WO2003031253A1 - Procede et dispositif permettant de reduire la resistance atmospherique a un vehicule - Google Patents

Procede et dispositif permettant de reduire la resistance atmospherique a un vehicule Download PDF

Info

Publication number
WO2003031253A1
WO2003031253A1 PCT/JP2001/009591 JP0109591W WO03031253A1 WO 2003031253 A1 WO2003031253 A1 WO 2003031253A1 JP 0109591 W JP0109591 W JP 0109591W WO 03031253 A1 WO03031253 A1 WO 03031253A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
resistance
air
air resistance
reducing member
Prior art date
Application number
PCT/JP2001/009591
Other languages
English (en)
French (fr)
Inventor
Hareyuki Nishida
Original Assignee
Kanki, Kenzo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanki, Kenzo filed Critical Kanki, Kenzo
Publication of WO2003031253A1 publication Critical patent/WO2003031253A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • B62D35/001For commercial vehicles or tractor-trailer combinations, e.g. caravans

Definitions

  • the present invention relates to a method and apparatus for reducing air resistance of a vehicle, and more particularly, to a method and apparatus for reducing air resistance of a box-shaped vehicle such as a bus, a train, a truck, a tractor, a trailer, a van, and the like.
  • a box-shaped vehicle such as a bus, a train, a truck, a tractor, a trailer, a van, and the like.
  • the front of the vehicle may be formed in a streamlined manner so that the air flow does not separate at the front of the vehicle.
  • the space inside the vehicle becomes smaller. Because some vehicles do not have a streamlined body, buses, trains, trucks, and other vehicles that require a relatively large interior space are generally box-shaped instead of streamlined.
  • a packing box 97 protrudes upward from a roof 98 of a cab.
  • air flow is separated near the front end of the roof 98, and a separated area 9.9 is formed above the roof 98. The air flow also separates near the front end of the packing box 97.
  • the air resistance of the conventional vehicle 91 is reduced, for example, by forming the front edge of the vehicle into a curved surface.
  • the air resistance of the truck 96 is reduced by installing an air deflector (wind guide plate) on the roof 98 of the cab.
  • the air deflector reduces the air resistance by changing the air flow (main flow) so that the front of the packing box does not receive the main flow.
  • the conventional air deflector is formed, for example, in a streamline shape having a curved surface.
  • Japanese Patent Laying-Open No. 2000-230337 discloses a vehicle having a box-shaped vehicle having a front surface formed with a protruding portion for reducing air resistance.
  • the projecting portion has substantially the same area as the front surface of the box-shaped vehicle, there is a problem that forming the projecting portion and attaching it to the vehicle is troublesome. Disclosure of the invention
  • An object of the present invention is to provide an air resistance reducing method and an air resistance reducing device for a vehicle that can reduce the air resistance of the vehicle with a relatively simple configuration without reducing the space inside the vehicle.
  • the air resistance of a box-shaped vehicle in which a steady air flow region and a separation region between the steady flow region and the vehicle surface are formed.
  • An air resistance reduction device that reduces the air resistance is provided. The device extends from at least one surface of a top surface and a pair of side surfaces of the vehicle toward the separation region, and is disposed in the separation region so as not to reach the steady flow region. Including members.
  • the cab and the upper surface of the A vehicle having a packing box having: a stationary flow region of airflow when the vehicle travels, and a separation region formed between the stationary flow region and a surface of a roof of the cab.
  • the apparatus includes a drag reducing member extending from the surface of the roof toward the separation area and disposed in the separation area so as not to reach the steady flow area.
  • the resistance reducing member is a plate-like member that is mounted perpendicular to the surface.
  • the resistance reducing member is a plate-like member attached to the surface obliquely rearward of the vehicle.
  • the resistance reducing member has a predetermined length, and is disposed on the upper surface of the vehicle so as to extend in a lateral direction of the vehicle, and the predetermined length is preferably smaller than a lateral width of the vehicle.
  • the resistance reducing member has a predetermined length and is disposed on a side surface of the vehicle, and the predetermined length is smaller than a height of the vehicle.
  • the resistance reducing member is one of a plurality of resistance reducing members. It is preferable that the resistance reducing member is always arranged in the peeling area in accordance with the size of the peeling area that changes according to the vehicle speed. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a side view of a box-type vehicle to which a resistance reducing member according to a first embodiment of the present invention is attached.
  • FIG. 2 shows the air flow and the drag reducing member of FIG.
  • Fig. 3 is a perspective view of the resistance reducing member and the experimental device of Experimental Example 1.
  • Fig. 4 is a side view of the resistance reducing member of Experimental Example 2.
  • FIG. 5 is a side view of the resistance reducing member of Experimental Example 3.
  • FIG. 6 is a side view of the resistance reducing member of Experimental Example 4.
  • FIG. 7 is a side view of the resistance reducing member of Experimental Example 5.
  • FIG. 8 is a side view of a track having a resistance reducing member according to a second embodiment of the present invention.
  • FIG. 9 shows the air flow and the drag reducing member of FIG.
  • FIG. 10 is a side view of the resistance reducing member of Experimental Example 10.
  • FIG. 11 is a plan view of the resistance reducing member of Experimental Example 11;
  • FIG. 12 is a partial perspective view of a track having another resistance reducing member.
  • FIG. 13 is a side view of a passenger car having another drag reduction member.
  • Fig. 14 is a side view showing a conventional box-shaped vehicle and the air flow.
  • Figure 15 is a side view showing a conventional truck and air flow.
  • the resistance reducing member 13 is attached to the upper surface 12 of the box-shaped vehicle 11.
  • the resistance reducing member 13 has a plate shape and is mounted perpendicular to the upper surface 12.
  • the resistance reducing member 13 has a predetermined height H, and is attached so as to extend in the width direction of the box-shaped vehicle 11 at a position at a predetermined distance L from the front end of the box-shaped vehicle 11. That is, the front surface of the box-shaped vehicle 11 is orthogonal to the traveling direction.
  • the airflow When the box-shaped vehicle 11 is running, the airflow relatively flows toward the rear of the box-shaped vehicle 11.
  • the air flow (main flow) does not flow along the upper surface 12 of the box-shaped vehicle 11 but separates near the front end of the box-shaped vehicle 11 and flows through the steady flow region. Due to the separated flow, a reverse flow region, that is, a separated region is generated between the steady flow region and the upper surface 12.
  • the size of the separation area changes according to the size and the vehicle speed of the box-shaped vehicle 11.
  • the separation area and the steady flow area have been determined in advance by wind tunnel experiments.
  • the resistance reducing member 13 is disposed in a peeling region formed while the box-shaped vehicle 11 having no resistance reducing member 13 is running at a normal vehicle speed.
  • the predetermined distance L and the predetermined height H are selected so that the resistance reducing member 13 does not reach the steady flow region formed during traveling of the box-shaped vehicle 11 without the drag reducing member 13 at a normal vehicle speed. Is done.
  • the normal vehicle speed is, when the box-shaped vehicle 11 is a bus, a vehicle speed when the bus runs on a general public road that is not an expressway, for example, 40 kmZh to 50 km / h. is there.
  • Box type vehicle 1 of the first embodiment 1 1 includes buses and trains. As shown in FIG. 2, while the box-shaped vehicle 11 is traveling, the airflow (mainstream) relatively flows from the front of the box-shaped vehicle 11 to the box-shaped vehicle 11 as shown in FIG. It flows backward. The mainstream separates near the front end of the upper surface 12 of the box-shaped vehicle 11 and forms a separation region 15 near the upper surface 12. The main flow flows through the steady flow region 16.
  • the resistance reducing member 13 is disposed in a peeling area 15 determined by a wind tunnel test according to the vehicle speed of the box-shaped vehicle 11 in a normal running state, and is separated from a surface of the box-shaped vehicle 11 from the surface. It extends towards 15 and does not reach the steady flow region 16.
  • the resistance reducing member 13 reduces the air resistance of the box-shaped vehicle 11.
  • FIG. 3 shows a schematic perspective view of the experimental apparatus.
  • the air resistance of the box-shaped vehicle model 21 is measured using the experimental apparatus.
  • a blower (not shown) is provided in front of the model 21.
  • the model 21 is movable in the front-back direction.
  • a support shaft 24 extending rearward from the rear surface of the model 21 is connected to the load cell 23.
  • the load cell 23 is supported by the support 22.
  • the load cell 23 has a built-in strain gauge and detects a load received via the support shaft 24.
  • the voltage of the detection signal of the load cell 23 corresponds to the resistance of the model 21 received from the wind from the blower.
  • Model 21 is a rectangular parallelepiped. Model 21 is 200 mm long. Surface before and after Men ⁇ Pi of the model 21 is a side a square 100 mm, the front of the area S Ru 0. 01 m 2 der. The distance between the floor of the model 21 and the floor is 30 mm. A wind speed of 11.5 m / s was sent to the model 21 from the blower.
  • the air resistance C of the model 21 is calculated from the formula (1) force.
  • E in the equation (1) is the voltage value E of the detection signal of the load cell 23.
  • the air resistance coefficient C D generally used to represent the air resistance is calculated from Equation (2).
  • Example 1 As shown in FIG. 3, on the upper surface 25 of the model 21, a plate 31 as a resistance reducing member was attached at a position away from the front surface of the model 21 by a distance L. Also, on the left side 32 and the right side of the model 21, the distance L from the front of the model 21
  • LS A plate 31 was attached at a distance.
  • the plate 31 has a height H.
  • Each plate 31 has a height H (HS).
  • the distance L and height H were changed, and the air drag coefficient CD was measured. Table 1 shows the results.
  • the air drag coefficient C D of the model 21 alone measured without attaching the plate 31 was 0.906.
  • Drag coefficient C D of model type 21 height H is the distance L a plate 31 of 8. 5 mm has a position of 3 Omm was 0.826 1.
  • the model 21 having the plate 31 with a height H of 8.5 mm and a distance L of 4 Omm had a coefficient of air resistance C D of 0.8197.
  • plate 31 reduced the air resistance of model 21 by 8.91% to 9.61%. From this result, it was found that the provision of the plate 31 in the separation area reduced the air resistance of the model 21.
  • Example 2 As shown in FIG. 4, a plate 41 as a resistance reducing member was attached between the front surface of the model 21 and the plate 31.
  • the plate 41 is separated from the front of the model 21 by a distance L1.
  • the plate 31 is separated from the front of the model 21 by a distance L2.
  • the height of the plate 41 is HI.
  • the height of the plate 31 is H2.
  • the height HI of the plate 41 is smaller than the height H2 of the plate 31.
  • Plates 31, 41 were attached to the upper surface and left and right side surfaces of the model 21. Distance by changing the L 1, L 2 and height H 1 H2, was measured drag coefficient C D of the model 21. Table 2 shows the results. Table 2
  • a swash plate 45 as a resistance reducing member is attached to the upper surface 25 as shown in FIG.
  • the swash plate 45 is inclined obliquely upward from the front end of the model 21.
  • the height of the rear end of the swash plate 45 is H.
  • a swash plate 46 smaller than the swash plate 45 blocks the space between the rear end of the swash plate 45 and the upper surface 25.
  • the distance from the front end to the rear end of the swash plate 45 is 41 mm.
  • the swash plates 45 and 46 were attached to the upper surface and the left and right side surfaces of the model 21. Change the height H, to measure the air resistance coefficient C D of the model 21. Table 3 shows the results.
  • Table 3 As shown in Table 3, when the height H was 12 mm, a resistance reduction rate of 25.13% was obtained. Therefore, the swash plates 45 and 46 were found to effectively reduce the air resistance of the model 21.
  • a swash plate 51 as a drag reducing member extending obliquely rearward was attached to a position at a distance L from the front end of the upper surface 25.
  • the distance from the front end to the rear end of the swash plate 51 is about 15 mm.
  • the air resistance coefficient C D of the model 2 1 was measured les. Table 4 shows the results.
  • the swash plate 51 of the fourth embodiment and the swash plate 45 of the third embodiment are different in size and position.
  • the swash plate 51 of the fourth embodiment is relatively small, and the back surface of the swash plate 51 is open. With the relatively simple swash plate 51, a resistance reduction rate almost equal to that of the swash plate 45 was obtained.
  • Example 5 As shown in FIG. 7, two swash plates 53 and 54 serving as resistance reducing members were attached to the upper surface 25 of the model 21 side by side.
  • the swash plates 5 3 and 5 4 are separated from the front of the model 2 1 by distances L l and L 2, respectively.
  • the height of the rear end of the swash plate 53 is H1
  • the height of the rear end of the swash plate 54 is H2.
  • the front swash plate 53 is smaller than the rear swash plate 54.
  • the swash plate 3 the height H 1 and the distance L 1 constant, by changing the height H 2 and the distance L 2 of the swash plate 5 4 was measured drag coefficient C D of the model 2 1.
  • Example 6 a model having the same dimensions as the model 21 and having a rectangular parallelepiped with a front edge formed into a curved surface was used.
  • the radius of curvature of the curved surface between the front surface and the top surface is 1 mm.
  • the radius of curvature of the curved surface between the front surface, the left side surface and the right side surface is 5 mm.
  • this model is referred to as model R (1, 5).
  • the plate 31 of Example 1 was attached to the upper surface and left and right side surfaces of the model R (1, 5). Change the distance L and the height H, to measure the air resistance coefficient C D of the model R (1, 5). Table 6 shows the results.
  • the first reduction rate is a resistance reduction rate for the model 21 on which the plate 31 is not attached.
  • the second reduction rate is the resistance reduction rate for model R (1, 5) without plate 31 attached. Table 6
  • Example 7 it was measured drag coefficient C D of the model R (1 5) by changing the mounting position of the swash plate 45 of 3 l mm in FIG. Swash plate 45 was attached to (1) only the upper surface of model R (1, 5), (2) the upper surface and the right side, and (3) the upper surface and the left and right sides. The height H of the upper surface of the swash plate 45, the height HS of the swash plate 45 at each side to change to measure the air resistance coefficient C D of the model R (1, 5). Table 7 shows the results. Table 7
  • Example 8 the mounting position of the swash plate 5 354 shown in FIG. The drag coefficient C D 5) were measured.
  • Swash plates 53 and 54 were attached only to the upper surface of model R (15).
  • Two swash plates were attached to the upper surface, and one swash plate was attached to the left and right sides.
  • Two swash plates were attached to the top, left and right sides.
  • the distance LS from the front of the model R (15) to the mounting position of the swash plate on the side and the height HS of the swash plate on the side were different from the distance L and the height H of the swash plate on the top.
  • the swash plate 53 54 was found to reduce the air resistance of the rounded model R (15).
  • the resistance reducing member 13 is disposed in the separation region 15 so as not to reach the steady flow region 16 generated when the box-shaped vehicle 11 without the resistance reducing member 13 travels.
  • the relatively simple drag reduction member 13 reduces the air resistance of the box-shaped vehicle 11 without reducing the space inside the vehicle. As a result, the fuel efficiency of the box-shaped vehicle 11 is improved.
  • the resistance reducing member 13 is preferably disposed on either the upper surface 12 or the side surface of the box-shaped vehicle 11.
  • the vehicle of the second embodiment is a truck 61 having a packing box.
  • the truck 61 has a packing box 63 higher than the cab roof 62.
  • a resistance reducing member 64 is attached to the roof 62 at a predetermined distance L from the front end of the truck 61.
  • the resistance reducing member 64 has a plate shape having a predetermined height H, and is vertically attached to the roof 62.
  • the resistance reducing member 64 has a predetermined width W, and the width W is preferably smaller than the width of the roof 62.
  • the size of the separation area changes according to the size of the truck 61 and the vehicle speed. Therefore, the size of the separation area and the steady flow area can be obtained in advance by wind tunnel experiments.
  • the resistance reducing member 64 is disposed in a separation area where the truck 61 running at a normal vehicle speed occurs.
  • the predetermined distance L and the predetermined height H are selected so that the resistance reducing member 6 4 does not reach the steady flow region formed when the truck 61 without the resistance reducing member 64 is running at a normal vehicle speed.
  • the normal vehicle speed of the truck 61 is, for example, a vehicle speed when the truck 61 runs on a general public road that is not a highway, and is, for example, 40 kmZl! ⁇ 50 kmZh.
  • the resistance reducing member 64 may be arranged in a peeling area generated when the truck 61 is traveling on the highway (for example, at 80 kmZh). As shown in FIG. 9, when the truck 61 having the resistance reducing member 64 travels, an airflow (mainstream) relatively flowing from the front to the rear of the truck 61 is generated. The main flow flows through the steady flow region 66. A separation area 65 is formed on the roof 62 of the cab. The mainstream also separates near the front end of the packing box 63.
  • the resistance reducing member 64 is located in the separation region 65 determined by the wind tunnel experiment, and does not reach the steady flow region 66.
  • the air resistance of the truck 61 is reduced by the resistance reducing member 64.
  • the air resistance was measured using the experimental device shown in Fig. 3 and the truck model 68.
  • the dimensions of model 68 are as follows. Packing box 6 9 height 1 5 0 mm in to the top surface, the lateral width of 1 0 0 mm of packing box 6 9, the projected area S of the front of the model 6 8 0. 0 1 5 m 2 (1 5 0 mm X 100 mm).
  • the top surface of the packing box 69 is 38 mm higher than the cab roof 70.
  • the width of the cab is 90 mm, the length of the roof 70 of the cab in the front-rear direction is 80 mm, and the length of the packing box 69 is 210 mm in the front-rear direction.
  • the drag coefficient C D of the model 6 8 was calculated from the detected voltage of the load cell 2 3.
  • the wind speed of the wind sent to the model 68 is 11.5 tn / s. (Example 9)
  • Example 9 a plate 71 similar to the resistance reducing member 64 shown in FIG. 8 was vertically mounted on the roof 70 of the cab of the model 68.
  • the air resistance coefficient CD was measured while changing the height H and the distance L of the plate 71.
  • Table 9 shows the results.
  • Drag reduction rate is the reduction rate for C D value of the model 68 not attach the plate 71.
  • the resistance reduction rate (12.14%) was the maximum when the plate 71 with the height H of 17 mm was vertically mounted at the distance L of 33 mm. This value was larger than the case where a total of two plates were attached by vertically attaching another plate at a position where the distance L was 41.5 mm.
  • a plate 71 with a height H of 21 mm is installed vertically at a distance L of 49 mm, then a plate 71 with a height H of 23 mm is installed vertically at a position where the distance L is 49 mm.
  • the resistance reduction rate was about 12.3%, which was almost the same.
  • Example 10 As shown in FIG. 10, a swash plate 72 as a resistance reducing member was attached to the roof 70 of the operator's cab of the model 68 at an angle to the rear. The length T, height ⁇ , width W (see Fig. 11), and mounting position (distance) L of the swash plate 72 were changed, and the air resistance coefficient CD was measured. Table 10 shows the results. Drag reduction rate is the reduction rate for C D value had model 68 such have attached a plate 71. Table 10
  • Example 11 a swash plate 72 as a resistance reducing member was attached to the roof 70 of the operator's cab of the model 68 so as to be inclined backward.
  • the length T of the swash plate 72 is 30 mm
  • the height H is 2 Omm
  • the width W is 73 mm
  • the mounting position (distance) L is 23 mm.
  • a swash plate 75 as a drag reducing member was attached to both sides of the cab toward the rear.
  • the swash plate 75 has not reached the steady flow region 76 and is located in the separation region 77.
  • Swash plate 75 of the length T 3, mounting position (distance) LS was measured drag coefficient C D of by changing the height HS model 68. Table 11 shows the results.
  • a plate 71 with a length TS of 3 Omm was placed at a distance LS of 15 mm.
  • the resistance reduction rate was 18.80%.
  • the following advantages are obtained in addition to the advantages (2) to (4) of the first embodiment.
  • a drag reducing member having a relatively simple structure is provided in the separation region 65 so as not to reach the steady flow region 66.
  • the air resistance of the truck 61 is reduced, and the fuel efficiency of the truck 61 is improved. Since the resistance reducing member is mounted on the roof 62 of the driver's cab, the space inside the vehicle is not reduced.
  • the first and second embodiments may be changed as follows.
  • a plate-shaped resistance reduction member 13 may be attached to at least one of the three surfaces (the upper surface 12 and both side surfaces) of the box-shaped vehicle 11 of the first embodiment. That is, the resistance reducing member 13 may be attached to only the upper surface 12 of the box-shaped vehicle 11, one side surface, both side surfaces, the upper surface 12 and one side surface, and the upper surface 12 and both side surfaces.
  • the distance L and the height H are selected so that the resistance reducing member 13 is disposed in the separation region.
  • the mounting position (distance) L and height H of the resistance reducing member 13 may be changed between the upper surface 12 and the side surface of the box-shaped vehicle 11.
  • a plurality of plate-shaped resistance reducing members 31 and 41 shown in FIG. 4 are provided on at least one of the three surfaces (the upper surface 12 and both side surfaces) of the box-shaped vehicle 11 of the first embodiment. May be attached.
  • the swash plate 45 shown in FIG. 5 may be attached to at least one of the three surfaces (the upper surface 12 and both side surfaces) of the box-shaped vehicle 11 of the first embodiment.
  • the swash plate 51 shown in FIG. 5 may be attached to at least one of the three surfaces (the upper surface 12 and both side surfaces) of the box-shaped vehicle 11 of the first embodiment.
  • a plurality of swash plates 53, 54 shown in FIG. 6 may be attached to at least one of the three surfaces (top surface 12 and both side surfaces) of the box-shaped vehicle 11 of the first embodiment. Les ,.
  • the front edge of the box-shaped vehicle 11 of the first embodiment is curved, and at least one of the three surfaces (the upper surface 12 and both side surfaces) of the box-shaped vehicle 11 A reduction member may be attached.
  • the resistance reducing members of the first to eighth embodiments may be attached to the front of at least one of the three surfaces (the upper surface 12 and both side surfaces) of the packing box 63 of the truck 61.
  • swash plates 81 and 82 as resistance reducing members may be attached to the upper surface and side surfaces of the packing box 63, respectively.
  • the side swash plate 82 is mounted above the level of the cab roof 62.
  • the side swash plate 82 may be formed to extend from the upper end to the lower end of the packing box 63.
  • the resistance reducing members of Examples 1 to 8 are formed to be equal to or shorter than the width of the box-shaped vehicle 11.
  • the resistance reducing member is formed to be equal to or shorter than the height of the side surface of the box-shaped vehicle 11.
  • a plurality of plate-shaped drag reduction members 64 may be attached to at least one of three surfaces (roof 62, both side surfaces) of the cab of truck 61.
  • a plurality of swashplates 7 2 may be mounted on the roof 62 of the cab of the truck 61.
  • Multiple swashplates 75 may be mounted on the side of the cab of truck 61.
  • the position at which the resistance reducing member is attached to the vehicle and the height from the surface of the vehicle may be adjusted, for example, by using an adjusting means in accordance with the size of the peeling area that changes depending on the vehicle speed.
  • the separation area corresponding to each vehicle speed is stored in advance in a storage device as data by a wind tunnel experiment, and the most effective in reducing the air resistance of the vehicle in the separation area according to the vehicle speed detected by the vehicle speed sensor.
  • the resistance reducing member is formed so that it can be placed at a suitable position.
  • the two plates slide relative to each other
  • the height H can be adjusted by adjusting the height, and two heights can be adjusted by driving with a piston.
  • the height of the resistance reducing member can be adjusted so as to correspond to an expressway and a public road that is not an expressway.
  • variable height resistance reducing member is not limited to being formed to be adjustable to two different heights, and may be formed to be continuously adjustable in height, for example, by driving a motor. In this case, it is possible to adjust so that the resistance reducing member exists in the peeling region in accordance with an arbitrary vehicle speed, and it is easy to reduce the air resistance of the vehicle in response to a continuous change in the vehicle speed.
  • the resistance reducing member 13 has a bus speed of 40 kmZt!
  • the arrangement is not limited to being located in the peeling area at a distance of up to 50 kmZh and may be located in the peeling area corresponding to another vehicle speed.
  • the resistance reducing member 64 attached to the truck 61 is 40 kmZl! It is not limited to being located in the peeling area corresponding to ⁇ 50 km / h or 80 kmZh, and may be located in the peeling area corresponding to other vehicle speeds. Good.
  • the mounting position of the resistance reducing member such as the plate 31 is not limited as long as it is in a place where the vehicle is peeled off.
  • peeling occurs at the front of the engine hood and the front of the roof of the cab, depending on the shape and speed.
  • a resistance reduction member that can move between a position that falls along the vehicle surface and a position that stands up toward the separation area Plates 87 may be installed. Since the peeling of the passenger car 86 is smaller than that of the box-shaped vehicle 11, the air resistance of the plate 87 is relatively small, but the air resistance of the passenger car 86 is reduced by the plate 87.
  • the air resistance of a vehicle is reduced by a resistance reducing member arranged at a predetermined position so as to be located in a peeling region at a front portion of a vehicle or in a peeling region on a roof of a cab such as a truck. Is done. For this reason, even if the shape of the vehicle is not changed, the air resistance of the vehicle can be reduced without reducing the space in the vehicle by a relatively simple configuration in which the resistance reducing member is disposed in the separation region.
  • the flow separation region is a reverse flow region that occurs near the surface of the object when the main flow near the surface of the object is not flowing along the object. The region where the main flow flows is the steady flow region.
  • the steady flow region and the separation region are obtained according to each vehicle and vehicle speed by, for example, a wind tunnel experiment.
  • the resistance reducing member is located at least in a separation region corresponding to the vehicle speed in a normal running state of each vehicle, and is arranged so as not to reach a steady flow region.
  • the resistance reducing member is adjusted so as to always be present in the peeling region in accordance with the vehicle speed, so that the air resistance of the vehicle is reduced according to the change in the vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Description

明細謇
車両の空気抵抗低減方法及び装置 発明の分野
本発明は、 車両の空気抵抗低減方法及ぴ装置に関し、 詳しくは、 例えばバス、 電車、 トラック、 トラクター、 トレーラー、 バンなどの箱型状の車両の空気抵抗 を低減する方法及び装置に関する。 背景技術
走行時の車体の空気抵抗を低減させるために、 車両の前部において空気流れを 剥離させないように、 車両の前部を流線形に形成することがある。 ところが、 車 体を流線形にすると、 車内スペースは小さくなる。 車両によつては車体の流線形 化が適さないため、 バス、 電車、 トラックなどの比較的大きな車内スペースを要 する車両は、 一般的に流線形でなく箱型である。
図 1 4に示すように、 従来の箱型の車両 9 1が走行する時、 上面 9 2の前端部 付近で空気流れ (主流) の剥離が生じ、 上面 9 2の上方に、 流れの剥離領域 9 3 が形成される。
図 1 5に示すように、 従来のトラック 9 6は、 荷箱 9 7が運転室のルーフ 9 8 より上方へ突出している。 トラック 9 6が走行する時、 ルーフ 9 8の前端部付近 で空気流れの剥離が生じ、 ルーフ 9 8の上方に剥離領域 9 9が形成される。 また 、 空気流れは荷箱 9 7の前端部付近でも剥離する。
従来の車両 9 1の空気抵抗は、 例えば、 車両前縁を曲面状に形成することによ り低減される。 また、 トラック 9 6の空気抵抗は、 運転室のルーフ 9 8に、 エア デフレクタ一 (導風板) を取り付けることにより低減される。 エアデフレクタ一 により、 荷箱の前面が主流を受けないように空気流れ (主流) を変化させること により、 空気抵抗は低減される。 従来のエアデフレクタ一は、 例えば曲面を有す る流線形状に形成されている。
ところが、 箱型状の車両の前縁を曲面状に形成するのは手間がかかる。 また、 前縁を完全な流線形に成形するのは困難である。 そのため、 剥離を低減させるこ とは困難である。 従来のエアデフレクタ一は空気流れ (主流) の力を直接受ける ため、 十分な強度が要求され、 また、 強固に取り付けられる必要がある。 そのよ うなエアデフレクタ一は大型で、 重く、 且つ高価である。 複雑な曲線形状のエア デフレクタ一を製造するのは手間がかかる。
特開 2 0 0 0— 2 3 3 7 6 7号公報は、 箱型状の車両の前面に、 空気抵抗を低 減する突出部を形成した車両を開示している。 ところが、 突出部が箱型車両の前 面とほぼ同じ面積を有しているため、 突出部の形成及ぴ車両への取り付けは手間 がかかるという問題がある。 発明の開示
本発明の目的は、 比較的簡単な構成により、 車内スペースを低減させずに車両 の空気抵抗を低減できる車両の空気抵抗低減方法及び空気抵抗低減装置を提供す ることにある。
上記の目的を達成するために、 本発明の一態様では、 車両が走行した時、 空気 流れの定常流れ領域と、 前記定常流れ領域と前記車両との間に剥離領域とが形成 される、 箱型状の車両、 又は運転室と当該運転室のルーフより高い位置に上面を 有する荷箱とを有する車両の空気抵抗を低減させる方法が提供される。 その方法 は、 車両の前部付近または運転室付近において、 車両の表面から前記剥離領域に 向かって延び、 かつ、 定常流れ領域には達しないように剥離領域中に抵抗低減部 材を配置する工程を備える。
本発明の別の態様では、 所定の速度で走行した時、 空気の定常流れ領域と、 前 記定常流れ領域と車両表面との間に剥離領域とが形成される箱型状の車両の空気 抵抗を低減させる空気抵抗低減装置が提供される。 その装置は、 車両の上面と一 対の側面との少なくとも一つの表面から前記剥離領域に向かって延び、 かつ、 前 記定常流れ領域には達しないように前記剥離領域中に配置された抵抗低減部材を 含む。
本発明の更に別の態様では、 運転室と当該運転室のルーフより高い位置に上面 を有する荷箱とを有する車両において、 車両が走行した時、 空気流れの定常流れ 領域と、 前記定常流れ領域と前記運転室のルーフの表面との間に剥離領域とが形 成される前記車両の空気抵抗を低減させる抵抗低減装置が提供される。 その装置 は、 ルーフの表面から前記剥離領域に向かって延び、 かつ、 前記定常流れ領域に は達しないように前記剥離領域中に配置された抵抗低減部材を含む。
抵抗低減部材は、 前記表面に対して垂直に取り付けられた板状部材であること が好ましい。 一実施例では、 抵抗低減部材は、 前記車両の斜め後方に向かって傾 斜して前記表面に取り付けられた板状部材である。 抵抗低減部材は所定の長さを 有し、 かつ、 前記車両の上面において前記車両の横方向に延びるように配置され ており、 前記所定の長さは、 前記車両の横幅より小さいことが好ましい。 抵抗低 減部材は所定の長さを有し、 かつ、 前記車両の側面に配置されており、 前記所定 の長さは前記車両の高さより小さいことが好ましい。 一実施例では、 抵抗低減部 材は複数の抵抗低減部材のうちの一つである。 車速に応じて変化する前記剥離領 域の大きさに対応して、 前記抵抗低減部材は常に前記剥離領域中に配置されるこ とが好ましい。 図面の簡単な説明
図 1は本発明の第 1実施形態に従う抵抗低減部材を取り付けた箱型車両の側面 図。
図 2は図 1の抵抗低減部材と空気流れを示す。
図 3は実験例 1の抵抗低減部材と実験装置の斜視図。
図 4は実験例 2の抵抗低減部材の側面図。
図 5は実験例 3の抵抗低減部材の側面図。
図 6は実験例 4の抵抗低減部材の側面図。
図 7は実験例 5の抵抗低減部材の側面図。
図 8は本発明の第 2実施形態に従う抵抗低減部材を有するトラックの側面図。 図 9は図 8の抵抗低減部材と空気流れを示す。
図 1 0は実験例 1 0の抵抗低減部材の側面図。 図 1 1は実験例 1 1の抵抗低減部材の平面図。
図 1 2は別の抵抗低減部材を有するトラックの部分斜視図。
図 1 3は別の抵抗低減部材を有する乗用車の側面図。
図 1 4は従来の箱型車両と空気流れを示す側面図。
図 1 5は従来のトラックと空気流れを示す側面図。 発明を実施するための最良の形態
(第 1実施形態)
以下、 本発明の第 1実施形態に従う抵抗低減部材についてを図 1〜図 7に従つ て説明する。
図 1に示すように、 抵抗低減部材 1 3は箱型車両 1 1の上面 1 2に取り付けら れる。 抵抗低減部材 1 3は板状であり、 上面 1 2に対して垂直に取り付けられて いる。 抵抗低減部材 1 3は、 所定の高さ Hを有し、 箱型車両 1 1の前端から所定 距離 Lの位置において、 箱型車両 1 1の幅方向に延びるように取り付けられてい る。 すなわち、 箱型車両 1 1の前面は進行方向に直交している。
箱型車両 1 1が走行しているとき、 空気流れは箱型車両 1 1の後方へ向かって 相対的に流れる。 空気流れ (主流) は、 箱型車両 1 1の上面 1 2に沿って流れず 、 箱型車両 1 1の前端付近で剥離し、 定常流れ領域を流れる。 剥離した流れによ り、 定常流れ領域と上面 1 2との間に逆流域、 即ち剥離領域が生じる。
剥離領域の大きさは、 箱型車両 1 1の大きさや車速に応じて変化する。 剥離領 域及び定常流れ領域は、 風洞実験により予め求められている。 抵抗低減部材 1 3 は、 抵抗低減部材 1 3を有さない箱型車両 1 1が通常の車速で走行中に形成する 剥離領域中に配置される。 抵抗低減部材 1 3を有さない箱型車両 1 1が通常の車 速で走行中に形成する定常流れ領域に抵抗低減部材 1 3が達しないように、 所定 距離 L及び所定高さ Hは選択される。 ここで、 通常の車速とは、 箱型車両 1 1が バスである場合、 バスが高速道路ではない一般公道を走るときの車速であり、 例 えば 4 0 k mZ h〜5 0 k m/ hである。
次に、 抵抗低減部材 1 3の作用について説明する。 第 1実施形態の箱型車両 1 1はバス及ぴ電車を含む。 図 2に示すように、 箱型車両 1 1の走行中、 箱型車両 1 1に対しては、 図 2に示すように、 相対的に空気流れ (主流) が箱型車両 1 1 の前方から後方へ向かって流れる。 主流は箱型車両 1 1の上面 1 2の前端部付近 で剥離し、 上面 1 2の近傍に剥離領域 1 5を生じる。 主流は定常流れ領域 1 6を 流れる。 抵抗低減部材 1 3は、 箱型車両 1 1の通常の走行状態での車速に応じる 風洞実験により求められた剥離領域 1 5中に配置されており、 箱型車両 1 1の表 面から剥離領域 1 5に向かって延び、 かつ定常流れ領域 1 6には達しない。 抵抗 低減部材 13により、 箱型車両 1 1の空気抵抗は低減される。
次に、 第 1実施形態の実験例について説明する。
図 3は実験装置の模式斜視図を示す。 実験装置を用いて箱型車両の模型 21の 空気抵抗が測定される。 詳しくは、 模型 21の前方には、 図示しない送風機が設 けられている。 模型 21は前後方向に移動可能である。 模型 21の後面から後方 に延びる支持軸 24はロードセル 23に接続される。 ロードセル 23は支持部 2 2に支持される。 ロードセル 23はひずみゲージを内蔵し、 支持軸 24を介して 受ける荷重を検出する。 ロードセル 23の検出信号の電圧は、 送風機からの風か ら受ける模型 21の抵抗に対応する。
模型 21は直方体である。 模型 21の長さは 200 mmである。 模型 21の前 面及ぴ後面は一辺が 100 mmの正方形であり、 前面の面積 Sは 0. 01 m2であ る。 模型 21の下面と床との間隔は 30mmである。 送風機から風速 1 1. 5m / sの風が模型 21に送られた。
模型 21の空気抵抗 Cは式 (1) 力 ら算出される。
C= (0. 2465 E+0. 0015) X 9. 8…式 (1)
式 (1) 中の Eはロードセル 23の検出信号の電圧値 Eである。
また、 空気抵抗を表すのに一般的に用いられる空気抵抗係数 CDは式 (2) に から算出される。
CD=C/ (1/2 p V2S) …式 (2)
実験では、 空気密度 /0は 1. 2 k g/m3、 風速 Vは 1 1. 5 m/ s、 前面の面 積 Sは 0. 01m2である。 従って、 空気抵抗係数 CDは式 (3) で表される。 (1/2 X 1. 2 X 1.1. 5 X 1 1. 5 X 0. 01) …式 (3) 以下、 実験方法及び結果を説明する。
(実施例 1 )
実施例 1では、 図 3に示すように、 模型 21の上面 25において、 模型 2 1の 前面から距離 Lだけ離れた位置に抵抗低減部材としての板 3 1が取り付けられた 。 また、 模型 21の左側面 32及び右側面において、 模型 21の前面から距離 L
(LS) だけ離れた位置に板 31が取り付けられた。 板 31は高さ Hを有する。 各板 31は高さ H (HS) を有する。 距離 Lと高さ Hを変更して、 空気抵抗係数 CDを測定した。 結果を表 1に示す。
表 1
Figure imgf000008_0001
板 31を取り付けずに測定した模型 21単体の空気抵抗係数 C Dは 0. 906 8であった。 高さ Hが 8. 5 mmの板 31を距離 Lが 3 Ommの位置に有する模 型 21の空気抵抗係数 CDは 0. 826 1であった。 高さ Hが 8. 5mmの板 3 1を距離 Lが 4 Ommの位置に有する模型 21の空気抵抗係数 CDは 0. 8 1 9 7であった。 従つて、 板 31により、 模型 21の空気抵抗が 8. 91 %乃至 9. 61 %だけ低減された。 この結果から、 剥離用域内に板 31を設けることにより 、 模型 21の空気抵抗が低減されることがわかった。
(実施例 2)
実施例 2では、 図 4に示すように、 模型 2 1の前面と板 31との間に、 抵抗低 減部材としての板 41を取り付けた。 板 41は模型 21の前面から距離 L 1だけ 離間している。 板 31は模型 21の前面から距離 L 2だけ離間している。 板 41 の高さは HIである。 板 31の高さは H2である。 板 41の高さ HIは板 3 1の 高さ H 2より小さい。 模型 21の上面及ぴ左右側面に板 31, 41を取り付けた 。 距離 L 1 , L 2と高さ H 1 H2を変更して、 模型 21の空気抵抗係数 CDを 測定した。 結果を表 2に示す。 表 2
Figure imgf000009_0001
表 2に示すように、 板 31の前方に板 41を取り付けることによって、 空気抵 抗はより低減されることがわかった。 高さ HIが 4. 5mmで距離 L 1が 20m m、 高さ H2が 8. 5 mmで距離 L 2が 4 Ommの場合に、 10. 74%の抵抗 低減率が得られた。 また、 板 31と板 41の高さがともに 4. 5mmの場合より 、 板 3 1の高さが板 41より高い (H2 >H1) 場合に、 抵抗低減率が大きかつ た。
(実施例 3)
実施例 3では、 図 5に示すように、 上面 25に抵抗低減部材としての斜板 45 が取り付けられる。 斜板 45は模型 21の前端から斜め上方へ傾斜している。 斜 板 45の後端の高さは Hである。 斜板 45より小さな斜板 46が斜板 45の後端 と上面 25との間を塞いでいる。 斜板 45の前端から後端までの距離は 41 mm である。 模型 21の上面及び左右側面に斜板 45、 46を取り付けた。 高さ Hを 変更して、 模型 21の空気抵抗係数 CDを測定した。 結果を表 3に示す。
表 3
Figure imgf000009_0002
表 3に示すように、 高さ Hが 12 mmのときに 25. 1 3 %の抵抗低減率が得 られた。 従って、 斜板 45、 46は模型 21の空気抵抗を効率的に低減すること がわカゝつた。
(実施例 4)
実施例 4では、 図 6に示すように、 上面 25の前端から距離 Lの位置に、 斜め 後方に延びる抵抗低減部材としての斜板 51を取り付けた。 斜板 51の前端から 後端までの距離は約 1 5 mmである。 模型 21の上面及び左右側面に斜板 5 1を 取り付けた。 斜板 5 1の後端の高さ H及び距離 Lを変更して、 模型 2 1の空気抵 抗係数 C Dを測定レた。 結果を表 4に示す。
表 4
Figure imgf000010_0001
表 4に示すように、 距離 Lが 5 mmで高さ Hが 1 O mmの場合、 距離 Lが 1 5 mmで高さ Hが 1 1 mmの場合、 距離 Lが 2 5 mmで高さ Hが 1 3 mmの場合に おいて、 抵抗低減率が約 2 0 %であった。 このことから、 斜板 5 1は、 模型 2 1 の前端からの距離 Lに関わらず、 模型 2 1の空気抵抗を効率的に低減することが わかった。
実施例 4の斜板 5 1と実施例 3の斜板 4 5とは大きさと位置が異なる。 実施例 4の斜板 5 1は比較的小型であり、 斜板 5 1の背面は開放されている。 比較的簡 単な斜板 5 1により、 斜板 4 5とほぼ同程度の抵抗低減率が得られた。
(実施例 5 )
実施例 5では、 図 7に示すように、 抵抗低減部材としての 2つの斜板 5 3、 5 4が模型 2 1の上面 2 5に並べて取り付けられた。 斜板 5 3、 5 4は模型 2 1の 前面から距離 L l、 L 2だけそれぞれ離間している。 斜板 5 3の後端の高さは H 1であり、 斜板 5 4の後端の高さは H 2である。 前側の斜板 5 3は後側の斜板 5 4より小型である。 斜板 5 3の高さ H 1及び距離 L 1を一定にして、 斜板 5 4の 高さ H 2及び距離 L 2を変更して、 模型 2 1の空気抵抗係数 C Dを測定した。 結 果を表 5に示す。
表 5
Figure imgf000011_0001
表 5に示すように、 斜板 53の距離 L 1が 5mm、 高さ HIが 1 0mmの場合 、 L 2が 25mmで H 2が 1 2mmの場合、 L 2が 30 mmで H 2が 1 1 mmの 場合、 L 2が 35mmで H 2が 1 1 mmの場合において、 ほぼ同様に約 30%の 抵抗低減率が得られた。 このことから、 所定範囲に取り付けられた斜板 53, 5 4は、 模型 21の空気抵抗を効果的に低減することがわかった。
(実施例 6 )
実施例 6では、 模型 21と同様の寸法を有し、 かつ、 直方体の前縁を曲面状に 形成された模型を使用した。 この模型は、 前面と上面との間の曲面の曲率半径は 1 mmである。 前面と左側面及ぴ右側面との間の曲面の曲率半径は 5 mmである 。 以下、 この模型を模型 R (1, 5) と称する。
模型 R (1, 5) の上面及び左右側面に、 実施例 1の板 31を取り付けた。 距 離 Lと高さ Hを変更して、 模型 R (1, 5) の空気抵抗係数 CDを測定した。 結 果を表 6に示す。 第 1低減率は、 板 31を取り付けていない模型 21に対する抵 抗低減率である。 第 2低減率は、 板 31を取り付けていない模型 R (1, 5) に 対する抵抗低減率である。 表 6
Figure imgf000012_0001
表 6に示すように、 丸められた角を有する模型 R (1 , 5) に板 3 1を取り付 けることにより、 空気抵抗はさらに低減されることがわかった。 また、 距離 が 小さいほど、 空気抵抗は小さかった。 また、 模型の形状すなわち剥離領域の位置 及び大きさに応じて板 3 1の最適位置が異なることがわかった。
(実施例 7 )
実施例 7では、 図 5の 3 l mmの斜板 45の取りつけ位置を変更して模型 R ( 1 5) の空気抵抗係数 CDを測定した。 斜板 45は (1) 模型 R (1 , 5) の 上面のみ、 (2) 上面と右側面、 (3) 上面と左側面及び右側面、 にそれぞれ取 り付けた。 上面の斜板 45の高さ Hと、 各側面における斜板 45の高さ HSを変 更して、 模型 R (1, 5) の空気抵抗係数 CDを測定した。 結果を表 7に示す。 表 7
Figure imgf000012_0002
表 Ίの結果から、 斜板 45は模型 R ( 1 5) の空気抵抗を低減することがわ かった。
(実施例 8)
実施例 8では、 図 7の斜板 5 3 54の取りつけ位置を変更して模型 R ( 1 5) の空気抵抗係数 CDを測定した。 (1) 斜板 53, 54は模型 R (1 5) の上面のみに取り付けた。 (2) 上面に 2つの斜板を取りつけ、 左側面及び右側 面に 1つの斜板を取り付けた。 (3) 上面、 左側面及び右側面に 2つの斜板を取 り付けた。 模型 R (1 5) の前面から、 側面の斜板の取り付け位置までの距離 L Sと、 側面の斜板髙さ H Sは、 上面の斜板の距離 L及ぴ高さ Hと異なる値にし た。
表 8
Figure imgf000013_0001
表 8に示すように、 斜板 53 54は丸みをつけた模型 R (1 5) の空気抵 抗を低減することがわかった。
実験例 1 8の結果から、 以下のように考察される。
抵抗低減部材が取り付けられていない場合、 箱型車両 1 1の空気抵抗 Cは、 空 気の圧力によって箱型車両 1 1の前面で受ける力 Aと、 箱型車両 1 1の後面で受 ける力 Bとの差 (C = A-B) になっていると考えられる。
剥離領域 1 5に抵抗低減部材 1 3が配置されることにより、 逆流が抑制されて 剥離領域 1 5が小さくなる。 即ち車両の形状により発生する剥離が制御されると 考えられる。 このような剥離の制御により、 抵抗低減部材 1 3に対して前側の空 気の圧力 Xより、 抵抗低減部材 1 3に対して後側の圧力 yの方が大きくなること によって、 抵抗低減部材 1 3の前後で、 箱型車両 1 1を前側に付勢する圧力差 Z (z =y-x) が発生すると考えられる。 このため、 抵抗低減部材 1 3を取り付 けた場合の箱型車両 1 1の空気抵抗 C 1は、 空気の圧力によって箱型車両 1 1の 前面で受ける力 Aから箱型車両 1 1の後面で受ける力 Bを引いた値から、 さらに 圧力差 zに起因する力 Zを引いた値 (C 1=A— B— Z) になっていると考えら れる。 このように、 抵抗低減部材 1 3の前後の圧力差 zに起因する力 Zを引いて いる分、 抵抗低減部材 1 3を取り付けた場合の箱型車両 1 1全体の空気抵抗 C 1 は、 車両の形状により発生する剥離を制御することにより、 抵抗低減部材 1 3が ない場合の空気抵抗 C ( C = A— B ) より低減されると考えられる。
第 1実施形態によれば、 以下の利点が得られる。
( 1 ) 抵抗低減部材 1 3のない箱型車両 1 1が走行する時に生じる定常流れ領 域 1 6には達しないように剥離領域 1 5中に抵抗低減部材 1 3が配置される。 比 較的簡単な抵抗低減部材 1 3により、 車内スペースを低減させずに箱型車両 1 1 の空気抵抗は低減される。 その結果、 箱型車両 1 1の燃費は向上する。 抵抗低減 部材 1 3は箱型車両 1 1の上面 1 2及び側面のいずれかに配置されるのが好まし い。
( 2 ) 箱型車両 1 1の上面 1 2及び側面のいずれかに垂直に取り付けられた板 状の抵抗低減部材 1 3により、 比較的簡単に空気抵抗が低減される。
( 3 ) 箱型車両 1 1の斜め後方を向くように傾いて取り付けられた板状の抵抗 低減部材 1 3により、 空気抵抗は効果的に低減される。
( 4 ) 箱型車両 1 1に傾斜して取り付けた抵抗低減部材 1 3と箱型車両 1 1と の間を塞がなくとも、 空気抵抗は効果的に低減される。
( 5 ) 複数の抵抗低減部材 1 3を箱型車両 1 1の進行方向に並べて取り付ける ことにより、 空気抵抗は一層効果的に低減される。
(第 2実施形態)
次に、 第 2実施形態の抵抗低減部材を有する車両について説明する。 第 2実施 形態の車両は荷箱を備えたトラック 6 1である。
図 8に示すように、 トラック 6 1は、 運転室のルーフ 6 2よりも高い荷箱 6 3 を備えている。 ルーフ 6 2には、 トラック 6 1の前端から所定距離 Lをおいて抵 抗低減部材 6 4が取り付けられている。 抵抗低減部材 6 4は所定高さ Hを有する 板状であり、 ルーフ 6 2に垂直に取り付けられている。 抵抗低減部材 6 4は所定 の幅 Wを有し、 幅 Wはルーフ 6 2の幅よりも小さいことが好ましい。
抵抗低減部材 6 4のないトラック 6 1が走行した時、 トラック 6 1の前方から 後方へ向かって相対的に流れる空気流れ (主流) が生じる。 主流は、 ルーフ 6 2 に沿って流れず、 ルーフ 6 2の前端付近でルーフ 6 2から剥離し、 定常流れ領域 を流れる。 剥離した流れにより、 定常流れ領域とルーフ 6 2との間に逆流域、 即 ち剥離領域が生じる。
一般に、 剥離領域の大きさはトラック 6 1の大きさや車速に応じて変化する。 そこで、 剥離領域及ぴ定常流れ領域の大きさは風洞実験により予め求められる。 抵抗低減部材 6 4は、 通常の車速で走行しているトラック 6 1が生じる剥離領域 中に配置される。 抵抗低減部材 6 4を有さないトラック 6 1が通常の車速で走行 中に形成する定常流れ領域に抵抗低減部材 6 4が達しないように、 所定距離 L及 び所定高さ Hは選択される。 ここで、 トラック 6 1の通常の車速とは、 例えばト ラック 6 1が高速道路ではない一般公道を走るときの車速であり、 例えば 4 0 k mZ l!〜 5 0 k mZ hである。 また、 トラック 6 1が高速道路を (例えば 8 O k mZ hで) 走行中に生じる剥離領域中に抵抗低減部材 6 4を配置してもよい。 図 9に示すように、 抵抗低減部材 6 4を有するトラック 6 1が走行した時、 ト ラック 6 1の前方から後方へ向かって相対的に流れる空気流れ (主流) が生じる 。 主流は定常流れ領域 6 6を流れる。 運転室のルーフ 6 2の上に剥離領域 6 5が 域が生じる。 また、 主流は荷箱 6 3の前端付近でも剥離する。
抵抗低減部材 6 4は、 風洞実験により求められた剥離領域 6 5中に位置し、 定 常流れ領域 6 6には達しない。 抵抗低減部材 6 4により、 トラック 6 1の空気抵 抗が低減される。
図 3の実験装置とトラックの模型 6 8を用いて空気抵抗を測定した。 模型 6 8 の寸法は以下の通りである。 荷箱 6 9の上面までの高さが 1 5 0 mm、 荷箱 6 9 の横幅が 1 0 0 mm、 模型 6 8の正面の投影面積 Sは 0 . 0 1 5 m2 ( 1 5 0 mm X 1 0 0 mm) である。 荷箱 6 9の上面は、 運転室のルーフ 7 0より 3 8 mm高 レ、。 運転室の横幅は 9 0 mm、 運転室のルーフ 7 0の前後方向の長さは 8 0 mm 、 荷箱 6 9の前後方向の長さは 2 1 0 mmである。
模型 6 8の空気抵抗係数 C Dを、 ロードセル 2 3の検出電圧から算出した。 模 型 6 8に送った風の風速は 1 1 . 5 tn/ sである。 (実施例 9)
実施例 9では、 模型 68の運転室のルーフ 70において、 図 8に示す抵抗低減 部材 64と同様の板 71を垂直に取り付けた。 板 71の高さ Hと距離 Lを変更し て空気抵抗係数 CDを測定した。 結果を表 9に示す。 抵抗低減率は、 板 71を取 り付けていない模型 68の CD値に対する低減率である。
表 9
Figure imgf000016_0001
表 9に示すように、 高さ Hが 1 7 mmの板 71を距離 Lが 33 mmの位置に垂 直に取り付けた場合に、 抵抗低減率 (12. 14%) は最大であった。 この値は 、 距離 Lが 41. 5mmの位置に、 別の板を垂直に取り付けて合計 2枚の板を取 り付けた場合より大きかった。
また、 高さ Hが 21mmの板 71を距離 Lが 49 mmの位置に垂直に取り付け た場合、 及ぴ、 高さ Hが 23 mmの板 71を距離 Lが 49 mmの位置に垂直に取 り付けた場合に、 抵抗低減率は約 1 2. 3 %であり、 ほぼ同じであった。
(実施例 10 )
実施例 10では、 図 1 0に示すように、 模型 68の運転室のルーフ 70に、 抵 抗低減部材としての斜板 72を後方へ傾斜して取り付けた。 斜板 72の長さ T、 高さ Η、 幅 W (図 1 1参照) 、 取りつけ位置 (距離) Lを変更して空気抵抗係数 CDを測定した。 結果を表 10に示す。 抵抗低減率は、 板 71を取り付けていな い模型 68の CD値に対する低減率である。 表 10
Figure imgf000017_0001
表 10に示すように、 幅 Wが 73 mmで長さ丁が 3 Ommの板 71を距離 Lが 23 mmの位置に高さ Hが 20 mmになるように斜めに取り付けた場合に、 抵抗 低減率は 14. 42%であった。 この値は、 幅 Wが運転室の横幅と同じ 9 Omm の場合の抵抗低減率よりも大きかった。 また、 平らな板 71は凸状に湾曲した板 よりも効果的であった。
(実施例 1 1 )
実施例 1 1では、 模型 68の運転室のルーフ 70に、 抵抗低減部材としての斜 板 72を後方へ傾斜して取り付けた。 斜板 72の長さ Tは 30 mm、 高さ Hは 2 Omm, 幅 Wは 73mm、 取りつけ位置 (距離) Lは 23mmである。 図 1 1に 示すように、 運転室の両側面に、 後方へ向けて抵抗低減部材としての斜板 75を 取り付けた。 斜板 75は、 定常流れ領域 76には達しておらず、 剥離領域 77中 に位置する。 斜板 75の長さ T 3、 取りつけ位置 (距離) LS、 高さ HSを変更 して模型 68の空気抵抗係数 CDを測定した。 結果を表 1 1に示す。
表 1 1
Figure imgf000017_0002
表 1 1に示すように、 長さ TSが 3 Ommの板 71を距離 LSが 1 5 mmの位 置に高さ H Sが 6 mmになるように斜めに取り付けた場合に、 抵抗低減率は 1 8 . 8 0 %であった。
第 2実施形態によれば、 第 1実施形態の (2 ) 〜 (4 ) の利点に加え、 次の利 点が得られる。
( 6 ) 運転室と荷箱 6 3との間に段差を有するトラック 6 1において、 比較的 簡単な構造の抵抗低減部材を、 定常流れ領域 6 6には達しないように剥離領域 6 5中に配置することにより、 トラック 6 1の空気抵抗は低減され、 トラック 6 1 の燃費効率は向上する。 抵抗低減部材は運転室のルーフ 6 2に取りつけられるの で、 車内スペースは低減されない。
( 7 ) 抵抗低減部材 6 4は、 剥離領域 6 5中に存在するので、 空気流れによる 力を直接受けない。 従って、 エアデフレクタ一のように高い強度は要求されない
( 8 ) 運転室のルーフ 6 2の横幅より短い抵抗低減部材 6 4は、 ルーフ 6 2の 横幅と同じ長さの抵抗低減部材ょり、 効果的に空気抵抗を低減することがわかつ た。
第 1及び第 2実施形態は以下のように変更してもよい。
•第 1実施形態の箱型車両 1 1の 3つの面 (上面 1 2及び両側面) の少なくと も一つの面に、 板状の抵抗低減部材 1 3を取り付けてもよい。 すなわち、 抵抗低 減部材 1 3は、 箱型車両 1 1の上面 1 2のみ、 一側面、 両側面、 上面 1 2と一側 面、 上面 1 2と両側面に取り付けてもよい。 抵抗低減部材 1 3が剥離領域中に配 置されるように、 距離 L及び高さ Hが選択される。
'箱型車両 1 1の上面 1 2と側面とで、 抵抗低減部材 1 3の取りつけ位置 (距 離) L及び高さ Hを変更してもよい。
•第 1実施形態の箱型車両 1 1の 3つの面 (上面 1 2及び両側面) の少なくと も一つの面に、 図 4に示す複数の板状の抵抗低減部材 3 1, 4 1を取り付けても よい。
•第 1実施形態の箱型車両 1 1の 3つの面 (上面 1 2及び両側面) の少なくと も一つの面に、 図 5に示す斜板 4 5を取り付けてもよい。 •第 1実施形態の箱型車両 1 1の 3つの面 (上面 1 2及び両側面) の少なくと も一つの面に、 図 5に示す斜板 5 1を取り付けてもよレ、。
•第 1実施形態の箱型車両 1 1の 3つの面 (上面 1 2及び両側面) の少なくと も一つの面に、 図 6に示す複数の斜板 5 3, 5 4を取り付けてもよレ、。
•第 1実施形態の箱型車両 1 1の前縁を曲面状にして、 箱型車両 1 1の 3つの 面 (上面 1 2及び両側面) の少なくとも一つの面に、 図 3〜 7の抵抗低減部材を 取り付けてもよい。
.実施例 1〜 8の抵抗低減部材を、 トラック 6 1の荷箱 6 3の 3つの面 (上面 1 2及び両側面) の少なくとも一つの面の前部に取り付けてもよい。 例えば図 1 2に示すように、 荷箱 6 3の上面に及び側面に、 抵抗低減部材としての斜板 8 1 、 8 2をそれぞれ取り付けてもよい。 図 1 2では、 側面の斜板 8 2は、 運転室の ルーフ 6 2のレベルより上の位置に取りつけられる。 側面の斜板 8 2は、 荷箱 6 3の上端から下端にわたって延ぴるように形成されてもよい。
•実施例 1〜 8の抵抗低減部材は、 箱型車両 1 1の横幅と同じかまたは短く形 成される。 抵抗低減部材を箱型車両 1 1の側面に取り付ける場合、 抵抗低減部材 は箱型車両 1 1の側面の高さと同じかまたは短く形成される。
•複数の板状の抵抗低減部材 6 4 (図 8 ) を、 トラック 6 1の運転室の 3つの 面 (ルーフ 6 2、 両側面) の少なくとも 1つに取り付けてもよい。
•複数の斜板 7 2 (図 1 0 ) をトラック 6 1の運転室のルーフ 6 2に取り付け てもよい。
•複数の斜板 7 5 (図 1 1 ) を、 トラック 6 1の運転室の側面に取り付けても よい。
•車両に対する抵抗低減部材の取り付け位置や車両の表面からの高さは、 例え ば調整手段を用いて、 車速により変化する剥離領域の大きさに対応して調整して もよい。 例えば、 車両について、 風洞実験により予め各車速に対応した剥離領域 をデータとして記憶装置に記憶させておき、 車速センサによって検知した車速に 応じて、 剥離領域中で車両の空気抵抗の低減に最も効果的な位置に抵抗低減部材 を配置可能に形成する。 例えば、 抵抗低減部材を 2枚の板が相対的にスライドす ることによって高さ Hを調整可能に形成し、 ピス トンによる駆動により 2種類の 高さに調整可能に形成する。 この場合、 例えば、 高速道路用と、 高速道路でない 公道用とに対応させて、 抵抗低減部材の高さを調整できる。
•可変高さの抵抗低減部材は 2種類の高さに調整可能に形成されることに限ら れず、 例えばモータの駆動により、 連続的に高さを調整可能に形成してもよい。 この場合、 任意の車速に対応して、 剥離領域中に抵抗低減部材が存在するように 調整でき、 連続的な車速の変化に対応して車両の空気抵抗を低減しやすくなる。
•箱型車両 1 1がバスである場合、 抵抗低減部材 1 3は、 バスの車速が 4 0 k mZ t!〜 5 0 k mZ hのときの剥離領域中に位置するように配置されることに限 られず、 他の車速に対応する剥離領域中に位置するように配置してもよい。
• トラック 6 1に取り付けられる抵抗低減部材 6 4は、 4 0 k mZ l!〜 5 0 k m/ hや、 8 0 k mZ hに対応する剥離領域中に位置するように配置されること に限られず、 他の車速に対応する剥離領域中に位置するように配置してもよい。
•板 3 1等の抵抗低減部材は、 車両において剥離が生じている場所であれば取 りつけ位置は限定されない。 例えば、 図 1 3に示す乗用車 8 6では、 形状や速度 に応じて、 エンジンフードの前部及び運転室の屋根の前部で剥離が発生する。 こ れらの場所に、 風洞実験等で得られた剥離領域に応じて、 車両表面に沿って倒れ た位置と、 剥離領域に向かって起立した位置との間で可動する抵抗低減部材とし ての板 8 7を設置してもよい。 乗用車 8 6の剥離は箱型の車両 1 1のものより小 さいため、 板 8 7の空気抵抗は低減率は相対的に小さいが、 板 8 7により乗用車 8 6の空気抵抗は低減される。
パスが公道を通常走るときの車速、 例えば 4 0 k mZ h〜5 0 k niZ hの場合 の剥離領域を測定し、 車両の空気抵抗を最大限低減できる位置に抵抗低減部材を 配置する。 その場合、 車速が 2 0 k mZ h程度のときでは、 速度によるその剥離 領域の違いから、 抵抗低減部材の一部が定常流れ領域に達する場合がある。 抵抗 低減部材を固定タイプとしたときには、 このような現象が発生する。 しカ し、 車 両を使用する割合が高い条件 (環境) に合うように抵抗低減部材を設けることに よって、 固定タイプの抵抗低減部材でも、 車両の空気抵抗は有効に低減される。 本発明によれば以下の利点が得られる。
本発明によれば、 車両の前部における剥離領域中、 又はトラックなどの運転室 のルーフにおける剥離領域中に位置するように、 所定位置に配置される抵抗低減 部材により、 車両の空気抵抗が低減される。 このため、 車両の形状を変化させな くても、 抵抗低減部材を剥離領域中に配置するという比較的簡単な構成により、 車内スペースを低減させずに車両の空気抵抗を低減できる。 ここで、 流れの剥離 領域とは、 物体の表面付近の主流が物体に沿って流れていない状態で、 物体表面 の近傍に生じる逆流域である。 また、 主流が流れる領域が定常流れ領域である。 定常流れ領域及び剥離領域は、 例えば風洞実験により各車両や車速に応じて求め られる。 抵抗低減部材は、 例えば各車両の通常の走行状態での車速に応じた剥離 領域中に少なくとも位置し、 定常流れ領域には達しないように配置される。 本発明によれば、 抵抗低減部材は、 車速に応じて、 剥離領域中に常に存在する ように調整されるので、 車速の変化に対応して車両の空気抵抗が低減される。

Claims

請求の範囲
1 . 箱型状の車両(11)、 又は運転室と当該運転室のルーフ(62)より高い位置に上 面を有する荷箱(63)とを有する車両(61)において、 前記車両が走行した時、 空気 流れの定常流れ領域(16 ; 66;76)と、 前記定常流れ領域と前記車両との間に剥離領 域(15; 65; 77)とが形成される前記車両の空気抵抗を低減させる方法であって、 前記車両の前部付近または前記運転室付近において、 前記車両の表面から前記 剥離領域に向かって延ぴ、 かつ、 前記定常流れ領域には達しないように前記剥離 領域中に抵抗低減部材 (31; 41; 45; 51; 53; 54; 71; 72; 75; 81; 82; 87)を配置する工程 を備えることを特徴とする車両の空気抵抗低減方法。
2 . 車速に応じて変化する前記剥離領域の大きさに対応して、 前記抵抗低減部材 が常に前記剥離領域中に配置されるように調整する工程をさらに備える請求項 1 に記載の空気抵抗低減方法。
3 . 所定の速度で走行した時、 空気の定常流れ領域と、 前記定常流れ領域と車両 表面との間に剥離領域とが形成される箱型状の車両の空気抵抗を低減させる空気 抵抗低減装置であって、
車両の上面と一対の側面との少なくとも一つの表面から前記剥離領域に向かつ て延び、 かつ、 前記定常流れ領域には達しないように前記剥離領域中に配置され た抵抗低減部材 (31; 41; 45; 51; 53: 54; 71; 72; 75; 81; 82; 87)を備える空気抵抗低減
4 . 運転室と当該運転室のルーフより高い位置に上面を有する荷箱(63)とを有す る車両(61)において、 前記車両が走行した時、 空気流れの定常流れ領域と、 前記 定常流れ領域と前記運転室のルーフの表面との間に剥離領域とが形成される前記 車両の空気抵抗を低減させる抵抗低減装置であって、
前記ルーフの表面から前記剥離領域に向かって延ぴ、 かつ、 前記定常流れ領域 には達しないように前記剥離領域中に配置された抵抗低減部材
(31 ;41 ;45 ;51 ;53 ;54 ;71 ;72 ;75 ;81 ;82 ;87)を備える空気抵抗低減装置。
5. 前記抵抗低減部材は、 前記表面に対して垂直に取り付けられた板状部材 (31 ;41 ;71)であることを特徴とする請求項 3又は 4に記載の空気抵抗低減装置。
6. 前記抵抗低減部材は、 前記車両の斜め後方に向かって傾斜して前記表面に取 り付けられた板状部材 (45; 51; 53; 54; 72; 75; 81; 82; 87)であることを特徴とする請 求項 3又は 4に記載の空気抵抗低減装置。
7. 前記抵抗低減部材 (72)は所定の長さを有し、 かつ、 前記車両の上面において 前記車両の横方向に延びるように配置されており、 前記所定の長さは、 前記車両 の横幅より小さいことを特徴とする請求項 3乃至 6のいずれか一項に記載の空気 抵抗低減装置。
8. 前記抵抗低減部材(75 ;82)は所定の長さを有し、 かつ、 前記車両の側面に配 置されており、 前記所定の長さは前記車両の高さより小さいことを特徴とする請 求項 3乃至 6のいずれか一項に記載の空気抵抗低減装置
9. 車速に応じて変化する前記剥離領域の大きさに対応して、 前記抵抗低減部材 が常に前記剥離領域中に配置されるように調整する調整手段をさらに備える請求 項 3乃至 8のいずれか一項に記載の空気抵抗低減装置。
1 0. 前記抵抗低減部材は複数の抵抗低減部材のうちの一つである請求項 3乃至 9のいずれか一項に記載の空気抵抗低減装置。
1 1. 請求項 3乃至 10のいずれか一つに記載の空気抵抗低減装置を有する箱型 車両(11;61)。
PCT/JP2001/009591 2001-09-27 2001-11-01 Procede et dispositif permettant de reduire la resistance atmospherique a un vehicule WO2003031253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-298328 2001-09-27
JP2001298328A JP2003104246A (ja) 2001-09-27 2001-09-27 車両の空気抵抗低減方法及び空気抵抗低減装置

Publications (1)

Publication Number Publication Date
WO2003031253A1 true WO2003031253A1 (fr) 2003-04-17

Family

ID=19119244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009591 WO2003031253A1 (fr) 2001-09-27 2001-11-01 Procede et dispositif permettant de reduire la resistance atmospherique a un vehicule

Country Status (2)

Country Link
JP (1) JP2003104246A (ja)
WO (1) WO2003031253A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282725A1 (en) * 2022-05-27 2023-11-29 Volvo Truck Corporation Prediction of vehicle combination drag area including crosswind sensitivity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007342A2 (en) * 2005-07-14 2007-01-18 Doron Neuburger Drag reducing system
JP6304325B2 (ja) * 2016-08-22 2018-04-04 マツダ株式会社 自動車の整流構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135714U (ja) * 1985-02-15 1986-08-23
JPS62153191U (ja) * 1986-03-24 1987-09-29
JPH0939845A (ja) * 1995-07-28 1997-02-10 Isuzu Motors Ltd 空気抵抗低減装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135714U (ja) * 1985-02-15 1986-08-23
JPS62153191U (ja) * 1986-03-24 1987-09-29
JPH0939845A (ja) * 1995-07-28 1997-02-10 Isuzu Motors Ltd 空気抵抗低減装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282725A1 (en) * 2022-05-27 2023-11-29 Volvo Truck Corporation Prediction of vehicle combination drag area including crosswind sensitivity

Also Published As

Publication number Publication date
JP2003104246A (ja) 2003-04-09

Similar Documents

Publication Publication Date Title
US9308949B1 (en) Systems and methods for reducing drag on a vehicle or vehicle combination
EP2802469B1 (en) Fairing for a truck cab-trailer gap
CN112867666B (zh) 主动扩散器机构
US20120319428A1 (en) Segmented Skirt Aerodynamic Fairing Device for Reducing the Aerodynamic Drag of Ground Vehicles
JPH08127367A (ja) 前輪揚力低減装置
MX2012006591A (es) Sistema de conduccion de aire.
US11623700B2 (en) Multi-panel skirt system for cargo enclosures
US8960772B2 (en) Heavy goods vehicles
US10220890B2 (en) Deflector arrangement for a tractor, a tractor, and a method for adjusting a deflector arrangement for a tractor
US20140110968A1 (en) Aerodynamic control system for trailers
US7810870B2 (en) Vehicle body structure
CN112009578A (zh) 厢式挂车导流装置及低风阻厢式挂车
WO2003031253A1 (fr) Procede et dispositif permettant de reduire la resistance atmospherique a un vehicule
GB2172256A (en) Wheel spray suppressors
BE1012504A5 (fr) Dispositif pour la reduction de la trainee aerodynamique d'un vehicule terrestre.
JPH04339079A (ja) 自動車の空力特性改善装置
US8727423B2 (en) Self-drafting device for sub-sonic terrestrial vehicles
US10889337B1 (en) Truck bed airflow assembly
WO2010074612A1 (en) A vehicle cab with a storage compartment
WO2003059722A1 (fr) Dispositif destine a reduire la resistance a l'air d'un vehicule
CA2910650C (en) Side skirt system for a trailer
WO2019168545A1 (en) Trailer fairing and system for improved aerodynamic performance
JPH08142928A (ja) 揚力低減装置
CA2221593A1 (en) Apparatus for reducing drag
CA3206585A1 (en) Aerodynamic trailer apparatus with optimized small skirt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TR TT TZ UG US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZW AM AZ BY KG KZ MD TJ TM AT BE CH CY DE DK ES FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase