WO2003030281A1 - Electrochemical cell with terminals - Google Patents

Electrochemical cell with terminals Download PDF

Info

Publication number
WO2003030281A1
WO2003030281A1 PCT/JP2002/009811 JP0209811W WO03030281A1 WO 2003030281 A1 WO2003030281 A1 WO 2003030281A1 JP 0209811 W JP0209811 W JP 0209811W WO 03030281 A1 WO03030281 A1 WO 03030281A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
substrate
case
terminals
Prior art date
Application number
PCT/JP2002/009811
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Komori
Masaki Yamaguchi
Eiji Okamoto
Original Assignee
Kanebo, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo, Limited filed Critical Kanebo, Limited
Priority to JP2003533364A priority Critical patent/JP4250528B2/en
Publication of WO2003030281A1 publication Critical patent/WO2003030281A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a button-type or coin-type electrochemical cell, and more particularly to a terminal-equipped electrochemical cell having terminals for surface mounting on a circuit board.
  • soldering is performed by a reflow heat source set at a temperature equal to or higher than the melting point of solder (hereinafter referred to as reflow soldering).
  • various batteries are used in these mopile devices.
  • primary batteries such as alkaline batteries and lithium batteries, or various secondary batteries such as lithium ion batteries and nickel-metal hydride batteries are used as the main power supply, and these batteries can be replaced by equipment users as necessary.
  • Z or recharged are used in addition to the main power supply, various types of primary or secondary batteries are used for memory backup and real-time clock backup, and most of these batteries are pre-installed in equipment.
  • An object of the present invention is to provide an electrochemical cell with terminals which is excellent in heat resistance, can be reflow soldered, and occupies a minimum space when surface-mounted on a substrate.
  • the above object is achieved by welding a power generating element, a positive electrode and a negative electrode cell case that shield the power generating element from the outside atmosphere and also function as a current collector of the power generating element, and a positive electrode and a negative electrode cell case to be mounted on a substrate.
  • a button-type or coin-type electrochemical cell composed of terminals, of the terminals, terminal A, which is welded to a cell case that is not close to the substrate, is in contact with and parallel to the cell case flat surface; Surface B that is continuous and not coplanar and faces the cell thickness direction, and Surface B is continuous and not coplanar and faces in the same parallel direction as surface A
  • the terminal 2 to be welded to the cell case adjacent to the substrate is a terminal having at least one step between a surface to be welded to the cell case and a surface to be grounded to the substrate.
  • the electrochemical cell with terminals, or at least the surface B of the terminal has an opening, and the length Lb of the opening in the cell thickness direction is the height of the cell case where the diameter of the positive and negative electrode cell cases is larger. Lb> H with respect to H, and the distance Rb from the surface B with the opening and the cell center is achieved by the above terminal-equipped electrochemical cell that satisfies R ⁇ Rb with respect to the radius R of the cell alone.
  • FIG. 1 is a drawing of an electrochemical cell with terminals according to the present invention.
  • the shaded area indicates the surface where the soldering for grounding to the board will arrive.
  • FIG. 2 is a drawing of another embodiment according to the present invention.
  • the shaded area indicates the surface on which soldering for landing on the substrate is to be made.
  • FIG. 3 is a drawing of still another embodiment according to the present invention.
  • the shaded area indicates the surface on which soldering for grounding to the substrate will arrive.
  • FIG. 4 is a diagram showing a conventional cell with terminals. The shaded area indicates the surface grounded to the substrate.
  • the terminal 1 to be welded to the cell case that is not close to the substrate has an A surface that is in contact with and parallel to the cell case flat surface, and a surface in the cell thickness direction that is continuous with the A surface and is not coplanar.
  • B side, and the B side is continuous and It has three planes, C-plane, which are not in one plane but face in the same parallel direction as A-plane.
  • the same parallel direction means that the A-plane and the C-plane exist in the same spatial direction with respect to two spaces separated by the plane including the B-plane. Sides A and C need not be particularly parallel.
  • the shape of the terminal is not particularly limited, and examples thereof include a terminal having a substantially U-shaped cross section including all of ABC. At this time, there is no particular limitation on the difference between the lengths of the plane A and plane C on the cross section. Further, the vertical height of the surface B is preferably larger than the shoulder height of the cell, and more preferably larger than the cell height. In consideration of dimensional balance, soldering strength, and the like, the vertical height of the surface B is preferably about the level difference of the terminal welded to the cell case close to the substrate + the cell thickness ⁇ 200 m.
  • the terminal 2 to be welded to the cell case close to the substrate preferably has at least one step between a surface to be welded to the cell case and a surface to be grounded to the substrate.
  • the terminal step is the vertical distance between the grounding surface of terminal 2 and the surface welded to the cell case.
  • the size of the step is not particularly limited, but is preferably 200 to 500 m for the following reason. If the step is smaller than 200 m, the distance between the cell case that is not close to the base and the C surface of the terminal that is welded to the cell case is short. There is a high possibility that the C-side of the terminal to be welded to the cell case will be short-circuited due to direct contact, or short-circuited via solder once melted.
  • the height of the terminal-equipped cell is increased, which is not preferable. If the terminal does not have a step, the C surface of the terminal welded to the cell case that is not close to the other base can enter the gap between the substrate and the cell case close to the substrate. As a result, the cells with terminals The area occupied on the board increases.
  • the positional relationship between the terminal 1 and the terminal 2 is not particularly limited. In order to prevent a short circuit between the terminals, it is preferable to arrange the terminals 1 and 2 so as to form an angle of 180 degrees. However, depending on the space shape of the board, for example, terminals 1 and 2 may be 9 terminals. It may be arranged so as to form an angle of 0 degrees. In this case, the U-shaped opening of the terminal 1 may be closed, and a so-called substantially mouth-shaped opening may be employed.
  • the terminal material used in the present invention is not particularly limited as long as it is a generally used metal material. However, various stainless materials, nickel materials, nickel-iron alloys, copper and the like are preferably used. Although the thickness of the terminal is not particularly limited, it is usually preferable that the thickness be 50 to 300 / xm because the welding conditions can be easily set. Further, at least the surface where the terminal is grounded to the substrate is provided with a solder or the like in order to have a sufficient bonding strength between the substrate and the battery with the terminal.
  • the area occupied by the terminal-equipped cell on the surface of the substrate can be reduced.
  • the vertical height Lb of the opening may be at least Lb> H with respect to the height H of the cell case where the diameter of the positive electrode case and the negative electrode cell case is larger, but preferably the cell height Hc On the other hand, it is preferable that L> H1.
  • the distance Rb from the opening on the surface B and the center of the cell can be made equal to or less than the radius R of the cell alone, so that the area occupied by the battery with terminals on the substrate can be reduced.
  • the opening may be an opening that is continuous with the A-plane and the Z- or C-plane.
  • the other ends of the A side and / or the C side other than the B side may not be closed. If the other end of the C side other than the B side is not closed, the area of the part in contact with the board is reduced, but since it is a three-point ground, reflow soldering is possible without reducing strength. is there.
  • the power generating element according to the present invention is not particularly limited as long as it can store electrochemical energy and can extract energy to the outside.
  • the primary and secondary species are not limited.
  • An organic electrolyte battery comprising a protic solvent is preferred.
  • porous carbon materials such as activated carbon or polyacene organic semiconductors for the positive and negative electrodes, other lithium-niobium oxide alloys, and manganese oxide-lithium titanate.
  • the shape of the power generating element in the present invention is not particularly limited, and examples thereof include a device in which a positive electrode and a negative electrode formed in a tablet shape face each other via a separator impregnated with an electrolytic solution. In this case, the other electrode surface that is not in contact with the separator is often glued to the can.
  • the power generating element may be one in which a strip-shaped positive electrode and a negative electrode formed into a current collector such as a foil-mesh are wound through a separator, and the outermost peripheral portion of the strip-shaped electrode is a positive electrode case and a Z or negative electrode case. It is convenient for the work to seal directly by contacting the inner surface.
  • the positive electrode case and the negative electrode case used in the present invention are not particularly limited as long as they are metal materials generally used for batteries, but are preferably various stainless materials having excellent corrosion resistance, pitting corrosion resistance and the like.
  • the positive electrode case and the negative electrode case are usually subjected to pressing such as caulking via a gasket in order to shut off the power generating element from the outside atmosphere without short-circuiting and to maintain airtightness and liquid tightness.
  • the material used for the gasket material examples include polyether ether ketone, polyphenylene sulfide, and fluororesin, which improve moldability.
  • a glass fiber to which glass fibers are added as necessary may be used.
  • Fig. 1 shows an embodiment of the present invention in which terminals are welded to a coin-type cell with a diameter of 4.8 mm and a height of 1.4 mm using an organic capacitor whose main components of the positive electrode and the negative electrode are a polyacene-based organic semiconductor as a power generation element. It is an example.
  • the total height of the terminal cells was 1.7 mm.
  • the power generating element was produced, for example, by the method disclosed in the embodiment of Japanese Patent Application No. 7-137184.
  • the terminals used were made of a SUS304 material having a thickness of 100 m by press molding. Welding of terminals to the cell was performed with a YAG laser welder. In this case, when the area occupied by only the cell body on the substrate was 100, the area ratio occupied by the cells with terminals was 110.
  • FIG. 2 shows another embodiment in which an organic capacity made of a polyacene-based organic semiconductor is used as a power generating element, similarly to the first embodiment.
  • the area occupied by only the cell body on the substrate was 100
  • the area ratio occupied by the cells with terminals was 103%.
  • FIG. 3 shows another embodiment in which an organic capacity made of a polyacene-based organic semiconductor is used as a power generating element, similarly to the first embodiment.
  • Terminal 1 and terminal 2 are arranged at an angle of 90 degrees. In this case, when the area occupied by only the cell body on the substrate was 100, the area ratio occupied by the cells with terminals was 106%.
  • FIG. 3 shows an example of a terminal-equipped cell in which conventional shaped terminals are welded.
  • the area occupied by only the cell body on the plate was 100, the area ratio occupied by the cells with terminals was 137%.
  • the area occupied by the terminal cannot be reduced without reducing the soldering strength, so even if the cell size is reduced, I could't make use of that effect.
  • the area occupied by the terminal-equipped cell on the substrate can be reduced. This effect is particularly significant when at least the B-side of the substantially U-shaped terminal welded to the cell case that is not close to the substrate has an opening, and the effect is particularly large, including miniaturized and integrated electrical products. It can be used effectively for electric appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

When a cell has an almost coin shape or a button shape, it provides a large dead space when surface-mounted on a substrate and a space taken up by terminals for the surface-mounting is large. An electrochemical cell that resolves the above problems, wherein a terminal (1), welded to a cell case not in the vicinity of a substrate, comprises a surface A in contact with the cell case flat surface and in parallel to it, a surface B continuous from the surface A and facing a cell thickness direction not on the same plane, and a surface C continuous from the surface B and not on the same plane, and facing the same parallel direction as the surface A.

Description

明 細 書  Specification
端子付電気化学セル Electrochemical cell with terminal
技術分野 Technical field
本発明は、 ポタン型あるいはコイン型電気化学セルに係り、 回路基板上に 表面実装する為の端子を有する端子付電気化学セルに関する。  The present invention relates to a button-type or coin-type electrochemical cell, and more particularly to a terminal-equipped electrochemical cell having terminals for surface mounting on a circuit board.
背景技術 Background art
近年、 携帯電話等のモパイル機器の小型化、 薄型化、 高機能化は目覚しく、 それに伴い機器に搭載される部品についても高密度化、 高機能化が急速に進 展している。  In recent years, the size, thickness, and functionality of mopile devices such as mobile phones have been remarkably reduced, and the density and functionality of components mounted on the devices have been rapidly increasing.
また、 これら部品をプリン卜基板上に搭載する方法も表面実装化が一層進 んでおり、 特にハンダ付けプロセスについては、 多くの電子部品を高密度に 且つ一括してハンダ付可能な方法として、 ハンダをあらかじめ基板上に印刷 した後、 ハンダの融点以上の温度に設定されたリフロー熱源によりハンダ付 けを行なう方法 (以下リフローハンダ付という) が多く採用されている。 一方、 これらモパイル機器には様々な電池が用いられている。 例えば、 主 電源としてアルカリ電池やリチウム電池などの 1次電池、 あるいはリチウム ィオン電池ゃニッケル水素電池などの各種 2次電池が用いられており、 これ ら電池は必要に応じて機器使用者が電池交換および Z又は再充電している。 主電源用途以外にも、 メモリーバックアップやリアルタイムクロックのバッ クアツプ用途などにも各種 1次あるいは 2次電池が用いられており、 これら 用途電池は予め機器に組み込まれている場合が殆どである。  In addition, the method of mounting these components on a printed circuit board is becoming more and more surface-mounted. In particular, regarding the soldering process, many electronic components can be soldered at high density and collectively. After printing on a substrate in advance, soldering is performed by a reflow heat source set at a temperature equal to or higher than the melting point of solder (hereinafter referred to as reflow soldering). On the other hand, various batteries are used in these mopile devices. For example, primary batteries such as alkaline batteries and lithium batteries, or various secondary batteries such as lithium ion batteries and nickel-metal hydride batteries are used as the main power supply, and these batteries can be replaced by equipment users as necessary. And Z or recharged. In addition to the main power supply, various types of primary or secondary batteries are used for memory backup and real-time clock backup, and most of these batteries are pre-installed in equipment.
従来これらの電池を機器に実装する場合には、 電池自身が高温に対する耐 性が乏しいため、 前述したようなリフローハンダ付けは不可能であり、 電池 以外の部品をリフローハンダ付した後手作業にてハンダ付け、 あるいはホル ダをリフローハンダ付後、 手作業にて電池を該ホルダに装着しており、 作業 の効率面において問題を有していた。 Conventionally, when these batteries are mounted on equipment, reflow soldering as described above is impossible because the batteries themselves have poor resistance to high temperatures. After reflow soldering parts other than the above, soldering was performed manually, or after the holder was reflow soldered, batteries were manually mounted on the holder, which had a problem in terms of work efficiency.
かかる状況下、 リフロ一ハンダ付けを可能にする電池の研究が鋭意なされ ており、 例えば本願の共同出願人の出願にかかる特開平 8 - 1 7 4 7 0号公 報、 及び特開平 8— 3 0 6 3 8 4号公報で開示されているように、 リフロー 八ンダ付けが可能である電池が開発されている。  Under such circumstances, research has been earnestly made on batteries which enable reflow soldering. For example, Japanese Patent Application Laid-Open Nos. 8-174470 and 8-83-3 filed by the joint applicant of the present application filed this application. As disclosed in Japanese Patent Application Publication No. 0 63884, a battery capable of reflow soldering has been developed.
一般的な電子部品の多くが方形状であるのに対し、 これら電池形状は略コ ィン型或いはポタン型であるため、 基板上に表面実装する際のデッドスべ一 スが多いことに加え、 基板に表面実装するための端子が占有するスペースが 大きいという問題点を有している。 特に電子機器の小サイズ化が著しい最近 では上記問題の解決が強く望まれている。 発明の開示  Many of the general electronic components have a rectangular shape, whereas these battery shapes are almost coin-shaped or button-shaped, so that there are many dead spaces when surface-mounted on a substrate, There is a problem that the space occupied by the terminals for surface mounting on the substrate is large. In particular, there has been a strong demand for a solution to the above problems, especially in recent years where the size of electronic devices has been significantly reduced. Disclosure of the invention
本発明者らは上述の実状を鑑み鋭意研究を続けた結果、 本発明を完成した ものである。 本発明の目的は、 耐熱性に優れ且つリフローハンダ付が可能で あり、 基板上に表面実装する際、 占有スペースが最小限である端子付電気化 学セルを提供するにある。  The present inventors have made intensive studies in view of the above-mentioned situation, and as a result, completed the present invention. An object of the present invention is to provide an electrochemical cell with terminals which is excellent in heat resistance, can be reflow soldered, and occupies a minimum space when surface-mounted on a substrate.
上記の目的は、 発電素子と、 該発電素子を外雰囲気から遮断し且つ該発電 素子の集電体を兼ねる正極及び負極セルケース、 基板に実装するために正極 及び負極セルケースにそれぞれ溶接される端子からなるボタン型あるいはコ イン型電気化学セルにおいて、 該端子のうち、 基板に近接しないセルケース に溶接される端子 1が該セルケ一スフラッ ト面に接し、且つ平行である A面、 および A面と連続し且つ同一平面状にないセル厚み方向に面する B面、 およ び B面とは連続しかつ同一平面状になく、 前述 A面と同一平行方向に面する The above object is achieved by welding a power generating element, a positive electrode and a negative electrode cell case that shield the power generating element from the outside atmosphere and also function as a current collector of the power generating element, and a positive electrode and a negative electrode cell case to be mounted on a substrate. In a button-type or coin-type electrochemical cell composed of terminals, of the terminals, terminal A, which is welded to a cell case that is not close to the substrate, is in contact with and parallel to the cell case flat surface; Surface B that is continuous and not coplanar and faces the cell thickness direction, and Surface B is continuous and not coplanar and faces in the same parallel direction as surface A
C面からなる端子であることを特徴とする端子付電気化学セルにより達成さ れる。 Achieved by a terminal-equipped electrochemical cell characterized by a C-plane terminal It is.
さらには、 基板に近接するセルケースに溶接される端子 2が、 セルケース に溶接される面と基板に接地する面の間に少なくとも 1つの段差を有する端 子であることを特徴とする前記の端子付電気化学セル、 あるいは前記端子の 少なくとも B面が開口部を持ち、 該開口部のセル厚み方向の長さ L bが、 正 極及び負極セルケースの直径が大きいほうのセルケースの高さ Hに対し L b > Hであり、 開口部を有する B面とセル中心からの距離 R bがセル単体の半 径 Rに対し、 R≥R bを満たす前記の端子付電気化学セルにより達成される。 図面の簡単な説明 .  Further, the terminal 2 to be welded to the cell case adjacent to the substrate is a terminal having at least one step between a surface to be welded to the cell case and a surface to be grounded to the substrate. The electrochemical cell with terminals, or at least the surface B of the terminal has an opening, and the length Lb of the opening in the cell thickness direction is the height of the cell case where the diameter of the positive and negative electrode cell cases is larger. Lb> H with respect to H, and the distance Rb from the surface B with the opening and the cell center is achieved by the above terminal-equipped electrochemical cell that satisfies R ≥ Rb with respect to the radius R of the cell alone. You. Brief description of the drawings.
第 1図は、 本発明に係る端子付電気化学セルの図面である。 斜線部分は基 板に接地するためのハンダメツキが着く面を示す。  FIG. 1 is a drawing of an electrochemical cell with terminals according to the present invention. The shaded area indicates the surface where the soldering for grounding to the board will arrive.
第 2図は、 本発明に係る別の実施形態の図面である。 斜線部分は基板に接 地するためのハンダメツキが着く面を示す。  FIG. 2 is a drawing of another embodiment according to the present invention. The shaded area indicates the surface on which soldering for landing on the substrate is to be made.
第 3図は、 本発明に係る更に別の実施形態の図面である。 斜線部分は基板 に接地するためのハンダメツキが着く面を示す。  FIG. 3 is a drawing of still another embodiment according to the present invention. The shaded area indicates the surface on which soldering for grounding to the substrate will arrive.
第 4図は、 従来の端子付セルを示す図である。 斜線部分は基板に接地する 面を示す。  FIG. 4 is a diagram showing a conventional cell with terminals. The shaded area indicates the surface grounded to the substrate.
それぞれの符号において、 1は正極セルケース、 2は負極セルケース、 3 は端子 1 、 4は端子 2 、 5はガスケット、 6は端子 1 一 A面、 7は端子 1 一 B面、 8は端子 1 一 C面、 9はハンダメツキ部を示す。 発明を実施するための最良の形態  In each code, 1 is the positive cell case, 2 is the negative cell case, 3 is the terminal 1, 4 is the terminal 2, 5 is the gasket, 6 is the terminal 1 A side, 7 is the terminal 1 1 B side, 8 is the terminal 1-C plane, 9 indicates soldering area. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 基板に近接しないセルケースに溶接される端子 1は、 該 セルケ一スフラッ卜面に接し且つ平行である A面、 および A面と連続し且つ 同一平面状にないセル厚み方向に面する B面、 および B面とは連続しかつ同 一平面状になく、 前述 A面と同一平行方向に面する C面の 3面を有する。 ここで、 同一平行方向とは、 B面を含む面で区切られる 2つの空間に対し て、 A面と C面が同じ空間方向に存在することをいう。 A面と C面は特に平 行である必要はない。 In the present invention, the terminal 1 to be welded to the cell case that is not close to the substrate has an A surface that is in contact with and parallel to the cell case flat surface, and a surface in the cell thickness direction that is continuous with the A surface and is not coplanar. B side, and the B side is continuous and It has three planes, C-plane, which are not in one plane but face in the same parallel direction as A-plane. Here, the same parallel direction means that the A-plane and the C-plane exist in the same spatial direction with respect to two spaces separated by the plane including the B-plane. Sides A and C need not be particularly parallel.
該端子の形状は特に限定されるものではなく、 例えば、 A— B— C全てを 含む断面が略コの字型形状であるものが挙げられる。 このとき、 断面上の A 面と C面の長さの同異は特に問わない。 また、 B面の垂直高さは該セルの肩 高さより大きいことが好ましく、 更にはセル高さよりも大きいことが好まし いが、 高すぎる場合、 端子付セルの全高が大きくなつてしまう。 B面の垂直 高さは、 寸法上のバランス、 ハンダ付け強度等を考慮した場合、 基板に近接 するセルケースに溶接される端子の段差 +セル厚み ± 2 0 0 m程度である のが好ましい。  The shape of the terminal is not particularly limited, and examples thereof include a terminal having a substantially U-shaped cross section including all of ABC. At this time, there is no particular limitation on the difference between the lengths of the plane A and plane C on the cross section. Further, the vertical height of the surface B is preferably larger than the shoulder height of the cell, and more preferably larger than the cell height. In consideration of dimensional balance, soldering strength, and the like, the vertical height of the surface B is preferably about the level difference of the terminal welded to the cell case close to the substrate + the cell thickness ± 200 m.
本発明において、 基板に近接するセルケースに溶接される端子 2は、 セル ケースに溶接される面と基板に接地される面の間に少なくともひとつの段差 を有することが好ましい。 端子の段差とは端子 2 の接地面とセルケースに溶 接される面との垂直距離のことをいう。  In the present invention, the terminal 2 to be welded to the cell case close to the substrate preferably has at least one step between a surface to be welded to the cell case and a surface to be grounded to the substrate. The terminal step is the vertical distance between the grounding surface of terminal 2 and the surface welded to the cell case.
段差の寸法は特に限定されないが、 2 0 0〜 5 0 0 mとするのが以下に 述べる理由より好都合である。 段差が 2 0 0 mより小さい場合には基盤に 近接しないセルケースと該セルケースに溶接される端子の C面の距離が短い 為に、 リフ口一ハンダ付け作業後、 基盤に近接しないセルケースと該セルケ ースに溶接される端子の C面が直接接触することによる短絡、 或いは一旦溶 融したハンダを介して短絡してしまう可能性が高くなる。  The size of the step is not particularly limited, but is preferably 200 to 500 m for the following reason. If the step is smaller than 200 m, the distance between the cell case that is not close to the base and the C surface of the terminal that is welded to the cell case is short. There is a high possibility that the C-side of the terminal to be welded to the cell case will be short-circuited due to direct contact, or short-circuited via solder once melted.
また、 5 0 0 m以上の場合には端子付セルの高さ寸法が大きくなつてし まうため好ましくない。 該端子が段差を有さない場合は、 もう一方の基盤に 近接しないセルケースに溶接される端子の C面が、 基板と基板に近接するセ ルケ一スの間の空隙部に入ることが出来ないため、 結果的に端子付セルが基 板上で占める面積が大きくなつてしまう。 On the other hand, when the length is 500 m or more, the height of the terminal-equipped cell is increased, which is not preferable. If the terminal does not have a step, the C surface of the terminal welded to the cell case that is not close to the other base can enter the gap between the substrate and the cell case close to the substrate. As a result, the cells with terminals The area occupied on the board increases.
本発明において、 端子 1と端子 2の位置関係は特に問わない。 端子間での 短絡を防止するためには、 端子 1 と端子 2が 1 8 0度の角度を成す様に配置 するのが好ましいが、 基板のスペース形状によっては、 例えば端子 1と端子 2が 9 0度の角度を成す様に配置をしても構わない。 この場合、 端子 1のコ の字型の開口部は閉じていても良く、 いわゆる略口の字型を採ることも可能 である。  In the present invention, the positional relationship between the terminal 1 and the terminal 2 is not particularly limited. In order to prevent a short circuit between the terminals, it is preferable to arrange the terminals 1 and 2 so as to form an angle of 180 degrees. However, depending on the space shape of the board, for example, terminals 1 and 2 may be 9 terminals. It may be arranged so as to form an angle of 0 degrees. In this case, the U-shaped opening of the terminal 1 may be closed, and a so-called substantially mouth-shaped opening may be employed.
本発明において用いられる端子材料は、 一般に用いられる金属材料であれ ば特に限定はされないが、 各種のステンレス材、 ニッケル材、 ニッケル—鉄 合金、 銅などが好ましく用いられる。 端子の厚みは特に限定されないが、 通 常 5 0〜 3 0 0 /x mの厚みである場合が溶接条件を設定しやすく好ましい。 また、 少なくとも端子が基板に接地する面には基板と端子付電池の充分な接 着強度を持たせるためにハンダ等のメツキがなされている。  The terminal material used in the present invention is not particularly limited as long as it is a generally used metal material. However, various stainless materials, nickel materials, nickel-iron alloys, copper and the like are preferably used. Although the thickness of the terminal is not particularly limited, it is usually preferable that the thickness be 50 to 300 / xm because the welding conditions can be easily set. Further, at least the surface where the terminal is grounded to the substrate is provided with a solder or the like in order to have a sufficient bonding strength between the substrate and the battery with the terminal.
本発明において、 基板に近接しないセルケースに溶接される端子 1の少な くとも B面が開口部を持つ場合、 端子付セルが基盤に表面実装される場合の 占有する面積をより小さくすることが可能になる。 該開口部の垂直高さ L b は、 少なくとも正極ケース及び負極セルケースの直径が大きい方のセルケ一 スの高さ Hに対し L b > Hであれば良いが、好ましくはセル高さ H cに対し、 L > H 1であるのが好ましい。 この場合、 B面の開口部とセル中心からの距 離 R bはセル単体の半径 R以下に出来るため、 端子付電池が基板上で占める 面積を小さくすることが出来る。  In the present invention, when at least the surface B of the terminal 1 to be welded to the cell case which is not close to the substrate has an opening, the area occupied by the terminal-equipped cell on the surface of the substrate can be reduced. Will be possible. The vertical height Lb of the opening may be at least Lb> H with respect to the height H of the cell case where the diameter of the positive electrode case and the negative electrode cell case is larger, but preferably the cell height Hc On the other hand, it is preferable that L> H1. In this case, the distance Rb from the opening on the surface B and the center of the cell can be made equal to or less than the radius R of the cell alone, so that the area occupied by the battery with terminals on the substrate can be reduced.
また、 開口部は A面および Zあるいは C面に連続する開口部でも良い。 こ の場合、さらに A面および/あるいは C面の B面側でないもう一方の端部は、 それぞれ閉じていなくてもよい。 C面の B面側でないもう一方の端部が閉じ ていない場合は、 基板に接する部位の面積は減少するが、 3点接地になるた めに強度を低下させること無くリフローハンダ付けが可能である。 本発明における発電素子は、 電気化学エネルギーを蓄え外部にエネルギー を取り出すことが可能であれば特に限定されず 1次、 2次の種は問わないが、 リフローハング付け処理を考慮すると電解液が非プロトン性溶媒からなる有 機電解質電池であることが好ましい。 Also, the opening may be an opening that is continuous with the A-plane and the Z- or C-plane. In this case, the other ends of the A side and / or the C side other than the B side may not be closed. If the other end of the C side other than the B side is not closed, the area of the part in contact with the board is reduced, but since it is a three-point ground, reflow soldering is possible without reducing strength. is there. The power generating element according to the present invention is not particularly limited as long as it can store electrochemical energy and can extract energy to the outside. The primary and secondary species are not limited. An organic electrolyte battery comprising a protic solvent is preferred.
例えば、 正極に二酸化マンガン、 負極に金属リチウムを用いたリチウム一 次電池や、 正極にマンガン酸化物、 負極にリチウムアルミ合金や珪素酸化物 を用いたマンガン—リチウム合金系やマンガン一珪素酸化物系などの 3 V級 電池、 正 ·負極に活性炭の如き多孔質炭素材やポリアセン系有機半導体を用 いた有機系キャパシタ、 その他ニオブ酸化物一リチウム合金系、 マンガン酸 化物—チタン酸リチウム系などが挙げられる。  For example, a lithium primary battery using manganese dioxide for the positive electrode and metallic lithium for the negative electrode, a manganese-lithium alloy or a manganese-silicon oxide based on manganese oxide for the positive electrode and lithium aluminum alloy or silicon oxide for the negative electrode 3V class batteries, such as organic capacitors using porous carbon materials such as activated carbon or polyacene organic semiconductors for the positive and negative electrodes, other lithium-niobium oxide alloys, and manganese oxide-lithium titanate. Can be
本発明における発電素子の形状は特に限定されず、 例えば、 タブレッ ト状 に成形した正極及び負極電極を電解液を含浸したセパレ一夕を介して対向さ せたものがあげられる。 この場合、 セパレ一夕に接していないもう一方の電 極面を缶に接着する場合が多い。  The shape of the power generating element in the present invention is not particularly limited, and examples thereof include a device in which a positive electrode and a negative electrode formed in a tablet shape face each other via a separator impregnated with an electrolytic solution. In this case, the other electrode surface that is not in contact with the separator is often glued to the can.
また該発電素子は、 箔ゃメッシュなどの集電体に成形した帯状正極及び負 極電極をセパレー夕を介して巻回したものでもよく、 帯状電極の最外周部を 正極ケースおよび Zまたは負極ケース内面に直接接触させて密閉するのが作 業上簡便である。  Further, the power generating element may be one in which a strip-shaped positive electrode and a negative electrode formed into a current collector such as a foil-mesh are wound through a separator, and the outermost peripheral portion of the strip-shaped electrode is a positive electrode case and a Z or negative electrode case. It is convenient for the work to seal directly by contacting the inner surface.
本発明に用いられる正極ケース及び負極ケースは、 一般に電池に用いられ る金属材料であれば特に限定されないが、 好ましくは耐食性、 耐孔食性等に 優れている各種ステンレス材である。  The positive electrode case and the negative electrode case used in the present invention are not particularly limited as long as they are metal materials generally used for batteries, but are preferably various stainless materials having excellent corrosion resistance, pitting corrosion resistance and the like.
また、 これら正極ケース及び負極ケースは短絡することなく発電素子を外 雰囲気と遮断し、 機密性、 液密性を保持する為にガスケッ トを介してかしめ 等プレスを行なうのが通常である。  In addition, the positive electrode case and the negative electrode case are usually subjected to pressing such as caulking via a gasket in order to shut off the power generating element from the outside atmosphere without short-circuiting and to maintain airtightness and liquid tightness.
ガスケット材に用いる材料としては、例えばポリエーテルエーテルケトン、 ポリフエ二レンサルフアイ ド、 .フッ素樹脂等が挙げられ、 成形性を良くする ために必要に応じてガラス繊維を添加して成形したものを用いても良い。 以下、 図面により本発明の実施の一例を説明する。 但し、 本発明はこれら 実施例に限定されるものではない。 Examples of the material used for the gasket material include polyether ether ketone, polyphenylene sulfide, and fluororesin, which improve moldability. For this purpose, a glass fiber to which glass fibers are added as necessary may be used. Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
図 1は正極及び負極の主成分がポリァセン系有機半導体である有機系キヤ パシタを発電素子に用いた直径 4 . 8 mm、 高さ 1 . 4 mmコイン型セルに 端子を溶接した本発明の実施例である。  Fig. 1 shows an embodiment of the present invention in which terminals are welded to a coin-type cell with a diameter of 4.8 mm and a height of 1.4 mm using an organic capacitor whose main components of the positive electrode and the negative electrode are a polyacene-based organic semiconductor as a power generation element. It is an example.
端子付セルの総高さは 1 . 7 mmであった。 発電素子は例えば特願平 7— 1 3 7 1 8 4の実施例に開示されている方法にて作製した。 端子は厚みが 1 0 0 mの S U S 3 0 4材をプレス成形により作製したものを用いた。 セル への端子の溶接 Y A Gレーザー溶接機により行なった。 この場合、 基板上に おいてセル本体のみが占める面積を 1 0 0とした場合、 端子付セルが占める 面積比は 1 1 0であった。  The total height of the terminal cells was 1.7 mm. The power generating element was produced, for example, by the method disclosed in the embodiment of Japanese Patent Application No. 7-137184. The terminals used were made of a SUS304 material having a thickness of 100 m by press molding. Welding of terminals to the cell was performed with a YAG laser welder. In this case, when the area occupied by only the cell body on the substrate was 100, the area ratio occupied by the cells with terminals was 110.
(実施例 2 )  (Example 2)
図 2は実施例 1と同様に発電素子としてポリァセン系有機半導体からなる 有機系キャパシ夕を発電素子に用いた別の実施形態である。 この場合、 基板 上においてセル本体のみが占める面積を 1 0 0とした場合、 端子付セルが占 める面積比は 1 0 3 %であった。  FIG. 2 shows another embodiment in which an organic capacity made of a polyacene-based organic semiconductor is used as a power generating element, similarly to the first embodiment. In this case, when the area occupied by only the cell body on the substrate was 100, the area ratio occupied by the cells with terminals was 103%.
(実施例 3 )  (Example 3)
図 3は実施例 1と同様に発電素子としてポリァセン系有機半導体からなる 有機系キャパシ夕を発電素子に用いた別の実施形態である。 端子 1と端子 2 は 9 0度の角度を成して配置されている。 この場合、 基板上においてセル本 体のみが占める面積を 1 0 0とした場合、 端子付セルが占める面積比は 1 0 6 %であった。  FIG. 3 shows another embodiment in which an organic capacity made of a polyacene-based organic semiconductor is used as a power generating element, similarly to the first embodiment. Terminal 1 and terminal 2 are arranged at an angle of 90 degrees. In this case, when the area occupied by only the cell body on the substrate was 100, the area ratio occupied by the cells with terminals was 106%.
(比較例 1 )  (Comparative Example 1)
図 3は従来形状の端子を溶接した端子付セルの一例である。 この場合、 基 板上においてセル本体のみが占める面積を 1 0 0とした場合、 端子付セルが 占める面積比は 1 3 7 %であった。 産業上の利用可能性 FIG. 3 shows an example of a terminal-equipped cell in which conventional shaped terminals are welded. In this case, When the area occupied by only the cell body on the plate was 100, the area ratio occupied by the cells with terminals was 137%. Industrial applicability
以上の結果から分かるように、 引用例に示した従来の端子付セルにおいて は、 ハンダ付け強度を低下させることなく端子の占有面積を小さくすること が出来ないため、 例えセルサイズを小さくしてもその効果を生かすことが出 来なかった。 それに対し、 本発明の構成の場合、 端子付セルが基板上で占め る面積を小さくすることが可能となる。 特に基板に近接しないセルケースに 溶接される略コの字型端子の少なくとも B面が開口部を有している場合、 そ の効果は特に大きいく、 小型化、 集積化する電気製品を含め多くの電気製品 に有効に利用可能である。  As can be seen from the above results, in the conventional cell with terminal shown in the cited example, the area occupied by the terminal cannot be reduced without reducing the soldering strength, so even if the cell size is reduced, I couldn't make use of that effect. On the other hand, in the case of the configuration of the present invention, the area occupied by the terminal-equipped cell on the substrate can be reduced. This effect is particularly significant when at least the B-side of the substantially U-shaped terminal welded to the cell case that is not close to the substrate has an opening, and the effect is particularly large, including miniaturized and integrated electrical products. It can be used effectively for electric appliances.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板に実装するために正極及び負極セルケースにそれぞれ溶接される端子か らなるポタン型あるいはコイン型電気化学セルにおいて、 該端子のうち、 基板に 近接しないセルケースに溶接される端子 1が該セルケースフラット面に接し且つ 平行である A面、 および A面と連続し且つ同一平面状にないセル厚み方向に面す る B面、 および B面とは連続しかつ同一平面状になく、 前述 A面と同一平行方向 に面する C面からなる端子であることを特徴とする端子付電気化学セル。 1. In a potan-type or coin-type electrochemical cell consisting of terminals welded to the positive and negative electrode cell cases for mounting on the substrate, among the terminals, terminal 1 that is welded to the cell case that is not close to the substrate A side which is in contact with and parallel to the flat surface of the cell case, and B side which is continuous with the A side and faces the cell thickness direction which is not coplanar, and B side which is continuous and not coplanar, A terminal-equipped electrochemical cell, characterized in that the terminal comprises a surface C facing in the same parallel direction as the surface A.
2 . 基板に近接するセルケースに溶接される端子 2が、 セルケースに溶接される 面と基板に接地する面の間に少なくとも 1つの段差を有する端子であることを特 徵とする請求項 1記載の端子付電気化学セル。  2. The terminal 2 to be welded to the cell case close to the substrate is a terminal having at least one step between a surface to be welded to the cell case and a surface to be grounded to the substrate. An electrochemical cell with a terminal as described in the above.
3 . 前記端子 1の少なくとも B面が開口部を持ち、 該開口部のセル厚み方向の長 さ L bが、 正極及び負極セルケースの直径が大きいほうのセルケースの高さ Hに 対し L b >Hであり、 開口部を有する B面とセル中心からの距離 R bがセル単体 の半径 Rに対し、 R≥R bを満たす請求項 1あるいは 2記載の端子付電気化学セ ル。  3. At least the surface B of the terminal 1 has an opening, and the length Lb of the opening in the cell thickness direction is Lb with respect to the height H of the cell case where the diameter of the positive and negative electrode cell cases is larger. 3. The electrochemical cell with terminal according to claim 1, wherein> H, and a distance Rb from the surface B having the opening to the center of the cell satisfies R≥Rb with respect to a radius R of the cell alone.
PCT/JP2002/009811 2001-09-28 2002-09-24 Electrochemical cell with terminals WO2003030281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003533364A JP4250528B2 (en) 2001-09-28 2002-09-24 Electrochemical cell with terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001299707 2001-09-28
JP2001/299707 2001-09-28

Publications (1)

Publication Number Publication Date
WO2003030281A1 true WO2003030281A1 (en) 2003-04-10

Family

ID=19120412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009811 WO2003030281A1 (en) 2001-09-28 2002-09-24 Electrochemical cell with terminals

Country Status (3)

Country Link
JP (10) JP4250528B2 (en)
CN (1) CN1275338C (en)
WO (1) WO2003030281A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317850A (en) * 2004-04-30 2005-11-10 Sii Micro Parts Ltd Electrochemical cell with lead terminal
JP2007165139A (en) * 2005-12-14 2007-06-28 Sanyo Electric Co Ltd Battery with lead
JP2008108549A (en) * 2006-10-25 2008-05-08 Matsushita Electric Ind Co Ltd Battery having terminal for surface mount
JP2008294001A (en) * 2001-09-28 2008-12-04 Taiyo Yuden Co Ltd Electrochemical cell with terminal
JP2010251782A (en) * 2010-06-14 2010-11-04 Seiko Instruments Inc Electrochemical cell with lead terminal
WO2012132618A1 (en) * 2011-03-28 2012-10-04 Fdk鳥取株式会社 Terminal-equipped electrochemical device
JP2014045204A (en) * 2013-10-17 2014-03-13 Seiko Instruments Inc Electrochemical cell with lead terminal
WO2022196358A1 (en) * 2021-03-16 2022-09-22 セイコーインスツル株式会社 Terminal-equipped button cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092677B1 (en) * 2007-12-18 2011-12-09 파나소닉 주식회사 Coin type electric double-layered capacitor, and capacitor-packaged element
JP2012195202A (en) * 2011-03-17 2012-10-11 Taiyo Yuden Co Ltd Electrochemical cell with terminal
JP2018142608A (en) * 2017-02-27 2018-09-13 株式会社村田製作所 Surface mounted electronic component
CN113013556B (en) * 2019-12-19 2022-07-12 荣耀终端有限公司 Button battery welding structure, electronic equipment and button battery mounting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175565U (en) * 1986-04-24 1987-11-07
JPS6430158A (en) * 1987-07-24 1989-02-01 Sharp Kk Packaging method for thin battery
JPS6476665A (en) * 1987-09-16 1989-03-22 Fujitsu Ltd Mounting structure for button type cell
JPH06124140A (en) * 1992-10-12 1994-05-06 Hitachi Ltd Battery fixing device for information processor, key board device, or electronic equipment
JPH09161745A (en) * 1995-12-14 1997-06-20 Matsushita Electric Ind Co Ltd Battery having terminal and circuit board

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159704A (en) * 1990-10-23 1992-06-02 Nec Corp Electric double-layer condenser
JPH0528024U (en) * 1991-09-20 1993-04-09 エルナー株式会社 Electric double layer capacitor
JPH0845767A (en) * 1994-07-30 1996-02-16 Elna Co Ltd Electronic component
JPH0897092A (en) * 1994-09-22 1996-04-12 Elna Co Ltd Electronic device
JPH08306384A (en) * 1995-05-10 1996-11-22 Kanebo Ltd Organic electrolyte battery
JP2000286153A (en) * 1999-01-29 2000-10-13 Elna Co Ltd Electric double-layer capacitor
JP2000243377A (en) * 1999-02-16 2000-09-08 Seiko Instruments Inc Battery with lead terminal
JP2001028322A (en) * 1999-07-14 2001-01-30 Rohm Co Ltd Solid electrolytic capacitor
JP2001217158A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Nonaquous electrolytic solution electric double-layer capacitor
JP4250528B2 (en) * 2001-09-28 2009-04-08 太陽誘電株式会社 Electrochemical cell with terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175565U (en) * 1986-04-24 1987-11-07
JPS6430158A (en) * 1987-07-24 1989-02-01 Sharp Kk Packaging method for thin battery
JPS6476665A (en) * 1987-09-16 1989-03-22 Fujitsu Ltd Mounting structure for button type cell
JPH06124140A (en) * 1992-10-12 1994-05-06 Hitachi Ltd Battery fixing device for information processor, key board device, or electronic equipment
JPH09161745A (en) * 1995-12-14 1997-06-20 Matsushita Electric Ind Co Ltd Battery having terminal and circuit board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294001A (en) * 2001-09-28 2008-12-04 Taiyo Yuden Co Ltd Electrochemical cell with terminal
JP2005317850A (en) * 2004-04-30 2005-11-10 Sii Micro Parts Ltd Electrochemical cell with lead terminal
JP4570902B2 (en) * 2004-04-30 2010-10-27 セイコーインスツル株式会社 Electrochemical cell with lead terminals
JP2007165139A (en) * 2005-12-14 2007-06-28 Sanyo Electric Co Ltd Battery with lead
JP2008108549A (en) * 2006-10-25 2008-05-08 Matsushita Electric Ind Co Ltd Battery having terminal for surface mount
JP2010251782A (en) * 2010-06-14 2010-11-04 Seiko Instruments Inc Electrochemical cell with lead terminal
WO2012132618A1 (en) * 2011-03-28 2012-10-04 Fdk鳥取株式会社 Terminal-equipped electrochemical device
JP2014045204A (en) * 2013-10-17 2014-03-13 Seiko Instruments Inc Electrochemical cell with lead terminal
WO2022196358A1 (en) * 2021-03-16 2022-09-22 セイコーインスツル株式会社 Terminal-equipped button cell

Also Published As

Publication number Publication date
JP2014112676A (en) 2014-06-19
JP5442793B2 (en) 2014-03-12
JP5268489B2 (en) 2013-08-21
JP2008294001A (en) 2008-12-04
JP2012138373A (en) 2012-07-19
JP2014075598A (en) 2014-04-24
CN1557030A (en) 2004-12-22
JP5268488B2 (en) 2013-08-21
JP2014112543A (en) 2014-06-19
JPWO2003030281A1 (en) 2005-01-20
JP4250528B2 (en) 2009-04-08
CN1275338C (en) 2006-09-13
JP2008294002A (en) 2008-12-04
JP2011129540A (en) 2011-06-30
JP2011151037A (en) 2011-08-04
JP2012156141A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5442793B2 (en) Electrochemical cell with terminal
JP5013772B2 (en) Electric double layer capacitor
JP4550519B2 (en) Electrochemical cell and method for producing the same
JP2008294001A5 (en)
JP5742503B2 (en) Electrochemical cell
JP2006049289A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP2006012792A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
US7525049B2 (en) Electronic component case and battery and electric double layer capacitor
JP2004356009A (en) Electrochemical cell
JP4845388B2 (en) Electrochemical cell
KR100601526B1 (en) Lithium Ion Secondary battery
CN211265619U (en) Button cell
JP5588539B2 (en) Electrochemical cell
JP2005183373A (en) Battery case, manufacturing method thereof and battery, electric double-layer capacitor case and manufacturing method thereof, and electric double-layer capacitor
JP4993873B2 (en) Ceramic container and battery or electric double layer capacitor using the same, and electric circuit board
JP6362063B2 (en) Electrochemical cell
JP4671652B2 (en) Battery case and battery
JP2003045382A (en) Electrochemical cell mountable by reflow soldering
JP2005209640A (en) Battery housing and battery, and housing for battery and electric double-layer capacitor and electric double-layer capacitor
JP2010135154A (en) Nonaqueous electrolyte battery
JP4583014B2 (en) Battery case and battery
JP4665513B2 (en) Method for producing coin-type electrochemical device
JP2005158678A (en) Battery case, battery and manufacturing method therefor
JP2005071889A (en) Case for battery, and battery
JP2003308824A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028186230

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003533364

Country of ref document: JP

122 Ep: pct application non-entry in european phase