 脛部が当該平面より前方にあるときを負、 後方にあ るときを正とする角度として定義される。
歩行状態判定装置 1はそれぞれ制御ュニッ ト 2 4の一部を構成する記 憶手段 1 1 と、 測定手段 1 2 と、 生成手段 1 3 と、 判定手段 1 4とを備 えている。
記憶手段 1 1は ROM、 RAM等により構成され、 判定空間における プロッ トの存在パターン (図 4参照) と、 歩行状態と.を対応付けて記憶 保持する第 1記憶手段 1 1 1 と、 予め測定された歩行者の股関節一膝関 節間距離 1 、 膝関節—足関節距離 12 を記憶保持する第 2記憶手段 1 1 2とを備えている。
測定手段 1 2は第 1測定手段 1 2 1 と、 第 2測定手段 1 2 2と、 歩行 周期測定手段 1 2 3とを備えている。
第 1測定手段 1 2 1は第 1角度センサ 2 6 1、 第 2角度センサ 2 6 2 , 及び第 2記憶手段 1 1 2を構成要素として包含する。 そして、 第 1、 第 2角度センサ 2 6 1、 2 6 2により測定される歩行者の股関節角度 0 , 膝関節角度 02 及び第 2記憶手段 1 1 2に記憶保持されている関節間距 離 l i 、 12 に基づき、 歩行者の股関節から足関節に至るまでの脚体の 長さ 1 1 + 12 と、 股関節及び足関節の高低差との差 (第 1パラメ一 夕 : 図 3参照) xi を測定する。
第 2測定手段 1 2 2は同じく第 1角度センサ 2 6 1、 第 2角度センサ 2 6 2、 及び第 2記憶手段 1 1 2を構成要素として包含する。 そして、 第 1、 第 2角度センサ 2 6 1、 2 6 2により測定される歩行者の股関節 角度 01 、 膝関節角度 02 及び第 2記憶手段 1 1 2に記憶保持されてい る関節間距離 l i 、 12 に基づき、 歩行者の股関節 (脚体上端部) に対 する足関節 (脚体下端部) の前後位置 (第 2パラメ一夕 : 図 3参照) X 2 を測定する。
歩行周期測定手段 1 2 3は Gセンサ 2 6 3を構成要素として包含し、 Gセンサ 2 6 3により測定される歩行者の腰部に生じる鉛直加速度の変 化に基づき、 歩行者の歩行周期を測定する。
生成手段 1 3は C P U、 信号入出力回路、 RAM、 ROM等により構 成され、 第 1パラメ一夕 xi 、 第 2パラメ一夕 x2 に対応する 2次元の 「判定空間」 において後述の 「プロッ ト (プロッ トデータ)」 を生成す る。 判定手段 1 4は同様に C P U、 信号入出力回路、 第 1記憶手段 1 1 1 等により構成され、 後述のように生成手段 1 3により生成されたプロッ 卜の存在パターン、 第 1記憶手段 1 1 1により記憶保持されているプロ ッ 卜の存在パターンとに基づき歩行者の歩行状態を判定する。
続いて歩行状態判定装置 1の機能について図 2〜図 5を用いて説明す る。
まず、 第 1、 第 2測定手段 1 2 1、 1 2 2が第 1、 第 2パラメ一夕 X 1 、 x2 を測定する (図 2 s 1 )。 当該測定は、 第 2記憶手段 1 1 2に より記憶保持されている歩行者の股一膝、 膝一足関節間距離 l i 、 12 と、 第 1、 第 2角度センサ 2 6 1、 2 6 2により測定される股、 膝関節 角度 、 Θ 2 とを用い次式 ( 1 )、 ( 2 ) に従って行われる。
Figure imgf000010_0001
一 { 1 1 c o s θ ί + 12 c o s ( Θ! - Θ 2 )} ·· ( 1 ) x2 = 1 1 s i η Θ 1 + 1 a s i n ( θ ι - θ 2 ) ·· ( 2 )
