JP4583014B2 - Battery case and battery - Google Patents

Battery case and battery Download PDF

Info

Publication number
JP4583014B2
JP4583014B2 JP2003334402A JP2003334402A JP4583014B2 JP 4583014 B2 JP4583014 B2 JP 4583014B2 JP 2003334402 A JP2003334402 A JP 2003334402A JP 2003334402 A JP2003334402 A JP 2003334402A JP 4583014 B2 JP4583014 B2 JP 4583014B2
Authority
JP
Japan
Prior art keywords
battery
layer
conductor
electrode plate
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334402A
Other languages
Japanese (ja)
Other versions
JP2005100867A (en
Inventor
信幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003334402A priority Critical patent/JP4583014B2/en
Publication of JP2005100867A publication Critical patent/JP2005100867A/en
Application granted granted Critical
Publication of JP4583014B2 publication Critical patent/JP4583014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、充電式電池に使用される電池用ケースおよび電池に関し、より詳しくは携帯電話などの小型電子機器に用いられる薄型の電池用ケースおよび電池に関する。   The present invention relates to a battery case and battery used for a rechargeable battery, and more particularly to a thin battery case and battery used for small electronic devices such as mobile phones.

近年、携帯電話や携帯型コンピュータ、カメラ一体型ビデオテープレコーダー等に代表される携帯機器が目覚しく発達するとともに、より一層の小型化、軽量化が求められる傾向にある。そして、これらの携帯機器の電源としての電池の需要も増加の一途をたどるとともに、電池のエネルギー密度を高めることによる小型軽量化の研究が活発に行われている。特に、リチウム電池は、原子量が小さくかつイオン化エネルギーが大きなリチウムを用いる電池であることから、高エネルギー密度を得ることができて小型軽量化が図れ、さらに再充電が可能な電池とできることより盛んに研究され、現在に至っては携帯機器の電源をはじめとする広範囲な用途に用いられるようになってきた。   In recent years, portable devices typified by mobile phones, portable computers, camera-integrated video tape recorders, etc. have been remarkably developed, and further miniaturization and weight reduction have been demanded. In addition, the demand for batteries as power sources for these portable devices continues to increase, and research on reducing the size and weight by increasing the energy density of the batteries is actively conducted. In particular, the lithium battery is a battery using lithium with a small atomic weight and a large ionization energy, so that it is possible to obtain a high energy density, to achieve a reduction in size and weight, and to be a battery that can be recharged more actively. It has been researched and has now been used for a wide range of applications including power supplies for portable devices.

また、電池には、大きく分けて円筒型と角型があり、その構造は正極と負極とを絶縁シートから成るセパレータを介して金属製の電槽缶内に収容し、そこに電解液が注入されて封口された構造とされている。   Batteries can be broadly divided into cylindrical and square types. The structure is that the positive and negative electrodes are housed in a metal battery case through a separator made of an insulating sheet, and an electrolyte is injected there. It is a sealed structure.

リチウム電池の正極には、例えば金属酸化物を正極活物質としてこれに導電材を添加したものが一般的に使用される。この正極活物質としては例えばコバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMn)などが使用され、また、導電材としては例えばアセチレンブラック(AB)や黒鉛などが使用される。電池の負極には、チタン酸リチウム(LiTi12)などのリチウムチタン複合酸化物やグラファイトまたは非晶質炭素などの活物質を樹脂で固めたものが使用される。 As a positive electrode of a lithium battery, for example, a metal oxide used as a positive electrode active material and a conductive material added thereto is generally used. For example, lithium cobaltate (LiCoO 2 ) or lithium manganate (LiMn 2 O 4 ) is used as the positive electrode active material, and acetylene black (AB) or graphite is used as the conductive material. As the negative electrode of the battery, a lithium titanium composite oxide such as lithium titanate (Li 4 Ti 5 O 12 ) or an active material such as graphite or amorphous carbon solidified with a resin is used.

リチウム電池においては、このLiCoOやLiMnなどから成る正極活物質の充放電電圧が約4Vであり、これに対して炭素材料などから成る負極活物質の充放電電圧は0V付近であることから、これらの正極活物質と負極活物質と電解液とを組み合わせることによって約3.5Vの高放電電圧を達成している。 In the lithium battery, the charge / discharge voltage of the positive electrode active material made of LiCoO 2 or LiMn 2 O 4 is about 4V, while the charge / discharge voltage of the negative electrode active material made of carbon material or the like is around 0V. Therefore, a high discharge voltage of about 3.5 V is achieved by combining these positive electrode active material, negative electrode active material, and electrolyte.

電池の正極は上記活物質に上記導電材を加え、さらにポリテトラフルオロエチレンやポリフッ化ビニリデンなどのバインダを添加、混合してスラリー状となし、これを周知のドクターブレード法を用いてシート状に成形し、ついでこのシートを例えば円形状に裁断して作製される。   For the positive electrode of the battery, the conductive material is added to the active material, and a binder such as polytetrafluoroethylene or polyvinylidene fluoride is added and mixed to form a slurry, which is formed into a sheet using a well-known doctor blade method. The sheet is formed and then cut into, for example, a circular shape.

また負極は上記活物質に、正極と同様にポリテトラフルオロエチレンやポリフッ化ビニリデンなどのバインダを添加、混合してスラリー状となし、これを周知のドクターブレード法を用いてシート状に成形し、ついでこのシートを例えば円形状に裁断して作製される。   Also, the negative electrode is added to the above active material, as in the positive electrode, a binder such as polytetrafluoroethylene or polyvinylidene fluoride, mixed to form a slurry, and this is formed into a sheet using a known doctor blade method, Next, this sheet is cut into a circular shape, for example.

そして、このようにして作製された正極および負極をその間に耐熱温度が約150℃のポリオレフィン繊維製の不織布やポリオレフィン製の微多孔膜などからなるセパレータを介して電槽缶内に収容し、電解液を注入して電池が得られる。   Then, the positive electrode and the negative electrode thus prepared are accommodated in a battery case via a separator made of a polyolefin fiber nonwoven fabric or a polyolefin microporous film having a heat resistant temperature of about 150 ° C. A battery is obtained by pouring the liquid.

そして、このようにして作製される電池をさらに小型化、高密度化するために、図6に示すコイン型の電池Aが開発されている。   In order to further reduce the size and density of the battery thus manufactured, a coin-type battery A shown in FIG. 6 has been developed.

この従来の電池Aは、円板状の正極11bを備えた例えばステンレスからなる正極缶11と、円板状の負極12bを備えた例えばステンレスからなる負極缶12とを電解液を含浸させたセパレータ14を介して対置させ、ついで例えば絶縁性のポリプロピレン樹脂からなるガスケット15を介して正極缶11の周囲と負極缶12の周囲とをかしめるようにして一体に結合させた電槽缶構造とされている。正極11bおよび負極12bにおける充放電は正極缶11および負極缶12に取着した外部接続端子部材を介して行われる(例えば、下記の特許文献1,2参照)。
特開2000−106195号公報(第6−12頁、図1) 特開2002−198019号公報(第3−4頁、図1)
This conventional battery A is a separator in which a positive electrode can 11 made of, for example, stainless steel provided with a disk-shaped positive electrode 11b and a negative electrode can 12 made of, for example, stainless steel provided with a disk-shaped negative electrode 12b are impregnated with an electrolyte. 14 and then, for example, a battery case structure in which the periphery of the positive electrode can 11 and the periphery of the negative electrode can 12 are caulked together via a gasket 15 made of insulating polypropylene resin, for example. ing. Charging / discharging in the positive electrode 11b and the negative electrode 12b is performed via an external connection terminal member attached to the positive electrode can 11 and the negative electrode can 12 (see, for example, Patent Documents 1 and 2 below).
JP 2000-106195 A (page 6-12, FIG. 1) JP 2002-198019 A (page 3-4, FIG. 1)

しかしながら、特許文献1,2に示されるような従来の電池Aは、長期間に亘って温度幅が百数十度という温度サイクル試験(例えば−40℃〜85℃)に曝されると、例えばポリプロピレン樹脂からなるガスケット15と正極缶11と負極缶12との熱膨張率の差によりガスケット15を介して正極缶11および負極缶12の周囲をかしめた電槽缶の結合部位に隙間が生じて電解液が漏れ出す場合が有り、これにより電池Aの電池性能を劣化させたり、さらに漏れ出た電解液により外部電気回路基板上の銅(Cu)配線が腐食して断線するといった不具合が発生したり、あるいは、この隙間から水分が電池A内部に侵入して電池性能を劣化させるという不具合が発生していた。   However, when the conventional battery A as shown in Patent Documents 1 and 2 is exposed to a temperature cycle test (for example, −40 ° C. to 85 ° C.) with a temperature range of a few hundred degrees over a long period of time, for example, Due to the difference in coefficient of thermal expansion between the gasket 15 made of polypropylene resin, the positive electrode can 11 and the negative electrode can 12, a gap is generated at the joining portion of the battery case can which is caulked around the positive electrode can 11 and the negative electrode can 12 through the gasket 15. There is a case where the electrolyte solution leaks, and this causes a problem that the battery performance of the battery A is deteriorated or the copper (Cu) wiring on the external electric circuit board is corroded and disconnected by the leaked electrolyte solution. Alternatively, there has been a problem in that moisture enters the inside of the battery A from this gap and deteriorates the battery performance.

