CN102045122B - 多天线协同定位解决邻道干扰问题的方法 - Google Patents

多天线协同定位解决邻道干扰问题的方法 Download PDF

Info

Publication number
CN102045122B
CN102045122B CN 201010582813 CN201010582813A CN102045122B CN 102045122 B CN102045122 B CN 102045122B CN 201010582813 CN201010582813 CN 201010582813 CN 201010582813 A CN201010582813 A CN 201010582813A CN 102045122 B CN102045122 B CN 102045122B
Authority
CN
China
Prior art keywords
antenna
scaling point
value
scaling
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010582813
Other languages
English (en)
Other versions
CN102045122A (zh
Inventor
张为民
张北海
薛金银
李全发
张明月
高文宝
张晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING SUTONG TECHNOLOGY Co Ltd
Original Assignee
BEIJING SUTONG TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING SUTONG TECHNOLOGY Co Ltd filed Critical BEIJING SUTONG TECHNOLOGY Co Ltd
Priority to CN 201010582813 priority Critical patent/CN102045122B/zh
Publication of CN102045122A publication Critical patent/CN102045122A/zh
Application granted granted Critical
Publication of CN102045122B publication Critical patent/CN102045122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

一种多天线协同定位解决邻道干扰问题的方法,用于并列布置的电子不停车收费天线系统,包括:步骤1:划分定标点;步骤2:计算一号、二号天线相对于定标点的距离;步骤3:确定一号、二号天线相对于定标点的链路基本传输损耗;步骤4:理论计算一号天线接收机收到各定标点的上行信号强度值;步骤5:理论计算二号天线接收机收到各定标点的上行信号强度值;步骤6:通过实测对一号天线接收机收到的各定标点的上行信号强度值进行调整,得到参考值;步骤7:通过实测对二号天线接收机收到的各定标点的上行信号强度值进行调整,得到参考值;步骤8:通过与参考值进行匹配拟合,确定车辆位置,本方法可以克服邻道干扰问题,提高电子不停车收费系统的可靠性。