式 ( 1 )、 ( 2 ) は図 3に示す脚体モデルにおける簡単な幾何学的考察 に基づいている。 第 1パラメータ X l は関節 Η、 Κ、 Αが鉛直線上にあ る直立状態 (図 3中点線) との比較で股関節 Hに対する足関節 Aの高低 差の変動量を表す。 また、 第 2パラメータ x2 は直立状態 (図 3中点 線) との比較で股関節 Hに対する足関節 Aの前後方向の変動量を表す。 次に、 生成手段 1 3が 2次元の 「判定空間」 において第 1、 第 2測定 手段 1 2 1、 1 2 2により測定された第 1、 第 2パラメ一夕 (X ;L 、 X 2 ) により特定される 「プロッ ト」 を生成する (図 2 s 2)。
また、 歩行周期測定手段 1 2 3が Gセンサ 2 6 3により測定される腰 部に生じる鉛直加速度の変化に基づき直前回の歩行周期が終了したか否 かを判断する (図 2 s 3 )。 具体的には、 一方の脚体の着床とこれに続 く他方の脚体の着床とに伴い離床時と比して鉛直加速度が 2回大きく増 大するごとに、 直前回の歩行周期が終了したと判断される。 当該判断が あるまでの間 (図 2 s 3で N〇)、 第 1、 第 2パラメ一夕 xi 、 X 2 の 測定 (図 2 s 1 )、 及びプロッ ト生成 (図 2 s 2 ) が繰り返される。 1 歩行周期にわたるプロッ ト ( X丄 、 x 2 ) の軌跡は図 5 ( a ) 〜図 5
(c ) に示すような曲線を描く。
直前回の歩行周期が終了したと判断されたとき (図 2 s 3で YE S ), 判定手段 1 4が歩行状態を判定する。 この判定に際し、 第 1記憶手段 1 1 1が歩行状態と対応付けて記憶保持している存在パターン、 即ち、 プ ロッ トが判定空間のどの領域に存在するかというパターンが用いられる
(図 4参照)。 この対応関係によれば判定空間は第 1パラメ一夕 X l が 所定閾値 c (> 0 ) 未満の 「低域」 と、 所定閾値 c以上の 「高域」 とに 区分されている。 また、 判定空間は第 2パラメータ X 2 が正閾値 c +
(> 0 ) 以上の 「所定正域」 と、 負閾値 c - (< 0 ) 以下の 「所定負 域」 とを含む。 そして、 プロッ トが低域 { < c } にのみ存在するパ ターンが 「通常歩行状態」、 高域と所定負域との重複領域 { x i ≥ c、 x2 ≤ c - } に存在するパターンが 「下降歩行状態」、 高域と所定正域 との重複領域 { xi ≥ c、 x2 ≥ c+ } に存在するパターンが 「上昇歩 行状態」 にそれぞれ対応付けられている。
歩行状態判定に際してまず、 判定空間の高域 { X l ≥ c } におけるプ ロッ ト (x1 x2 ) の有無が判定される (図 2 s 4 )。 図 5 ( a) に 示すように全てのプロッ ト (X i 、 x2 ) が高域 { X i ≥ c } になく、 低域 { x i く c } にある存在パターンであると判定された場合 (図 2 s 4で NO)、 歩行者は 「通常歩行状態」 にあると判定される (図 2 s 6 a)0
一方、 高域 { xi ≥ c } にプロッ トがある存在パターンであると判定 された場合 (図 2 s 4で Y E S)、 高域 { 3d ≥ c } にあるプロッ トの うち少なくとも一部が所定負閾 { x2 } にあるか、 又は所定正域
{ x2 ≥ c + } にあるかが判定される (図 2 s 5 )。 ここで所定負域 { x2 ≤ c - } にプロッ トがある存在パターンであると判定された場合. 歩行者は 「下降歩行状態」 にあると判定される (図 2 s 6 b)。 また、 所定正域 { x2 ≥ c + } にプロッ トがある存在パターンであると判定さ れた場合、 歩行者は 「上昇歩行状態」 にあると判定される (図 2 s 6 c )0
歩行者の歩行が停止されない限り (図 2 s 7でNO)、 その歩行状態 が歩行周期ごとに判定される (図 2 s l〜 s 6 )。 そして、 歩行状態の 判定に基づいて制御ュニッ ト 2 4が脚体に付与されるトルクを決定し、 第 1、 第 2ァクチユエ一夕 2 2 1、 2 2 2を介して当該トルクが付与さ れる。
上述のように第 1パラメ一夕 xi は図 3において関節 H、 K:、 Aが鉛 直線上にある直立状態 (点線) を基準とした股関節 (脚体上端部) Hに 対する足関節 (脚体下端部) Aの高低差の変動量を表す。 また、 第 2パ ラメ一夕 x2 は直立状態を基準とした股関節 (脚体上端部) Hに対する 足関節 (脚体下端部) Aの前後方向の変位量を表す。 これら変位量は主 として歩行者の脚体の着床位置に依存し、 歩行者の足裏における着床箇 所の相違や脚体の長短にはほとんど依存しない。
より詳細には、 判定空間の高域 { X l ≥ c } におけるプロッ トの有無 (図 2 s 4参照) は、 階段等の歩行のため脚体下端部が大きく変位しか 否かに依存し、 足裏における着床箇所の相違や脚体の長短にはほとんど 依存しない。 また、 高域 { X 1 ≥ c } と、 所定負閾 { x2 ≤ c - } 又は 所定正域 { x2 ≥ c + } との重複領域におけるプロッ 卜の有無は階段等 の上り下りのため脚体下端部が大きく変位したときに当該脚体下端部が 前方にあるか後方にあるかに依存し、 足裏における着床箇所の相違や脚 体の長短にはほとんど依存しない。
このため、 本装置 1によれば、 第 1、 第 2パラメ一夕 、 x 2 によ り特定されるプロットの存在パターンは、 歩行者の足裏における着床箇 所の相違や脚体の長短に関わらず同一歩行状態で判定空間において略同 一となる (図 5 ( a ) 〜図 5 ( c ) 参照)。 また、 歩行状態判定にあた つて圧力センサが組み込まれたような特殊な履物の着脱、 これに伴う 種々の配線の接続 ·解除という煩雑さを伴わない。 従って、 歩行者の足 裏における着床箇所の相違や脚体の長短に関わらず、 判定空間のプロッ ト (X l 、 X 2 ) に基づいて歩行状態を簡易且つ的確に判定することが できる。
なお、 本実施形態では歩行者は人間であつたが、 他の実施形態として 歩行者が二脚、 四脚で歩行可能な様々な動物、 人間型口ポッ ト、 動物型 ロポッ 卜であってもよい。
本実施形態では股関節に対する足関節の位置関係を表すパラメ一夕と して 2つのパラメータ X ;L 、 x 2 が測定され、 2次元の判定空間におけ るプロッ トに基づいて歩行状態が判定されたが、 他の実施形態として当 該パラメ一タとして 1つのパラメ一夕 (例えば X i Z X 2 ) が測定され. 1次元の判定空間におけるプロッ トに基づいて歩行状態が判定されても よく、 3つ以上のパラメータ (例えば、 全ての脚体の X i 、 x 2 ) が測 定され、 3次元以上の判定空間におけるプロッ トに基づいて歩行状態が 判定されてもよい。
本実施形態ではプロッ トが判定空間のどの領域にあるかという存在パ ターンに応じて歩行状態が判定されたが、 他の実施形態として 1歩行周 期等の所定周期にわたり判定空間に描かれるプロッ トの形状パターンに 応じて歩行状態が判定されてもよい。
本実施形態では判定空間における 3つの領域に対応する 3つの歩行状 態の別が判定されたが (図 2 3 6 &〜 6 じ 、 図 4参照)、 他の実施形態 として判定空間がより多数の領域に区分され、 各領域に対応するより多 くの歩行状態の別が判定されてもよい。 例えば、 坂道の緩急や階段の高 低差の程度をより多くの段階に区分して判定されれば、 より緻密に歩行 状態を判定することができる。 そして、 歩行補助装置 2の制御ユニッ ト 2 4は、 歩行者に対してどれだけのトルクを付与すべきかをより緻密な 歩行状態判定に基づいて適切に決定することができる。
本実施形態では 1歩行周期が経過するごとに歩行状態が判定されたが (図 2 s 3参照)、 他の実施形態として定常的に歩行状態が判定されて もよい。 例えば、 判定空間においてプロッ ト (X I 、 2 ) が領域 { X 1 ≥ C 、 X 2 ≥ c +} にあると判定された直後に歩行者が 「上昇歩行状 態」 にあると判定されたり、 領域 { X ]L ≥ C 、 X 2 ≤ C -} にあると判 定された直後に歩行者が 「下降歩行状態」 にあると判定されてもよい。

Claims

請 求 の 範 囲
1 . 複数の脚体を有する歩行者の歩行状態を判定する装置であって、 前記歩行者の脚体下端部の変位量を表すパラメ一夕を測定する測定手 段と、
該パラメータに対応する判定空間におけるプロッ トのパターンと、 該 歩行者の歩行状態とを対応付けて記憶保持する第 1記憶手段と、
該判定空間において、 該測定手段により測定されたパラメ一夕により 特定されるプロッ トを生成する生成手段と、
第 1記憶手段により歩行状態と対応付けられて記憶保持されているプ ロッ トのパターンと、 該生成手段により生成されたプロッ トのパターン との比較に基づいて該歩行者の歩行状態を判定する判定手段とを備えて いることを特徴とする歩行状態判定装置。
2 . 第 1記憶手段は前記プロッ 卜のパターンとして前記判定空間におけ るプロッ トの形状パターンを記憶保持し、 前記判定手段は第 1記憶手段 により記憶保持されている形状パターンと、 前記生成手段により生成さ れたプロッ トの形状パターンとの同否又は類否判断に基づいて前記歩行 者の歩行状態を判定することを特徴とする請求項 1記載の歩行状態判定
3 . 第 1記憶手段は前記プロッ トのパ夕一ンとして前記判定空間におけ るプロッ トの存在パターンを記憶保持し、 前記判定手段は第 1記憶手段 により記憶保持されている存在パターンと、 前記生成手段により生成さ れたプロッ トの存在パターンとの同否又は類否判断に基づいて前記歩行 者の歩行状態を判定することを特徴とする請求項 1記載の歩行状態判定
4 . 前記測定手段は前記歩行者の脚体の長さと、 脚体上端部及び脚体下 端部の高低差との差を第 1パラメ一夕として測定する第 1測定手段を備 え、
前記判定手段は前記判定空間におけるプロッ トが、 第 1パラメ一夕が 所定閾値未満の低域にあるという存在パターンのとき該歩行者が通常歩 行状態であると判定し、 第 1パラメータが該所定閾値以上の高域にある という存在パターンのとき該歩行者が傾斜歩行状態にあると判定するこ とを特徴とする請求項 3記載の歩行状態判定装置。
5 . 前記測定手段は前記歩行者の脚体上端部に対する脚体下端部の前後 位置を第 2パラメ一夕として測定する第 2測定手段を備え、
前記判定手段は該歩行者が前記傾斜歩行状態にあると判定した場合、 前記判定空間におけるプロッ トが、 第 2パラメ一夕が正閾値以上の所定 正域にあるという存在パターンのとき上昇歩行状態であると判定し、 第
2パラメ一夕が負閾値以下の所定負域にあるという存在パターンのとき 下降歩行状態にあると判定することを特徴とする請求項 4記載の歩行状 態判定装置。
6 . 前記歩行者の脚体の関節間距離を記憶保持する第 2記憶手段と、 該 脚体の関節角度を測定する角度センサとを備え、 第 1及び第 2測定手段 は、 第 2記憶手段により記憶保持されている脚体の関節間距離と、 該角 度センサにより測定される関節角度とに基づいて第 1及び第 2パラメ一 タを測定することを特徴とする請求項 4又は 5記載の歩行状態判定装置,
7 . 前記判定手段は前記歩行者の直前回の歩行周期にわたり前記生成手 段により生成された一連のプロッ トに基づいて該歩行者の歩行状態を判 定することを特徴とする請求項 1、 2、 3、 4、 5又は 6記載の歩行状 態判定装置。
8 . 前記歩行者の脚体の上部の鉛直加速度を測定する加速度センサと、 該加速度センサにより測定される鉛直加速度に基づいて該歩行者の歩 行周期を測定する歩行周期測定手段とを備えていることを特徴とする請 求項 7記載の歩行状態判定装置。
9 . 複数の脚体を有する歩行者の歩行状態を判定する方法であって、 前記歩行者の脚体下端部の変位量を表すパラメ一夕を測定する測定ス テツプと、 該パラメ一夕に対応する判定空間におけるプロッ トのパ夕一 ンと、 該歩行者の歩行状態とを対応付ける対応付けステツプと、 該判定空間において、 該測定ステップにおいて測定されたパラメータ により特定されるプロッ トを生成する生成ステップと、
該対応付けステツプにおいて歩行状態と対応付けられたプロッ 卜のパ ターンと、 該生成ステツプにおいて生成されたプロッ 卜のパターンとの 比較に基づいて該歩行者の歩行状態を判定する判定ステツプとを備えて いることを特徴とする歩行状態判定方法。
PCT/JP2002/008528 2001-10-18 2002-08-23 Dispositif et procede de determination d'une condition de la demarche WO2003032832A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02760730.8A EP1442703B1 (en) 2001-10-18 2002-08-23 Walking condition determining device
US10/491,853 US7220231B2 (en) 2001-10-18 2002-08-23 Walking condition determining device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001320430A JP3833921B2 (ja) 2001-10-18 2001-10-18 歩行状態判定装置及び方法
JP2001-320430 2001-10-18

Publications (1)

Publication Number Publication Date
WO2003032832A1 true WO2003032832A1 (fr) 2003-04-24

Family

ID=19137826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008528 WO2003032832A1 (fr) 2001-10-18 2002-08-23 Dispositif et procede de determination d'une condition de la demarche

Country Status (4)

Country Link
US (1) US7220231B2 (ja)
EP (1) EP1442703B1 (ja)
JP (1) JP3833921B2 (ja)
WO (1) WO2003032832A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131839A1 (en) * 2005-09-02 2009-05-21 Honda Motor Co., Ltd. Motion assist device

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930399B2 (ja) 2002-08-21 2007-06-13 本田技研工業株式会社 歩行補助装置
JP4326259B2 (ja) * 2003-05-21 2009-09-02 本田技研工業株式会社 歩行補助装置
JP4178186B2 (ja) 2003-08-21 2008-11-12 国立大学法人 筑波大学 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム
JP4178185B2 (ja) * 2004-02-17 2008-11-12 国立大学法人 筑波大学 装着式動作補助装置、及び装着式動作補助装置における駆動源の制御方法、及びプログラム
JP4503311B2 (ja) 2004-02-25 2010-07-14 本田技研工業株式会社 脚体運動補助装具の発生トルク制御方法
JP4549758B2 (ja) 2004-06-30 2010-09-22 本田技研工業株式会社 運動測定方法、運動測定装置及び運動測定プログラム
JP4499508B2 (ja) * 2004-08-27 2010-07-07 本田技研工業株式会社 歩行補助装置の制御装置
JP4541867B2 (ja) * 2004-12-16 2010-09-08 本田技研工業株式会社 外力制御方法、外力制御システム及び外力制御プログラム
US7632239B2 (en) * 2005-11-16 2009-12-15 Bioness Neuromodulation Ltd. Sensor device for gait enhancement
JP4185108B2 (ja) * 2006-04-06 2008-11-26 本田技研工業株式会社 運動管理システム
JP4138814B2 (ja) * 2006-04-06 2008-08-27 本田技研工業株式会社 運動管理システム
CA2956427C (en) 2006-05-01 2021-08-17 Bioness Neuromodulation Ltd. Improved functional electrical stimulation systems
DE102008024748A1 (de) * 2008-05-20 2009-12-03 Otto Bock Healthcare Gmbh Knieorthese sowie Verfahren zum Steuern einer Knieorthese
JP5137704B2 (ja) 2008-06-13 2013-02-06 本田技研工業株式会社 歩行補助装置の制御装置
JP2008253804A (ja) * 2008-07-10 2008-10-23 Honda Motor Co Ltd 運動管理システム
JP4601691B2 (ja) * 2008-08-01 2010-12-22 国立大学法人 筑波大学 装着式動作補助装置のキャリブレーション装置、及びキャリブレーション用プログラム
EP3219295B1 (en) * 2008-09-04 2023-11-15 Otto Bock HealthCare LP Hybrid terrain-adaptive lower-extremity systems
JP5109891B2 (ja) * 2008-09-12 2012-12-26 トヨタ自動車株式会社 歩行補助装置
JP2010148637A (ja) * 2008-12-25 2010-07-08 Toyota Motor Corp 歩行補助装置
AU2009348961B2 (en) * 2009-07-01 2014-12-04 Rex Bionics Limited Control system for a mobility aid
WO2011055428A1 (ja) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 歩行補助装置
US9216131B2 (en) 2009-11-13 2015-12-22 Toyota Jidosha Kabushiki Kaisha Walking assist device
JP5588724B2 (ja) * 2010-04-23 2014-09-10 本田技研工業株式会社 歩行運動補助装置
JP5549487B2 (ja) * 2010-09-02 2014-07-16 トヨタ自動車株式会社 歩行支援装置
JP5811647B2 (ja) * 2011-07-11 2015-11-11 オムロンヘルスケア株式会社 体動検出装置、および、体動検出装置の制御方法
US9855654B2 (en) 2011-09-06 2018-01-02 Wakayama University Power assist robot apparatus and control method therefor
US9296102B2 (en) * 2012-01-11 2016-03-29 Technion Research And Development Foundation Ltd. Robot, device and a method for central pattern generator(CPG) based control of a movement of the robot
DE102012107117A1 (de) 2012-08-02 2014-02-06 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Orthesensteuerung
JP6393041B2 (ja) * 2014-02-27 2018-09-19 国立大学法人九州大学 下肢アシストスーツ
JP6407539B2 (ja) * 2014-03-13 2018-10-17 株式会社東芝 膝関節動作支援装置
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
WO2016006432A1 (ja) 2014-07-10 2016-01-14 国立大学法人大阪大学 脚相移行タイミング判定方法、脚相移行タイミング判定装置、歩行支援制御方法及び歩行支援装置
KR102387378B1 (ko) * 2014-10-07 2022-04-15 삼성전자주식회사 보행 동작 인식을 위한 장치 및 방법
KR102346226B1 (ko) 2015-01-22 2022-01-03 삼성전자주식회사 구동 모듈 및 이를 포함하는 운동 보조 장치
JP6382754B2 (ja) * 2015-03-11 2018-08-29 株式会社東芝 動作支援装置
JP7036728B2 (ja) 2016-01-11 2022-03-15 バイオネス インコーポレイテッド 歩行調整用のシステム及び装置並びにその使用方法
KR101836636B1 (ko) * 2016-05-19 2018-03-09 현대자동차주식회사 착용식 보행 보조 로봇 시스템 및 그 제어 방법
CN107536613B (zh) * 2016-06-29 2021-10-08 沭阳县成基实业有限公司 机器人及其人体下肢步态识别装置和方法
EP3778140B1 (en) 2016-08-17 2024-01-31 Power Assist International Corporation Wearable assist robot apparatus
CN106618972B (zh) * 2016-12-02 2018-10-09 江苏大学 一种基于嵌入式系统的助力行走装置及控制方法
CN106420267B (zh) * 2016-12-02 2019-04-02 江苏大学 一种可穿戴智能下肢康复装置及控制方法
KR101940898B1 (ko) * 2017-01-20 2019-01-21 국방과학연구소 외골격 로봇의 하강보행 제어 방법
US11298285B2 (en) 2018-03-16 2022-04-12 Arizona Board Of Regents On Behalf Of Northern Arizona University Ankle exoskeleton system and method for assisted mobility and rehabilitation
US11090801B2 (en) * 2018-05-11 2021-08-17 Arizona Board Of Regents On Behalf Of Northern Arizona University Exoskeleton device
US11034016B2 (en) 2018-05-11 2021-06-15 Arizona Board Of Regents On Behalf Of Northern Arizona University Exoskeleton device
CN112996636A (zh) * 2018-11-16 2021-06-18 日本电气株式会社 负荷减少设备、负荷减少方法和存储程序的存储介质
US11622905B2 (en) 2018-12-10 2023-04-11 Arizona Board Of Regents On Behalf Of Northern Arizona University Proportional joint-moment control for powered exoskeletons and prostheses
US20230301864A1 (en) * 2022-03-22 2023-09-28 David Barwick Technologies for improving the gait of individuals with parkinson's disease

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631676A (en) 1983-05-25 1986-12-23 Hospital For Joint Diseases Or Computerized video gait and motion analysis system and method
JPH11347020A (ja) 1998-06-05 1999-12-21 Tokico Ltd 消費カロリ演算装置
JP2001108479A (ja) * 1999-10-08 2001-04-20 Shinichi Ito 歩数計

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813436A (en) * 1987-07-30 1989-03-21 Human Performance Technologies, Inc. Motion analysis system employing various operating modes
JP3530959B2 (ja) 1993-12-13 2004-05-24 株式会社東京アールアンドデー 平地歩行、階段歩行の電動補助装置
US5885229A (en) * 1995-07-19 1999-03-23 Nippon Telegraph & Telephone Corp. Walking pattern processing method and system for embodying the same
NL1008619C2 (nl) * 1998-03-17 1999-10-01 Robert Christiaan Van Lummel Werkwijze voor het meten en aangeven van de mate waarin een persoon beperkt is in activiteiten van het dagelijks leven.
DE19859931A1 (de) * 1998-12-24 2000-07-06 Biedermann Motech Gmbh Beinprothese mit einem künstlichen Kniegelenk und Verfahren zur Steuerung einer Beinprothese
JP2000325329A (ja) 1999-03-16 2000-11-28 Hoya Corp 階段歩行認識装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631676A (en) 1983-05-25 1986-12-23 Hospital For Joint Diseases Or Computerized video gait and motion analysis system and method
JPH11347020A (ja) 1998-06-05 1999-12-21 Tokico Ltd 消費カロリ演算装置
JP2001108479A (ja) * 1999-10-08 2001-04-20 Shinichi Ito 歩数計

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GORO NEBUYA ET AL.: "Kado sokudo oyobi kasokudo censer o shiyo shita hohaba to hoko sokudo no mukosoku keisoku", BPES2000 DAI 15 KAI PROCEEDING OF THE SYMPOSIUM ON BIOLOGICAL AND PHYSIOLOGICAL ENGINEERING, 13 October 2000 (2000-10-13), pages 233 - 236, XP002963724 *
SACHIKO HISASHITA ET AL.: "Nichijo seikatsu ni okeru jokashi undo no keisoku", HUMAN INTERFACE, vol. 1, no. 1, 16 February 1999 (1999-02-16), pages 53 - 56, XP002963723 *
See also references of EP1442703A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131839A1 (en) * 2005-09-02 2009-05-21 Honda Motor Co., Ltd. Motion assist device
US8287473B2 (en) * 2005-09-02 2012-10-16 Honda Motor Co., Ltd. Motion assist device

Also Published As

Publication number Publication date
EP1442703A4 (en) 2008-05-28
JP2003116893A (ja) 2003-04-22
US20040249316A1 (en) 2004-12-09
EP1442703A1 (en) 2004-08-04
JP3833921B2 (ja) 2006-10-18
US7220231B2 (en) 2007-05-22
EP1442703B1 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2003032832A1 (fr) Dispositif et procede de determination d&#39;une condition de la demarche
WO2003032833A1 (fr) Dispositif et procede pour determiner une condition de marche
EP1410780B1 (en) Torque imparting system
KR102131277B1 (ko) 보행 보조 장치 및 보행 보조 장치의 제어 방법
KR102122856B1 (ko) 보행 보조 장치 및 그 제어 방법
JP4503311B2 (ja) 脚体運動補助装具の発生トルク制御方法
KR102172975B1 (ko) 착용형 로봇 및 그 제어 방법
US20040206164A1 (en) Method of estimating floor reactions of bipedal walking body, and method of estimating joint moments of bipedal walking body
WO2006064657A1 (ja) 外力制御方法、外力制御システム及び外力制御プログラム
EP1627712A1 (en) Method of assuming acting point of floor reaction force to biped walking mobile body and method of assuming joint moment of biped walking mobile body
WO2003002309A1 (fr) Procede d&#39;estimation des reactions au sol du corps d&#39;un bipede pendant une marche, et procede d&#39;estimation des moments sur les articulations du corps d&#39;un bipede pendant une marche
US20190336383A1 (en) Movement assistance system and method thereof
US20170156895A1 (en) Movement assistance system and method thereof
JP4246535B2 (ja) 二足歩行移動体の床反力作用点推定方法及び二足歩行移動体の関節モーメント推定方法
JP2018011890A (ja) 歩行データ取得装置および歩行データ取得システム
US20200290209A1 (en) Control device for robot
JP6393041B2 (ja) 下肢アシストスーツ
JP5610294B2 (ja) 歩行支援装置、及び歩行支援プログラム
KR102234788B1 (ko) 보행 보조 장치 및 보행 보조 장치의 제어 방법
KR101978441B1 (ko) 족저압을 이용한 보행보조장치의 제어방법
JP7132159B2 (ja) 動作支援装置の制御装置
CN113925494A (zh) 个人不良行走步态监测方法和装置
JP2013048702A (ja) 歩行支援装置、及び歩行支援プログラム
JP2016061611A (ja) 荷重値を推定する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10491853

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002760730

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002760730

Country of ref document: EP