さらには、従来の電池Aは正極缶11と負極缶12はステンレスからなるため、熱伝導率が高く、電池A内部が電池A外部の温度の影響を受けやすく、電池性能が劣化し易いという問題点もあった。即ち、電池A外部の温度が上昇した場合、電解液が電池A外部の温度変化に追従して大きく温度変化し易く、所望の電池性能を発揮させることができなかった。   Furthermore, since the conventional battery A has a positive electrode can 11 and a negative electrode can 12 made of stainless steel, the thermal conductivity is high, the battery A is easily affected by the temperature outside the battery A, and the battery performance is likely to deteriorate. There was also a point. That is, when the temperature outside the battery A rises, the electrolyte easily changes greatly following the temperature change outside the battery A, and the desired battery performance cannot be exhibited.

従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、長期間の使用により電槽缶の結合部位に隙間が生じることにより電解液が漏れ出して電池性能を劣化させたり、漏出した電解液により外部電気回路基板が損傷を受けたりすることがなく、外部電気回路基板への接続が容易で、電池性能が周囲の温度変化に影響され難い量産性に優れた電池用ケースおよび電池を提供することにある。   Accordingly, the present invention has been completed in view of the above-mentioned problems, and its purpose is to deteriorate the battery performance due to leakage of the electrolyte due to the formation of a gap in the joint portion of the battery case due to long-term use. For the battery with excellent mass productivity, the external electric circuit board is not damaged by the leaked electrolyte, the connection to the external electric circuit board is easy, and the battery performance is not affected by the ambient temperature change. It is to provide a case and a battery.

本発明の電池用ケースは、上面の中央部に直方体状の凹部が形成され、前記凹部内の内側面に形成された段差であって、前記凹部の底面よりも高い位置に該段差の上面が位置する段差を有し、下面に第一の導体層および第二の導体層が互いに独立して設けられたセラミックスから成る基体と、前記凹部の底面に形成された第一のメタライズ層と、前記段差の上面に形成された第二のメタライズ層と、前記第一のメタライズ層から前記第一の導体層にかけて前記基体を貫通して形成された第一の内部導体と、前記第二のメタライズ層から前記第二の導体層にかけて前記基体を貫通して形成された第二の内部導体とを具備しており、前記基体の熱伝導率が20W/m・K以下であることを特徴とするものである。

The battery case of the present invention has a rectangular parallelepiped recess formed at the center of the upper surface, and is a step formed on the inner surface of the recess, the upper surface of the step being higher than the bottom surface of the recess. has a step located, a substrate made of ceramics which is provided a first conductor layer and second conductor layer independently of each other on the lower surface, the first metallized layer formed on the bottom surface of the recess, the A second metallization layer formed on the upper surface of the step, a first inner conductor formed through the base from the first metallization layer to the first conductor layer, and the second metallization layer and anda second internal conductor formed through said substrate toward said second conductor layer from, and wherein the thermal conductivity of the substrate is not more than 20W / m · K Is.

また、本発明の電池用ケースは、上記構成において好ましくは、前記第一の内部導体の断面積は前記第二の内部導体の断面積よりも小さいことを特徴とするものである。   In the battery case of the present invention, preferably, the cross-sectional area of the first inner conductor is smaller than the cross-sectional area of the second inner conductor.

本発明の電池は、上記構成の電池用ケースと、前記第一のメタライズ層に接続された正電極板と、該正電極板の上面に電解液を含浸した絶縁シートを介して密着するように載置されるとともに前記第二のメタライズ層に接続された負電極板と、前記凹部を覆うようにして接合された蓋体とを具備していることを特徴とするものである。

The battery of the present invention is in close contact with the battery case having the above configuration, the positive electrode plate connected to the first metallization layer, and the upper surface of the positive electrode plate via an insulating sheet impregnated with an electrolyte. a negative electrode plate connected to the second metallization layer while being placed, is characterized in that it comprises a and a lid joined so as to cover the recess.

本発明の電池用ケースは、上面の中央部に直方体状の凹部が形成され、下面に第一の導体層および第二の導体層が互いに独立して設けられたセラミックスから成る基体と、前記凹部の底面に形成された第一のメタライズ層と、前記基体の上面形成された第二のメタライズ層と、前記第一のメタライズ層から前記第一の導体層にかけて前記基体を貫通して形成された第一の内部導体と、前記第二のメタライズ層から前記第二の導体層にかけて前記基体を貫通して形成された第二の内部導体とを具備しており、前記基体の熱伝導率が20W/m・K以下であることを特徴とするものである。

The battery case of the present invention has a rectangular parallelepiped recess formed in the center of the upper surface, and a base made of ceramics having a first conductor layer and a second conductor layer provided independently on the lower surface, and the recess a first metallized layer formed on the bottom surface of the second metallized layer formed on the upper surface of the substrate, is formed through the base toward said first conductive layer from said first metallized layer A first inner conductor and a second inner conductor formed through the substrate from the second metallization layer to the second conductor layer , and a thermal conductivity of the substrate. Is 20 W / m · K or less.

また、本発明の電池用ケースは、上記構成において好ましくは、前記第一の内部導体の断面積は前記第二の内部導体の断面積よりも小さいことを特徴とするものである。   In the battery case of the present invention, preferably, the cross-sectional area of the first inner conductor is smaller than the cross-sectional area of the second inner conductor.

また、本発明の電池は、上記構成の電池用ケースと、前記第一のメタライズ層に接続された正電極板と、該正電極板の上面に電解液を含浸した絶縁シートを介して密着するように載置された負電極板と、前記凹部を覆うようにして接合されるとともに少なくとも下側主面が導電性とされ、前記負電極板および前記第二のメタライズ層に接続された蓋体とを具備していることを特徴とするものである。 The battery of the present invention is in close contact with the battery case having the above-described configuration, the positive electrode plate connected to the first metallization layer, and the upper surface of the positive electrode plate via an insulating sheet impregnated with an electrolyte. The negative electrode plate placed so as to cover the recess, and at least the lower main surface is made conductive, and the lid is connected to the negative electrode plate and the second metallization layer. When, and is characterized in that it comprises a.

本発明の電池用ケースは、上面の中央部に直方体状の凹部が形成され、下面に第一の導体層および第二の導体層が互いに独立して設けられたセラミックスから成る基体と、凹部の底面に形成された第一のメタライズ層と、凹部の内側面と底面との間に形成された段差のに形成された第二のメタライズ層と、第一のメタライズ層から第一の導体層にかけて形成された第一の内部導体と、第二のメタライズ層から第二の導体層にかけて形成された第二の内部導体とを具備しており、基体の熱伝導率が20W/m・K以下であることより、電解液が気密性に優れるとともに耐熱性に優れるセラミックスから成る基体によって収容されることとなり、電解液を良好に収容することができ、温度サイクル試験に曝された場合でも隙間が生じて電解液が漏れることがない。また、気密性が維持されるので、電池性能を劣化させる水分や酸素等が外部から電解液中に侵入するのを有効に抑制することができる。   The battery case of the present invention has a rectangular parallelepiped recess formed at the center of the upper surface, a base made of ceramics on which the first conductor layer and the second conductor layer are provided independently of each other on the lower surface, From the first metallized layer formed on the bottom surface, the second metallized layer formed on the step formed between the inner surface and the bottom surface of the recess, and from the first metallized layer to the first conductor layer A first inner conductor formed and a second inner conductor formed from the second metallization layer to the second conductor layer, and the substrate has a thermal conductivity of 20 W / m · K or less. As a result, the electrolytic solution is accommodated by a base made of ceramics that is excellent in air tightness and heat resistance, so that the electrolytic solution can be accommodated satisfactorily and a gap is generated even when exposed to a temperature cycle test. Electrolyte leaks That there is no. In addition, since airtightness is maintained, it is possible to effectively prevent moisture, oxygen, and the like that deteriorate battery performance from entering the electrolyte from the outside.

また、基体は有機溶剤や酸等を含む電解液に侵され難く、電解液中に基体から溶け出した不純物が混入しないので電解液を劣化させることもない。このため電池性能を良好に維持することができる。   In addition, the substrate is not easily attacked by an electrolytic solution containing an organic solvent, an acid, and the like, and impurities dissolved from the substrate are not mixed in the electrolytic solution, so that the electrolytic solution is not deteriorated. For this reason, battery performance can be maintained satisfactorily.

さらに、従来のように樹脂を介してかしめる部位を必要としないことから電池の外形を極限まで小さくすることができ、近時の小型化に適するものとなる。   Furthermore, since a portion that is caulked through a resin as in the prior art is not required, the outer shape of the battery can be reduced to the limit, which is suitable for recent miniaturization.

またさらには、基体の熱伝導率が20W/m・K以下と熱伝導率が低いので、電池内部が電池外部の温度の影響を受け難くなる。その結果、電池外部の温度が上昇した場合においても、電解液が電池外部の温度変化に追従して大きく温度変化することがなく、電解液の温度変化を極力抑え、常に所望の電池性能を発揮させることができる。   Furthermore, since the thermal conductivity of the substrate is as low as 20 W / m · K or less, the inside of the battery is hardly affected by the temperature outside the battery. As a result, even when the temperature outside the battery rises, the electrolyte does not change greatly following the temperature change outside the battery, and the temperature change of the electrolyte is suppressed as much as possible, and the desired battery performance is always exhibited. Can be made.

また、下面に第一の導体層および第二の導体層が形成されていることにより、第一および第二の導体層を外部電気回路基板の表面の配線導体に半田を介して接合させることによって、平板状の外部電気回路基板の配線導体と電池とを容易に接続させることができるので、外部電気回路基板の量産性に非常にすぐれたものとなる。   Further, by forming the first conductor layer and the second conductor layer on the lower surface, the first and second conductor layers are joined to the wiring conductor on the surface of the external electric circuit board via solder. Since the wiring conductor of the flat external electric circuit board and the battery can be easily connected, the mass production of the external electric circuit board is very good.

さらに、本発明の電池用ケースによれば、第一の内部導体の断面積は第二の内部導体の断面積よりも小さいことにより、第二の内部導体より短い第一の内部導体を介して電池外部より電池内部の電解液に伝わる熱を抑えることができる。従って、電池内部の温度上昇を有効に抑制できる結果、電解液の温度変化を極力抑え、常に所望の電池性能を発揮させることができる。加えて、第一の内部導体の抵抗値と第二の内部導体の抵抗値とを近づけることもできる。   Furthermore, according to the battery case of the present invention, the cross-sectional area of the first inner conductor is smaller than the cross-sectional area of the second inner conductor, so that the first inner conductor is shorter than the second inner conductor. Heat transmitted from the outside of the battery to the electrolyte inside the battery can be suppressed. Therefore, as a result of effectively suppressing the temperature rise inside the battery, the temperature change of the electrolytic solution can be suppressed as much as possible, and desired battery performance can always be exhibited. In addition, the resistance value of the first inner conductor can be made closer to the resistance value of the second inner conductor.

本発明の電池は、上記構成の電池用ケースと、第一のメタライズ層に接続された正電極板と、正電極板の上面に電解液を含浸した絶縁シートを介して密着するように載置されるとともに第二のメタライズ層に接続された負電極板と、凹部を覆うようにして接合された蓋体とを具備していることにより、上記構成の電池用ケースを用いた気密信頼性が高く、量産性に優れるものとなる。また、所望の電池性能を発揮させることができ、信頼性が高く、長期間に亘って安定して充放電することができるものとなる。   The battery of the present invention is placed in close contact with the battery case having the above configuration, the positive electrode plate connected to the first metallization layer, and the upper surface of the positive electrode plate via an insulating sheet impregnated with an electrolyte. And having a negative electrode plate connected to the second metallization layer and a lid joined so as to cover the recess, airtight reliability using the battery case having the above-described configuration is achieved. High and excellent in mass productivity. In addition, desired battery performance can be exhibited, reliability is high, and charging and discharging can be performed stably over a long period of time.

また、本発明の電池用ケースによれば、基体の上面の凹部の周囲に第二のメタライズ層を形成したときには、凹部の内側の段差を省略できることから、凹部内を広く有効に活用することができるので、電池用ケースの外形を小型化することができる。   Further, according to the battery case of the present invention, when the second metallized layer is formed around the recess on the upper surface of the base, the step inside the recess can be omitted, so that the inside of the recess can be used widely and effectively. Therefore, the outer shape of the battery case can be reduced in size.

また、本発明の電池は、基体の上面の凹部の周囲に形成された第二のメタライズ層を具備する電池用ケースと、第一のメタライズ層に接続された正電極板と、この正電極板の上面に電解液を含浸した絶縁シートを介して密着するように載置された負電極板と、凹部を覆うようにして接合されるとともに少なくとも下側主面が導電性とされ、負電極板および第二のメタライズ層に接続された蓋体とを具備していることにより、導電性とされている蓋体の下側主面の広い面と負電極板とを当接させて蓋体と負電極板とを接続させることによって、負電極板と蓋体との間の抵抗を少なくすることができ、負電極板と蓋体との間で電気的損失を発生させることなく効率よく充放電させることができるので、電気的特性に優れたものとできる。   In addition, the battery of the present invention includes a battery case having a second metallized layer formed around a recess on the upper surface of the base, a positive electrode plate connected to the first metallized layer, and the positive electrode plate A negative electrode plate placed so as to be in close contact with the upper surface of the substrate through an insulating sheet impregnated with an electrolytic solution, and joined so as to cover the recess, and at least the lower main surface is made conductive, and the negative electrode plate And a lid connected to the second metallization layer, the lid is brought into contact with a wide surface of the lower main surface of the lid made conductive and the negative electrode plate. By connecting the negative electrode plate, the resistance between the negative electrode plate and the lid can be reduced, and charging and discharging can be performed efficiently without causing electrical loss between the negative electrode plate and the lid. Therefore, the electrical characteristics can be improved.

本発明の電池用ケースについて以下に詳細に説明する。図1において、(a)は本発明の電池用ケースの実施の形態の一例を示す断面図であり、(b)は(a)の電池用ケースの平面図を示す。   The battery case of the present invention will be described in detail below. 1A is a cross-sectional view showing an example of an embodiment of a battery case of the present invention, and FIG. 1B is a plan view of the battery case of FIG.

本発明の電池用ケースは、上面の中央部に直方体状の凹部1aが形成され、外面に第一の導体層1dおよび第二の導体層1eが互いに独立して設けられたセラミックスから成る基体1と、凹部1aの底面に形成された第一のメタライズ層1bと、凹部1aの内側面と底面との間に形成された段差1−Aの上面に形成された第二のメタライズ層1cと、第一のメタライズ層1bから第一の導体層1dにかけて形成された第一の内部導体2bと、第二のメタライズ層1cから第二の導体層1eにかけて形成された第二の内部導体2cとを具備しており、基体1の熱伝導率が20W/m・K以下とされる。   The battery case of the present invention is a base 1 made of ceramics in which a rectangular parallelepiped recess 1a is formed at the center of the upper surface, and a first conductor layer 1d and a second conductor layer 1e are provided independently on the outer surface. A first metallized layer 1b formed on the bottom surface of the recess 1a, a second metallized layer 1c formed on the top surface of the step 1-A formed between the inner surface and the bottom surface of the recess 1a, A first inner conductor 2b formed from the first metallized layer 1b to the first conductor layer 1d, and a second inner conductor 2c formed from the second metallized layer 1c to the second conductor layer 1e. The thermal conductivity of the substrate 1 is 20 W / m · K or less.

図1においては、基体1の凹部1aの底面に第一のメタライズ層1bが形成されるとともに凹部1aの内側面と底面との間に段差1−Aが形成され、段差1−Aの上面に第二のメタライズ層1cが形成されており、第一および第二の導体層1d,1eが基体1の下面に形成されている形態を示す。   In FIG. 1, a first metallized layer 1b is formed on the bottom surface of the recess 1a of the substrate 1, and a step 1-A is formed between the inner surface and the bottom surface of the recess 1a. The second metallized layer 1 c is formed, and the first and second conductor layers 1 d and 1 e are formed on the lower surface of the substrate 1.

第一および第二の導体層1d,1eが基体1の下面に形成されていることにより、第一および第二の導体層1d,1eを外部電気回路基板の表面の配線導体に半田を介して接合させることによって、平板状の外部電気回路基板の配線導体と電池とを容易に接続させることができるので、外部電気回路基板の量産性がよくなる。   Since the first and second conductor layers 1d and 1e are formed on the lower surface of the base 1, the first and second conductor layers 1d and 1e are connected to the wiring conductor on the surface of the external electric circuit board via solder. By bonding, the wiring conductor of the flat external electric circuit board and the battery can be easily connected, so that the mass productivity of the external electric circuit board is improved.

このような基体1は、アルミナ質焼結体等の熱伝導率が20W/m・K以下であるセラミックスから成り、以下のようにして作製される。例えば、基体1がアルミナ質焼結体から成る場合、酸化アルミニウム(Al),酸化珪素(SiO),酸化マグネシウム(MgO),酸化カルシウム(CaO)等の原料粉末に適当な有機バインダ,溶剤等を添加混合してスラリーと成す。このスラリーをドクターブレード法やカレンダーロール法によってグリーンシートと成し、所要の大きさに切断する。次に、その中から選ばれた複数のグリーンシートにおいて凹部1a,段差1−A等を形成するために適当な打抜き加工を施す。 Such a substrate 1 is made of a ceramic having a thermal conductivity of 20 W / m · K or less, such as an alumina sintered body, and is manufactured as follows. For example, when the substrate 1 is made of an alumina sintered body, an organic binder suitable for raw material powders such as aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), magnesium oxide (MgO), and calcium oxide (CaO). Add a solvent and mix to form a slurry. This slurry is formed into a green sheet by a doctor blade method or a calender roll method and cut into a required size. Next, in order to form the concave portion 1a, the step 1-A and the like in a plurality of green sheets selected from them, an appropriate punching process is performed.

なお、基体1の熱伝導率を20W/m・K以下とするためには、基体1がアルミナ質焼結体から成る場合は、原料粉末である酸化アルミニウム(Al)の配合割合を96質量%以下とすればよい。 In order to set the thermal conductivity of the substrate 1 to 20 W / m · K or less, when the substrate 1 is made of an alumina sintered body, the blending ratio of aluminum oxide (Al 2 O 3 ) that is a raw material powder is set. What is necessary is just to be 96 mass% or less.

そして、これらのグリーンシートにタングステン(W)等の金属粉末を主成分とする金属ペーストを印刷塗布して第一のメタライズ層1b,第一の内部導体2b,第一の導体層1d,第二のメタライズ層1c,第二の内部導体2c,第二の導体層1e等の導体層となる印刷パターンを形成し、次いでこれらの印刷パターンを形成したグリーンシートを積層し、約1600℃の温度で焼成することによって導体層を備えた基体1が作製される。   Then, a metal paste mainly composed of a metal powder such as tungsten (W) is printed on these green sheets, and the first metallized layer 1b, the first inner conductor 2b, the first conductor layer 1d, the second A printed pattern to be a conductor layer such as the metallized layer 1c, the second inner conductor 2c, and the second conductor layer 1e is formed, and then green sheets on which these printed patterns are formed are laminated, and the temperature is about 1600 ° C. By baking, the base | substrate 1 provided with the conductor layer is produced.

第一の導体層1dは、第一の内部導体2bを介して第一のメタライズ層1bと電気的に接続され、第二の導体層1eは第二の内部導体2cを介して第二のメタライズ層1cと電気的に接続される。そして、第一の導体層1dは電池の正極として用いられ、第二の導体層1eは負極として用いられる。この第一の導体層1dおよび第二の導体層1eが外部電気回路基板の表面の配線導体に半田を介して接合されることによって電池が外部の電気回路と電気的に接続される。   The first conductor layer 1d is electrically connected to the first metallized layer 1b via the first inner conductor 2b, and the second conductor layer 1e is second metallized via the second inner conductor 2c. It is electrically connected to the layer 1c. The first conductor layer 1d is used as the positive electrode of the battery, and the second conductor layer 1e is used as the negative electrode. The first conductor layer 1d and the second conductor layer 1e are joined to the wiring conductor on the surface of the external electric circuit board via solder, whereby the battery is electrically connected to the external electric circuit.

また、このようにして作製された基体1に形成されたこれら導体層の露出した表面には、耐食性に優れかつ半田との濡れ性に優れる金属、具体的には厚さ1〜12μmのニッケル(Ni)層および厚さ0.3〜5μmの金(Au)層をめっき法等により順次被着しておくのがよい。これにより、特に電池用ケースの内部に形成された第一のメタライズ層1bおよび第2のメタライズ層1cの金属成分が充放電による電圧で容易に溶出するのを有効に抑制できる。また、第一および第二の導体層1d,1eにおいては半田との濡れ性が良くなり、外部電気回路基板上の配線導体との半田を介した接合強度がより強固なものとなる。   Further, the exposed surfaces of these conductor layers formed on the substrate 1 thus manufactured have a metal excellent in corrosion resistance and wettability with solder, specifically nickel (thickness 1 to 12 μm). A Ni) layer and a gold (Au) layer having a thickness of 0.3 to 5 μm are preferably sequentially deposited by a plating method or the like. Thereby, it can suppress effectively that the metal component of the 1st metallization layer 1b and the 2nd metallization layer 1c which were especially formed inside the case for batteries is easily eluted by the voltage by charging / discharging. In addition, the first and second conductor layers 1d and 1e have improved wettability with solder, and the bonding strength with the wiring conductor on the external electric circuit board via the solder becomes stronger.

Ni層の厚さが1μm未満であれば、メタライズ層から成る各導体の酸化腐蝕を防止したり導体から金属成分が溶出したりするのを有効に抑制するのが困難になって電池性能が劣化し易くなる。また、Ni層の厚さが12μmを超えると、めっき形成に多大の時間がかかることになり量産性が低下し易くなるとともに電気抵抗が大きくなり易い。   If the thickness of the Ni layer is less than 1 μm, it becomes difficult to prevent the oxidative corrosion of each conductor made of the metallized layer and to effectively prevent the metal component from eluting from the conductor, and the battery performance deteriorates. It becomes easy to do. On the other hand, if the thickness of the Ni layer exceeds 12 μm, it takes a long time to form the plating, so that the mass productivity is likely to be lowered and the electric resistance is likely to be increased.

また、Au層の厚さが0.3μm未満であれば、均一な厚さのAu層を形成するのが困難となり、Au層がきわめて薄い部位やあるいはAu層が形成されていない部位が生じ易く、酸化腐食の防止効果や半田との濡れ性が低下し易くなる。Au層の厚さが5μmを超えると、めっき形成に多大の時間がかかることになり量産性が低下し易くなる。   Further, if the thickness of the Au layer is less than 0.3 μm, it is difficult to form an Au layer having a uniform thickness, and a portion where the Au layer is extremely thin or a portion where the Au layer is not formed is likely to occur. The effect of preventing oxidative corrosion and the wettability with solder are likely to decrease. If the thickness of the Au layer exceeds 5 μm, it takes a lot of time to form the plating, and the mass productivity tends to decrease.

セラミックスから成る基体1は、有機溶剤や酸等を含む電解液B−4に侵され難く、従って電解液B−4中に基体1から溶け出した不純物が混入して電解液B−4を劣化させることがない。このため電池性能を良好に維持することができる電池用ケースを得ることができる。   The base body 1 made of ceramics is not easily attacked by the electrolytic solution B-4 containing an organic solvent, an acid, etc. Therefore, impurities dissolved from the base body 1 are mixed in the electrolytic solution B-4 and deteriorate the electrolytic solution B-4. I will not let you. For this reason, the battery case which can maintain battery performance favorably can be obtained.

また、基体1の熱伝導率が20W/m・K以下であることにより、電池内部の温度が電池外部の温度の影響を受け難くなり、電池外部の温度が上昇した場合においても電解液B−4が電池外部の温度変化に追従して大きく温度変化することがない。電解液B−4の温度変化が極力電池外部の温度変化に追従することなく、電池Cの放電電圧を所望の電圧の80%未満に低下させない程度の温度変化の範囲に抑えられるので、常に所望の電池性能を発揮させることができる。基体1の熱伝導率が20W/m・Kを超えて大きくなると、電解液B−4の温度変化が電池外部の温度変化に追従して温度変化し、電池の電圧の変動が大きくなって、電池Cの放電電圧が所望の電圧の80%未満に低下してしまい、所望の電池性能を発揮させることができなくなる。   In addition, since the thermal conductivity of the substrate 1 is 20 W / m · K or less, the temperature inside the battery is hardly affected by the temperature outside the battery, and even when the temperature outside the battery rises, the electrolytic solution B− 4 does not change greatly following the temperature change outside the battery. Since the temperature change of the electrolytic solution B-4 does not follow the temperature change outside the battery as much as possible, the discharge voltage of the battery C can be suppressed to a temperature change range that does not decrease to less than 80% of the desired voltage. Battery performance can be exhibited. When the thermal conductivity of the substrate 1 increases beyond 20 W / m · K, the temperature change of the electrolytic solution B-4 follows the temperature change outside the battery, and the battery voltage fluctuates greatly. The discharge voltage of the battery C falls below 80% of the desired voltage, and the desired battery performance cannot be exhibited.

さらに、図2に断面図を示すように、第一の内部導体2bの断面積が第二の内部導体2cの断面積よりも小さいことにより、第二の内部導体2cより短い第一の内部導体2bを介して電池の下面より電池内部の電解液に伝わる熱を少なくすることができる。従って、電池内部の温度上昇を有効に抑制できる結果、電解液B−4の温度変化を極力抑え、常に所望の電池性能を発揮させることができる。ちなみに、本実施の形態の例においては、第一の内部導体2bが長さ0.25mm,直径0.1mm、第二の内部導体2cが長さ0.75mm,直径0.2mmとされている。   Further, as shown in the sectional view of FIG. 2, the first inner conductor 2b is shorter than the second inner conductor 2c because the sectional area of the first inner conductor 2b is smaller than the sectional area of the second inner conductor 2c. Heat transmitted to the electrolyte solution inside the battery from the lower surface of the battery via 2b can be reduced. Therefore, as a result of effectively suppressing the temperature rise inside the battery, the temperature change of the electrolytic solution B-4 can be suppressed as much as possible, and desired battery performance can always be exhibited. Incidentally, in the example of the present embodiment, the first inner conductor 2b has a length of 0.25 mm and a diameter of 0.1 mm, and the second inner conductor 2c has a length of 0.75 mm and a diameter of 0.2 mm.

また、第一の内部導体2bの断面積が第二の内部導体2cの断面積よりも小さいことよって、第一の内部導体2bの抵抗値と第二の内部導体2cの抵抗値とを近づけることもできる。   In addition, since the cross-sectional area of the first inner conductor 2b is smaller than the cross-sectional area of the second inner conductor 2c, the resistance value of the first inner conductor 2b and the resistance value of the second inner conductor 2c are made closer to each other. You can also.

なお、第一および第二の内部導体2b,2cは、図1では第一および第二の導体層1d,1eに対してそれぞれ垂直に連なる一本の層間接続導体(貫通導体)として示されているが、基体1の下面に形成された第一および第二の導体層1d,1eと平行な方向の内部配線層と垂直な層間接続導体とを複数組み合わせて形成されていてもよく、これによって基体1内に電気回路を引き回すことができるとともに、第一および第二の導体層1d,1eを基体1の所望の位置に形成することができる。   The first and second inner conductors 2b and 2c are shown as one interlayer connection conductor (penetrating conductor) in FIG. 1 that is perpendicular to the first and second conductor layers 1d and 1e. However, the first and second conductor layers 1d and 1e formed on the lower surface of the substrate 1 may be formed by combining a plurality of internal wiring layers in the direction parallel to the vertical interlayer connection conductors. An electric circuit can be routed in the base 1, and the first and second conductor layers 1d and 1e can be formed at desired positions on the base 1.

また、基体1の上面には、アルミナ質焼結体,ムライト質焼結体等のセラミックスやアルミニウム(Al),銅(Cu),カーボン,鉄(Fe)−Ni−コバルト(Co)合金,Fe−Ni合金等の金属からなる蓋体3がAlロウ,銀(Ag)ロウ,Au−錫(Sn)半田等を用いたロウ付けや樹脂接着材等を用いた接着等の方法によって接合される。   On the upper surface of the substrate 1, ceramics such as an alumina sintered body and a mullite sintered body, aluminum (Al), copper (Cu), carbon, iron (Fe) -Ni-cobalt (Co) alloy, Fe The lid 3 made of a metal such as a Ni alloy is joined by a method such as brazing using Al brazing, silver (Ag) brazing, Au-tin (Sn) soldering, or bonding using a resin adhesive. .

次に、本発明の電池用ケースの実施の形態の他の例として、図3に基体1の上面の凹部1aの周囲に第二のメタライズ層1cが形成されている形態を示す。同図において、(a)は電池用ケースの断面図、(b)は電池用ケースの平面図である。この形態によれば、凹部1aの内側の段差1−Aを省略できることから、凹部1a内を広く有効に活用することができるので、電池用ケースの外形を小型化することができる
基体1は図1の電池用ケースと同様のセラミックスから成り、蓋体3はAl,Cu,カーボン,Fe−Ni−Co合金,Fe−Ni合金等の導電性の材料から成る。または、アルミナ質焼結体,ムライト質焼結体等のセラミックスから成り、下側主面にW等のメタライズ層3aが形成されている。
Next, as another example of the embodiment of the battery case of the present invention, FIG. 3 shows a form in which a second metallized layer 1c is formed around the recess 1a on the upper surface of the base 1. In the figure, (a) is a cross-sectional view of the battery case, and (b) is a plan view of the battery case. According to this embodiment, since the step 1-A inside the recess 1a can be omitted, the inside of the recess 1a can be used widely and effectively, so that the outer shape of the battery case can be reduced in size. The lid 3 is made of a conductive material such as Al, Cu, carbon, Fe—Ni—Co alloy, Fe—Ni alloy. Or it consists of ceramics, such as an alumina sintered body and a mullite sintered body, and the metallized layer 3a, such as W, is formed in the lower main surface.

好ましくは、蓋体3は基体1側の下側主面のほぼ全面にW等のメタライズ層3aが形成され、アルミナ質焼結体,ムライト質焼結体等の基体1と同一のセラミックスから成るのがよい。そして、メタライズ層3aが第二のメタライズ層1cと電気的に接続されて基体1の上面に凹部1aを覆うようにして接合される。この構成によって、蓋体3の上側主面が導電性とされず、蓋体3の上面に不要な電流が流れるのを防止することができる。従って、蓋体3の上側主面に導電性の部材が接触しても電気的短絡等の不具合が発生するのを有効に防止できる。また、蓋体3の熱膨張率が基体1の熱膨張率とほぼ同一となることから、電池用ケースに熱が加わっても基体1と蓋体3の接合部に熱膨張差による応力が大きく加わることを防止し、基体1にクラック等の破損が生ずるのを有効に防止することができ、気密信頼性に優れた電池用ケースとすることができる。   Preferably, the lid 3 has a metallized layer 3a such as W formed on substantially the entire lower main surface of the base 1 side, and is made of the same ceramic as the base 1 such as an alumina sintered body and a mullite sintered body. It is good. The metallized layer 3a is electrically connected to the second metallized layer 1c and joined to the upper surface of the base 1 so as to cover the recess 1a. With this configuration, the upper main surface of the lid 3 is not made conductive, and unnecessary current can be prevented from flowing through the upper surface of the lid 3. Therefore, even if a conductive member contacts the upper main surface of the lid 3, it is possible to effectively prevent a problem such as an electrical short circuit from occurring. In addition, since the thermal expansion coefficient of the lid 3 is substantially the same as the thermal expansion coefficient of the base body 1, even if heat is applied to the battery case, stress due to the thermal expansion difference is large at the joint between the base body 1 and the lid body 3. Therefore, it is possible to effectively prevent the base body 1 from being damaged such as cracks, and a battery case having excellent hermetic reliability can be obtained.

次に、本発明の電池について以下に詳細に説明する。図4は図1の電池用ケースを用いた本発明の電池の実施の形態の一例(これを電池Cとする)を示す断面図、図5は図3の電池用ケースを用いた本発明の電池の実施の形態の他の例(これを電池Dとする)を示す断面図である。ここで、B−1は正電極板、B−2は負電極板、B−3は絶縁シート、B−4は電解液、C,Dは電池である。   Next, the battery of the present invention will be described in detail below. 4 is a cross-sectional view showing an example of a battery according to the present invention using the battery case of FIG. 1 (this is referred to as a battery C), and FIG. 5 is a diagram of the present invention using the battery case of FIG. It is sectional drawing which shows the other example (it is set as the battery D) of embodiment of a battery. Here, B-1 is a positive electrode plate, B-2 is a negative electrode plate, B-3 is an insulating sheet, B-4 is an electrolytic solution, and C and D are batteries.

本発明の電池Cは、本発明の電池用ケースと、第一のメタライズ層1bに接続された正電極板B−1と、この正電極板B−1の上面に電解液B−4を含侵した絶縁シートB−3を介して密着するように載置されるとともに第二のメタライズ層1cに接続された負電極板B−2と、凹部1aを覆うようにして接合された蓋体3とを具備している。   The battery C of the present invention includes the battery case of the present invention, a positive electrode plate B-1 connected to the first metallized layer 1b, and an electrolyte B-4 on the upper surface of the positive electrode plate B-1. The lid 3 that is placed so as to be in intimate contact with the insulative insulating sheet B-3 and is connected to the second metallized layer 1c and joined so as to cover the recess 1a. It is equipped with.

本発明の電池Dは、本発明の電池用ケースと、第一のメタライズ層1bに接続された正電極板B−1と、この正電極板B−1の上面に電解液B−4を含浸した絶縁シートB−3を介して密着するように載置された負電極板B−2と、凹部1aを覆うようにして接合されるとともに少なくとも下側主面が導電性とされ、負電極板B−2および第二のメタライズ層1cに電気的に接続された蓋体3とを具備している。   The battery D of the present invention includes a battery case of the present invention, a positive electrode plate B-1 connected to the first metallized layer 1b, and an upper surface of the positive electrode plate B-1 impregnated with an electrolytic solution B-4. The negative electrode plate B-2 placed so as to be in close contact with the insulating sheet B-3 and joined so as to cover the recess 1a, and at least the lower main surface is made conductive, and the negative electrode plate And a lid 3 electrically connected to B-2 and the second metallized layer 1c.

正電極板B−1は、LiCoOやLiMn等から成る正極活物質およびアセチレンブラックや黒鉛等の導電材を含む板状やシート状のものであり、また、負電極板B−2はコークスや炭素繊維等の炭素材料から成る負極活物質を含む板状やシート状のものである。 The positive electrode plate B-1 is a plate or sheet containing a positive electrode active material made of LiCoO 2 or LiMn 2 O 4 and a conductive material such as acetylene black or graphite, and the negative electrode plate B-2 Is a plate-like or sheet-like material containing a negative electrode active material made of a carbon material such as coke or carbon fiber.

正電極板B−1は、上記正極活物質に上記導電材を加えたものにポリテトラフルオロエチレンやポリフッ化ビニリデンなどのバインダを添加、混合してスラリー状となし、これを周知のドクターブレード法等を用いてシート状に成形し、ついでこのシートを例えば円形状に裁断して作製される。   The positive electrode plate B-1 is obtained by adding a binder such as polytetrafluoroethylene or polyvinylidene fluoride to the positive electrode active material added with the conductive material, and mixing it to form a slurry. This is a well-known doctor blade method. For example, the sheet is formed into a sheet using, for example, and then cut into a circular shape.

同様にして負電極板B−2は、上記負極活物質にポリテトラフルオロエチレンやポリフッ化ビニリデンなどのバインダを添加、混合してスラリー状となし、これを周知のドクターブレード法等を用いてシート状に成形し、ついでこのシートを例えば円形状に裁断して作製される。   Similarly, the negative electrode plate B-2 is made into a slurry by adding and mixing a binder such as polytetrafluoroethylene or polyvinylidene fluoride to the negative electrode active material, and this is made into a sheet using a known doctor blade method or the like. Then, the sheet is produced by cutting the sheet into, for example, a circular shape.

また、絶縁シートB−3は、ポリオレフィン繊維製の不織布やポリオレフィン製の微多孔膜などから成り、電解液B−4が含浸されるとともに正電極板B−1と負電極板B−2との間に配置されることにより、正電極板B−1と負電極板B−2とが直接接触することを防止するとともに正電極板B−1と負電極板B−2との間の電解液B−4の移動を可能として電流が流れることを可能とする。   The insulating sheet B-3 is made of a non-woven fabric made of polyolefin fiber, a microporous membrane made of polyolefin, and the like, impregnated with the electrolytic solution B-4, and between the positive electrode plate B-1 and the negative electrode plate B-2. By being disposed between the positive electrode plate B-1 and the negative electrode plate B-2, the electrolytic solution between the positive electrode plate B-1 and the negative electrode plate B-2 is prevented. The movement of B-4 is enabled to allow a current to flow.

電解液B−4は、湿気をほとんど含まない例えばアルゴン(Ar)ガスを充填した容器内でシリンジなどの注入手段を用いて凹部1aの上面から電池C,Dの内部に注入される。そして、注入後に基体1の上面に蓋体3を溶接接合することによって、電池C,Dの内部を気密に封止することができる。   The electrolytic solution B-4 is injected into the batteries C and D from the upper surface of the recess 1a using an injection means such as a syringe in a container filled with, for example, argon (Ar) gas that hardly contains moisture. Then, the inside of the batteries C and D can be hermetically sealed by welding the lid 3 to the upper surface of the base 1 after the injection.

電解液B−4は、例えば、四フッ化ホウ酸リチウム等のリチウム塩や塩酸,硫酸,硝酸等の酸をジメトキシエタンやプロピレンカーボネート等の有機溶媒に溶解したものである。   The electrolytic solution B-4 is obtained by, for example, dissolving a lithium salt such as lithium tetrafluoroborate or an acid such as hydrochloric acid, sulfuric acid, or nitric acid in an organic solvent such as dimethoxyethane or propylene carbonate.

このような電解液B−4は、腐食性や溶解性の高いものであるが、本発明の電池用ケースを用いることにより、基体1は耐薬品性に優れているため、有機溶剤や酸等を含む電解液B−4に侵され難く、電解液B−4中に電池用ケースから溶け出した不純物が混入して電解液B−4を劣化させることもなく、電池性能を良好に維持することができる。   Such an electrolytic solution B-4 is highly corrosive and soluble, but by using the battery case of the present invention, the substrate 1 is excellent in chemical resistance. The electrolyte solution B-4 is not easily affected by the electrolyte solution B-4, and impurities dissolved out from the battery case are not mixed in the electrolyte solution B-4 so that the electrolyte solution B-4 is not deteriorated. be able to.

また、従来用いられていた金属用ケースでは図6に示すように正極缶11と負極缶12とをそれらの周囲をポリプロピレン樹脂等から成るガスケット15を介してかしめることによって一体化しており、このかしめた部位があるために従来の電池では正極缶11と負極缶12とセパレータ14とを合わせたかしめ部に2mm前後の寸法が必要であったのに対して、本発明によれば、かしめ部がないために電池C,Dの外形を小さくすることができ、携帯機器の小型化に大きく寄与できるものとなる。また、気密信頼性が高く、量産性に優れるものとなる。   Further, in the metal case that has been conventionally used, as shown in FIG. 6, the positive electrode can 11 and the negative electrode can 12 are integrated by caulking them with a gasket 15 made of polypropylene resin or the like. In the conventional battery, since the caulking portion is present, the caulking portion including the positive electrode can 11, the negative electrode can 12, and the separator 14 needs to have a size of about 2 mm. According to the present invention, the caulking portion Therefore, the external shapes of the batteries C and D can be reduced, which can greatly contribute to miniaturization of the portable device. Further, the airtight reliability is high and the mass productivity is excellent.

また、気密性および耐熱性に優れる基体1の上面に蓋体3をポリプロピレンのような樹脂接着剤や半田接合,シーム溶接接合等により強固に接合できるので、電解液を良好に収容することができ、温度サイクル等に曝された場合でも隙間が生じて電解液が漏れることがない。また、気密性が維持されるので、電池性能を劣化させる水分や酸素等が外部から電解液中に進入するのを有効に抑制することができる。   In addition, since the lid 3 can be firmly bonded to the upper surface of the substrate 1 having excellent airtightness and heat resistance by a resin adhesive such as polypropylene, solder bonding, seam welding bonding or the like, the electrolyte can be stored well. Even when exposed to a temperature cycle or the like, a gap is not generated and the electrolyte does not leak. Moreover, since airtightness is maintained, it is possible to effectively suppress moisture, oxygen, and the like that deteriorate battery performance from entering the electrolyte from the outside.

さらに、この電池用ケースを用いることによって第一のメタライズ層1bが凹部1aの底面に形成されることによって正電極板B−1を接続させ易くし、この正電極板B−1の上面に電解液B−4を含浸した絶縁シートを介して密着するように載置するとともに第二のメタライズ層1cに接続された、または蓋体の下側主面に接続された負電極板を載置することができ、量産性に非常にすぐれたものとなる。   Further, by using this battery case, the first metallized layer 1b is formed on the bottom surface of the recess 1a, so that the positive electrode plate B-1 can be easily connected, and the upper surface of the positive electrode plate B-1 is electrolyzed. Place the negative electrode plate placed in close contact with the insulating sheet impregnated with liquid B-4 and connected to the second metallized layer 1c or connected to the lower main surface of the lid. Can be obtained, and it is very good for mass production.

図5の電池Dでは、蓋体3の下側主面を負電極板B−2の上面に当接させて電気的に接続させることができ、蓋体3と負電極板B−2の広い面を接続させることによって負電極板B−2と蓋体3との間の抵抗を少なくすることができ、負電極板B−2と蓋体3との間で電気的損失を発生させることなく効率よく充放電することができるので、電気的特性に優れ、より信頼性が高く、長期間に亘って安定して充放電することができるものとなる。   In the battery D of FIG. 5, the lower main surface of the lid 3 can be brought into contact with the upper surface of the negative electrode plate B-2 to be electrically connected, and the lid 3 and the negative electrode plate B-2 are wide. By connecting the surfaces, the resistance between the negative electrode plate B-2 and the lid 3 can be reduced, and no electrical loss occurs between the negative electrode plate B-2 and the lid 3. Since charging and discharging can be performed efficiently, the electrical characteristics are excellent, the reliability is high, and charging and discharging can be performed stably over a long period of time.

本発明の実施例について以下に説明する。
図4に示す構成の電池Cのサンプルを以下のようにして作製した。
Examples of the present invention will be described below.
A sample of the battery C having the configuration shown in FIG. 4 was produced as follows.

酸化アルミニウムの配合割合が93,94,95,95.5,96,96.5,97質量%の他、酸化珪素,酸化マグネシウム,酸化カルシウムを含むアルミナ質焼結体から成る縦5mm,横5mm,高さ1mmの直方体状で、上面の中央部に縦3mm,横3mm,深さ0.6mmの直方体状の凹部1aが形成された基体1を用意した。そして、凹部1aに正電極板B−1,絶縁シートB−3,負電極板B−2,および電解液B−4を装入し、基体1と同じ純度のアルミナ質焼結体から成る縦5mm,横5mm,厚さ0.5mmの蓋体3を樹脂接着材を用いて基体1に封着した。そして、基体1と蓋体3が純度93質量%のアルミナ質焼結体から成るものをサンプルC1、純度94質量%のものをサンプルC2、純度95質量%のものをサンプルC3、純度95.5質量%のものをサンプルC4、純度96質量%のものをサンプルC5、純度96.5質量%のものをサンプルC6、純度97質量%のものをサンプルC7とした。   In addition to 93%, 94, 95, 95.5, 96, 96.5, and 97% by mass of aluminum oxide, 5mm in length, 5mm in width, and 1mm in height consisting of an alumina sintered body containing silicon oxide, magnesium oxide, and calcium oxide. A base 1 having a rectangular parallelepiped concave portion 1a having a length of 3 mm, a width of 3 mm, and a depth of 0.6 mm was prepared at the center of the upper surface. Then, a positive electrode plate B-1, an insulating sheet B-3, a negative electrode plate B-2, and an electrolytic solution B-4 are inserted into the concave portion 1a, and a longitudinally made of an alumina sintered body having the same purity as that of the base 1 is used. A lid 3 having a thickness of 5 mm, a width of 5 mm, and a thickness of 0.5 mm was sealed to the base 1 using a resin adhesive. The substrate 1 and the lid 3 are made of an alumina sintered body having a purity of 93% by mass. Sample C1, the sample having a purity of 94% by mass is sample C2, the sample having a purity of 95% by mass is sample C3, and the purity is 95.5% by mass. Sample C4, sample C5 having a purity of 96% by mass, sample C6 having a purity of 96.5% by mass, and sample C7 having a purity of 97% by mass.

サンプルC1〜C7を1個ずつ作製し、これらのサンプルについて、20℃の雰囲気中での電池の放電電圧を測定した。その結果、各サンプルとも放電電圧は3.5Vであった。次に、各サンプルを−15℃〜85℃の温度サイクルを10サイクル(1サイクル60分)加える温度サイクル試験を温度サイクル試験装置(株式会社タバイエスペック製「TSA−201S」)を使用して実施しながら、各サンプルから放電される電圧の最低値を各温度サイクル終了ごとに測定した。   Samples C1 to C7 were produced one by one, and the discharge voltage of the battery in an atmosphere at 20 ° C. was measured for these samples. As a result, the discharge voltage of each sample was 3.5V. Next, a temperature cycle test in which each sample was subjected to a temperature cycle of −15 ° C. to 85 ° C. for 10 cycles (1 cycle 60 minutes) was performed using a temperature cycle test apparatus (“TSA-201S” manufactured by Tabay Espec). However, the minimum value of the voltage discharged from each sample was measured at the end of each temperature cycle.

サンプルC1〜C7について各サンプルから放電される電圧の測定値の最低値と各サンプルの基体1の熱伝導率を表1に示す。

Figure 0004583014
Table 1 shows the lowest measured value of the voltage discharged from each sample and the thermal conductivity of the substrate 1 of each sample for samples C1 to C7.
Figure 0004583014

表1より、基体1の熱伝導率が20W/m・Kより大きい場合(C6,C7)、温度サイクル試験を施しながらの放電電圧が2.8V未満、即ち20℃の雰囲気中での放電電圧の80%未満となって、電池Cを用いる携帯電話や携帯型コンピュータ等が作動できる放電電圧を下回ることとなり、所望の電池性能を発揮させることができないものとなった。よって、電解液B−4の温度変化を極力抑え、常に所望の電池性能を発揮させるには、基体1の熱伝導率を20W/m・K以下にするとよいことが判った。   From Table 1, when the thermal conductivity of the substrate 1 is greater than 20 W / m · K (C6, C7), the discharge voltage during the temperature cycle test is less than 2.8V, that is, the discharge voltage in an atmosphere of 20 ° C. When it is less than 80%, it becomes lower than the discharge voltage at which a mobile phone or a portable computer using the battery C can operate, and the desired battery performance cannot be exhibited. Therefore, it was found that the thermal conductivity of the substrate 1 should be 20 W / m · K or less in order to suppress the temperature change of the electrolytic solution B-4 as much as possible and to always exhibit the desired battery performance.

なお、本発明は上述の実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。   The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

本発明は、携帯電話などの通信機器に用いられ、容易に外部電気回路基板に接続することができるとともに電解液の漏れを有効に防止することのできる薄型の電池用ケースおよび電池として利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a thin battery case and battery that can be easily connected to an external electric circuit board and can effectively prevent leakage of an electrolytic solution, as used in communication equipment such as a mobile phone.

(a)は本発明の電池用ケースの実施の形態の一例を示す断面図、(b)は(a)の平面図である。(A) is sectional drawing which shows an example of embodiment of the case for batteries of this invention, (b) is a top view of (a). 本発明の電池用ケースの実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the case for batteries of this invention. (a)は本発明の電池用ケースの実施の形態の他の例を示す断面図、(b)は(a)の平面図である。(A) is sectional drawing which shows the other example of embodiment of the case for batteries of this invention, (b) is a top view of (a). 本発明の電池の実施の形態の一例を示し、図1の電池用ケースを用いた電池の断面図である。FIG. 2 is a cross-sectional view of a battery using the battery case of FIG. 1, showing an example of an embodiment of the battery of the present invention. 本発明の電池の実施の形態の一例を示し、図3の電池用ケースを用いた電池の断面図である。FIG. 4 is a cross-sectional view of a battery using the battery case of FIG. 3, showing an example of an embodiment of the battery of the present invention. 従来の電池の例を示す断面図である。It is sectional drawing which shows the example of the conventional battery.

符号の説明Explanation of symbols

1:基体
1a:凹部
1b:第一のメタライズ層
1c:第二のメタライズ層
1d:第一の導体層
1e:第二の導体層
2b:第一の内部導体
2c:第二の内部導体
3:蓋体
B−1:正電極板
B−2:負電極板
B−3:絶縁シート
B−4:電解液
C,D:電池
1: Base 1a: Recess 1b: First metallized layer 1c: Second metallized layer 1d: First conductor layer 1e: Second conductor layer 2b: First inner conductor 2c: Second inner conductor 3: Lid B-1: Positive electrode plate B-2: Negative electrode plate B-3: Insulating sheet B-4: Electrolytic solution C, D: Battery

Claims (6)

上面の中央部に直方体状の凹部が形成され、前記凹部内の内側面に形成された段差であって、前記凹部の底面よりも高い位置に該段差の上面が位置する段差を有し、下面に第一の導体層および第二の導体層が互いに独立して設けられたセラミックスから成る基体と、前記凹部の底面に形成された第一のメタライズ層と、前記段差の上面に形成された第二のメタライズ層と、前記第一のメタライズ層から前記第一の導体層にかけて前記基体を貫通して形成された第一の内部導体と、前記第二のメタライズ層から前記第二の導体層にかけて前記基体を貫通して形成された第二の内部導体とを具備しており、前記基体の熱伝導率が20W/m・K以下であることを特徴とする電池用ケース。 A rectangular parallelepiped recess is formed at the center of the upper surface, and a step is formed on the inner side surface of the recess, the upper surface of the step being higher than the bottom surface of the recess. a substrate comprising a first conductor layer and a second ceramic conductor layer is provided independently of each other, a first metallized layer formed on the bottom surface of the recess, first formed on the upper surface of the step Two metallized layers, a first inner conductor formed through the substrate from the first metallized layer to the first conductor layer, and from the second metallized layer to the second conductor layer second and the inner conductor, and comprising a battery case, wherein the thermal conductivity of the substrate is not more than 20W / m · K, which is formed through the substrate. 前記第一の内部導体の断面積は前記第二の内部導体の断面積よりも小さいことを特徴とする請求項1記載の電池用ケース。 The battery case according to claim 1, wherein a cross-sectional area of the first inner conductor is smaller than a cross-sectional area of the second inner conductor. 請求項1または請求項2記載の電池用ケースと、前記第一のメタライズ層に接続された正電極板と、該正電極板の上面に電解液を含浸した絶縁シートを介して密着するように載置されるとともに前記第二のメタライズ層に接続された負電極板と、前記凹部を覆うようにして接合された蓋体とを具備していることを特徴とする電池。 The battery case according to claim 1, the positive electrode plate connected to the first metallization layer, and an upper surface of the positive electrode plate so as to be in close contact via an insulating sheet impregnated with an electrolyte. battery, characterized in that it comprises a negative electrode plate connected to the second metallized layer, a lid joined so as to cover the recess, along with being placed. 上面の中央部に直方体状の凹部が形成され、下面に第一の導体層および第二の導体層が互いに独立して設けられたセラミックスから成る基体と、前記凹部の底面に形成された第一のメタライズ層と、前記基体の上面形成された第二のメタライズ層と、前記第一のメタライズ層から前記第一の導体層にかけて前記基体を貫通して形成された第一の内部導体と、前記第二のメタライズ層から前記第二の導体層にかけて前記基体を貫通して形成された第二の内部導体とを具備しており、前記基体の熱伝導率が20W/m・K以下であることを特徴とする電池用ケース。 A rectangular parallelepiped recess is formed in the center of the upper surface, and a base made of ceramics provided with the first conductor layer and the second conductor layer independently of each other on the lower surface, and the first formed on the bottom surface of the recess A metallized layer, a second metallized layer formed on the upper surface of the substrate, a first inner conductor formed through the substrate from the first metallized layer to the first conductor layer, and anda second internal conductor formed through said substrate toward said second conductor layer from said second metallization layer, the thermal conductivity of the substrate is less than or equal to 20W / m · K A battery case characterized by being. 前記第一の内部導体の断面積は前記第二の内部導体の断面積よりも小さいことを特徴とする請求項4記載の電池用ケース。 The battery case according to claim 4, wherein a cross-sectional area of the first inner conductor is smaller than a cross-sectional area of the second inner conductor. 請求項4または請求項5記載の電池用ケースと、前記第一のメタライズ層に接続された正電極板と、該正電極板の上面に電解液を含浸した絶縁シートを介して密着するように載置された負電極板と、前記凹部を覆うようにして接合されるとともに少なくとも下側主面が導電性とされ、前記負電極板および前記第二のメタライズ層に接続された蓋体とを具備していることを特徴とする電池。
The battery case according to claim 4 or 5, the positive electrode plate connected to the first metallization layer, and an upper surface of the positive electrode plate so as to be in close contact via an insulating sheet impregnated with an electrolyte. A negative electrode plate placed thereon, and joined to cover the recess, and at least a lower main surface is made conductive, and a lid connected to the negative electrode plate and the second metallization layer ; A battery comprising:
JP2003334402A 2003-09-25 2003-09-25 Battery case and battery Expired - Fee Related JP4583014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334402A JP4583014B2 (en) 2003-09-25 2003-09-25 Battery case and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334402A JP4583014B2 (en) 2003-09-25 2003-09-25 Battery case and battery

Publications (2)

Publication Number Publication Date
JP2005100867A JP2005100867A (en) 2005-04-14
JP4583014B2 true JP4583014B2 (en) 2010-11-17

Family

ID=34462103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334402A Expired - Fee Related JP4583014B2 (en) 2003-09-25 2003-09-25 Battery case and battery

Country Status (1)

Country Link
JP (1) JP4583014B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868797B2 (en) * 2004-09-28 2012-02-01 京セラ株式会社 Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
US20070037053A1 (en) * 2005-08-12 2007-02-15 Satish Anantharaman Battery case having improved thermal conductivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266561A (en) * 1985-09-17 1987-03-26 Hitachi Maxell Ltd Thin type solid electrolyte battery
JP2001216952A (en) * 2000-02-04 2001-08-10 Seiko Instruments Inc Battery of nonaqueous electrolyte and capacitor with electrically double layers
JP2004227959A (en) * 2003-01-23 2004-08-12 Sii Micro Parts Ltd Nonaqueous electrolyte battery and electric double layer capacitor
JP2004356462A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Electric double layer chip capacitor and chip electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266561A (en) * 1985-09-17 1987-03-26 Hitachi Maxell Ltd Thin type solid electrolyte battery
JP2001216952A (en) * 2000-02-04 2001-08-10 Seiko Instruments Inc Battery of nonaqueous electrolyte and capacitor with electrically double layers
JP2004227959A (en) * 2003-01-23 2004-08-12 Sii Micro Parts Ltd Nonaqueous electrolyte battery and electric double layer capacitor
JP2004356462A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Electric double layer chip capacitor and chip electrolyte battery

Also Published As

Publication number Publication date
JP2005100867A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP5112885B2 (en) Container for power storage unit, battery and electric double layer capacitor using the same
JP4817778B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
JP2006049289A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP2006012792A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP2014160845A (en) Electrochemical cell
JP2006054266A (en) Electrochemical cell and its manufacturing method
JP4868797B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
US7525049B2 (en) Electronic component case and battery and electric double layer capacitor
JP4527366B2 (en) Method for producing electrochemical cell
JP2014041996A (en) Electrochemical cell and method for manufacturing the same
CN103875120A (en) Battery housing structure
JP2007095455A (en) Ceramic vessel, and battery or electric double layer capacitor using it
JP4373743B2 (en) Battery case and battery
WO2003030281A1 (en) Electrochemical cell with terminals
JP2005183373A (en) Battery case, manufacturing method thereof and battery, electric double-layer capacitor case and manufacturing method thereof, and electric double-layer capacitor
JP4671652B2 (en) Battery case and battery
US20070182379A1 (en) Container, Battery or Electric Double Layer Capacitor Using the Same, and Electronic Device
JP4583014B2 (en) Battery case and battery
JP2005135726A (en) Case for battery, and battery
JP2005209640A (en) Battery housing and battery, and housing for battery and electric double-layer capacitor and electric double-layer capacitor
JP4606066B2 (en) Battery case and battery
JP4993873B2 (en) Ceramic container and battery or electric double layer capacitor using the same, and electric circuit board
JP2006156124A (en) Ceramic container, and battery or electric double layer capacitor
JP2005071889A (en) Case for battery, and battery
JP2005011780A (en) Battery case and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees