WO2003024001A1 - Appareil de mesure de l'energie ondulatoire d'interference, appareil de commande de la puissance d'emission, et procede correspondant - Google Patents

Appareil de mesure de l'energie ondulatoire d'interference, appareil de commande de la puissance d'emission, et procede correspondant Download PDF

Info

Publication number
WO2003024001A1
WO2003024001A1 PCT/JP2002/009041 JP0209041W WO03024001A1 WO 2003024001 A1 WO2003024001 A1 WO 2003024001A1 JP 0209041 W JP0209041 W JP 0209041W WO 03024001 A1 WO03024001 A1 WO 03024001A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave power
power
interference
transmission power
sir
Prior art date
Application number
PCT/JP2002/009041
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Osaki
Kazuyuki Miya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/416,447 priority Critical patent/US20040023627A1/en
Priority to EP20020772836 priority patent/EP1424791A1/en
Publication of WO2003024001A1 publication Critical patent/WO2003024001A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control

Definitions

  • the present invention provides an interference wave power measuring apparatus and method for measuring interference wave power included in a multipath received signal, and a transmission power of an opposite station based on a desired wave power and an interference wave power included in a multipath received signal.
  • the present invention relates to an apparatus and a method for controlling transmission power. Background art
  • the transmission power that controls the transmission power of each user to the minimum necessary Control is being performed.
  • the target reception quality for example, a desired signal power to interference wave power ratio (SIR: Signal to Interference Ratio) of a received signal
  • SIR Signal to Interference Ratio
  • the closed-loop transmission power control is described in, for example, Japanese Patent Application Laid-Open No. 2000-23636.
  • Japanese Patent Application Laid-Open No. 2000-2363696 describes that the desired wave power and the interference wave power are measured for each finger assigned to the multipath received signal, and the measured desired wave signals and the interference are measured.
  • a technique for measuring SIR without combining maximum ratios of wave signals is described.
  • FIG. ' Figure 1 shows a conventional transmission power controller that controls the transmission power by measuring the ratio of the desired signal power to the interference signal power.
  • a signal transmitted from a transmission device (not shown)
  • the signal is received by the antenna 1 as a multipath signal, and is subjected to predetermined radio reception processing such as down-conversion and frequency conversion in the radio reception unit 2 to obtain a reception baseband signal (hereinafter referred to as multipath reception).
  • the correlation processing units 3-1 to 3-N perform spreading processing by allocating fingers to predetermined path positions of the multipath received signal, and transmit the processing results to the corresponding desired wave power measurement circuits 4-1 to 4-N. Output.
  • Correlation processors 3-1 to 3-N are provided in a number corresponding to the number of paths of the multipath received signal.
  • the correlation processing unit 3-1 assigns a finger to the path position of the direct wave to perform correlation processing
  • the correlation processing unit 3-N assigns a finger to the path position of the N-1st delay wave to perform correlation processing. Suppose that processing is performed.
  • the desired wave power measuring circuit 41 :! to 4-N measures the desired wave power of the corresponding path by using the correlation operation result output from the corresponding correlation processing unit 3-1 to 3_N. That is, the desired wave power measuring circuits 4-1 to 4-N measure the desired wave power of the multipath received signal for each path.
  • the interference wave power measurement circuits 5-1 to 5-N are output from the correlation processing results output from the corresponding correlation processing units 3-1 to 3-N and the corresponding desired wave power measurement circuits 4-1 to 4-N The interference wave power of the corresponding path is measured based on the measurement result of the output desired wave power. That is, the interference wave power measurement circuits 5-1 to 5-N measure the interference wave power of the multipath received signal for each path.
  • Desired-wave power measurement circuit 4-1 1-4-1 N The desired-wave power measured at N is measured by the desired-wave power calculation circuit ⁇ provided in the combining unit 6 and the interference-wave power measurement circuit 5-1 through 5-N The obtained interference wave power is output to an interference wave power calculation circuit 8 provided in the combining unit 6.
  • the desired wave power calculation circuit 7 is a desired wave power measurement circuit.
  • the desired wave power is obtained by adding the desired wave power for each path output from ⁇ N to the SIR calculation circuit 9.
  • the interference wave power calculation circuit 8 the interference wave power output from the interference wave power measurement circuits 5-1 to 5-N is averaged. Thus, the interference wave power is obtained, and this calculation result is output to the SIR calculation circuit 9.
  • the SIR calculation circuit 9 calculates SIR based on the desired wave power output from the desired wave power calculation circuit 7 and the interference wave power output from the interference wave power calculation circuit 8.
  • the SIR operation circuit 9 calculates SIR according to the following equation.
  • the TPC bit generation circuit 10 compares the SIR calculated by the SIR operation circuit 9 with a preset target S, and increases the transmission power if the calculated SIR is smaller than the target SIR. A transmission power control signal (TPC bit) is generated to indicate that the transmission power is to be reduced. If the calculated SIR is larger than the target SIR, a TPC bit is generated to reduce the transmission power.
  • the transmission power is controlled to increase in accordance with the increase of the interference wave power, and the transmission power eventually reaches the upper limit.
  • the transmission power eventually reaches the upper limit.
  • S is represents the output of the desired signal power calculation circuit 7 shown in FIG. 1, 1 0 that noise other than the noise due to multipath interference, for example, the current communication (transmission and reception) Represents noise caused by interference from a signal output from a radio station other than the radio station, and SF represents a spreading factor.
  • the SIR is constant at (N-1) / N, as can be seen from Eq. (4), so that the transmission power of the opposing radio station is increased to the upper limit.
  • a first object of the present invention is to provide an interference wave power measuring apparatus capable of separately measuring interference wave power, which is a factor for reducing communication capacity in a CDMA system, into multipath interference and other cell interference. And a method.
  • the second object of the present invention is to minimize the influence on other communication channels and to increase
  • An object of the present invention is to provide a transmission power control device and method capable of performing quality communication.
  • the first object is to measure the desired wave power of the multipath reception signal and measure the interference wave power of the multipath reception signal as the first interference wave power. This is achieved by obtaining a second interference wave power obtained by removing a power component caused by multipath interference from the first interference wave power based on the power.
  • the second object is that the transmission power is not increased or decreased when the ratio of the multipath interference component to the total interference component is large, and the transmission power is increased or decreased only when the ratio of the multipath interference is small. Achieved by doing. In other words, by doing so, it is possible to prevent unnecessary increase in transmission power that would deteriorate other communication channels, and to maintain good communication quality of the own communication channel. .
  • FIG. 1 is a block diagram showing a configuration of a conventional transmission power control device
  • FIG. 2 is a block diagram showing a configuration of the transmission power control device according to the first embodiment of the present invention
  • FIG. 3 is a flowchart for explaining the operation of the first embodiment
  • FIG. 4 is a block diagram showing a configuration of a transmission power control device according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart for explaining the operation of the second embodiment.
  • FIG. 2 shows a receiving apparatus including transmission power control apparatus 20 according to Embodiment 1.
  • a signal transmitted from a transmitting device (not shown) is received by the antenna 21 as a multipath signal due to a radio wave propagation environment, and a predetermined radio receiving process such as down-conversion and frequency conversion is performed by the radio receiving unit 22.
  • Correlation processing units 23-1 to 23-N perform despreading processing by allocating fingers to the path positions of the multipath received signal, and transmit the processing results to the corresponding desired wave power measurement circuit of transmission power control device 20. Output to 2 4— 1 to 2 4—N.
  • Correlation processing units 23-1 to 23-3-N are provided in a number corresponding to the number of paths of the received multipath reception signal.
  • the correlation processing unit 23-1 assigns a finger to the path position of the direct wave to perform the correlation processing
  • the correlation processing unit 23-N assigns the finger to the path position of the N-th delayed wave. And perform correlation processing o
  • the transmission power control device 20 is roughly divided into a desired wave power measurement circuit 24-1 to 24 -N as a desired wave power measurement means and a desired wave power calculation circuit 26, and a first interference wave power.
  • An SIR operation circuit 30 as second SIR calculation means, and a control signal forming unit 31 as control signal formation means.
  • Desired wave power measurement circuit 2 4— :! 24 to N measure the desired signal power of the corresponding path using the correlation operation result output from the corresponding correlation processing section 23-1 to 23 -N. That is, the desired wave power measuring circuit 24-1 to 24 -N measures the desired wave power of the multipath received signal for each path.
  • the interference wave power measurement circuit 25-1 to 25 -N is the correlation processing result output from the corresponding correlation processing unit 23-1 to 23 -N and the corresponding desired wave power measurement circuit 24-:! ⁇ 2 4—output from N
  • the interference wave power of the corresponding path is measured based on the measurement result of the desired wave power. That is, in the interference wave power measurement circuits 25-1 to 25-N, the interference wave power of the multipath received signal is measured for each path.
  • the desired-wave power measured in the desired-wave power measurement circuits 24—1 to 24—N is transmitted to the desired-wave power calculation circuit 26 and the second interference-wave power calculation circuit 28 by the interference-wave power measurement circuits 25—1 to 25—.
  • the interference wave power measured at N is output to the first and second interference wave power calculation circuits 27 and 28, respectively.
  • the desired-wave power calculation circuit 26 calculates the desired-wave power by adding the desired-wave power for each path output from the desired-wave power measurement circuits 24-1 to 24-N. Output to the interference wave power calculation circuit 28 and output to the first and second SIR calculation circuits 29 and 30.
  • the first interference wave power calculation circuit 27 obtains the interference wave power W1 by averaging the interference wave power for each path output from the interference wave power measurement circuits 25-1 to 25-N, and calculates the calculation result. Output to the first SIR operation circuit 29.
  • Equation (5) SF represents the spreading factor, and N represents the number of paths.
  • the first SIR calculation circuit 29 is configured to calculate the second SIR power based on the desired wave power S output from the desired wave power calculation circuit 26 and the first interference wave power W1 output from the first interference wave power calculation circuit 27. Calculate the S IR of 1 (S IR 1).
  • the S operation circuit 29 calculates S IR 1 according to the following equation.
  • the second SIR operation circuit 30 includes a desired wave power S output from the desired wave power operation circuit 26 and a second interference wave power from which the multipath interference output from the second interference wave power operation circuit 28 has been removed. Based on W2, a second SIR (SIR2) is calculated according to the following equation.
  • the second interference power W 2 from which the multipath interference component is removed is expressed by the following equation: 0
  • the second interference power W 2 ss from which the multipath interference is removed :
  • the transmission power control device 20 outputs SIR1 to the TPC bit generation circuit 32 and the determination circuit 33 of the control signal forming unit 31, and outputs SIH2 to the determination circuit 33.
  • the TPC bit generation circuit 32 compares SIR 1 calculated by the SIR operation circuit 29 with a preset target SIR, and determines that SIR 1 is greater than the target SIR. If the transmission power is smaller than the target SIR, a TPC (Transmit Power Control) bit is generated to increase the transmission power, and if S1 is larger than the target SIR, a TPC bit is generated to decrease the transmission power. I do.
  • SIR 1 calculated by the SIR operation circuit 29 with a preset target SIR, and determines that SIR 1 is greater than the target SIR. If the transmission power is smaller than the target SIR, a TPC (Transmit Power Control) bit is generated to increase the transmission power, and if S1 is larger than the target SIR, a TPC bit is generated to decrease the transmission power. I do.
  • TPC Transmit Power Control
  • the decision circuit 33 compares a value obtained by subtracting SIR2 from SIR1 (SIR1-SIR2) with a predetermined threshold value. If the result of the subtraction is equal to or smaller than the threshold value, the judgment circuit 33 sends a switching control signal to the switch circuit 35 to select and output the input from the TPC bit generation circuit 32.
  • the judgment circuit 33 outputs to the switch circuit 35 a switch control signal instructing that the input from the fixed pattern generation circuit 34 be selected and output. Is sent.
  • the fixed pattern generation circuit 34 forms a control bit sequence that becomes an alternating pattern for increasing or decreasing the transmission power of the opposite station every control cycle.
  • the TPC bits or fixed pattern bits selected and output from the switch circuit 35 in this way are multiplexed with transmission data and pilot symbols and transmitted to the transmitting device of the opposite station via an antenna (not shown).
  • the transmitting device of the opposite station increases or decreases or maintains the transmission power according to the TPC bit or the fixed password bit.
  • the transmission power control device 20 forms a transmission power control signal for controlling the transmission power of the opposite station by executing a transmission power control processing procedure as shown in FIG.
  • step ST1 when the transmission power control device 20 starts the process in step ST0, the process proceeds to step ST1, where the desired wave power calculation circuit 26 calculates the desired wave power S, and the interference wave power calculation circuit 27 performs the first calculation. Calculate the interference wave power W1.
  • transmission power control device 20 calculates second interference wave power W2 by interference wave power calculation circuit 28, and proceeds to step ST3.
  • the SIR operation circuit 29 calculates SIR1 and the SIR operation circuit 30 calculates SIR2.
  • step ST4 the transmission power control device 20 Then, it is determined whether or not the value obtained by subtracting SIR2 from SIR1 is greater than threshold value T. If a positive result (greater than threshold value Th) is obtained, the process proceeds to step ST5. If a negative result (smaller than threshold value Th) is obtained, the process proceeds to step ST6.
  • step ST5 the transmission power control device 20 selectively outputs the fixed pattern bits (bits instructing not to change the transmission power of the opposite station) generated by the fixed pattern generation circuit 34 from the switch circuit 35.
  • the switch circuit 35 selectively outputs the TPC bit generated by the TPC bit generation circuit (a bit for instructing an increase or decrease in the transmission power of the transmitting station).
  • step ST7 the transmission power control device 20 proceeds to step ST7 and ends the transmission power control processing procedure.
  • the transmission power control device 20 obtains the second interference wave power W2 excluding the interference factor due to multipath interference, in addition to the first interference wave power W1 reflecting all the interference factors.
  • SIR2 is obtained as a new transmission power control index using this second interference power W2.
  • SIR 1 which reflects all conventional interference factors, follows the increase or decrease in the transmission power of the opposing radio station. Therefore, it is meaningless to increase or decrease the transmission power based only on SIR1, and if the transmission power is increased unnecessarily, it will result in deterioration of other communication channels.
  • the difference between SIR1 and SIR2 is obtained, and when this difference is larger than the threshold, control is performed so as to maintain the current transmission power level without increasing the transmission power.
  • a large difference between SIR1 and SIR2 means that the current communication state is under a multipath propagation environment. In such a case, even if the transmission power is increased, S The value of IR 1 does not rise. In other words, increasing the transmission power does not improve the communication quality. Keep at level.
  • the small difference between SIR 1 and SIR 2 means that the current communication state is not in a multipath interference environment, in other words, the influence of interference other than multipath interference is large.
  • the transmission power is adaptively increased or decreased according to SIR1, communication quality can be improved, and thus a transmission power control signal for increasing or decreasing the transmission power is transmitted.
  • the transmission power is not increased or decreased when the ratio of the multipath interference component to all the interference components is large, and the transmission power is increased or decreased when the ratio of the multipath interference is small.
  • the transmission power control device 20 that can perform good wireless communication without lowering the communication capacity or communication quality of another communication channel. Also, unnecessary increase in transmission power can be avoided beforehand, so that power consumption can be reduced.
  • FIG. 4 shows a transmission / reception apparatus having transmission power control apparatus 100 according to Embodiment 2.
  • the desired wave power measurement circuit 24—1 to 24—N of FIG. 2 shows the interference wave power measurement circuit 25—1 to 25—N, the desired wave power calculation circuit 26,
  • a portion including the first and second interference wave power calculation circuits 27 and 28, and the first and second SIR calculation circuits 29 and 30 is collectively represented as an SIR measurement unit 101 in one block.
  • the function is the same as the corresponding part in FIG.
  • the transmission power control device 100 inputs the outputs of the correlation processing units 23-1 to 23-N to the rake receiving unit 102 and the SIR measuring unit 101.
  • RAKE receiving section 102 performs maximum ratio combining of signal powers that have been delay-dispersed due to differences in channel length of a propagation path by a maximum ratio combining diversity scheme.
  • 11 8 1 The output of the receiving unit 102 is input to the TPC bit demodulation circuit 103, the TPC bit is demodulated by the TPC bit demodulation circuit 103, and the demodulated TPC bit is converted to the TPC bit control circuit 104 Sent to In the SIR measuring section 101, the first and second SIR1 and SIR2 are formed by the same operation as described above with reference to FIG. 2, and these SIR1 and SIR2 are sent to the judgment circuit 105.
  • the determination circuit 105 compares a value obtained by subtracting SIR2 from SIR1 (SIR1-SIR2) with a predetermined threshold. If the subtraction result is equal to or smaller than the threshold value, the decision circuit 105 sends a decision result to the TPC bit control circuit 104 to instruct the TPC bit control circuit 104 to output a power control signal corresponding to the demodulated TPC bit. I do. On the other hand, when the result of the subtraction is larger than the threshold value, the determination circuit 105 sends a “0” level signal to the TPC bit control circuit 104 regardless of the demodulated TPC bit. The result of the determination instructing to output is transmitted.
  • the demodulated TPC bit signal is a signal for increasing the transmission power, that is, a signal of “+1” level, and a signal for decreasing the transmission power, that is, “0 or 1 1” level.
  • the signal is composed of two types of signals.
  • the TPC bit control circuit 104 receives the judgment result indicating that the value obtained by subtracting SIR2 from SIR1 (SIR1—SIR2) is equal to or smaller than the threshold value by the judgment circuit 105.
  • the TPC bit demodulation signal is at the “+1” level
  • a “+1” level signal is output to the adder circuit 106
  • the TPC bit demodulation signal is at the “0 or 11” level
  • “11” is output.
  • the level signal is output to the adder circuit 106.
  • the output from the TPC bit control circuit 104 to the adder circuit 106 increases “+” 1 ”, decrease“ 1 ”, no change“ 0 ”.
  • the result addition circuit 106 adds the output of the TPC bit control circuit 104 and the current transmission power value controlled by the transmission power control section 107, and inputs the result to the transmission power control section 10 as the next transmission power value. Is done.
  • the transmission power control unit 10 A power control signal is output to transmitting section 108, and transmitting section 108 transmits a radio signal via antenna 109 with transmission power according to the power control signal.
  • the transmission power control apparatus 100 executes the transmission power control processing procedure as shown in FIG. 5 so that the transmission power control of the own station can be performed based on the radio wave propagation environment from the opposite wireless station to the own station. Control. That is, when starting the processing in step ST10, the transmission power control apparatus 100 proceeds to step ST11, where it calculates the desired signal power s and the first interference signal power W1.
  • transmission power control apparatus 100 calculates second interference wave power W2, and proceeds to step ST13.
  • SIR1 and SIR2 are calculated.
  • the transmission power control device 100 determines whether or not the value obtained by subtracting SIR2 from SIR1 is larger than the threshold Th by the determination circuit 105. If a positive result (larger than the threshold Th) is obtained, the process proceeds to step ST15, and if a negative result (smaller than the threshold Th) is obtained, the process proceeds to step ST16.
  • step ST15 the TPC bit control circuit 104 outputs a “0” level signal to the addition circuit 106, so that the transmission power of its own station is maintained at the current value. maintain.
  • step ST16 the TPC bit control circuit 104 outputs a signal of a level corresponding to the TPC bit demodulation signal to the adding circuit 106, and the local station according to the TPC bit outputs Change the transmission power. Then, after performing the processing of step ST15 or step ST16, transmission power control apparatus 100 moves to step ST17 and ends the transmission power control processing procedure.
  • the transmission power of the own station is independent of the transmission power control signal (TPC bit) sent from the opposite station. If the ratio of multipath interference is small, increase or decrease the transmission power of the own station according to the transmission power control signal sent from the opposite station. By doing so, it is possible to realize a transmission power control device 100 capable of performing good wireless communication without deteriorating the communication quality of another communication channel. In addition, since unnecessary increase in the transmission power of the own station can be avoided beforehand, communication capacity can be increased and power consumption can be reduced.
  • a channel (common channel) commonly used for each mobile station (opposite radio station) and other mobile stations are used. These communication channels may be transmitting at the same time. These channels are spread with orthogonal codes to the mobile station's communication channel, so when a specific propagation path is received, it is included in that path. The power of the communication channel of other mobile stations does not cause interference.
  • represents the ratio of the total transmission power including the transmission power to the mobile station to the transmission power to the mobile station.
  • the present invention is not limited to this, and as described above, the multiplication is performed based on the first interference wave power.
  • the interference power which is a factor that reduces the communication capacity of the CD ⁇ ⁇ system, is separated into multipath interference and other-cell interference. And a method for measuring interference power.
  • the present invention is not limited to the above-described embodiment, but can be implemented with various modifications.
  • An interference wave power measuring device includes: a desired wave power measuring means for measuring a desired wave power of a multipath received signal; and a first signal for measuring the interference wave power of the multipath received signal as a first interference wave power.
  • the first interference wave power based on the desired wave power measured by the desired wave power measurement device and the first interference wave power measured by the first interference wave power measurement device.
  • a second interference wave power measuring means for obtaining a second interference wave power from which a power component caused by multipath interference is removed.
  • the interference wave power which is a factor that reduces the communication capacity in the CDMA system. It can be measured separately from other cell interference.
  • the transmission power control device of the present invention is a transmission power control device that receives a multipath reception signal and controls the transmission power of the opposite station based on a desired wave power and an interference wave power included in the multipath reception signal, Desired wave power measuring means for measuring the desired wave power of the multipath received signal; first interference wave power measuring means for measuring the interference wave power of the multipath received signal as the first interference wave power; desired wave power measurement Based on the desired wave power measured by the means and the first interference wave power measured by the first interference wave power measuring means, a power component resulting from multipath interference is removed from the first interference wave power.
  • a configuration including control signal forming means for forming a signal and transmitting means for transmitting a transmission power control signal to the opposite station is employed.
  • the transmission power of the opposite station can be controlled using not only the first SIR value in which all interference factors are reflected but also the second SIR value from which a power component caused by multipath interference is removed. Therefore, transmission power control according to the radio wave propagation environment can be performed. .
  • the control signal forming means includes a comparing means for comparing a value obtained by subtracting the second SIR value from the first SIR value with a predetermined threshold value, and a comparing means. Transmission power control that indicates that the current transmission power of the opposite station should be maintained if a comparison result indicating that the value obtained by subtracting the second SIR value from the 1 SIR value is greater than the threshold value is obtained. And a control signal forming means for forming a signal.
  • a large difference between the first S11 value and the second 3IR value means that deterioration due to multipath interference is dominant in the current propagation environment.
  • increasing the transmission power of the opposing station does not improve the communication quality and only interferes with other communication channels.Therefore, maintain the current value without increasing the transmission power. .
  • a small difference between the first SIR value and the second SIR value means that the deterioration of the current communication state due to multipath interference is not dominant, and the deterioration due to interference other than multipath interference is large. Means that.
  • the communication quality can be improved by increasing the transmission power of the opposite station according to the first SIR value.Therefore, it is necessary to adaptively increase or decrease the transmission power according to the first SIR value. An instruction transmission power control signal is formed. As a result, good wireless communication can be performed without unnecessarily increasing the transmission power and deteriorating the communication quality of other communication channels.
  • the transmission power control apparatus of the present invention receives a multipath reception signal including a transmission power control signal for controlling transmission power, and controls transmission power of the own station based on the transmission power control signal.
  • a second interference power measuring unit for obtaining a second interference power obtained by removing a power component caused by multipath interference from the first interference power based on the power;
  • a first SIR calculating means for obtaining an SIR representing a ratio of the interference wave power as a first SIR value, and a second SIR calculating a SIR representing a ratio of a desired wave power to a second interference wave power as a second SIR value.
  • 2 SIR calculation means and transmission power control means for controlling the transmission power of the own station based on the first and second SIR values.
  • the self-station to the opposing radio station uses the second SIR value. Since the radio wave propagation environment can be estimated, the transmission power can be controlled according to the radio wave propagation environment without directly evaluating the radio wave propagation environment.
  • the transmission power control means includes: a comparison means for comparing a value obtained by subtracting the second SIR value from the first SIR value with a predetermined threshold value; If a comparison result indicating that the value obtained by subtracting the second SIR value from the 1 SIR value is greater than the threshold value is obtained, the current transmission is performed regardless of the transmission power control signal transmitted by the opposite radio station.
  • a configuration including power control means for maintaining power is adopted.
  • a large difference between the first SIR value and the second SIR value means that deterioration in the current communication state due to multipath interference is dominant.
  • the transmission power control signal instructs the transmission power to be increased, the transmission power is automatically increased. Do not increase the station's transmit power and keep the current value.
  • a small difference between the first SIR value and the second SIR value means that the current communication state is not dominated by deterioration due to multipath interference, and is not multipath. This means that deterioration due to interference other than interference is large.
  • the transmission power is increased or decreased according to the received transmission power control signal.
  • the radio wave propagation environment to the opposing radio station is estimated based on the radio wave propagation environment from the opposing radio station to the own station, and the transmission power is increased unnecessarily to improve the communication quality of other communication channels. Good wireless communication can be performed without lowering, and a reduction in communication capacity can be prevented.
  • a radio base station apparatus of the present invention employs a configuration including the transmission power control device.
  • the radio base station including the transmission power control device of the present invention that receives the multipath reception signal and controls the transmission power of the opposite station based on the desired wave power and the interference wave power included in the multipath reception signal Since the opposite radio station, for example, a portable information terminal, can prevent an unnecessary increase in transmission power, it is possible to maintain good communication quality, reduce power consumption, and extend the battery-communicable time. can do.
  • a radio base station equipped with a transmission power control device of the present invention that receives a multipath reception signal including a transmission power control signal for controlling transmission power and controls its own transmission power based on the transmission power control signal Is that the transmission power of the own station is not increased or decreased when the ratio of the multipath interference component to the total interference component is large, and the transmission power can be increased or decreased when the ratio of the multipath interference component is small.
  • the required transmission power can be prevented from increasing, the system can be stabilized, and good communication capacity can be maintained.
  • the portable information terminal device of the present invention adopts a configuration including the transmission power control device.o
  • the portable information terminal including the transmission power control device of the present invention that receives the multipath reception signal and controls the transmission power of the opposite station based on the desired wave power and the interference wave power included in the multipath reception signal
  • the device does not increase or decrease the transmission power when the ratio of the multipath interference component to the total interference component is large, and can increase or decrease the transmission power when the ratio of the multipath interference is small.
  • the radio base station device of the line station can prevent unnecessary increase in transmission power, stabilize the system, and maintain good communication capacity.
  • a portable information terminal equipped with a transmission power control device of the present invention that receives a multipath reception signal including a transmission power control signal for controlling transmission power and controls the transmission power of its own station based on the transmission power control signal Since the apparatus can prevent unnecessary increase in transmission power of its own station, it is possible to maintain good communication quality, reduce power consumption, and extend the communicable time by the battery.
  • the desired wave power and the second Obtaining the second interference power which is obtained by removing the power component caused by multipath interference from the first interference power based on the first interference power, is a factor that reduces the communication capacity in the CDMA system. Power measuring apparatus and method capable of separately measuring multipath interference and other-cell interference.
  • the present invention not only the first SIR (SIR 1) value in which all interference factors are reflected, but also the second SIR (SIR 2) value in which a power value component caused by multipath interference is removed.
  • SIR 1 first SIR
  • SIR 2 second SIR
  • the present invention can be applied to, for example, portable information terminals such as cellular phones and wireless base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

明 細 書 干渉波電力測定装置、 送信電力制御装置及び方法 技術分野
本発明は、 マルチパス受信信号に含まれる干渉波電力を測定する干渉波電力 測定装置及び方法、 並びに、 マルチパス受信信号に含まれる希望波電力と干渉 波電力に基づいて対向局の送信電力を制御する送信電力制御装置及び方法に 関する。 背景技術
従来、 C D MA(Code Division Multiple Access)方式を用いた通信システム では、 各ユーザの信号が他のュ一ザへの干渉となるため、 各ユーザにおける送 信電力を必要最小限に制御する送信電力制御が行われている。 この送信電力制 御のうちクローズドループ送信電力制御では、 受信側装置で目標とする受信品 質 (例えば、 受信信号の希望波電力対干渉波電力比(S I R : Signal to Interference Ratio)を目標受信品質として予め設定しておき、 実際に測定され る受信品質がこの目標受信品質に近づくように送信装置に送信電力制御信号 を送出して、 送信装置の送信電力を制御する。
上記クローズドル一プ送信電力制御については、 特閧 2 0 0 0— 2 3 6 2 9 6号公報等に記載がある。 この特開 2 0 0 0 - 2 3 6 2 9 6号公報には、 マル チパス受信信号にそれぞれ割り当てたフィンガ毎に希望波電力及び干渉波電 力を測定し、 測定した希望波信号同士及び干渉波信号同士を最大比合成するこ となく S I Rを測定する技術が記載されている。
以下、 従来の送信電力制御装置について図 1を参照して説明する。'図 1は、 従来の希望波電力対干渉波電力比測定を行って送信電力を制御する送信電力 制御装置である。送信電力制御装置では、 図示しない送信装置から送信された 信号がマルチパス信号としてアンテナ 1で受信され、 無線受信部 2においてダ ゥンコンバート、 周波数変換等の所定の無線受信処理を施されることにより、 受信ベースバンド信号 (以下、 これをマルチパス受信信号と呼ぶ) とされる。 相関処理部 3— 1〜 3— Nは、 マルチパス受信信号の所定のパス位置にフィ ンガを割り当てて拡散処理を行い、 処理結果を対応する希望波電力測定回路 4 — 1〜4— Nに出力する。相関処理部 3— 1〜 3— Nは、 マルチパス受信信号 のパス数に対応する数だけ設けられている。 ここでは、 相関処理部 3— 1が直 接波のパス位置にフィンガを割り当てて相関処理を行い、相関処理部 3— Nは 第 N— 1番目の遅延波のパス位置にフィンガを割り当てて相関処理を行うと する。
希望波電力測定回路 4一 :!〜 4— Nは、 対応する相関処理部 3— 1〜3 _ N から出力される相関演算結果を用いて対応するパスの希望波電力を測定する。 つまり、 希望波電力測定回路 4— 1〜4— Nにおいて、 マルチパス受信信号の 希望波電力がパス毎に測定される。 干渉波電力測定回路 5— 1〜 5— Nは、 対 応する相関処理部 3 — 1〜3— Nから出力される相関処理結果及び対応する 希望波電力測定回路 4一 1〜4—Nから出力される希望波電力の測定結果に 基づいて対応するパスの干渉波電力を測定する。 つまり、 干渉波電力測定回路 5— 1〜 5— Nにおいて、 マルチパス受信信号の干渉波電力がパス毎に測定さ れる。
希望波電力測定回路 4一 1〜4一 Nにおいて測定された希望波電力は、 合成 部 6に設けられた希望波電力演算回路 Ίに、 干渉波電力測定回路 5— 1〜 5— Nにおいて測定された干渉波電力は、 合成部 6に設けられた干渉波電力演算回 路 8にそれそれ出力される。
希望波電力演算回路 7は、希望波電力測定回路 4一 :!〜 4一 Nより出力され たパス毎の希望波電力を加算することにより希望波電力を求め、 この演算結果 を S I R演算回路 9に出力する。 また干渉波電力演算回路 8では、 干渉波電力 測定回路 5 — 1〜 5— Nより出力されたパス每の干渉波電力を平均化するこ とにより干渉波電力を求め、 この演算結果を S IR演算回路 9に出力する。
S I R演算回路 9は、 希望波電力演算回路 7より出力される希望波電力と干 渉波電力演算回路 8より出力される干渉波電力とに基づいて S I Rを計算す る。 S IR演算回路 9は、 S IRを次式に従って算出する。
SIR = : … ( 1)
干渉波電力
TPCビット生成回路 10は、 S IR演算回路 9において算出された S IR と予め設定されている目標 S とを比較し、 算出した S IRが目標 S IRよ りも小さい場合には送信電力を増加する旨の送信電力制御信号 (T P Cビッ ト) を生成し、 逆に算出した S IRが目標 S IRよりも大きい場合には送信電 力を減少する旨の TP Cビットを生成する。
ところで、 上述した S IRを用いた送信電力制御を行った場合、 干渉波電力 が増大していくとこれに応じて送信電力も大きくなるように制御され、 やがて 送信電力が上限値に達する。 その結果、 他の通信チャネルへの干渉となり通信 品質を劣化させ、 さらには通信容量を低下させるという問題がある。
以下、 この問題について説明する。 ここで説明を簡単化するため、 パス数が N個でそれそれのパス毎の希望波電力が等しいという条件、 すなわち等レベル Nパス条件で考える。 ある 1つのパスについて考えると、 希望波電力は S/N であり、 干渉波電力は、 次式で表される。 干渉波電力 = … (2)
SF N 但し(2)式において、 Sは図 1に示す希望波電力演算回路 7の出力を表し、 10 はマルチパス干渉に起因する雑音以外の雑音、 例えば現在通信 (送受信) して いる対向する無線局以外の無線局から出力されている信号等からの干渉に起 因する雑音を表し、 SFは拡散率を表す。
ここで、 マルチパス干渉が無視できない条件として、 説明の単純化のため、 もっとも極端な条件である I0《Sの場合について考える。 (2)式において I。 《Sの場合、 干渉波電力は次式で表される。 干渉波電力 = … (3 )
SF xN つまり干渉波電力演算回路 8の出力は(3 )式の右辺で表される値となる。 これ により SIRは、 次式で表される。 SIR = … ( 4 )
N - 1 仮に、 この SIRが目標 SIRを下回り、 SIRを上げるために T P Cビットに よって対向する無線局の送信電力を増加させる場合、 対向する無線局の送信電 力の増加により変化する希望波電力 Sにかかわらず、 SIRは (4)式から分かる ように (N— 1 )/Nで一定となるので、 対向する無線局の送信電力を上限値ま で増加させてしまう結果となる。
以上、極端な条件である I o《Sの場合について説明したが、マルチパス干渉 が無視できない条件において希望波電力 Sが増加しても、増加分に応じて S I Rは改善しない。このため、希望波電力 Sの増加が連続して起こり、 I 0《Sの 極端な条件へと状態が変化するので、 マルチパス干渉が無視できない領域にお いても上記説明と同様に現象が起こる。
この対向する無線局の送信電力の増加によって、 他の無線局との通信チヤネ ルへの干渉が増加し、 他の通信チャネル送信電力も増加させることになる。 こ の結果、 他の通信チャネルの通信品質を劣化させ、 さらには通信容量を低下さ せるという問題がある。 発明の開示
本発明の第 1の目的は、 C D MAシステムにおける通信容量を低下させる要 因である干渉波電力を、 マルチパス干渉と他セル干渉とに分離して測定するこ とができる干渉波電力測定装置及び方法を提供することである。
また本発明の第 2の目的は、他の通信チャネルへの影響を最小限に抑えて高 品質の通信を行うことができる送信電力制御装置及び方法を提供することで ある。
上記第 1の目的は、 マルチパス受信信号の希望波電力を測定すると共にマル チパス受信信号の干渉波電力を第 1の干渉波電力として測定した後、 これら希 望波電力及び第 1の干渉波電力に基づいて第 1の干渉波電力からマルチパス 干渉に起因する電力成分を除去した第 2の干渉波電力を求めることにより達 成される。
また上記第 2の目的は、 全干渉成分に対してマルチパス干渉成分の割合が大 きい場合には送信電力の増減を行わず、 マルチパス干渉の割合が小さい場合に だけは送信電力の増減を行うことによって達成される。 つまり、 このようにす ることにより、 他の通信チャネルに劣化を及ぼすような不必要な送信電力の増 加を未然に防止して、 自分自身の通信チャネルの通信品質を良好に保つことが できる。 図面の簡単な説明
図 1は、 従来の送信電力制御装置の構成を示すプロック図;
図 2は、 本発明の実施の形態 1にかかる送信電力制御装置の構成を示すプロ ック図;
図 3は、 実施の形態 1の動作の説明に供するフローチャート ;
図 4は、 本発明の実施の形態 2にかかる送信電力制御装置の構成を示すプロ ック図;
及び
図 5は、 実施の形態 2の動作の説明に供するフローチャートである。 発明を実施するための最良の形態
以下、 本発明の実施形態について、 添付図面を参照して詳細に説明する。 (実施の形 II 1 ) 図 2は、 実施の形態 1に係る送信電力制御装置 2 0を有する受信装置を示す。 この受信装置において、 図示しない送信装置から送信された信号は、 電波伝搬 環境によってマルチパス信号としてアンテナ 2 1で受信され、 無線受信部 2 2 においてダウンコンバート、 周波数変換等の所定の無線受信処理を施されるこ とにより、 マルチパス受信信号とされる。 相関処理部 2 3— 1〜2 3—Nは、 マルチパス受信信号のパス位置にフィンガを割り当てて逆拡散処理を行い、処 理結果を送信電力制御装置 2 0の対応する希望波電力測定回路 2 4— 1〜2 4— Nに出力する。
相関処理部 2 3— 1〜2 3— Nは、 受信するマルチパス受信信号のパス数に 対応する数だけ設けられている。 ここでは、 相関処理部 2 3—1が直接波のパ ス位置にフィンガを割り当てて相関処理を行い、 相関処理部 2 3— Nは第 N— 1番目の遅延波のパス位置にフィンガを割り当てて相関処理を行うものとす る o
送信電力制御装置 2 0は、 大きく分けて、 希望波電力測定手段としての希望 波電力測定回路 2 4— 1〜 2 4—N及び希望波電力演算回路 2 6と、 第 1の干 渉波電力測定手段としての干渉波電力測定回路 2 5— 1〜2 5— N及び干渉 波電力演算回路 2 7と、 第 2の干渉波電力測定手段としての希望波電力測定回 路 2 4— 1〜2 4— N、 干渉波電力測定回路 2 5— 1〜2 5— N、 希望波電力 演算回路 2 6及び干渉波電力演算回路 2 8と、 第 1の S I R算出手段としての S I R演算回路 2 9と、 第 2の S I R算出手段としての S I R演算回路 3 0と、 制御信号形成手段としての制御信号形成部 3 1とにより構成されている。
希望波電力測定回路 2 4—:!〜 2 4— Nは、 対応する相関処理部 2 3— 1〜 2 3—Nから出力される相関演算結果を用いて対応するパスの希望波電力を 測定する。 つまり、 希望波電力測定回路 2 4— 1〜2 4— Nにおいて、 マルチ パス受信信号の希望波電力がパス毎に測定される。干渉波電力測定回路 2 5 - 1〜2 5— Nは、 対応する相関処理部 2 3— 1〜2 3— Nから出力される相関 処理結果及び対応する希望波電力測定回路 2 4— :!〜 2 4— Nから出力され る希望波電力の測定結果に基づいて対応するパスの干渉波電力を測定する。 つ まり、 干渉波電力測定回路 25— 1〜25— Nにおいては、 マルチパス受信信 号の干渉波電力がパス毎に測定される。
希望波電力測定回路 24— 1〜24— Nにおいて測定された希望波電力は 希望波電力演算回路 26及び第 2の干渉波電力演算回路 28に、干渉波電力測 定回路 25— 1〜25— Nにおいて測定された干渉波電力は第 1及び第 2の 干渉波電力演算回路 27、 28にそれそれ出力される。
希望波電力演算回路 26は、 希望波電力測定回路 24— 1〜24— Nより出 力されたパス毎の希望波電力を加算することにより希望波電力を求め、 この演 算結果を第 2の干渉波電力演算回路 28に出力すると共に第 1及び第 2の S IR演算回路 29、 30に出力する。
第 1の干渉波電力演算回路 27は、 干渉波電力測定回路 25— 1~25— N より出力されたパス毎の干渉波電力を平均化することにより干渉波電力 W1 を求め、 この演算結果を第 1の S IR演算回路 29に出力する。
第 2の干渉波電力演算回路 28は、 希望波電力測定回路 24— 1〜24— N から入力したパス毎の希望波電力 Si(i = l〜N)と、 干渉波電力測定回路 25 _ 1〜25— Nから入力したパス毎の干渉波電力 Ri(i = 1〜N)と、 希望波電 力演算回路 26により求められた希望波電力 Sに基づいて、 次式によりマルチ パス干渉を除去した第 2の干渉波電力 W2を求める。
Figure imgf000009_0001
但し、 (5)式において、 SFは拡散率、 Nはパス数を表す。
第 1の S IR演算回路 29は、 希望波電力演算回路 26より出力される希望 波電力 Sと第 1の干渉波電力演算回路 27より出力される第 1の干渉波電力 W1とに基づいて第 1の S IR(S IR 1)を計算する。 S 演算回路 29は S IR 1を次式に従って算出する。
Figure imgf000010_0001
第 2の S I R演算回路 30は、 希望波電力演算回路 26より出力される希望 波電力 Sと、 第 2の干渉波電力演算回路 28より出力されるマルチパス干渉を 除去した第 2の干渉波電力 W 2とに基づいて、 第 2の S I R(S IR 2)を次式 に従って算出する。
S
SIR2 (7)
R2 因みに、 マルチパス干渉成分を除去した第 2の干渉波電力 W 2は、 次式で表 iれる 0 マルチパス干渉を除去した第 2の干渉波電力 W 2 s-s:
SF
Ν
Figure imgf000010_0002
… (8)
Figure imgf000010_0003
そして、 送信電力制御装置 20では S I R 1を制御信号形成部 31の T P C ビット生成回路 32及び判定回路 33に出力すると共に、 S IH2を判定回路 33に出力する。
TP Cビット生成回路 32は、 S IR演算回路 29において算出された S I R 1と予め設定されている目標 S I Rとを比較し、 S IR 1が目標 S I Rより も小さい場合には送信電力を増加させる旨の T P C (Transmit Power Control)ビヅトを生成し、 逆に Sェ R 1が目標 S I Rよりも大きい場合には送 信電力を減少させる旨の T P Cビットを生成する。
判定回路 33は S IR 1から S I R2を引いた値(S IR 1-S I R 2)と所 定のしきい値とを比較する。減算結果がしきい値以下であった場合、 判定回路 33は、 スイッチ回路 35に対して、 TPCビット生成回路 32からの入力を 選択して出力することを指示するスィツチング制御信号を送出する。
これに対して減算結果がしきい値よりも大きい場合には、 判定回路 33は、 スィツチ回路 35に対して、 固定パターン生成回路 34からの入力を選択して 出力することを指示するスィッチ制御信号を送出する。 ここで固定パターン生 成回路 34は 1制御周期毎に対向局の送信電力を増減させる交番パ夕一ンと なる制御ビヅト列を形成する。
このようにしてスィツチ回路 35から選択出力された TPCビット又は固 定パターンビットは、 送信データやパイロットシンボルと多重されて図示しな いアンテナを介して対向局の送信装置に送信される。 対向局の送信装置は、 T PCビット又は固定パ夕一ンビットに従って送信電力を増減又は維持する。 以上の構成において、 送信電力制御装置 20は、 図 3に示すような送信電力 制御処理手順を実行することにより、 対向局の送信電力を制御するための送信 電力制御信号を形成する。
すなわち、 送信電力制御装置 20はステップ ST 0で処理を開始すると、 ス テヅプ ST 1に移り、 希望波電力演算回路 26で希望波電力 Sを算出すると共 に干渉波電力演算回路 27で第 1の干渉波電力 W 1を算出する。
送信電力制御装置 20は、 続くステツプ S T 2において、 干渉波電力演算回 路 28により第 2の干渉波電力 W2を算出し、 ステップ ST 3に移る。 ステツ プ ST3では、 SIR演算回路 29によって SIR1を算出すると共に SIR 演算回路 30によって S IR2を算出する。
送信電力制御装置 20は、 続くステップ ST4において、 判定回路 33によ つて、 SIR1から SIR2を引いた値がしきい値 T よりも大きいか否かを 判断する。 そして肯定結果 (しきい値 Thより大きい) が得られた場合にはス テツプ ST 5に移り、 否定結果 (しきい値 Thより小さい) が得られた場合に はステップ ST 6に移る。
送信電力制御装置 20はステップ ST 5に移ると、 スイッチ回路 35から固 定パターン生成回路 34により生成された固定パターンビット (対向局の送信 電力を変化させないことを指示するビヅト)を選択出力する。これに対してステ ップ ST 6に移ると、 スィツチ回路 35から TPCビット生成回路により生成 された TP Cビット ォ向局の送信電力の増減を指示するビット)を選択出力す る。そして送信電力制御装置 20はステップ ST 5又はステップ ST 6の処理 を行った後、 ステップ S T 7に移って当該送信電力制御処理手順を終了する。 このように送信電力制御装置 20は、 全ての干渉要因を反映した第 1の干渉 波電力 W1に加えて、 マルチパス干渉による干渉要因を除外した第 2の干渉波 電力 W 2を求める。 そして従来の送信電力制御の指標としていた S I R 1に加 えて、 この第 2の干渉波電力 W2を用いて新たな送信電力制御の指標としての S IR 2を求める。
実際上、 上述したように全干渉要因に対するマルチパス伝搬による干渉要因 の割合が高いマルチパス伝搬環境では、 従来の全ての干渉要因を反映した S I R 1は対向する無線局の送信電力の増減に追従して変動しないので、 S I R 1 のみに基づいて送信電力を増減させることは無意味であり、 不必要に送信電力 を増加させた場合には他の通信チャネルへの劣化を招く結果となる。
そこでこの実施の形態においては、 S IR 1と S IR2との差を求め、 この 差がしきい値よりも大きいときには、 送信電力を増加させずに現在の送信電力 のレベルを維持するように制御する。 ここで S IR 1と S IR2との差が大き いということは、 現在の通信状態がマルチパス伝搬璟境下にあること意味し、 このような場合には、 送信電力を増加させても S IR 1の値は上昇しない。 つ まり、 送信電力を増加させても通信品質は向上しないので、 送信電力を現在の レベルで維持させる。
これに対して S IR 1と S IR 2との差が小さいということは、 現在の通信 状態がマルチパス干渉環境下にはない、 換言すれば、 マルチパス干渉以外の干 渉による影響が大きいことを意味する。 このような場合には送信電力を S IR 1に応じて適応的に増減させれば通信品質を向上させることができるので、 送 信電力を増減させるための送信電力制御信号を送出する。
かくして以上の構成によれば、 全干渉成分に対してマルチパス干渉成分の割 合が大きい場合には送信電力を増減させず、 マルチパス干渉の割合が小さい場 合には送信電力を増減させるようにしたことにより、 他の通信チャネルの通信 容量や通信品質を低下させることなく、 良好な無線通信を行うことができる送 信電力制御装置 20を実現し得る。 また送信電力の不必要な増加を未然に回避 できることにより消費電力を低減できる。
(実施の形態 2)
図 2との対応部分に同一符号を付して示す図 4は、 実施の形態 2に係る送信 電力制御装置 100を有する送受信装置を示す。 図 4では、 説明の簡単化のた めに、 図 2の希望波電力測定回路 24— 1〜24— N、 干渉波電力測定回路 2 5— 1〜 25— N、 希望波電力演算回路 26、 第 1及び第 2の干渉波電力演算 回路 27、 28、 第 1及び第 2の S IR演算回路 29、 30からなる部分を S IR測定部 101として 1つのブロックでまとめて表したもので、 その機能は 図 2の対応する部分と同様である。
送信電力制御装置 100は相関処理部 23— 1〜23— Nの出力を RAK E受信部 102及び S IR測定部 101に入力する。 RAKE受信部 102は、 最大比合成ダイバーシチ方式によって、 伝搬路の絰路長の違いにより遅延分散 した信号パワーを最大比合成する。 11八1(£受信部102の出力は TP Cビヅ ト復調回路 103に入力され、 TP Cビット復調回路 103により TP Cビヅ トが復調され、 復調された TPCビットが TPCビット制御回路 104に送出 れる。 S IR測定部 101では、 図 2について上述したのと同様の動作により第 1 及び第 2の S IR 1及び S IR2が形成され、 この S I R 1及び S I R 2が判 定回路 105に送出される。
判定回路 105は、 S I R 1から S I R 2を引いた値(S IR 1-S IR2) と所定のしきい値とを比較する。減算結果がしきい値以下であった場合、 判定 回路 105は、 TPCビヅト制御回路 104に対して、 復調された TPCビヅ トに応じたパワー制御信号を出力することを指示する判定結果を送出する。 これに対して、 減算結果がしきい値よりも大きかった場合には、 判定回路 1 05は、 TPCビット制御回路 104に対して、 復調された TPCビヅトに拘 わらず「0」レベルの信号を出力することを指示する判定結果を送出する。
具体的には、 復調された TP Cビット信号は、 送信電力を増加させるための 信号すなわち「+ 1」レベルの信号と、 送信電力を減少させるための信号すなわ ち「0または一 1」レベルの信号とでなる 2種類の信号により構成される場合 について説明する。
そして TP Cビット制御回路 104は、 判定回路 105によって S IR 1か ら S IR2を引いた値(S IR 1— S IR 2)がしきい値以下であることを示す 判定結果が入力された場合には、 TPCビヅト復調信号が「+ 1」レベルのとき には「+1」レベルの信号を加算回路 106に出力し、 TPCビット復調信号が 「0または一 1」レベルのときには「一 1」レベルの信号を加算回路 106に出 力する。
なお、 TPCビット信号が増加 「+1」、 減少 「― 1」、 増減なし 「0」 の 3 種類の場合、 TPCビット制御回路 104から加算回路 106への出力は、 そ れそれ、 増加 「+ 1」、 減少 「一 1」、 増減なし 「0」 であることは明らかで める。
この結果加算回路 106では、 TPCビヅト制御回路 104の出力と送信電 力制御部 107の制御している現在の送信電力値とを加算し、 次の送信電力値 として送信電力制御部 10 Ίに入力される。送信電力制御部 10 Ίは自局の送 信部 108に対してパワー制御信号を出力し、送信部 108は当該パワー制御 信号に応じた送信電力でアンテナ 109を介して無線信号を送出する。
以上の構成において、 送信電力制御装置 100は、 図 5に示すような送信電 力制御処理手順を実行することにより、 対向する無線局から自局への電波伝搬 環境に基づいて自局の送信電力を制御する。 すなわち、 送信電力制御装置 10 0はステップ ST 10で処理を開始すると、 ステップ ST 11に移り、 希望波 電力 sを算出すると共に第 1の干渉波電力 W 1を算出する。
送信電力制御装置 100は、 続くステップ ST 12において、 第 2の干渉波 電力 W2を算出し、 ステップ ST 13に移る。 ステップ ST 13では、 SIR 1及び S IR2を算出する。
送信電力制御装置 100は、 続くステップ S T 14において、 判定回路 10 5によって、 S IR 1から S IR 2を引いた値がしきい値 Thよりも大きいか 否かを判断する。 そして肯定結果 (しきい値 Thよりも大きい) が得られた場 合にはステップ ST 15に移り、 否定結果 (しきい値 Thよりも小さい) が得 られた場合にはステップ S T 16に移る。
送信電力制御装置 100はステップ ST 15に移ると、 TPCビヅト制御回 路 104から加算回路 106に対して「0」レベルの信号を出力することによ り、 自局の送信電力を現在の値で維持する。 これに対してステップ ST 16に 移ると、 TPCビヅト制御回路 104から加算回路 106に対して TP Cビヅ ト復調信号に応じたレベルの信号を出力することにより、 TPCビットに応じ て自局の送信電力を変化させる。 そして送信電力制御装置 100はステップ S T 15又はステップ ST 16の処理を行った後、 ステップ ST 17に移 て当 該送信電力制御処理手順を終了する。
かくして以上の構成によれば、 全干渉成分に対してマルチパス干渉成分の割 合が高い場合には対向局から送られてきた送信電力制御信号 (TP Cビット)に 拘わらず自局の送信電力を増減させず、 マルチパス干渉の割合が小さい場合に は対向局から送られてきた送信電力制御信号に応じて自局の送信電力を増減 させるようにしたことにより、 他の通信チャネルの通信品質を低下させること なく、 良好な無線通信を行うことができる送信電力制御装置 1 0 0を実現し得 る。 また、 自局の送信電力の不必要な増加を未然に回避できることにより、 通 信容量を増大することや消費電力を低減することができる。
なお、 実施の形態 1または実施の形態 2における C DMA方式の無線基地局 において、各移動局(対向する無線局)に対して共通に使用されるチャネル(共 通チャネル)や他の移動局との通信チャネルが同時に送信している場合がある これらのチャネルは当該移動局の通信チャネルに対して、 直交するコードで拡 散されているため、 特定の伝搬パスを受信するとき、 そのパスに含まれる共通 チヤネルゃ他移動局の通信チャネルの電力は干渉とならない。
しかし、 マルチパス伝搬環境ではパス間でコードの直交性が失われるため、 共通チャネルや他移動局の通信チャネルの電力も干渉となる。 当該移動局の通 信チャネルの希望波電力 (受信電力) を s、 共通チャネルや他移動局の通信チ ャネルを含めた受信電力を S/ひとすると、 マルチパス干渉量は S x ( 1—ひ) /ひである。 したがって、 (5 ) 式は次式のようになる。
∑k- S -S!
N
但し (9 ) 式において、 αは当該移動局への送信電力を含めた全体の送信電力 と当該移動局への送信電力の比を表す。
これにより、 他移動局の通信チャネルが直交性のあるコ一ドで多重される場 合も、 マルチパス伝搬環境による干渉の影響を正しく評価することができる。 また上述の実施の形態では、 対向局又は自局の送信電力を制御する場合につ いて述べたが、 本発明はこれに限らず、 上述したように、 前記第 1の干渉波電 力からマルチパス干渉に起因する電力成分を除去した第 2の干渉波電力を用 いれば、 C D Μ Αシステムにおける通信容量を低下させる要因である干渉波電 力を、 マルチパス干渉と他セル干渉とに分離して測定することができる干渉波 電力測定装置及び干渉波電力測定方法を実現できる。 本発明は、 上述した実施の形態に限定されず、 種々変更して実施することが できる。
本発明の干渉波電力測定装置は、 マルチパス受信信号の希望波電力を測定す る希望波電力測定手段と、 マルチパス受信信号の干渉波電力を第 1の干渉波電 力として測定する第 1の干渉波電力測定手段と、 希望波電力測定手段により測 定された希望波電力及び第 1の干渉波電力測定手段により測定された第 1の 干渉波電力に基づいて、 第 1の干渉波電力からマルチパス干渉に起因する電力 成分を除去した第 2の干渉波電力を求める第 2の干渉波電力測定手段とを具 備する構成を採る。
この構成によれば、 マルチパス干渉に起因する電力成分を除去した第 2の干 渉波電力が測定できるので、 C D MAシステムにおける通信容量を低下させる 要因である干渉波電力を、 マルチパス干渉と他セル干渉とに分離して測定する ことができる。
また本発明の送信電力制御装置は、 マルチパス受信信号を受信し、 当該マル チパス受信信号に含まれる希望波電力と干渉波電力に基づいて対向局の送信 電力を制御する送信電力制御装置において、 マルチパス受信信号の希望波電力 を測定する希望波電力測定手段と、 マルチパス受信信号の干渉波電力を第 1の 干渉波電力として測定する第 1の干渉波電力測定手段と、 希望波電力測定手段 により測定された希望波電力及び第 1の干渉波電力測定手段により測定され た第 1の干渉波電力に基づいて、 第 1の干渉波電力からマルチパス干渉に起因 する電力成分を除去した第 2の干渉波電力を求める第 2の干渉波電力測定手 段と、 希望波電力と第 1の干渉波電力との比を表す S I Rを第 1の S I R値と して求める第 1の S I R算出手段と、 希望波電力と第 2の干渉波電力との比を 表す S I Rを第 2の S I R値として求める第 2の S I R算出手段と、 第 1及び 第 2の S I R値に基づいて、 対向局の送信電力を制御するための送信電力制御 信号を形成する制御信号形成手段と、 送信電力制御信号を対向局に発信する発 信手段とを具備する構成を採る。 この構成によれば、 全ての干渉要因が反映された第 1の S I R値のみならず、 マルチパス干渉に起因する電力成分を除去した第 2の S I R値を用いて対向 局の送信電力を制御できるので、 電波伝搬環境に応じた送信電力制御を行うこ とができる。 .
また本発明の送信電力制御装置は、 制御信号形成手段は、 第 1の S I R値か ら第 2の S I R値を引いた値と所定のしきい値とを比較する比較手段と、 比較 手段により第 1の S I R値から第 2の S I R値を引いた値がしきい値よりも 大きいことを表す比較結果が得られた場合、 現在の対向局の送信電力を維持す ることを指示する送信電力制御信号を形成する制御信号形成手段とを具備す る構成を採る。
この構成によれば、 第 1の S 1 1値と第2の3 I R値との差が大きいという ことは、 現在の伝搬環境がマルチパス干渉による劣化が支配的であること意味 する。このような場合、対向局の送信電力を増加させても通信品質は向上せず、 他の通信チャネルへの干渉としかならないので、 送信電力を増加させず、 現在 の値を維持させるようにする。
これに対して第 1の S I R値と第 2の S I R値との差が小さいということ は、 現在の通信状態がマルチパス干渉による劣化が支配的ではなく、 マルチパ ス干渉以外の干渉による劣化が大きいことを意味する。 このような場合は、 対 向局の送信電力を第 1の S I R値に応じて増加させることで通信品質を向上 させることができるので、 第 1の S I R値に応じて適応的に増減させることを 指示する送信電力制御信号を形成する。 この結果、 不必要に送信電力を増加さ せて他の通信チャネルの通信品質を低下させることなく、 良好な無線通信を行 うことができる。
また本発明の送信電力制御装置は、 送信電力を制御するための送信電力制御 信号を含むマルチパス受信信号を受信し、 当該送信電力制御信号に基づいて自 局の送信電力を制御する送信電力制御装置において、 マルチパス受信信号の希 望波電力を測定する希望波電力測定手段と、 マルチパス受信信号の干渉波電力 を第 1の干渉波電力として測定する第 1の干渉波電力測定手段と、 希望波電力 測定手段により測定された希望波電力及び第 1の干渉波電力測定手段により 測定された第 1の干渉波電力に基づいて、 第 1の干渉波電力からマルチパス干 渉に起因する電力成分を除去した第 2の干渉波電力を求める第 2の干渉波電 力測定手段と、 希望波電力と第 1の干渉波電力との比を表す S I Rを第 1の S I R値として求める第 1の S I R算出手段と、 希望波電力と第 2の干渉波電力 との比を表す S I Rを第 2の S I R値として求める第 2の S I R算出手段と、 第 1及び第 2の S I R値に基づいて自局の送信電力を制御する送信電力制御 手段とを具備する構成を採る。
この構成によれば、 全ての干渉要因が反映された第 1の S I R値のみならず、 マルチパス干渉に起因する電力成分を除去した第 2の S I R値を用いて自局 から対向する無線局への電波伝搬環境を推定できるので、 直接電波伝搬環境を 評価しなくても、 電波伝搬環境に応じた送信電力に制御できる。
また本発明の送信電力制御装置は、 送信電力制御手段は、 第 1の S I R値か ら第 2の S I R値を引いた値と所定のしきい値とを比較する比較手段と、 比較 手段により第 1の S I R値から第 2の S I R値を引いた値がしきい値よりも 大きいことを表す比較結果が得られた場合、 対向する無線局が送出した送信電 力制御信号に拘わらず現在の送信電力を維持させる電力制御手段とを具備す る構成を採る。
この構成によれば、 第 1の S I R値と第 2の S I R値との差が大きいという ことは、 現在の通信状態がマルチパス干渉による劣化が支配的であること意味 する。 このような場合は、 送信電力を増加させても通信品質は向上せず、 他の 通信チャネルへの干渉としかならないので、 送信電力制御信号で送信電力を増 加させるように指示されても自局の送信電力を増加させず、 現在の値を維持す るようにする。
これに対して第 1の S I R値と第 2の S I R値との差が小さいということ は、 現在の通信状態がマルチパス干渉による劣化が支配的ではなく、 マルチパ ス干渉以外の干渉による劣化が大きいことを意味する。 このような場合は、 送 信電力を受信した送信電力制御信号に応じて増減させる。 この結果、 対向する 無線局から自局への電波伝搬環境に基づいて対向する無線局への電波伝搬環 境を推定して、 不必要に送信電力を増加させて他の通信チャネルの通信品質を 低下させることなく、 良好な無線通信を行うことができ、 通信容量の低下を防 止することができる。
また本発明の無線基地局装置は、 上記送信電力制御装置を備える構成を採る。 この構成によれば、 マルチパス受信信号を受信しマルチパス受信信号に含ま れる希望波電力と干渉波電力に基づいて対向局の送信電力を制御する本発明 の送信電力制御装置を備える無線基地局は、 対向する無線局、 例えば携帯情報 端末は不必要な送信電力の増加を未然に防止できるので、 通信品質を良好に保 つことができると共に消費電力が低減されてバッテリによる通信可能時間を 長くすることができる。
一方、 送信電力を制御するための送信電力制御信号を含むマルチパス受信信 号を受信し送信電力制御信号に基づいて自局の送信電力を制御する本発明の 送信電力制御装置を備える無線基地局は、 全干渉成分に対してマルチパス干渉 成分の割合が大きい場合には自局の送信電力を増減させず、 マルチパス干渉の 割合が小さい場合には送信電力を増減させることができるので、 不必要な送信 電力の増加を未然に防止し、 システムを安定化させ、 通信容量を良好に保つこ とができるようになる。
また本発明の携帯情報端末装置は、 上記送信電力制御装置を備える構成を採 る o
この構成によれば、 マルチパス受信信号を受信しマルチパス受信信号に含ま れる希望波電力と干渉波電力に基づいて対向局の送信電力を制御する本発明 の送信電力制御装置を備える携帯情報端末装置は、 全干渉成分に対してマルチ パス干渉成分の割合が大きい場合には送信電力を増減させず、 マルチパス干渉 の割合が小さい場合には送信電力を増減させることができるので、 対向する無 線局の無線基地局装置は、 不必要な送信電力の増加を未然に防止し、 システム を安定化させ、 通信容量を良好に保つことができるようになる。
一方、 送信電力を制御するための送信電力制御信号を含むマルチパス受信信 号を受信し送信電力制御信号に基づいて自局の送信電力を制御する本発明の 送信電力制御装置を備える携帯情報端末装置は、 自局の不必要な送信電力の増 加を未然に防止できるので、 通信品質を良好に保つことができると共に消費電 力が低減されてバッテリによる通信可能時間を長くすることができる。
以上説明したように、 本発明によれば、 マルチパス受信信号の希望波電力を 測定すると共にマルチパス受信信号の干渉波電力を第 1の干渉波電力として 測定した後、 これら希望波電力及び第 1の干渉波電力に基づいて第 1の干渉波 電力からマルチパス干渉に起因する電力成分を除去した第 2の干渉波電力を 求めたことにより、 C D MAシステムにおける通信容量を低下させる要因であ る干渉波電力を、 マルチパス干渉と他セル干渉とに分離して測定することがで きる干渉波電力測定装置及び干渉波電力測定方法を実現できる。
また本発明によれば、 全ての干渉要因が反映された第 1の S I R(S I R 1 ) 値のみならず、 マルチパス干渉に起因する電力値成分を除去した第 2の S I R (S I R 2 )値を用いて送信電力を制御するようにしたことにより、 不必要な送 信電力の増加を未然に防止し得、 この結果、 他の通信チャネルの通信品質への 影響を最小限に抑え、 通信容量の低下を防止することができる送信電力制御装 置及びその方法を実現し得る。
本明細書は、 2 0 0 1年 9月 7日出願の特願 2 0 0 1 - 2 7 1 7 7 7に基づ く。 その内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 例えば携帯電話等の携帯情報端末や無線基地局に適用できる。

Claims

請求の範囲
1 . マルチパス受信信号の希望波電力を測定する希望波電力測定手段と、 前 記マルチパス受信信号の干渉波電力を第 1の干渉波電力として測定する第 1 の干渉波電力測定手段と、 前記希望波電力測定手段により測定された希望波電 力及び前記第 1の干渉波電力測定手段により測定された前記第 1の干渉波電 力に基づいて、 前記第 1の干渉波電力からマルチパス干渉に起因する電力成分 を除去した第 2の干渉波電力を求める第 2の干渉波電力測定手段と、 を具備す る干渉波電力測定装置。
2 . マルチパス受信信号の希望波電力を測定する希望波電力測定ステツプと、 前記マルチパス受信信号の干渉波電力を第 1の干渉波電力として測定する第
1の干渉波電力測定ステツプと、 前記希望波電力測定ステツプにより測定され た希望波電力及び前記第 1の干渉波電力測定ステツプにより測定された前記 第 1の干渉波電力に基づいて、 前記第 1の干渉波電力からマルチパス干渉に起 因する電力成分を除去した第 2の干渉波電力を求める第 2の干渉波電力測定 ステップと、 を含む干渉波電力測定方法。
3 . マルチパス受信信号を受信し、 当該マルチパス受信信号に含まれる希望 波電力と干渉波電力に基づいて対向局の送信電力を制御する送信電力制御装 置において、 マルチパス受信信号の希望波電力を測定する希望波電力測定手段 と、 前記マルチパス受信信号の干渉波電力を第 1の干渉波電力として測定する 第 1の干渉波電力測定手段と、 前記希望波電力測定手段により測定された希望 波電力及び前記第 1の干渉波電力測定手段により測定された前記第 1の干渉 波電力に基づいて、前記第 1の干渉波電力からマルチパス干渉に起因する電力 成分を除去した第 2の干渉波電力を求める第 2の干渉波電力測定手段と、 前記 希望波電力と前記第 1の干渉波電力との比を表す S I Rを第 1の S I R値と して求める第 1の S I R算出手段と、 前記希望波電力と前記第 2の干渉波電力 との比を表す S I Rを第 2の S I R値として求める第 2の S I R算出手段と、 前記第 1及び第 2の S I R値に基づいて、 対向する無線局の送信電力を制御す るための送信電力制御信号を形成する制御信号形成手段と、 前記送信電力制御 信号を対向局に発信する発信手段と、 を具備する送信電力制御装置。
4 . 前記制御信号形成手段は、 第 1の S I R値から第 2の S I R値を引いた 値と所定のしきい値とを比較する比較手段と、 前記比較手段により第 1の S I R値から第 2の S I R値を引いた値が前記しきい値よりも大きいことを表す 比較結果が得られた場合、 対向する無線局の送信電力を維持させることを指示 する送信電力制御信号を形成する信号形成手段と、 を具備する請求項 3に記載 の送信電力制御装置。
5 . 送信電力を制御するための送信電力制御信号を含むマルチパス受信信号 を受信し、 当該送信電力制御信号に基づいて自局の送信電力を制御する送信電 力制御装置において、 マルチパス受信信号の希望波電力を測定する希望波電力 測定手段と、 前記マルチパス受信信号の干渉波電力を第 1の干渉波電力として 測定する第 1の干渉波電力測定手段と、 前記希望波電力測定手段により測定さ れた希望波電力及び前記第 1の干渉波電力測定手段により測定された前記第 1の干渉波電力に基づいて、 前記第 1の干渉波電力からマルチパス干渉に起因 する電力成分を除去した第 2の干渉波電力を求める第 2の干渉波電力測定手 段と、 前記希望波電力と前記第 1の干渉波電力との比を表す S I Rを第 1の S I R値として求める第 1の S 算出手段と、 前記希望波電力と前記第 2の干 渉波電力との比を表す S I Rを第 2の S I R値として求める第 2の S I R算 出手段と、前記第 1及び第 2の S I R値に基づいて自局の送信電力を制御する 送信電力制御手段と、 を具備する送信電力制御装置。
6 . 送信電力制御手段は、 第 1の S I R値から第 2の S I R値を引いた値と 所定のしきい値とを比較する比較手段と、 前記比較手段により第 1の S I R値 から第 2の S I R値を引いた値が前記しきい値よりも大きいことを表す比較 結果が得られた場合、 対向する無線局が送出した送信電力制御信号に拘わらず 現在の送信電力を維持さ _せる電力制御手段と、 を具備する請求項 5に記載の送 信電力制御装置。 .
7 . 請求項 3に記載の送信電力制御装置を備える無線基地局装置。
8 . 請求項 5に記載の送信電力制御装置を備える無線基地局装置。
9 . 請求項 3に記載の送信電力制御装置を備える携帯情報端末装置。
1 0 . 請求項 5に記載の送信電力制御装置を備える携帯情報端末装置。
1 1 . マルチパス受信信号を受信し、 当該マルチパス受信信号に含まれる希 望波電力と干渉波電力に基づいて対向局の送信電力を制御する送信電力制御 方法において、 マルチパス受信信号の希望波電力を測定する希望波電力測定ス テップと、前記マルチパス受信信号の干渉波電力を第 1の干渉波電力として測 定する第 1の干渉波電力測定ステツプと、 前記希望波電力測定ステツプにおい て測定された希望波電力及び前記第 1の干渉波電力測定ステップにおいて測 定された前記第 1の干渉波電力に基づいて、 前記第 1の干渉波電力からマルチ パス干渉に起因する電力成分を除去した第 2の干渉波電力を求める第 2の干 渉波電力測定ステップと、 前記希望波電力と前記第 1の干渉波電力との比を表 す S I Rを第 1の S I R値として求める第 1の S I R算出ステップと、 前記希 望波電力と前記第 2の干渉波電力との比を表す S I Rを第 2の S I R値とし て求める第 2の S I R算出ステップと、 前記第 1及び第 2の S I R値に基づい て、 対向する無線局の送信電力を制御するための送信電力制御信号を形成する 制御信号形成ステツプと、 前記送信電力制御信号を対向局に発信する制御信号 発信ステヅプと、 を含む送信電力制御方法。
1 2 . 制御信号形成ステップでは、 第 1の S I R値から第 2の S I R値を引 いた値と所定のしきい値とを比較し、 第 1の S I R値から第 2の S I R値を引 いた値が前記しきい値よりも大きいことを表す比較結果が得られた場合、 対向 局の送信電力を維持させることを指示する送信電力制御信号を形成する、 請求 項 1 1に記載の送信電力制御方法。
1 3 . 送信電力を制御するための送信電力制御信号を含むマルチパス受信信 号を受信し、 当該送信電力制御信号に基づいて自局の送信電力を制御する送信 電力制御方法において、 マルチパス受信信号の希望波電力を測定する希望波電 力測定ステップと、 前記マルチパス受信信号の干渉波電力を第 1の干渉波電力 として測定する第 1の干渉波電力測定ステツプと、 前記希望波電力測定ステツ プにおいて測定された希望波電力及び前記第 1の干渉波電力測定ステツプに おいて測定された前記第 1の干渉波電力に基づいて、 前記第 1の干渉波電力か らマルチパス干渉に起因する電力成分を除去した第 2の干渉波電力を求める 第 2の干渉波電力測定ステップと、 前記希望波電力と前記第 1の干渉波電力と の比を表す S 111を第1の3 IIM直として求める第 1の S IR算出ステップ と、 前記希望波電力と前記第 2の干渉波電力との比を表す S IR値を第 2の S IRとして求める第 2の S IR算出ステップと、 前記第 1及び第 2の S IR値 に基づいて自局の送信電力を制御する送信電力制御ステップと、 を含む送信電 力制御方法。
14. 送信電力制御ステップでは、 第 1の S IR値から第 2の S IR値を引 いた値と所定のしきい値とを比較し、 第 1の S IR値から第 2の S IR値を引 いた値が前記しきい値よりも大きいことを表す比較結果が得られた場合、 送信 電力制御信号に拘わらず現在の送信電力を維持する、 請求項 13に記載の送信 電力制御方法。
PCT/JP2002/009041 2001-09-07 2002-09-05 Appareil de mesure de l'energie ondulatoire d'interference, appareil de commande de la puissance d'emission, et procede correspondant WO2003024001A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/416,447 US20040023627A1 (en) 2001-09-07 2002-09-05 Interference power measurement apparatus, transmission power control apparatus, and method
EP20020772836 EP1424791A1 (en) 2001-09-07 2002-09-05 INTERFERENCE WAVE POWER MEASUREMENT APPARATUS, TRANSMISSION POWER CONTROL APPARATUS, AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-271777 2001-09-07
JP2001271777A JP3420228B2 (ja) 2001-09-07 2001-09-07 干渉波電力測定装置、干渉波電力測定方法、送信電力制御装置及び送信電力制御方法

Publications (1)

Publication Number Publication Date
WO2003024001A1 true WO2003024001A1 (fr) 2003-03-20

Family

ID=19097242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009041 WO2003024001A1 (fr) 2001-09-07 2002-09-05 Appareil de mesure de l'energie ondulatoire d'interference, appareil de commande de la puissance d'emission, et procede correspondant

Country Status (5)

Country Link
US (1) US20040023627A1 (ja)
EP (1) EP1424791A1 (ja)
JP (1) JP3420228B2 (ja)
CN (1) CN1226836C (ja)
WO (1) WO2003024001A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606668B2 (ja) * 2001-09-17 2011-01-05 Okiセミコンダクタ株式会社 電力制御回路及び電力制御方法
JP3588087B2 (ja) * 2002-04-19 2004-11-10 松下電器産業株式会社 Sir測定装置および方法
JP2005167502A (ja) * 2003-12-01 2005-06-23 Ntt Docomo Inc 無線通信システム、送信無線局の制御装置及び受信無線局の制御装置、並びにサブキャリア選択方法
US7773950B2 (en) * 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US8260340B2 (en) 2006-02-17 2012-09-04 Alcatel Lucent Methods of reverse link power control
CN101048003B (zh) * 2006-03-31 2010-09-08 华为技术有限公司 移动通信系统干扰性能测试方法、装置及系统规划方法
CN101083641B (zh) * 2006-05-30 2010-06-09 富士通株式会社 输入信号调节方法、自适应均衡器以及控制变量调节方法
US8452317B2 (en) 2006-09-15 2013-05-28 Qualcomm Incorporated Methods and apparatus related to power control and/or interference management in a mixed wireless communications system supporting WAN signaling and peer to peer signaling
US8369800B2 (en) * 2006-09-15 2013-02-05 Qualcomm Incorporated Methods and apparatus related to power control and/or interference management in a mixed wireless communications system
US8929281B2 (en) 2006-09-15 2015-01-06 Qualcomm Incorporated Methods and apparatus related to peer to peer device
US8634869B2 (en) 2006-09-15 2014-01-21 Qualcomm Incorporated Methods and apparatus related to multi-mode wireless communications device supporting both wide area network signaling and peer to peer signaling
RU2426231C2 (ru) * 2006-11-06 2011-08-10 Квэлкомм Инкорпорейтед Способ управления мощностью передачи в зависимости от загрузки поддиапазона
JP5163647B2 (ja) * 2007-08-01 2013-03-13 富士通株式会社 無線回線使用状況監視方法及び装置
DE602008005111D1 (de) * 2008-04-29 2011-04-07 Ericsson Telefon Ab L M Einschätzung des Signal-Intereferenz-Verhältnisses
EP2484157A1 (en) * 2009-09-30 2012-08-08 Nokia Siemens Networks Oy Power control
CN102045122B (zh) * 2010-12-10 2013-06-12 北京速通科技有限公司 多天线协同定位解决邻道干扰问题的方法
CN102983922B (zh) 2012-11-29 2014-12-24 华为技术有限公司 一种测量同频信号干扰的方法及接收机
CN104980944B (zh) * 2014-04-04 2018-12-07 中国移动通信集团浙江有限公司 一种对数据业务的下行功控进行配置的方法和设备
CN115189749B (zh) * 2022-05-18 2023-03-24 中国人民解放军海军工程大学 一种基于北斗短报文通信的远程控制干扰源系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138633A (ja) * 1998-11-02 2000-05-16 Nec Corp 送信電力制御方法、送信電力制御装置、移動局、基地局及び制御局
JP2001007763A (ja) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd 送信電力制御装置
JP2001077724A (ja) * 1999-09-07 2001-03-23 Nec Corp 送信電力制御装置および送信電力制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9816063A (pt) * 1998-11-04 2001-07-10 Nokia Networks Oy Processo de radiocomunicação direcional entre uma primeira estação e uma segunda estação, e, primeira estação para radiocomunicação direcional com uma segunda estação

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138633A (ja) * 1998-11-02 2000-05-16 Nec Corp 送信電力制御方法、送信電力制御装置、移動局、基地局及び制御局
JP2001007763A (ja) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd 送信電力制御装置
JP2001077724A (ja) * 1999-09-07 2001-03-23 Nec Corp 送信電力制御装置および送信電力制御方法

Also Published As

Publication number Publication date
CN1478333A (zh) 2004-02-25
JP2003087171A (ja) 2003-03-20
JP3420228B2 (ja) 2003-06-23
US20040023627A1 (en) 2004-02-05
CN1226836C (zh) 2005-11-09
EP1424791A1 (en) 2004-06-02

Similar Documents

Publication Publication Date Title
WO2003024001A1 (fr) Appareil de mesure de l'energie ondulatoire d'interference, appareil de commande de la puissance d'emission, et procede correspondant
JP4008301B2 (ja) 基地局接続方法、無線ネットワーク制御装置及び移動局
US6526028B1 (en) CDMA mobile communication system with consideration of fading
KR101129085B1 (ko) 수신 신호 품질 추정 방법 및 장치
EP1244232B1 (en) Radio infrastructure apparatus
EP1496628B1 (en) Mobile communication system, mobile station, base station, communication path quality estimation method used for the same
JP3728427B2 (ja) データ送信装置及びデータ送信方法
JP2001007759A (ja) 同報通信方法とそのシステム及びその基地局装置と移動局
WO2006064806A1 (ja) 無線回線制御局、基地局、移動局、移動通信システム及び移動通信方法
JPH11150521A (ja) スペクトラム拡散通信装置
KR100602619B1 (ko) 무선 통신 방법, 기지국 및 이동국
KR20000001795A (ko) 이동통신 시스템의 전력 제어 장치 및 방법
JP2000151465A (ja) 無線通信装置及び無線通信方法
JP2005509358A (ja) パイロットシンボルおよび非パイロットシンボルの重み付け和を使用する電力推定
US6819909B1 (en) Based station apparatus and communication method
JP2885772B1 (ja) Cdmaシステムにおける受信方法、受信品質推定方法、送信電力制御方法及び送受信装置
KR20010101042A (ko) 무선 송신 장치, 기지국 장치, 통신 단말 장치 및 송신 다이버시티 방법
EP1583258B1 (en) Array antenna radio communication apparatuses
JP2005318327A (ja) 通信端末装置及び送信電力制御方法
JP3893062B2 (ja) 通信端末装置および受信方法
JP2003259428A (ja) 無線基地装置、伝送チャネル割当方法、および伝送チャネル割当プログラム
JP2004297567A (ja) 送信電力制御方法、基地局及び移動通信システム
JP2004088692A (ja) 移動無線端末装置
JP3445221B2 (ja) 無線受信装置および無線受信方法
WO2005006595A1 (ja) 無線受信方法及び通信端末装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10416447

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002772836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 02803256X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002772836

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002772836

Country of ref document: EP