Description

多天线协同定位解决邻道干扰问题的方法
技术领域
本发明涉及智能交通系统中的电子不停车收费技术,具体地说,涉及电子收费系统中准确识别车辆电子标签的方法。
背景技术
电子不停车收费(Electronic Toll Collection,ETC)系统,是国际上正在努力开发并推广的一种用于公路、大桥和隧道的电子自动收费系统。通过安装在车辆挡风玻璃上的车辆电子标签与在收费站ETC车道路侧天线之间的微波专用短程通讯,利用计算机联网技术与后台收费中心进行结算处理,从而达到车辆通过路桥收费站不需停车而能自动交纳路桥费的目的。
对于目前的ETC收费系统,存在的主要问题是ETC系统邻道干扰问题:本车道路侧设备天线发射信号辐射到相邻车道上,或本车道路侧设备天线接收到相邻车道上的车辆电子标签的信号,从而造成误交易的现象。
这是由于目前电子不停车收费系统的定向天线产品工艺和收费站所处的复杂电磁环境等因素,天线的通信区域不能严格地限定在本车道的合理区域内,微波信号在邻道的泄露不可避免;加上车辆行驶的不确定性,从而造成的。
请参照图1,在ETC车道1和ETC车道2内分别有车辆101、201驶入,车辆101、201的行驶方向相同,车辆101、201的车辆电子标签102、202可能会收到电子不停车收费车道1的一号天线103发出的下行广播帧,车辆101、201的车辆电子标签102、202也可能会收到电子不停车收费车道2的二号天线203发出的下行广播帧,如果电子不停车收费车道1的一号天线103与车辆201进行交易,会出现误交易现象。如果电子不停车收费车道2的二号天线203与车辆101进行交易,也会出现误交易现象。
发明内容
为解决上述问题,本发明的目的是提供一种多天线协同定位解决邻道干扰问题的方法,通过对比两个相邻车道ETC天线的接收信号功率和路侧单元已存储的参考数据,判断车辆的位置,避免造成对车辆位置的误判,克服邻道干扰问题,从而提高电子不停车收费系统的可靠性。
为实现上述目的,本发明采用以下技术方案:
一种多天线协同定位解决邻道干扰问题的方法,该方法用于并列布置的两个或多个电子不停车收费天线系统,通过匹配其中任意相邻车道的一号天线和二号天线的数据,解决邻道干扰,其特征是:该方法包括以下步骤:
步骤1:在一号天线和二号天线检测区域内部设置一条基准线,该基准线与行车方向垂直,根据一号天线和二号天线之间的跨度,在基准线上以等步长划分定标点;
步骤2:通过公知的三角公式计算一号天线和二号天线相对于每一个定标点的距离;
步骤3:通过公知的无线微波的直射路径传输损耗公式计算一号天线和二号天线相对于每一个定标点的链路基本传输损耗;
步骤4:通过理论计算初步确定:一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值;
一号天线接收机收到的上行信号强度值等于电子标签发射功率减去车前挡风玻璃损耗、再减去一号天线链路损耗、再减去馈线损耗、再加上一号天线增益;
步骤5:通过理论计算初步确定:二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值,
二号天线接收机收到的上行信号强度值等于电子标签发射功率减去车前挡风玻璃损耗、再减去二号天线链路损耗、再减去馈线损耗、再加上二号天线增益;
步骤6:通过实际测量,对一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值进行调整,
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点,
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,
利用该误差值平均值对理论计算的一号天线接收机收到的车辆电子标签在各定标点发出的上行信号强度值进行调整,作为一号天线接收信号强度参考值;
步骤7:通过实际测量,对二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值进行调整,
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点;
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,
利用该误差值平均值对理论计算的二号天线接收机收到的车辆电子标签在各定标点发出的上行信号强度值进行调整,作为二号天线接收信号强度参考值;
步骤8:将上述步骤6、步骤7得到的一号天线接收信号强度参考值、二号天线接收信号强度参考值存储在对应的路侧设备存储区中,每次一号天线、二号天线收到车辆电子标签发出的上行信号后,与对应路侧设备存储区中的一号天线、二号天线接收信号强度参考值进行匹配,
本方法的创新之处在于:
利用三角测量原理进行定位,对两个相邻车道的ETC天线接收到的车辆电子标签的信号强度进行比较,通过数据匹配的方法判断该车辆电子标签是否进入本车道,从而避免与非本车道的车辆电子标签进行通信,杜绝了相邻ETC车道的车辆电子标签信号与非本车道天线通信的邻道干扰现象。
附图说明
图1是并列布置的ETC车道的结构示意图;
图2是ETC车道天线到基准线的相对位置侧视图;
图3是实施例一的一号天线与二号天线的方向性图;
图4是一号天线增益示意图;
图5是一号天线到定标点的距离和方向角示意图。
图6是二号天线增益示意图;
图7是二号天线到定标点的距离和方向角示意图;
图8是实施例二的一号天线与二号天线的方向性图;
具体实施方式
实施例一
本发明是一种多天线协同定位解决邻道干扰问题的方法,该方法用于并列布置的两个或多个电子不停车收费天线系统,通过匹配其中任意相邻车道的一号天线和二号天线的数据,解决邻道干扰,其特征是:该方法包括以下步骤:
步骤1:在一号天线和二号天线检测区域内部设置一条基准线,该基准线与行车方向垂直,根据一号天线和二号天线之间的跨度,在基准线上以等步长划分定标点;
在本实施例中,一号天线和二号天线分别安装在龙门架上各自车道的正中央位置,安装高度为5.5米,安装角度为向下45度角,一号天线和二号天线的方向性图相同,如图3所示,这样天线辐射功率最大的水平方向为本车道正中央,垂直方向为天线检测区域中间部分;目前国内ETC系统中,天线检测区域最远端距离天线正下方一般为5.5-6.5米,在此取5米处的较远端作为基准线位置;基准线高度取1米,与车辆电子标签安装位置对应;
ETC车道宽度典型值为3.3米,收费岛宽2.2米,因此两个相邻ETC车道的天线距离为5.5米;基准线上的定标点个数和位置主要由天线检测范围(主要由半功率角表征)和车道宽度决定;对于一般的ETC车道,相邻两个ETC车道的定标点设置的俯视图如图3所示;
定标点步长可以在半个车身宽度至一个车身宽度之间,方便起见可以取0.5/1/2米作为步长,图3中的步长为1米;
请参照图2,在本实施例中,定标点所在基准线到一号天线和二号天线(龙门架)所在直线的高度为h=h2-h1=5.5-1=4.5米,
基准线高度h1为1米,一号天线安装高度h2为5.5米;车辆电子标签102到一号天线正下方的水平距离s=5米,
根据勾股定理,电子不停车收费车道(ETC)一号天线到基准线的直射距离计算可用公式一表示,公式一:
L = h 2 + s 2
L = 5 2 + 4.5 2 = 6.7
在此取L=6.5米。
图3中定标点共有11个,分别是:
{P-2,P-1,P0,P1,P2,P3,P4,P5,P6,P7,P8},
步骤2:通过公知的三角公式计算一号天线和二号天线相对于每一个定标点的距离;
一号天线相对于每一个定标点的距离是一号天线与定标点水平方向的偏移距离的平方加上一号天线到基准线的直射距离的平方然后开方,
可用公式二表示,公式二:
d 1 = L 2 + X 1 2
其中L是一号天线到基准线的直射距离,L=6.5米。X1是一号天线与定标点水平方向的偏移距离,
对于每一个定标点{P-2,P-1,P0,P1,P2,P3,P4,P5,P6,P7,P8},X1的值分别={-2米,-1米,0米,1米,2米,3米,4米,5米,6米,7米,8米}。
二号天线相对于每一个定标点的距离是二号天线与定标点水平方向的偏移距离的平方加上一号天线到基准线的直射距离的平方然后开方,
可用公式三表示,公式三:
d 2 = L 2 + X 2 2
其中L是一号天线到基准线的直射距离,L=6.5米。
X2是二号天线与定标点的水平方向的偏移距离,对于每一个定标点{P-2,P-1,P0,P1,P2,P3,P4,P5,P6,P7,P8},X2的值分别={7.5米,6.5米,5.5米,4.5米,3.5米,2.5米,1.5米,0.5米,-0.5米,-1.5米,-2.5米}。
经过上述公式二、公式三计算可知:一号天线和二号天线相对于每一个定标点的距离d1、d2如表格1所示,
表格1:
  定标点   P-2   P-1   P0   P1   P2   P3
  d1(米)   6.8   6.6   6.5   6.6   6.8   7.2
  d2(米)   9.9   9.2   8.5   7.9   7.4   7.0
  定标点   P4   P5   P6   P7   P8
  d1(米)   7.6   8.2   8.8   9.6   10.3
  d2(米)   6.7   6.5   6.5   6.7   7.0
步骤3:通过公知的无线微波的直射路径传输损耗公式计算一号天线和二号天线相对于每一个定标点的链路基本传输损耗;
一号天线的链路基本传输损耗等于常数一加上常数二与一号天线到定标点距离的对数的乘积再加上常数三与上行信号载波频率的对数的乘积,可以用公式四表示,公式四:
L1=32.44+20logd1+20logf
其中:d1为一号天线与定标点的距离,单位为米,
f为上行信号载波频率,单位为GHz,本实施例中为固定值,取为5.8GHz。
二号天线的链路基本传输损耗等于常数一加上常数二与二号天线到定标点距离的对数的乘积再加上常数三与上行信号载波频率的对数的乘积,可以用公式五表示,公式五:
L2=32.44+20logd2+20logf
其中:d2为二号天线与定标点的距离,单位为米;
f为上行信号载波频率,单位为GHz,本实施例中为固定值5.8GHz。
经过上述公式四、公式五计算可知:一号天线和二号天线相对于每一个定标点的链路损耗如表格2所示:
表格2:
  定标点   P-2   P-1   P0   P1   P2   P3
  L1   64.4   64.1   64.0   64.1   64.4   64.8
  L2   67.6   67.0   66.3   65.7   65.1   64.6
  定标点   P4   P5   P6   P7   P8
  L1   65.4   66.0   66.7   67.6   68.0
  L2   64.2   64.0   64.0   64.2   64.6
步骤4:通过理论计算初步确定:一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI1);
一号天线接收机收到的上行信号强度值(RSSI1)=电子标签发射功率(EIRP)-车前挡风玻璃损耗-一号天线链路损耗(L1)-馈线损耗+一号天线增益。
其中:电子标签发射功率(EIRP)取值为0dBm,车前挡风玻璃损耗取值为2dB(因车型玻璃不同而有所不同),馈线损耗取值为1dB,
一号天线增益的取值根据车辆电子标签与一号天线相对位置的夹角从天线的增益图中得到。天线的增益图由图4给出,其中天线增益最大的角度为0度,最大增益为18dB,其它角度的增益可以从图4中查找得出。
因此第i个定标点的RSSI1的计算公式可用公式六表示,公式六:
RSSI1(i)=0-2-L1-1+G1(i)=G1(i)-3-L1
其中G1(i)为第i个定标点的天线增益,G1(i)的计算需要知道定标点到一号天线的方向角,如图5所示。
第i个定标点的方向角计算公式可用公式七表示,公式七:
Ang(i)=90-arctan(X1/L)×180/π
其中L=6.5。
图5给出了定标点P5到一号天线的方向角示意图。
用上述公式六、公式七依次计算车辆电子标签在不同定标点位置的方向角和天线增益,以及一号天线接收到的对应位置的上行信号强度值(RSSI1),结果如表格3所示。RSSI1表示车辆电子标签在不同定标点位置时,一号天线接收到的上行信号强度值。
表格3:
  定标点   P-2   P-1   P0   P1   P2
  方向角   -17.1   -8.7   0   8.7   17.1
  G1(i)   13   15   18   15   13
  RSSI1   -54.4   -52.1   -49.0   -52.1   -54.4
  定标点   P3   P4   P5   P6   P7   P8
  方向角   24.8   31.6   37.6   42.7   47.1   50.9
  G1(i)   3   -7   -6   -14   -20   -28
  RSSI1   -64.8   -75.4   -75.0   -83.6   -90.3   -99.0
步骤5:从理论上初步确定:二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI2),
二号天线接收机收到的上行信号强度值(RSSI2)=电子标签发射功率(EIRP)-车前挡风玻璃损耗-二号天线链路损耗(L2)-馈线损耗+二号天线增益
其中:电子标签发射功率(EIRP)取值为0dBm,车前挡风玻璃损耗取值为2dB(因车型玻璃不同而有所不同),馈线损耗取值为1db,天线增益的取值可以根据电子标签与二号天线相对位置的夹角从天线的增益图中得到。
因此第i个定标点的RSSI2的计算公式可用公式八表示,公式八:
RSSI2(i)=0-2-L2-1+G2(i)=G2(i)-3-L2
其中G2(i)为第i个定标点的天线增益,G2(i)的计算需要知道定标点到二号天线的方向角(如图5所示)。
第i个定标点的方向角计算公式可用公式九表示,公式九:
Ang(i)=90-arctan(X2/L)×180/π
其中L=6.5。
用上述公式八、公式九依次计算车辆电子标签在不同定标点位置的方向角和天线增益,以及参考天线接收到的对应位置的上行信号强度值(RSSI2),结果如表格4所示。RSSI2表示车辆电子标签在不同定标点位置时,二号天线接收到的上行信号强度值。
表格4:
  定标点   P-2   P-1   P0   P1   P2
  方向角   49.1   45   40.2   34.7   28.3
  G2(i)   -26   -16   -17   -4   -6
  RSSI2   -96.6   -86.0   -86.3   -72.7   -74.1
  定标点   P3   P4   P5   P6   P7   P8
  方向角   21.0   13.0   4.4   -4.4   -13.0   -21.0
  G2(i)   6   14   17   17   14   6
  RSSI2   -61.6   -53.2   -50.0   -50.0   -53.2   -61.6
步骤6:通过实际测量,对一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI1)进行调整,
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点,
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,利用该误差值平均值对理论计算的各定标点的一号天线接收机收到的车辆电子标签发出的上行信号强度值进行调整,作为一号天线接收信号强度参考值,经过实际测量可知,
在定标点P-2位置RSSI1的实际值是-55dBm,理论计算值-54.4dBm,误差-1dB,
在定标点P1位置RSSI1的实际值是-55dBm,理论计算值-52.1dBm,误差-3dB,
在定标点P4位置RSSI1的实际值是-77dBm,理论计算值-75.4dBm,误差-2dB,
在定标点P7位置RSSI1的实际值是-92dBm,理论计算值-90.3dBm,误差-2dB,
对上述误差值取平均值,(-1-3-2-2)/4=-2dB,
就得到了本路段RSSI1的误差平均值-2dB,
然后利用该误差值平均值对表格9中的各RSSI1进行调整,就得到了一号天线接收信号强度参考值,如表格5所示,表格5:
  定标点   P-2   P-1   P0   P1   P2
  RSSI1   -56.4   -54.1   -51.0   -54.1   -56.4
  定标点   P3   P4   P5   P6   P7   P8
  RSSI1   -66.8   -77.4   -77.0   -85.6   -92.3   -101.0
步骤7:通过实际测量,对二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI2)进行调整,
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点,
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,利用该误差值平均值对理论计算的各定标点的二号天线接收机收到的车辆电子标签发出的上行信号强度值进行调整,作为二号天线接收信号强度参考值,
经过实际测量可知,
在定标点P-2位置RSSI2的实际值-100dBm,理论计算值-96.6dBm,误差-3dB,
在定标点P1位置RSSI2的实际值-78dBm,理论计算值-72.7dBm,误差-5dB,
在定标点P4位置RSSI2的实际值-57dBm,理论计算值-53.2dBm,误差-4dB,
在定标点P7位置RSSI2的实际值-57dBm,理论计算值-53.2dBm,误差-4dB,
对上述误差值取平均值,(-3-5-4-4)/4=-4dB就得到了本路段RSSI2的误差平均值-4dB,然后利用该误差值平均值对表格4中的各RSSI2进行调整,就得到了二号天线接收信号强度参考值如表格6所示,
表格6:
  定标点   P-2   P-1   P0   P1   P2
  RSSI2   -100.6   -90.0   -90.3   -76.7   -78.1
  定标点   P3   P4   P5   P6   P7   P8
  RSSI2   -65.6   -57.2   -54.0   -54.0   -57.2   -65.6
步骤8:
将上述步骤6、步骤7得到的一号天线接收信号强度参考值、二号天线接收信号强度参考值(表格5、表格6中的数据)存储在对应路侧设备的存储区中,每次一号天线、二号天线收到车辆电子标签发出的上行信号后,与对应路侧设备存储区中的一号天线、二号天线接收信号强度参考值进行匹配拟合,从而判断车辆的位置;匹配拟合由计算机按照软件程序的设定自动完成。
软件程序可以按照公知的匹配拟合算法进行编程,如采用相对值拟合的算法,计算原有天线、附加天线的接收信号强度的相对值(两天线在同一定标点的RSSI的比值),
例如,对于上述11个定标点,一号天线和二号天线的相对值就是表格5中RSSI1和表格6中RSSI2的比值,
可以用表格7表示,
表格7:
  定标点   P-2   P-1   P0   P1   P2
  RSSI1/RSSI2   0.56   0.60   0.56   0.71   0.72
  定标点   P3   P4   P5   P6   P7   P8
  RSSI1/RSSI2   1.02   1.35   1.43   1.59   1.61   1.54
假设本次一号天线和二号天线的接收信号强度值分别为r1=-55dBm和r2=-77dBm,则相对值为r1/r2=-55/(-77)=0.71,
从表格7中寻找与该比值(0.71)最接近的定标点,该定标点为P1(0.71),则匹配拟合结果是:车辆电子标签位置为P1点,车辆位于一号天线所在车道1内(因为定标点P1位于一号天线所在车道,如图1、图3所示)。
实施例二,本发明是一种多天线协同定位解决邻道干扰问题的方法,该方法用于并列布置的两个或多个电子不停车收费天线系统,通过匹配其中任意相邻车道的一号天线和二号天线的数据,解决邻道干扰,其特征是:该方法包括以下步骤:
步骤1:在一号天线和二号天线检测区域内部设置一条基准线,该基准线与行车方向垂直,根据一号天线和二号天线之间的跨度,在基准线上以等步长划分定标点;
在本实施例中,一号天线和二号天线分别安装在龙门架上各自车道的正中央位置,安装高度为5.5米,安装角度为向下45度角,这样天线辐射功率最大的水平方向为本车道正中央,垂直方向为天线检测区域中间部分;一号天线和二号天线的方向性图不相同,如图8所示。
目前国内ETC系统中,天线检测区域最远端距离天线正下方一般为5.5-6.5米,在此取5米处的较远端作为基准线位置;基准线高度取1米,相当于车载电子标签安装位置的高度;
ETC车道宽度典型值为3.3米,收费岛宽2.2米,因此两个相邻ETC车道的天线距离为5.5米;基准线上的定标点个数和位置主要由天线检测范围(主要由半功率角表征)和车道宽度决定;对于一般的ETC车道,相邻两个ETC车道的定标点设置的俯视图如图2所示;
定标点步长可以在半个车身宽度至一个车身宽度之间,方便起见可以取0.5/1/2米作为步长,图2中的步长为1米;
请参照图2,在本实施例中,定标点所在基准线到一号天线和二号天线(龙门架)所在直线的高度为h=h2-h1=5.5-1=4.5米,
基准线高度h1为1米,一号天线安装高度h2为5.5米;车辆电子标签102到一号天线正下方的水平距离s=5米,
根据勾股定理,电子不停车收费车道(ETC)车道一号天线到基准线的的直射距离计算可用公式一表示,公式一:
L = h 2 + s 2
L = 5 2 + 4.5 2 = 6.7
在此取L=6.5米。
图8中定标点共有11个,分别是:
{P-2,P-1,P0,P1,P2,P3,P4,P5,P6,P7,P8}。
步骤2:通过公知的三角公式计算一号天线和二号天线相对于每一个定标点的距离;
一号天线相对于每一个定标点的距离是一号天线与定标点水平方向的偏移距离的平方加上一号天线到基准线的直射距离的平方然后开方,
可用公式二表示,公式二:
d 1 = L 2 + X 1 2
其中L是一号天线到基准线的直射距离,L=6.5米。X1是一号天线与定标点水平方向的偏移距离,
对于每一个定标点{P-2,P-1,P0,P1,P2,P3,P4,P5,P6,P7,P8},X1的值分别={-2米,-1米,0米,1米,2米,3米,4米,5米,6米,7米,8米}。
二号天线相对于每一个定标点的距离是二号天线与定标点水平方向的偏移距离的平方加上一号天线到基准线的直射距离的平方然后开方,
可用公式三表示,公式三:
d 2 = L 2 + X 2 2
其中L是一号天线到基准线的直射距离,L=6.5米。
X2是二号天线与定标点的水平方向的偏移距离,对于每一个定标点{P-2,P-1,P0,P1,P2,P3,P4,P5,P6,P7,P8},X2的值分别={7.5米,6.5米,5.5米,4.5米,3.5米,2.5米,1.5米,0.5米,-0.5米,-1.5米,-2.5米}。
经过上述公式二、公式三计算可知:一号天线和二号天线相对于每一个定标点的距离d1、d2如表格8所示,表格8:
  定标点   P-2   P-1   P0   P1   P2   P3
  d1(米)   6.8   6.6   6.5   6.6   6.8   7.2
  d2(米)   9.9   9.2   8.5   7.9   7.4   7.0
  定标点   P4   P5   P6   P7   P8
  d1(米)   7.6   8.2   8.8   9.6   10.3
  d2(米)   6.7   6.5   6.5   6.7   7.0
步骤3:通过公知的无线微波的直射路径传输损耗公式计算一号天线和二号天线相对于每一个定标点的链路基本传输损耗;
一号天线的链路基本传输损耗等于常数一加上常数二与一号天线到定标点距离的对数的乘积再加上常数三与上行信号载波频率的对数的乘积,可以用公式四表示,公式四:
L1=32.44+20logd1+20logf
其中,d1为一号天线与定标点的距离,单位为米,
f为上行信号载波频率,单位为GHz,本实施例中为固定值,取为5.8GHz。
二号天线的链路基本传输损耗等于常数一加上常数二与二号天线到定标点距离的对数的乘积再加上常数三与上行信号载波频率的对数的乘积,可以用公式五表示,公式五:
L2=32.44+20logd2+20logf
其中:d2为二号天线与定标点的距离,单位为米;
f为上行信号载波频率,单位为GHz,本实施例中为固定值5.8GHz。
经过上述公式四、公式五计算可知:一号天线和二号天线相对于每一个定标点的链路损耗如表格9所示:
表格9:
  定标点   P-2   P-1   P0   P1   P2   P3
  L1   64.4   64.1   64.0   64.1   64.4   64.8
  L2   67.6   67.0   66.3   65.7   65.1   64.6
  定标点   P4   P5   P6   P7   P8
  L1   65.4   66.0   66.7   67.6   68.0
  L2   64.2   64.0   64.0   64.2   64.6
步骤4:通过计算从理论上初步确定:一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI1),
一号天线接收机收到的上行信号强度(RSSI1)=电子标签发射功率(EIRP)-车前挡风玻璃损耗-一号天线链路损耗(L1)-馈线损耗+一号天线增益。
其中:电子标签发射功率(EIRP)取值为0dBm,车前挡风玻璃损耗取值为2dB(因车型玻璃不同而有所不同),馈线损耗取值为1dB,
一号天线增益的取值根据电子标签与一号天线相对位置的夹角从天线的增益图中得到。一号天线的增益图由图4给出,其中一号天线增益最大的角度为0度。最大增益为18dB,其它角度的增益可以从图4中查找得出。
第i个定标点的RSSI1的计算公式可用公式六表示,公式六:
RSSI1(i)=0-2-L1-1+G1(i)=G1(i)-3-L1
其中G1(i)为第i个定标点的天线增益,G1(i)的计算需要知道定标点到一号天线的方向角,如图5所示。
第i个定标点的方向角计算公式为可用公式七表示:公式七:
Ang(i)=90-arctan(X1/L)×180/π
其中L=6.5。
图5给出了定标点P0到一号天线的方向角示意图。
用上述公式六、公式七依次计算车辆电子标签在不同定标点位置的方向角和天线增益,以及一号天线接收到的对应位置的上行信号强度值(RSSI1),结果如表格10所示。RSSI1表示车辆电子标签在不同定标点位置时,一号天线接收到的上行信号强度值。如表格10所示:
  定标点   P-2   P-1   P0   P1   P2
  方向角   -17.1   -8.7   0   8.7   17.1
  G1(i)   13   15   18   15   13
  RSSI1   -54.4   -52.1   -49.0   -52.1   -54.4
  定标点   P3   P4   P5   P6   P7   P8
  方向角   24.8   31.6   37.6   42.7   47.1   50.9
  G1(i)   3   -7   -6   -14   -20   -28
  RSSI1   -64.8   -75.4   -75.0   -83.6   -90.3   -99.0
步骤5:通过计算从理论上初步确定:二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI2),
二号天线接收机收到的上行信号强度值(RSSI2)=电子标签发射功率(EIRP)-车前挡风玻璃损耗-二号天线链路损耗(L2)-馈线损耗+二号天线增益
其中:电子标签发射功率(EIRP)取值为0dBm,车前挡风玻璃损耗取值为2dB(因车型玻璃不同而有所不同),馈线损耗取值为1db,
天线增益的取值可以根据车辆电子标签与二号天线相对位置的夹角从天线的增益图中得到。二号天线增益的取值根据车辆电子标签与二号天线相对位置的夹角从天线的增益图中得到。二号天线的增益图由图6给出,二号天线增益最大的角度为0度,最大增益为20dB,其它角度的增益可以从图6中查找得出。
第i个定标点的RSSI2的计算公式可用公式七表示,公式七:
RSSI2(i)=0-2-L2-1+G2(i)=G2(i)-3-L2
其中G2(i)为第i个定标点的天线增益,G2(i)的计算需要知道定标点到天线的方向角(图5)。
第i个定标点的方向角计算公式可用公式八表示,公式八:
Ang(i)=90-arctan(X2/L)×180/π
其中L=6.5。
用上述公式八、公式九依次计算车辆电子标签在不同定标点位置的方向角和天线增益,以及二号天线接收到的对应位置的上行信号强度值(RSSI2),结果如表格11所示。RSSI2表示车辆电子标签在不同定标点位置时,二号天线接收到的上行信号强度值,
表格11:
  定标点   P-2   P-1   P0   P1   P2
  方向角   49.1   45   40.2   34.7   28.3
  G2(i)   -27   -24   -20   -15   -11
  RSSI2   -97.7   -94.0   -89.3   -83.7   -79.1
  定标点   P3   P4   P5   P6   P7   P8
  方向角   21.0   13.0   4.4   -4.4   -13.0   -21.0
  G2(i)   -3   15   19   19   15   -3
  RSSI2   -70.6   -52.2   -48.0   -48.0   -52.2   -70.6
步骤6:通过实际测量,对一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI1)进行调整,
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点,
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,利用该误差值平均值对理论计算的各定标点的一号天线接收机收到的车辆电子标签发出的上行信号强度值进行调整,作为一号天线接收信号强度参考值,
经过实际测量可知,
在定标点P-2位置RSSI1的实际值是-55dBm,理论计算值-54.4dBm,误差-1dB,
在定标点P1位置RSSI1的实际值是-55dBm,理论计算值-52.1dBm,误差-3dB,
在定标点P4位置RSSI1的实际值是-77dBm,理论计算值-75.4dBm,误差-2dB,
在定标点P7位置RSSI1的实际值是-92dBm,理论计算值-90.3dBm,误差-2dB,
对上述误差值取平均值,(-1-3-1-2)/4=-2dB
就得到了本路段RSSI1的误差平均值-2dB,
然后利用该误差值平均值对表格10中的各RSSI1进行调整,就得到了一号天线接收信号强度参考值,
如表格12所示,
表格12:
  定标点   P-2   P-1   P0   P1   P2   P3
  RSSI1   -56.4   -54.1   -51.0   -54.1   -56.4   -66.8
  定标点   P4   P5   P6   P7   P8
  RSSI1   -77.4   -77.0   -85.6   -92.3   -101.0
步骤7:通过实际测量,对二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值(RSSI2)进行调整,
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点,
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,利用该误差值平均值对理论计算的各定标点的二号天线接收机收到的车辆电子标签发出的上行信号强度值进行调整,作为二号天线接收信号强度参考值,
经过实际测量可知,
在定标点P-2位置RSSI2的实际值-101dBm,理论计算值-97.7dBm,误差-3dB,
在定标点P1位置RSSI2的实际值-89dBm,理论计算值-83.7dBm,误差-5dB,
在定标点P4位置RSSI2的实际值-56dBm,理论计算值-52.2dBm,误差-4dB,
在定标点P7位置RSSI2的实际值-56dBm,理论计算值-52.2dBm,误差-4dB,
对上述误差值取平均值,(-3dB-5dB-4dB-4dB)/4=-4dB
就得到了本路段RSSI2的误差平均值-4dB,
然后利用该误差值平均值对表格11中的各RSSI2进行调整,就得到了二号天线接收信号强度参考值,如表格13所示,表格13:
  定标点   P-2   P-1   P0   P1   P2   P3
  RSSI2   -101.7   -98.0   -93.3   -87.7   -83.1   -74.6
  定标点   P4   P5   P6   P7   P8
  RSSI2   -56.2   -52.0   -52.0   -56.2   -74.6
步骤9:将上述步骤7、步骤8得到的一号天线、二号天线接收有效值(表格12、13中的RSSI1、RSSI2的值)存储在路侧设备的计算机数据库中,每次一号天线、二号天线收到车辆电子标签发出的上行信号RSSI1、RSSI2后,通过查找数据库中的对应值RSSI1、RSSI2(与哪个定标点重合),从而确定车辆电子标签在ETC车道中的位置。匹配拟合由计算机按照软件程序的设定自动完成。
软件程序可以按照公知的匹配拟合算法进行编程,如采用相对值拟合的算法。首先计算原有天线、附加天线的接收信号强度的相对值(两天线在同一定标点的RSSI的比值),再和两天线接收信号的强度比值进行对比,寻找最接近的数值进行拟合匹配。
例如,对于上述11个定标点,一号天线和二号天线的相对值就是表格12中RSSI1和表格13中RSSI2的比值,可以用表格14表示,
表格14:
  定标点   P-2   P-1   P0   P1   P2
  RSSI1/RSSI2   0.55   0.55   0.55   0.62   0.68
  定标点   P3   P4   P5   P6   P7   P8
  RSSI1/RSSI2   0.90   1.38   1.48   1.65   1.64   1.35
假设本次一号天线和二号天线的接收信号强度值分别为r1=-78dBm和r2=-53dBm,则相对值为r1/r2=-78/(-53)=1.47,从表格14中寻找与该比值(1.47)最接近的定标点,该定标点为P5(1.48),则匹配拟合结果是:车辆电子标签位置为P5点,车辆位于二号天线所在车道2内(因为定标点P5位于二号天线所在车道,如图1、图8所示)。

Claims (1)

1.一种多天线协同定位解决邻道干扰问题的方法,该方法用于并列布置的两个或多个电子不停车收费天线系统,通过匹配其中任意相邻车道的一号天线和二号天线的数据,解决邻道干扰,其特征是:该方法包括以下步骤:
步骤1:在一号天线和二号天线检测区域内部设置一条基准线,该基准线与行车方向垂直,根据一号天线和二号天线之间的跨度,在基准线上以等步长划分定标点;
步骤2:通过公知的三角公式计算一号天线和二号天线相对于每一个定标点的距离;
步骤3:通过公知的无线微波的直射路径传输损耗公式计算一号天线和二号天线相对于每一个定标点的链路基本传输损耗;
步骤4:通过理论计算初步确定:一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值;理论计算的具体方法是:
一号天线接收机收到的上行信号强度值等于电子标签发射功率减去车前挡风玻璃损耗、再减去一号天线链路损耗、再减去馈线损耗、再加上一号天线增益;
步骤5:通过理论计算初步确定:二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值,理论计算的具体方法是:
二号天线接收机收到的上行信号强度值等于电子标签发射功率减去车前挡风玻璃损耗、再减去二号天线链路损耗、再减去馈线损耗、再加上二号天线增益;
步骤6:通过现场实际测量,对一号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值进行调整,调整的具体方式是:
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点,
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值,
利用该误差值平均值对理论计算的一号天线接收机收到的车辆电子标签在各定标点发出的上行信号强度值进行调整,作为一号天线接收信号强度参考值;
步骤7:通过现场实际测量,对二号天线接收机收到的车辆电子标签在每个定标点发出的上行信号强度值进行调整,调整的具体方式是:
进行现场实测,在实际道路中选择几个具有代表性的定标点进行实际测量,具有代表性的定标点为两端点和中间点;
将具有代表性的每个定标点的实际测量值与理论计算值进行比较,算出误差值,然后对具有代表性的各定标点的误差值取平均值;
利用该误差值平均值对理论计算的二号天线接收机收到的车辆电子标签在各定标点发出的上行信号强度值进行调整,作为二号天线接收信号强度参考值;
步骤8:将上述步骤6、步骤7得到的一号天线接收信号强度参考值、二号天线接收信号强度参考值存储在对应的路侧设备存储区中,每次一号天线、二号天线收到车辆电子标签发出的上行信号后,与对应路侧设备存储区中的一号天线、二号天线接收信号强度参考值进行匹配拟合,从而判断车辆的位置。
CN 201010582813 2010-12-10 2010-12-10 多天线协同定位解决邻道干扰问题的方法 Active CN102045122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010582813 CN102045122B (zh) 2010-12-10 2010-12-10 多天线协同定位解决邻道干扰问题的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010582813 CN102045122B (zh) 2010-12-10 2010-12-10 多天线协同定位解决邻道干扰问题的方法

Publications (2)

Publication Number Publication Date
CN102045122A CN102045122A (zh) 2011-05-04
CN102045122B true CN102045122B (zh) 2013-06-12

Family

ID=43910960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010582813 Active CN102045122B (zh) 2010-12-10 2010-12-10 多天线协同定位解决邻道干扰问题的方法

Country Status (1)

Country Link
CN (1) CN102045122B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810219B (zh) * 2011-05-31 2016-03-02 中兴通讯股份有限公司 基于射频识别的标签交易方法及系统
CN102353935A (zh) * 2011-06-07 2012-02-15 北京万集科技股份有限公司 一种基于时间测量的obu定位方法、设备及系统
CN102890262B (zh) * 2011-07-20 2016-04-13 中兴通讯股份有限公司 信源定位方法及装置
CN102890763A (zh) * 2011-07-20 2013-01-23 中兴通讯股份有限公司 抑制临道干扰的方法、耦合器及阅读器
CN102891722B (zh) * 2011-07-21 2016-03-02 中兴通讯股份有限公司 一种纵向定位的方法及装置
CN102568045B (zh) * 2011-12-29 2014-07-02 北京握奇数据系统有限公司 一种电子收费系统中对车载设备定位的方法及装置
CN103514637A (zh) * 2012-06-15 2014-01-15 深圳市金溢科技有限公司 基于dsrc的防邻道干扰方法、装置及应用系统
CN104506260B (zh) * 2014-12-23 2017-10-03 北京万集科技股份有限公司 Etc路侧设备场强测量及通信区域标定装置、系统及方法
MY191704A (en) 2015-02-02 2022-07-08 Tma Capital Australia Pty Ltd System, method and computer program for an access control system
CN104933457B (zh) * 2015-07-03 2017-11-28 成都恒高科技有限公司 检测区域内信号源的检测方法和装置
CN106910256B (zh) * 2015-12-22 2019-07-26 北京万集科技股份有限公司 一种多车道自由流下的多天线联合工作方法及系统
CN108616316B (zh) * 2016-12-29 2021-02-05 艾尔珀因特株式会社 车载装置及其信号处理方法
CN108267758B (zh) * 2016-12-30 2021-08-10 沈阳美行科技有限公司 一种车辆定位、导航方法和装置及相关系统、应用
CN107370509A (zh) * 2017-07-28 2017-11-21 广东兴达顺科技有限公司 一种信号强度的指示方法、检测设备及车辆设备
DE102017221285A1 (de) * 2017-11-28 2019-05-29 Continental Automotive Gmbh Verfahren und Vorrichtung zur Positionsbestimmung von mobilen Identifikationsgebern
DE102017222290A1 (de) * 2017-12-08 2019-06-13 Continental Teves Ag & Co. Ohg Verfahren zum Bestimmen von Korrekturwerten, Verfahren zum Bestimmen einer Position eines Kraftfahrzeugs, elektronische Steuerungsvorrichtung und Speichermedium
CN111127681B (zh) * 2019-12-31 2022-04-08 苏州摩卡智行信息科技有限公司 基于信号强度的etc车辆识别方法、装置及存储介质
CN111292532A (zh) * 2020-02-07 2020-06-16 北京易路行技术有限公司 用于在高速公路上检测车载标签的装置、通信系统及方法
CN112037345A (zh) * 2020-07-21 2020-12-04 深圳成谷智能科技有限公司 防止etc门架系统误计费的方法、装置和电子设备
CN114550325A (zh) * 2020-11-25 2022-05-27 北京万集科技股份有限公司 一种电子收费方法、系统和存储介质
CN112967409B (zh) * 2021-02-03 2023-02-17 北京千方科技股份有限公司 一种用于etc信息发送的防碰撞方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226836C (zh) * 2001-09-07 2005-11-09 松下电器产业株式会社 干扰信号功率测量装置及方法、发射功率控制装置及方法
CN101578906A (zh) * 2007-01-05 2009-11-11 交互数字技术公司 随机接入信道中的回退机制

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636550B2 (en) * 2005-06-23 2009-12-22 Autocell Laboratories, Inc. System and method for determining channel quality in a wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226836C (zh) * 2001-09-07 2005-11-09 松下电器产业株式会社 干扰信号功率测量装置及方法、发射功率控制装置及方法
CN101578906A (zh) * 2007-01-05 2009-11-11 交互数字技术公司 随机接入信道中的回退机制

Also Published As

Publication number Publication date
CN102045122A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
CN102045122B (zh) 多天线协同定位解决邻道干扰问题的方法
CN102034281B (zh) 利用附加天线定位解决邻道干扰问题的方法
CN102831657B (zh) Etc通信控制方法、多波束天线、rsu及etc系统
CN101764285A (zh) 天线波束指向移动车辆的方法、天线及不停车收费系统
CN101373860B (zh) 嵌在铁路车辆上的波导天线
CN103793947B (zh) 一种防止电子收费系统邻道干扰的方法和系统
CN102810146B (zh) 一种电子标签及其功率校准方法、校准设备及校准系统
US5757285A (en) Method and apparatus for effecting a wireless exchange of data between a stationary station and moving objects
CN102592323A (zh) 基于dbf的obu定位方法、定位装置及系统
CN104749447A (zh) 一种基站的环境电磁辐射的估算方法和装置
CN104407327A (zh) 基于双向无线光通信的室内定位方法
CN106231621A (zh) 一种用于fdd‑lte系统中传播模型的多场景自适应优化方法
US20130141281A1 (en) Control vehicle for a road toll system
CN104090264A (zh) 一种基于超宽带无源射频标签的车辆定位方法
CN102014400B (zh) 廊道移动通信覆盖分布系统及耦合辐射单元
JPWO2011043377A1 (ja) 物体検出装置
CN103078686A (zh) 用于降低etc系统中邻道干扰的方法、系统及装置
CN105631953A (zh) 用于etc系统的车载电子标签识别定位装置及方法
CN105303209A (zh) 建立车载rfid信息数据中继传输的系统
CN104993848A (zh) 一种多模式信息感知一体化识别设备
CN103699870A (zh) 一种基于超高频射频识别的车辆车道判别方法及装置
CN101478776B (zh) 一种铁路无线环境路径损耗指数估值方法
CN113949473B (zh) 一种轨道交通车地无线通信抗同频干扰系统及其方法
CN106093458A (zh) 单发射波束三天线微波车速和车型检测雷达及检测方法
Kuzulugil et al. A Proposed V2V Path Loss Model: Log-Ray

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: 100073 Beijing city Fengtai District six Lane Bridge No. 9 the first building block C room 902

Applicant after: Beijing Sutong Technology Co., Ltd.

Address before: 100070 Beijing city Fengtai District Haiying Hospital No. 1 Building No. 2 room 1216

Applicant before: Beijing Kuaitong Expressway Electronic Toll Collection System Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: BEIJING KUAITONG HIGHWAY ETC SYSTEM CO., LTD. TO: BEIJING SUTONG TECHNOLOGY CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant