WO2003023849A1 - Microelectronic mechanical system and methods - Google Patents
Microelectronic mechanical system and methods Download PDFInfo
- Publication number
- WO2003023849A1 WO2003023849A1 PCT/US2002/027822 US0227822W WO03023849A1 WO 2003023849 A1 WO2003023849 A1 WO 2003023849A1 US 0227822 W US0227822 W US 0227822W WO 03023849 A1 WO03023849 A1 WO 03023849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- etch
- sacrificial
- mems
- release
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00444—Surface micromachining, i.e. structuring layers on the substrate
- B81C1/00468—Releasing structures
- B81C1/00484—Processes for releasing structures not provided for in group B81C1/00476
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00222—Integrating an electronic processing unit with a micromechanical structure
- B81C1/00246—Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00261—Processes for packaging MEMS devices
- B81C1/00333—Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0271—Resonators; ultrasonic resonators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0136—Comb structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0102—Surface micromachining
- B81C2201/0105—Sacrificial layer
- B81C2201/0109—Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0128—Processes for removing material
- B81C2201/013—Etching
- B81C2201/0135—Controlling etch progression
- B81C2201/014—Controlling etch progression by depositing an etch stop layer, e.g. silicon nitride, silicon oxide, metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/01—Packaging MEMS
- B81C2203/0136—Growing or depositing of a covering layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/07—Integrating an electronic processing unit with a micromechanical structure
- B81C2203/0707—Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
- B81C2203/0735—Post-CMOS, i.e. forming the micromechanical structure after the CMOS circuit
Definitions
- the present invention relates to wafer processing. More particularly, the present invention relates to methods for encapsulation of microelectronic mechanical systems.
- MEMS microelectronic mechanical systems
- ICs integrated circuits
- MEMS In addition to the MEMS and ICs processing incompatibilities, MEMS typically require encapsulation, whereby the active portions of the MEMS are sealed within a controlled storage environment.
- One way to encapsulate the active portions of the MEMS is to provide unique customized packaging structure configured with conductive leads fitted for the MEMS.
- the MEMS can be formed on a wafer substrate that serves as a bottom portion of the packaging structure. After the MEMS is formed on the wafer, then a matched lid structure is glued or soldered over the active potions of the MEMS within the suitable storage environment.
- Shook describes a method and apparatus for hermetically passivating a MEMS on a semi-conductor substrate in U.S. Patent Application Serial No.
- the current invention provides a method of making an encapsulated release structure.
- the release structure is a MEMS device having a plurality of ribbons or beams, which may further have a comb structure.
- the device comprises a resonator that can be used for periodic waveform generation (e.g. clock generation).
- the device comprises a grating light valve for generation and/or transmission of optical information.
- the device comprises a radio frequency (RF) generator for wireless transmission of information.
- RF radio frequency
- the release structure is formed between layers of a multi-layer structure.
- the multilayer structure preferably comprises a first and second etch-stop layers, which can be the same as or different from each other, and a first sacrificial layer between the first and the second etch-stop layer. Release features are patterned into the second etch-stop layer.
- the multi-layer structure is formed on a silicon wafer substrate.
- the silicon wafer substrate is preferably configured to couple the MEMS device with an integrated circuit (IC), also formed on the silicon wafer substrate.
- the multi-layer structure is formed with a first etch-stop layer that is deposited on or over a selected region of the silicon wafer substrate.
- the first etch-stop layer is preferably a silicon dioxide layer, a silicon nitride layer or a combination thereof.
- the first sacrificial layer is formed on top of or over the first etch-stop layer.
- the first sacrificial layer preferably comprises a polysilicon material though other materials can also be used.
- the second etch-stop layer is formed on or over the first sacrificial layer with a pattern corresponding to release features of the release structure.
- the second etch-stop layer is patterned with the release structure features using any suitable patterning technique. Accordingly, a patterned photo-resist is formed on or over the second etch-stop layer prior to removing a portion thereof to form a patterned second etch- stop layer having gaps therein and between portions of the second etch-stop layer under the patterned phot resist.
- the first sacrificial layer can be anisotropically etched with a positive impression of the release structure features. The positive impression of the release structure features provides nuclei for rapid anisotropic growth of release structure features onto the patterned portions of the first sacrificial layer during the deposition of the second etch-stop layer.
- a second sacrificial layer is formed over the second etch-stop layer sandwiching the second etch-stop layer having the release structure features between the first and the second sacrificial layers.
- the second sacrificial layer preferably comprises polysilicon.
- a sealant layer or capping layer is formed on top of the second sacrificial layer.
- the capping layer preferably comprises one or more conventional passivation layers and more preferably comprises a silicon oxide layer, a silicon nitride layer or a combination thereof.
- the etch-stop layers are formed by any number of methods.
- An etch-stop layer can be formed from any materials that show resistance to etching under specified etching conditions relative to the materials that form the sacrificial layer(s).
- the etching rate (mass or thickness of material etched per unit time) of sacrificial materials(s) relative to the etch-stop layer materials is preferably greater than 10:1, more preferably greater than 50:1 and most preferably greater than 100:1. In developing the present invention, experimental results of approximately 2500:1 have been achieved.
- Any particular etch-stop layer can comprise one or more layers, any of which can be exposed to the sacrificial layer etchant as long as the etch-stop layer exhibits sufficient resistance to the sacrificial layer etchant.
- one or more of the etch-stop layers of the multi-layer structure comprise silicon oxide.
- the silicon oxide is silicon dioxide; when silicon oxide is referred to in this document, silicon dioxide is the most preferred embodiment, although conventional, doped and/or non-stoichiometric silicon oxides are also contemplated.
- Silicon oxide layers can be formed by thermal growth, whereby heating a silicon surface in the presence of an oxygen source forms the silicon oxide layer.
- the silicon oxide layers can be formed by chemical vapor deposition processes, whereby an organic silicon vapor source is decomposed in the presence of oxygen.
- the silicon nitride layers can be formed by thermal growth or chemical deposition processes.
- the polysilicon sacrificial layers are preferably formed by standard IC processing methods, such as chemical vapor deposition, sputtering or plasma enhanced chemical vapor deposition (PECND).
- the deposition surface can be cleaned or treated.
- the deposition surface can be treated or cleaned with a solvent such as ⁇ -methyl-2-pyrolipone (NMP) in order to remove residual photo-resist polymer.
- NMP ⁇ -methyl-2-pyrolipone
- the deposition surface can be mechanically planarized.
- access holes or trenches are formed in the capping or sealant layer, thereby exposing regions of the second sacrificial layer therebelow.
- Access trenches are referred to, herein, generally as cavitations formed in the capping or sealant layer which is allows the etchant to etch the material in the sacrificial layer therebelow.
- the term access trenches is used herein to encompass both elongated and symmetrical (e.g. holes, rectangles, squares, ovals, etc.) cavitations in the capping or sealant layer.
- access trenches can have any number of shapes or geometries, but are preferably anisotropically etched to have steep wall profiles.
- the access trenches are preferably formed by etching techniques including wet etching processes and reactive ion etching processes though other conventional techniques can be used.
- the exposed regions of the second sacrificial layer are then treated to a suitable etchant which selectively etches substantial portions of the first and second sacrificial layers portion so the release structures are suspended under the capping or sealant layer.
- the preferred etchant comprises a noble gas fluoride, such as xenon difluoride.
- the exposed regions of the second sacrificial layer can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride prior to selectively etching the first and second sacrificial layers.
- the pre-etch solution can prevent the formation of oxide, clean exposed regions of the second sacrificial layer, remove polymers and/or help to ensure that etching is not quenched by the formation of oxides.
- the etching step is preferably performed in a chamber, wherein the etchant is a gas.
- suitable liquid etchants are considered to be witliin the scope of the current invention, whereby the noble gas fluoride is a liquid or is dissolved in suitable solvent.
- the multi-layer structure is placed under vacuum with a pressure of approximately 10 "5 Torr.
- a container with Xenon Difluoride crystals is coupled to the chamber through a pressure controller (e.g. a controllable valve).
- the crystals are preferably at room temperature within the container with the pressure of Xenon Difluoride of approximately 4.0 Torr.
- the pressure controller is adjusted such that the pressure within the chamber is raised to approximately 50 milliTorr. This pressure, or an alternatively sufficient pressure, is provided to ensure a controllable etching rate, a positive flow of Xenon Difluoride to the chamber and excellent uniformity of the etch processes.
- the access trenches maybe sealed to encapsulate the suspended release structure between the first etch-stop layer and the capping or sealant layer.
- the sealing step is performed at a separate processing station within a multi-station wafer processing system or, alternatively, is performed within the chamber apparatus.
- the access trenches can be sealed by any number of methods including sputtering, chemical vapor deposition (CND), plasma enhanced chemical vapor deposition (PECND), or spin on glass methods.
- the access trenches can be sealed with any number of materials including metals, polymers and ceramics.
- the access trenches are sealed by sputtering a layer of aluminum over the access trenches and the capping layer. For optical applications, excess aluminum can be removed from the capping or sealant layer using a suitable mechanical or chemical method.
- the second etch-stop layer may have a reflective material deposited thereon.
- the reflective material preferably comprises aluminum. Accordingly, after the sacrificial layers are etched away, the release features preferably have a reflective upper surface suitable for optical applications.
- a gettering material such as titanium or a titanium-based alloy can be deposited within a cavity capped by the capping or sealant layer prior to sealing the access trenches in the capping or sealant layer.
- the gettering material is provided to help reduce residual moisture and/or oxygen which can lead to performance degradation of the device over time.
- the release structure is preferably sealed under a vacuum or, alternatively, under a suitable noble gas atmosphere, as described in detail below.
- the invention provides a sealed MEMS device on an IC chip, intermediate elements thereof and also a method of forming the same using techniques that are preferably compatible with standard IC processing.
- the method of the instant invention provides for processing steps that are preferably carried out at temperatures below 600 degrees Celsius and more preferably at temperatures below 550 degrees Celsius.
- the current invention provides for a method to fabricate MEMS with active structures which are hermetically sealed in a variety of environments.
- the current invention is not limited to making MEMS and can be used to make any number of simple or complex multi-cavity structures that have micro-fluid applications or any other application where an internalized multi-cavity silicon-based structure is preferred.
- the method of the instant invention is capable of being used to form any number of separate or coupled release structures within a single etching process and that larger devices can be formed using the methods of the instant invention.
- Figure 1 is a schematic illustrating a MEMS oscillator.
- Figures 2a-h illustrate top views and cross-sectional views a multi-layer structure formed on silicon wafer substrate, in accordance with current invention.
- Figures 3a-f show cross sectional views of a release features being formed from a multi-layer structure, in accordance with a preferred method of the current invention.
- Figure 4 is a block diagram outlining steps for forming a multi-layer structure illustrated in Figure 3 a.
- Figure 5 is a block-diagram outlining the method of forming a release structure from the multi-layered structure shown in Figure 2a.
- Figure 6 is a block-diagram outlining the steps for etching sacrificial layers of the multi-layer structure illustrated in Figure 2b.
- Figure 7 is a schematic diagram of a chamber apparatus configured to etch a multi- layered structure formed in accordance with the method of instant invention.
- the present invention provides a method to make devices with encapsulated release structures.
- the current invention is particularly useful for fabricating MEMS oscillators, optical display devices, optical transmission devices, RF devices and related devices.
- MEMS oscillators can have any number or simple or complex configurations, but they all operate on the basic principle of using the fundamental oscillation frequency of the structure to provide a timing signal to a coupled circuit.
- a resonator structure 102 has a set of movable comb features 101 and 101' that vibrate between a set of matched transducer combs 105 and 105'.
- the resonator structure 102 like a pendulum, has a fundamental resonance frequency.
- the comb features 101 and 101' are secured to a ground plate 109 through anchor features 103 and 103'.
- a dc-bias is applied between the resonator 102 and a ground plate 109.
- An ac-excitation frequency is applied to the comb transducers 105 and 105' causing the movable comb features 101 and 101' to vibrate and generate a motional output current.
- the motional output current is amplified by the current to-voltage amplifier 107 and fed back to the resonator structure 102.
- This positive feed-back loop destabilizes the oscillator 100 and leads to sustained oscillations of the resonator structure 102.
- a second motional output current is generated to the connection 108, which is coupled to a circuit for receiving a timing signal generated by the oscillator 100.
- a wafer structure 200 preferably comprises a silicon substrate 201 and a first etch-stop layer 203.
- the first etch- stop layer 203 may not be required to perform the methods of the instant invention, especially when the silicon substrate 201 is sufficiently thick to allow sacrificial layers to be etched without completely etching away the silicon substrate 201.
- the substrate 201 itself can be formed from or doped with a material that renders the substrate 201 substantially resistant to the etchant that is used, such that the formation of the first-etch-stop layer 203 is not required.
- the first etch- stop layer 203 preferably comprises silicon oxide, silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used to etch the first sacrificial layer.
- a region 251 of the wafer structure 200 is used to form the release structure.
- Other portions of the wafer structure 200 can be reserved for forming an integrated circuit that can be electrically coupled to and that can control operation of the release structure formed in the region 251.
- any number of release structures and release structure region 251 can be formed on the same wafer structure 200.
- a first sacrificial layer 205 is formed over the first etch-stop layer 203 using any conventional technique.
- the first sacrificial layer 205 is formed from any suitable material that is selectively etched relative to the underlying first etch-stop layer(s), but preferably comprises polysilicon.
- a second etch-stop layer 207 is formed over the first sacrificial layer 205.
- the second etch-stop layer 207 can be formed of the same or different material as the first etch-stop layer 203.
- the second etch-stop layer 207 preferably comprises silicon oxide, a silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used.
- the first sacrificial layer 205 is etched prior to depositing the second etch-stop layer 207 to provide raised support features 215 and 215' which support the subsequently formed release structures.
- support posts may be formed 216, 216' and 216" in positions to provide support for the release structures formed in subsequent steps.
- the support posts 216, 216' and 216" are formed from an etch resistant material(s) that are the same or different than material(s) used to form the etch-stop layer 203 and/or etch-stop layer 207 and capping layer 211, as described in detail below.
- the second etch-stop layer 207 can be deposited in an area of the region 251 without underlying sacrificial layer 205 and such portions of the second etch-stop layer 207 maybe deposited directly onto and/or attached to the first etch-stop layer 203 and/or substrate 201, such as shown in Figure 2 d.
- portions of the second etch-stop layer 207 deposited directly on the first etch-stop layer 203 provide structural supports for the release structures formed. There are any number of mechanisms to provide physical support for the release structures formed that are considered to be within the scope of the instant invention.
- a reflective layer 233 is deposited over the second etch-stop layer 207 and/or the support features 215 and 215' and/or support posts 216, 216' and 216".
- the reflective layer 233 preferably comprises aluminum or other suitable reflective material.
- the reflective layer 233 is preferably resistant to enchant being used in removing the sacrificial layers, but is capable of being etched using other suitable techniques including photo-lithograph and plasma etch, wherein the patterned release structures formed in subsequent steps have reflective surfaces suitable for optical applications.
- a set of bond pad 226, 227 and 228 are also formed on the wafer structure 200 for electrically coupling the release structure(s) to a circuit external to the integrated circuit containing/comprising the release structure(s).
- the reflective layer 233 can alternatively be deposited on the release features 204 and 206 after they are formed.
- the reflective layer 233 and the second etch-stop layer 207 is patterned to form the release structures/features 204 and 206.
- the reflective layer 233 and the second etch-stop layer 207 are preferably patterned using conventional photo-lithography techniques and/or steps. For example, a photo-resist layer is formed on the reflective layer 233. The photo-resist is patterned and developed to form a patterned phot-resist mask (not shown). Portions of the reflective layer 233 and the second etch-stop layer 207 are then removed using conventional techniques leaving the patterned features 204 and 206 with a reflective layer 233 under the patterned photo-resist mask. The patterned photo-resist mask can then be removed from the patterned features 204 and 206 and the patterned features 204 and 206 can be encapsulated as described in detail below.
- the first sacrificial layer 205 can be etched with a positive impression of the release features (not shown).
- the positive impression of the release features then provide nuclei for rapid anisotropic growth of release structure features 204 and 206.
- the release features 204 and 206 are shown in Figure 2f as comb structures.
- the release features can be comb structures, ribbon structures, cantilevers or any number of other structures including, but not limited to, domain separators, support structures and/or cavity walls as described in detail below.
- the additional step of forming a reflective layer 233 is not required when the patterned features 204 and 206 are not used to reflect light, such as in the case for micro- fluidic devices.
- the line 270 shows an x-axis of the wafer structure 200 and the line 271 shows the y-axis of the wafer structure.
- the z-axis 272 of the wafer structure 272 in Figure 2f is normal to the view shown.
- Figure 2g shows a side cross-sectional view of the wafer structure 200 after a second sacrificial layer 209 is deposited over release features 204 and 206 with the reflective layer 233.
- the y-axis 271 is now normal to the view shown and the z-axis 272 in now in the plane of the view shown.
- the release features 204 and 206 are embedded between the sacrificial layers 205 and 209 and the sacrificial layers 205 and 209 are preferably in contact through gap regions between the release features 204 and 206.
- the second sacrificial layer 209 is formed of any suitable material that is selectively etched relative to the etch-stop layer(s) used to form the release structure device, but preferably comprises polysilicon.
- a capping layer 211 is deposited over the second sacrificial layer 209.
- the capping layer 211 preferably comprises silicon dioxide, silicon nitride any combination thereof or any other suitable material(s) which exhibit(s) sufficient resistance to the etchant used.
- the capping layer 211 can be formed of the same or different material as the first etch-stop layer 203 and/or the second etch-stop layer 207.
- Figures 3a-3f will now be used to illustrate the preferred method of forming an encapsulated release structure from a portion 250 of the structure 200 as shown in Figure 2h.
- a device with a release structure such as the MEMS resonators structure 102 described above, is preferably made from a multi-layer structure 250.
- the multi-layer structure 250 has a first etch-stop layer 203 that is preferably formed on the region 251 of the silicon wafer substrate 201, such as previously described.
- the first etch-stop layer 203 may comprise any material or materials that exhibit resistance to etching under the conditions for etching the first sacrificial layer.
- the first etch sacrificial layer comprises polysilicon
- the first sacrificial layer etchant comprises XeF 2
- the first sacrificial layer etching conditions are described below for etching polysilicon with XeF 2
- the first etch-stop layer 203 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 500 to 5000 Angstroms.
- first sacrificial layer 205 On top of the first etch-stop layer 203 there is formed a first sacrificial layer 205.
- the first sacrificial layer 205 may comprise any materials(s) that may be selectively etched relative to the underlying first etch-stop layer 203 (when present) or substrate 201 (when the first etch-stop layer is not present).
- the first etch-stop layer 203 comprises silicon oxide or silicon nitride
- the first sacrificial layer 205 preferably comprises a polysilicon.
- the first sacrificial layer 205 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the first sacrificial layer 205 to be preferentially etched over the substrate 201 or etch-stop layer 203 and/or the etch-stop layer 206 and capping layer 211, described in detail below.
- the first sacrificial layer 205 preferably has a layer thickness in a range of 0.1 to 3.0 microns.
- the second etch-stop layer 207 is patterned with features 206 and 204 corresponding to the release structure.
- the first etch-stop layer 203 may comprise any material(s) that exhibit resistance to etching under the conditions for etching the first sacrificial layer.
- the first sacrificial layer etchant comprises XeF 2
- the first sacrificial layer etching conditions are described below for etching polysilicon with XeF 2 .
- the second etch-stop layer 207 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 300 to 5000 Angstroms.
- the second sacrificial layer 209 may comprise any materials(s) that may be selectively etched relative to the underlying, the second etch-stop layer 207 and/or the first etch stop layer 203 (when present) or substrate (when the first etch-stop layer is not present).
- the first and the second etch-stop layers 203 and 207 comprise silicon oxide or silicon nitride
- the second sacrificial 209 layer preferably comprises a polysilicon.
- second first sacrificial layer 209 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the sacrificial layer 209 to be preferentially etched over the substrate 201 or etch-stop layers 203 and 207.
- the second sacrificial layer 209 preferably has a layer thickness in a range of 0.1 to 3.0 microns and preferably, the sacrificial layers 205 and 209 are in contact with each other in the patterned regions 208 or gaps between the features 206 and 204 of the release structure.
- a capping or sealant layer 211 is deposited over second sacrificial layer 209.
- the capping or sealant layer 211 preferably comprises a conventional passivation material (e.g. an oxide, nitride, and/or an oxynitride of silicon, aluminum and/or titanium).
- the capping or sealant layer 211 also can comprise a silicon or aluminum-based passivation layer which is doped with a conventional dopant such as boron and/or phosphorus. More preferably, the capping layer or sealant layer 211 comprises a silicon oxide layer with a layer thickness in a range of 1.0 to 3.0 microns.
- each can be formed of a sandwich of known layers to achieve the same result.
- the layers are preferably taught as being formed one on top of the next, it will be apparent that intervening layers of varying thicknesses can be inserted.
- access trenches 213 and 219 are formed in the capping layer 211 thereby exposing regions 215 and 217 of the second sacrificial layer 209.
- the access trenches 213 and 219 are preferably anisotropically etched, although the access trenches 213 and 219 may be formed by any number of methods including wet and/or dry etching processes.
- a photo-resist is provided on the capping layer and is exposed and developed to provide a pattern for anisotropically etching the access trenches 213 and 219.
- an etchant may be selectively applied to a portion of the etch- stop layer 211 corresponding to the access trenches 213 and 219.
- micro- droplets or thin streams of a suitable etchant can be controllably applied to the surface of the capping or sealant layer 211 using a micro-syringe technique, such as described by Dongsung Hong, in U.S. Patent Application No. 60/141,444, filed June 29, 1999 (Attorney Docket No. 0325,00226), the contents of which are hereby incorporated by reference.
- the exposed regions 215 and 217 of the second sacrificial layer 209 can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride.
- ethylene glycol and ammonium fluoride is commercially available under the name of NOE Etch I TM manufactured by ACSI, Inc., Milpitas, CA 95035. Oxides can form on the surfaces of exposed polysilicon regions, such as 215 and 217. Such oxides can interfere with polysilicon etching and result in an incomplete etch.
- the pre-etch solution is believed to prevent and/or inhibit the formation of oxides on the surfaces of the exposed regions 215 and 217, or removes such oxides if present and/or formed, to avoid incomplete etching of the sacrificial layers 205 and 209.
- the sacrificial layers 205 and 209 are selectively etched to release the features 204 and 206.
- the features 204 and 206 can have any number of different geometries.
- the release features are comb or ribbon structures.
- the release features provide pathways which interconnect cavities 221 and 223.
- the release features can be cantilevers.
- a gettering material 231 such as titanium or a titanium-based alloy can be deposited within at least one of structure cavities 221 and 223 through the access trenches 213 and 219.
- gettering material/agent 231 can be deposited at the time that the reflective layer 233 is formed.
- a gettering material 231 is a dopant within the sacrificial layer 205 and 209 that is released during the etching of the sacrificial layers 205 and 209.
- the access trenches 213 and 219 are preferably sealed.
- the release features 204 and 206 are preferably sealed under a vacuum, but can be sealed within a predetermined or controlled gas and/or liquid for some applications.
- the access trenches 213 and 219 are sealed by any of a number of methods and using any of a number of materials including metals, polymers and/or resins.
- the access trenches 213 and 219 are sealed by sputtering conventionally sputtered metals over the access trenches 213 and 219 and the capping layer 211 and more preferably by sputtering aluminum over the access trenches 213 and 219 and capping layer to form the layer 242.
- a portion of the layer 242 can be removed such that corking structures 240 and 241 remain in the access trenches 213 and 219.
- the capping layer 211 may provide an optical window through which light can pass to the layer 233 on the release features 204 and 206.
- Portions of the layer 242 are preferably removed by micro-polishing techniques. Alternatively, conventional photo-lithography techniques can be used to etch away a portion of layer 242.
- portion of the layer 242 of the layer is selectively removed such that the capping layer 211 provides an optical aperture (not shown) through which light can pass to and/or from the layer 233 on the release features 204 and 206.
- FIG 4 is a block diagram flow chart 300 outlining steps for forming a multi-layer structure shown in Figure 3 a in accordance with a preferred method of the instant invention.
- the multi-layer structure shown in Figure 3a is preferably made by sequential deposition processes, such as described above, wherein the uniformity and thicknesses of each of the structure layers are readily controlled.
- a silicon dioxide layer is formed by steam or dry thermal growth on a silicon substrate or by deposition on a selected region of the silicon wafer or other substrate.
- the silicon dioxide layer is thermally grown to a thickness in a range of 250 to 5000 Angstroms and more preferably in a range of 250 to 750 Angstroms.
- the thermal oxidation occurs by placing the wafer substrate at a temperature in a range of 600 to 800 degrees Celsius in a controlled oxygen environment.
- a polysilicon layer is preferably deposited by Low Pressure Chemical Napor Deposition (LPCND) on the first etch stop layer to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns.
- Low Pressure Chemical Napor Deposition of the amorphous polysilicon is preferably carried out at temperatures in a range of 450 to 550 degrees Celcius.
- a silicon nitride device layer is formed on the first poly silicon sacrificial layer.
- the silicon nitride layer is formed by LPCVD to a thicknesses in a range of 300 to 5000 Angstroms and more preferably in a range of 750 to 1250 Angstroms.
- the silicon nitride device layer can be formed by thermal decomposition of dichlorosilane in the presence of ammonia.
- the silicon nitride layer is patterned with structure features after the deposition of a photo-resist layer is deposited, exposed and developed (thereby forming an etch mask) in the step 303, or by selectively etching a pattern into the first polysilicon layer formed in the step 303 to initiate rapid growth of the silicon nitride in the etched areas of the polysilicon layer.
- the silicon nitride layer is deposited as a continuous layer which is then selectively etched to form the release features of the release structure using a conventional photo-resist mask.
- a second sacrificial layer is formed over the patterned silicon nitride layer, sandwiching the patterned layer between the first and the second sacrificial layers.
- the second sacrificial layer is preferably also a polysilicon layer that is preferably deposited by LPCVD to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns.
- the second sacrificial layer is preferably formed by thermal decomposition of an organosilicon reagent, as previously described.
- the first and the second polysilicon layer have contact points whereby the etchant can pass through the contact points between the first and the second sacrificial layers to etch away portions of both the first and the second polysilicon sacrificial layers.
- the deposition surface of the patterned silicon nitride layer is treated with a solvent such NMP (which can be heated) to clean its surface.
- NMP which can be heated
- surfaces can be treated at any time during the formation of the multi-layer structure to remove residues thereon that may lead to poor quality films.
- the capping layer is preferably a silicon oxide capping layer deposited by Plasma Enhanced Chemical Vapor deposition (PECND) to a thickness in a range or 1.0 to 3.0 microns and more preferably in a range of 1.5 to 2.0 microns.
- PECND Plasma Enhanced Chemical Vapor deposition
- an organosilicon compound such as a tetraethyl orthosilicate (TEOS)
- TEOS tetraethyl orthosilicate
- the second polysilicon layer may be planarized and/or cleaned to prepare a suitable deposition surface for depositing or forming the capping layer.
- FIG. 5 is a block diagram flow chart 400 outlining the preferred method of forming a device from the multi-layered structure shown in Figure 3 a.
- access trenches are formed in the capping layer.
- the access trenches are formed with diameters in a range of 0.4 to 1.5 microns and more preferably in a range of 0.6 to 0.8 microns.
- the access trenches are preferably formed in the silicon oxide capping layer using a reactive ion etch process.
- the reactive ion etch process can, under known or empirically determined conditions, etch trenches with sloped or straight walls which can be sealed in a subsequent step or steps.
- the access trenches are preferably formed through the capping layer to exposed regions of the sacrificial material therebelow.
- the exposed regions of the sacrificial layer are treated with a pre-etch cleaning solution of ethylene glycol and ammonium fluoride, that comprises approximately a 10% by weight solution of ammonium fluoride dissolved in ethylene glycol.
- a pre-etch cleaning solution of ethylene glycol and ammonium fluoride that comprises approximately a 10% by weight solution of ammonium fluoride dissolved in ethylene glycol.
- a gettering material may be deposited through one or more of the access trenches into the device cavity formed during the etching step 403.
- the access trenches are sealed by sputtering aluminum onto the capping layer sufficiently to seal the access trenches. Excess aluminum can be removed from the capping layer by well known methods such as chemical, mechanical polishing or phot-lithography.
- FIG. 6 is a block diagram outlining the preferred method of etching the polysilicon sacrificial layers in the step 403 shown in Figure 5.
- the structure is place under a vacuum of approximately 10 "5 torr.
- xenon difluoride crystals are preferably sublimed at a pressure in a range of 0.1 to 100 Torr, more preferably in a range of 0.5 to 20 Torr and most preferably at approximately 4.0 Torr.
- a controlled stream of xenon difluoride is provided to the chamber.
- the chamber is preferably maintained at a pressure lower than the sublimation pressure of the xenon difluoride crystals to ensures a positive flow of the xenon difluoride to the chamber.
- the pressure in the chamber is preferably maintained in a range of 0.1 milliTorr to 1.0 Torr, more preferably in a range of 1.0 milliTorr to 100 milliTorr and most preferably at approximately 50 milliTorr (0.05 Torr).
- Figure 7 illustrates a schematic diagram of an apparatus 600 for carrying out the etching step described in block-flow diagram 500 shown in Figure 5.
- the apparatus 600 is preferably coupled with a vacuum source 607 that is capable of drawing a vacuum in the chamber environment 605'.
- the apparatus 600 preferably includes a pressure measuring device 609 that allows a user to monitor the pressure within the chamber 610.
- a container 608 containing an etchant source e.g. crystals of xenon difluoride
- the container 608 can have a pressure measuring device 611 coupled to the container 608 to allow the user to monitor the pressure within the container 608.
- a multi-layer structure 620 is placed in the chamber 610.
- the vacuum control valve is opened and the vacuum source 607 draws a vacuum reducing the pressure of the chamber environment 605' preferably to or near to 10 "5 Torr.
- the xenon difluoride crystals at room temperature form a vapor pressure of XeF 2 of approximately 4.0 Torr, as determined by the pressure measuring device 611.
- the pressure controller 613 is adjusted to change the pressure of the chamber environment 605' to approximately 50 x 10 '3 Torr.
- the structure 620 is etched for a time sufficient to form the release structure 623 within the cavity 621 of the structure 620. The etching process takes place over a period of approximately 20-30 minutes, depending on the etching pressure chosen, the physical details of the structure 620 and flow dynamics of the chamber apparatus 600.
- a suitable sealing environment may then be provided. Accordingly, in one embodiment the patrial pressure control value 613 is shut off and a low pressure vacuum is reestablished using a draw from the vacuum source 607.
- the trenches of the etched structure 620 may be sealed by a sputter beam 650 of aluminum, using a sputter device 630.
- the chamber may be backfilled with a noble gas.
- a noble gas source 615 may be coupled to the control chamber 610 through a control valve 612.
- the chamber environment 605' is flushed with a noble gas by opening the gas valve 612 prior to sealing the trenches of the device 620.
- the trenches of the device 620 may then be sealed with a polymer or ceramic material, thereby capturing a portion of the chamber environment 605' within the cavity 621 of the device 620.
- a device with multiple layers of release structures can be formed by extending teachings of the invention and using multi- layer structures having more than one pattered layer. Further, it is clear that any number of devices with coupled and un-coupled release structures and with multi-cavity structures are capable of being fabricated using the method of the instant invention.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02798102A EP1428255A4 (en) | 2001-09-13 | 2002-08-29 | Microelectronic mechanical system and methods |
JP2003527792A JP2005502481A (en) | 2001-09-13 | 2002-08-29 | Microelectromechanical system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/952,626 US6930364B2 (en) | 2001-09-13 | 2001-09-13 | Microelectronic mechanical system and methods |
US09/952,626 | 2001-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003023849A1 true WO2003023849A1 (en) | 2003-03-20 |
Family
ID=25493082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/027822 WO2003023849A1 (en) | 2001-09-13 | 2002-08-29 | Microelectronic mechanical system and methods |
Country Status (5)
Country | Link |
---|---|
US (4) | US6930364B2 (en) |
EP (1) | EP1428255A4 (en) |
JP (1) | JP2005502481A (en) |
TW (1) | TW587060B (en) |
WO (1) | WO2003023849A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6712480B1 (en) | 2002-09-27 | 2004-03-30 | Silicon Light Machines | Controlled curvature of stressed micro-structures |
US6782205B2 (en) | 2001-06-25 | 2004-08-24 | Silicon Light Machines | Method and apparatus for dynamic equalization in wavelength division multiplexing |
US6785001B2 (en) | 2001-08-21 | 2004-08-31 | Silicon Light Machines, Inc. | Method and apparatus for measuring wavelength jitter of light signal |
US6800238B1 (en) | 2002-01-15 | 2004-10-05 | Silicon Light Machines, Inc. | Method for domain patterning in low coercive field ferroelectrics |
US6801354B1 (en) | 2002-08-20 | 2004-10-05 | Silicon Light Machines, Inc. | 2-D diffraction grating for substantially eliminating polarization dependent losses |
US6813059B2 (en) | 2002-06-28 | 2004-11-02 | Silicon Light Machines, Inc. | Reduced formation of asperities in contact micro-structures |
US6822797B1 (en) | 2002-05-31 | 2004-11-23 | Silicon Light Machines, Inc. | Light modulator structure for producing high-contrast operation using zero-order light |
US6829092B2 (en) | 2001-08-15 | 2004-12-07 | Silicon Light Machines, Inc. | Blazed grating light valve |
US6829077B1 (en) | 2003-02-28 | 2004-12-07 | Silicon Light Machines, Inc. | Diffractive light modulator with dynamically rotatable diffraction plane |
JP2005105416A (en) * | 2003-09-30 | 2005-04-21 | Agere Systems Inc | Selective isotropic etching process for titanium-based material |
JP2006526509A (en) * | 2003-06-04 | 2006-11-24 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Micro electromechanical device and sealing method and manufacturing method thereof |
US8742872B2 (en) | 2010-03-18 | 2014-06-03 | Panasonic Corporation | MEMS element, and manufacturing method of MEMS element |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7550794B2 (en) * | 2002-09-20 | 2009-06-23 | Idc, Llc | Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer |
US7297471B1 (en) * | 2003-04-15 | 2007-11-20 | Idc, Llc | Method for manufacturing an array of interferometric modulators |
US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
WO1999052006A2 (en) | 1998-04-08 | 1999-10-14 | Etalon, Inc. | Interferometric modulation of radiation |
AU2002246913A1 (en) * | 2000-11-22 | 2002-08-06 | The Johns Hopkins University | Method for fabricating a semiconductor device |
US6947195B2 (en) * | 2001-01-18 | 2005-09-20 | Ricoh Company, Ltd. | Optical modulator, optical modulator manufacturing method, light information processing apparatus including optical modulator, image formation apparatus including optical modulator, and image projection and display apparatus including optical modulator |
US7943412B2 (en) * | 2001-12-10 | 2011-05-17 | International Business Machines Corporation | Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters |
US6794119B2 (en) * | 2002-02-12 | 2004-09-21 | Iridigm Display Corporation | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
AU2003206552A1 (en) * | 2002-02-14 | 2003-09-04 | Silex Microsystems Ab | Deflectable microstructure and method of manufacturing the same through bonding of wafers |
US20030183916A1 (en) * | 2002-03-27 | 2003-10-02 | John Heck | Packaging microelectromechanical systems |
US7045381B1 (en) | 2002-06-28 | 2006-05-16 | Silicon Light Machines Corporation | Conductive etch stop for etching a sacrificial layer |
US6777258B1 (en) * | 2002-06-28 | 2004-08-17 | Silicon Light Machines, Inc. | Conductive etch stop for etching a sacrificial layer |
DE10238523B4 (en) * | 2002-08-22 | 2014-10-02 | Epcos Ag | Encapsulated electronic component and method of manufacture |
US7781850B2 (en) | 2002-09-20 | 2010-08-24 | Qualcomm Mems Technologies, Inc. | Controlling electromechanical behavior of structures within a microelectromechanical systems device |
US6835589B2 (en) * | 2002-11-14 | 2004-12-28 | International Business Machines Corporation | Three-dimensional integrated CMOS-MEMS device and process for making the same |
US6800503B2 (en) * | 2002-11-20 | 2004-10-05 | International Business Machines Corporation | MEMS encapsulated structure and method of making same |
JP3703480B2 (en) * | 2002-12-27 | 2005-10-05 | 松下電器産業株式会社 | Electronic device and manufacturing method thereof |
JP4333417B2 (en) * | 2003-04-02 | 2009-09-16 | ソニー株式会社 | Micromachine manufacturing method |
TW594360B (en) * | 2003-04-21 | 2004-06-21 | Prime View Int Corp Ltd | A method for fabricating an interference display cell |
TW570896B (en) | 2003-05-26 | 2004-01-11 | Prime View Int Co Ltd | A method for fabricating an interference display cell |
US6951769B2 (en) * | 2003-06-04 | 2005-10-04 | Texas Instruments Incorporated | Method for stripping sacrificial layer in MEMS assembly |
US7221495B2 (en) * | 2003-06-24 | 2007-05-22 | Idc Llc | Thin film precursor stack for MEMS manufacturing |
FR2857002B1 (en) * | 2003-07-04 | 2005-10-21 | Commissariat Energie Atomique | METHOD OF DESOLIDARIZING A USEFUL LAYER AND COMPONENT OBTAINED THEREBY |
TWI231865B (en) * | 2003-08-26 | 2005-05-01 | Prime View Int Co Ltd | An interference display cell and fabrication method thereof |
TWI232333B (en) * | 2003-09-03 | 2005-05-11 | Prime View Int Co Ltd | Display unit using interferometric modulation and manufacturing method thereof |
US7215460B2 (en) * | 2003-11-01 | 2007-05-08 | Fusao Ishii | Sequence and timing control of writing and rewriting pixel memories for achieving higher number of gray scales |
US20050170670A1 (en) * | 2003-11-17 | 2005-08-04 | King William P. | Patterning of sacrificial materials |
DE10353767B4 (en) * | 2003-11-17 | 2005-09-29 | Infineon Technologies Ag | Device for packaging a micromechanical structure and method for producing the same |
US7248278B1 (en) * | 2003-12-10 | 2007-07-24 | Silicon Light Machines Corporation | Apparatus and method for laser printing using a spatial light modulator |
US6995622B2 (en) | 2004-01-09 | 2006-02-07 | Robert Bosh Gmbh | Frequency and/or phase compensated microelectromechanical oscillator |
US7316844B2 (en) * | 2004-01-16 | 2008-01-08 | Brewer Science Inc. | Spin-on protective coatings for wet-etch processing of microelectronic substrates |
JP2005265795A (en) * | 2004-03-22 | 2005-09-29 | Denso Corp | Semiconductor mechanical quantity sensor |
DE102004020204A1 (en) * | 2004-04-22 | 2005-11-10 | Epcos Ag | Encapsulated electrical component and method of manufacture |
US7102467B2 (en) * | 2004-04-28 | 2006-09-05 | Robert Bosch Gmbh | Method for adjusting the frequency of a MEMS resonator |
JP4617743B2 (en) * | 2004-07-06 | 2011-01-26 | ソニー株式会社 | Functional element, method for manufacturing the same, and fluid discharge head |
KR101354520B1 (en) * | 2004-07-29 | 2014-01-21 | 퀄컴 엠이엠에스 테크놀로지스, 인크. | System and method for micro-electromechanical operating of an interferometric modulator |
US7608789B2 (en) * | 2004-08-12 | 2009-10-27 | Epcos Ag | Component arrangement provided with a carrier substrate |
US20060067650A1 (en) * | 2004-09-27 | 2006-03-30 | Clarence Chui | Method of making a reflective display device using thin film transistor production techniques |
US7553684B2 (en) * | 2004-09-27 | 2009-06-30 | Idc, Llc | Method of fabricating interferometric devices using lift-off processing techniques |
US20060066932A1 (en) * | 2004-09-27 | 2006-03-30 | Clarence Chui | Method of selective etching using etch stop layer |
US20060065366A1 (en) * | 2004-09-27 | 2006-03-30 | Cummings William J | Portable etch chamber |
US7492502B2 (en) * | 2004-09-27 | 2009-02-17 | Idc, Llc | Method of fabricating a free-standing microstructure |
US7405861B2 (en) | 2004-09-27 | 2008-07-29 | Idc, Llc | Method and device for protecting interferometric modulators from electrostatic discharge |
US7684104B2 (en) | 2004-09-27 | 2010-03-23 | Idc, Llc | MEMS using filler material and method |
US7369296B2 (en) * | 2004-09-27 | 2008-05-06 | Idc, Llc | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
US20060065622A1 (en) * | 2004-09-27 | 2006-03-30 | Floyd Philip D | Method and system for xenon fluoride etching with enhanced efficiency |
US7373026B2 (en) | 2004-09-27 | 2008-05-13 | Idc, Llc | MEMS device fabricated on a pre-patterned substrate |
US7417783B2 (en) * | 2004-09-27 | 2008-08-26 | Idc, Llc | Mirror and mirror layer for optical modulator and method |
US7273762B2 (en) * | 2004-11-09 | 2007-09-25 | Freescale Semiconductor, Inc. | Microelectromechanical (MEM) device including a spring release bridge and method of making the same |
TW200628877A (en) * | 2005-02-04 | 2006-08-16 | Prime View Int Co Ltd | Method of manufacturing optical interference type color display |
DE102005008511B4 (en) | 2005-02-24 | 2019-09-12 | Tdk Corporation | MEMS microphone |
DE102005008512B4 (en) | 2005-02-24 | 2016-06-23 | Epcos Ag | Electrical module with a MEMS microphone |
US7288464B2 (en) * | 2005-04-11 | 2007-10-30 | Hewlett-Packard Development Company, L.P. | MEMS packaging structure and methods |
US20060234412A1 (en) * | 2005-04-19 | 2006-10-19 | Hewlett-Packard Development Company, L.P. Intellectual Property Administration | MEMS release methods |
JP4791766B2 (en) * | 2005-05-30 | 2011-10-12 | 株式会社東芝 | Semiconductor device using MEMS technology |
JP5084175B2 (en) * | 2005-05-31 | 2012-11-28 | 株式会社半導体エネルギー研究所 | Micro structure and manufacturing method thereof |
EP1907316A1 (en) * | 2005-07-22 | 2008-04-09 | Qualcomm Mems Technologies, Inc. | Support structure for mems device and methods therefor |
EP2495212A3 (en) * | 2005-07-22 | 2012-10-31 | QUALCOMM MEMS Technologies, Inc. | Mems devices having support structures and methods of fabricating the same |
US7695890B2 (en) * | 2005-09-09 | 2010-04-13 | Brewer Science Inc. | Negative photoresist for silicon KOH etch without silicon nitride |
DE102005050398A1 (en) * | 2005-10-20 | 2007-04-26 | Epcos Ag | Cavity housing for a mechanically sensitive electronic device and method of manufacture |
FR2892714B1 (en) * | 2005-10-27 | 2007-12-21 | Commissariat Energie Atomique | METHOD FOR ETCHING A SACRIFICIAL LAYER FOR A MICRO-FACTORY STRUCTURE |
DE102005053767B4 (en) | 2005-11-10 | 2014-10-30 | Epcos Ag | MEMS microphone, method of manufacture and method of installation |
DE102005053765B4 (en) | 2005-11-10 | 2016-04-14 | Epcos Ag | MEMS package and method of manufacture |
US7838321B2 (en) * | 2005-12-20 | 2010-11-23 | Xerox Corporation | Multiple stage MEMS release for isolation of similar materials |
US7795061B2 (en) | 2005-12-29 | 2010-09-14 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
US7916980B2 (en) | 2006-01-13 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US7382515B2 (en) * | 2006-01-18 | 2008-06-03 | Qualcomm Mems Technologies, Inc. | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
US7652814B2 (en) | 2006-01-27 | 2010-01-26 | Qualcomm Mems Technologies, Inc. | MEMS device with integrated optical element |
US7547568B2 (en) * | 2006-02-22 | 2009-06-16 | Qualcomm Mems Technologies, Inc. | Electrical conditioning of MEMS device and insulating layer thereof |
US7450295B2 (en) * | 2006-03-02 | 2008-11-11 | Qualcomm Mems Technologies, Inc. | Methods for producing MEMS with protective coatings using multi-component sacrificial layers |
US7711239B2 (en) | 2006-04-19 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing nanoparticles |
US7527996B2 (en) * | 2006-04-19 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Non-planar surface structures and process for microelectromechanical systems |
US7369292B2 (en) * | 2006-05-03 | 2008-05-06 | Qualcomm Mems Technologies, Inc. | Electrode and interconnect materials for MEMS devices |
US7321457B2 (en) | 2006-06-01 | 2008-01-22 | Qualcomm Incorporated | Process and structure for fabrication of MEMS device having isolated edge posts |
US7584649B2 (en) * | 2006-06-02 | 2009-09-08 | Board Of Trustees Of Michigan State University | Sensor with microelectro-mechanical oscillators |
US7824943B2 (en) | 2006-06-04 | 2010-11-02 | Akustica, Inc. | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
JP4327183B2 (en) * | 2006-07-31 | 2009-09-09 | 株式会社日立製作所 | High pressure fuel pump control device for internal combustion engine |
US7763546B2 (en) | 2006-08-02 | 2010-07-27 | Qualcomm Mems Technologies, Inc. | Methods for reducing surface charges during the manufacture of microelectromechanical systems devices |
US7566664B2 (en) * | 2006-08-02 | 2009-07-28 | Qualcomm Mems Technologies, Inc. | Selective etching of MEMS using gaseous halides and reactive co-etchants |
US7706042B2 (en) | 2006-12-20 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | MEMS device and interconnects for same |
WO2008085779A1 (en) * | 2007-01-05 | 2008-07-17 | Miradia Inc. | Methods and systems for wafer level packaging of mems structures |
US8236592B2 (en) * | 2007-01-12 | 2012-08-07 | Globalfoundries Inc. | Method of forming semiconductor device |
US20080217666A1 (en) * | 2007-03-07 | 2008-09-11 | United Microelectronics Corp. | Cmos image sensor and method of fabricating the same |
US7923790B1 (en) * | 2007-03-09 | 2011-04-12 | Silicon Laboratories Inc. | Planar microshells for vacuum encapsulated devices and damascene method of manufacture |
US7595209B1 (en) | 2007-03-09 | 2009-09-29 | Silicon Clocks, Inc. | Low stress thin film microshells |
US7659150B1 (en) | 2007-03-09 | 2010-02-09 | Silicon Clocks, Inc. | Microshells for multi-level vacuum cavities |
US7736929B1 (en) | 2007-03-09 | 2010-06-15 | Silicon Clocks, Inc. | Thin film microshells incorporating a getter layer |
US7733552B2 (en) * | 2007-03-21 | 2010-06-08 | Qualcomm Mems Technologies, Inc | MEMS cavity-coating layers and methods |
KR20100016195A (en) * | 2007-04-04 | 2010-02-12 | 퀄컴 엠이엠스 테크놀로지스, 인크. | Eliminate release etch attack by interface modification in sacrificial layers |
US7709178B2 (en) | 2007-04-17 | 2010-05-04 | Brewer Science Inc. | Alkaline-resistant negative photoresist for silicon wet-etch without silicon nitride |
US7719752B2 (en) | 2007-05-11 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same |
US7569488B2 (en) * | 2007-06-22 | 2009-08-04 | Qualcomm Mems Technologies, Inc. | Methods of making a MEMS device by monitoring a process parameter |
US7570415B2 (en) * | 2007-08-07 | 2009-08-04 | Qualcomm Mems Technologies, Inc. | MEMS device and interconnects for same |
US8192642B2 (en) * | 2007-09-13 | 2012-06-05 | Brewer Science Inc. | Spin-on protective coatings for wet-etch processing of microelectronic substrates |
JP2009072845A (en) * | 2007-09-19 | 2009-04-09 | Oki Semiconductor Co Ltd | Method for manufacturing semiconductor device |
JP2009088254A (en) * | 2007-09-28 | 2009-04-23 | Toshiba Corp | Electronic component package, and manufacturing method for electronic component package |
US7989262B2 (en) * | 2008-02-22 | 2011-08-02 | Cavendish Kinetics, Ltd. | Method of sealing a cavity |
US8343824B2 (en) * | 2008-04-29 | 2013-01-01 | International Rectifier Corporation | Gallium nitride material processing and related device structures |
US7993950B2 (en) * | 2008-04-30 | 2011-08-09 | Cavendish Kinetics, Ltd. | System and method of encapsulation |
US7851239B2 (en) | 2008-06-05 | 2010-12-14 | Qualcomm Mems Technologies, Inc. | Low temperature amorphous silicon sacrificial layer for controlled adhesion in MEMS devices |
US8266962B2 (en) * | 2009-01-28 | 2012-09-18 | Infineon Technologies Ag | Acceleration sensor |
US7998775B2 (en) * | 2009-02-09 | 2011-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicon undercut prevention in sacrificial oxide release process and resulting MEMS structures |
US8430255B2 (en) * | 2009-03-19 | 2013-04-30 | Robert Bosch Gmbh | Method of accurately spacing Z-axis electrode |
WO2010111601A2 (en) * | 2009-03-26 | 2010-09-30 | Semprius, Inc. | Methods of forming printable integrated circuit devices and devices formed thereby |
US7864403B2 (en) * | 2009-03-27 | 2011-01-04 | Qualcomm Mems Technologies, Inc. | Post-release adjustment of interferometric modulator reflectivity |
US20100310961A1 (en) * | 2009-06-06 | 2010-12-09 | Dr. Robert Daniel Clark | Integratable and Scalable Solid Oxide Fuel Cell Structure and Method of Forming |
CN102001616A (en) * | 2009-08-31 | 2011-04-06 | 上海丽恒光微电子科技有限公司 | Method of fabricating and encapsulating mems devices |
US7989246B2 (en) * | 2009-09-11 | 2011-08-02 | Pixart Imaging Incorporation | Package method of micro-electro-mechanical system chip |
US7985659B1 (en) * | 2010-03-31 | 2011-07-26 | Freescale Semiconductor, Inc. | Semiconductor device with a controlled cavity and method of formation |
US8921144B2 (en) * | 2010-06-25 | 2014-12-30 | International Business Machines Corporation | Planar cavity MEMS and related structures, methods of manufacture and design structures |
US8535966B2 (en) * | 2010-07-27 | 2013-09-17 | International Business Machines Corporation | Horizontal coplanar switches and methods of manufacture |
US8660164B2 (en) | 2011-03-24 | 2014-02-25 | Axsun Technologies, Inc. | Method and system for avoiding package induced failure in swept semiconductor source |
US8461655B2 (en) * | 2011-03-31 | 2013-06-11 | Infineon Technologies Ag | Micromechanical sound transducer having a membrane support with tapered surface |
US8659816B2 (en) | 2011-04-25 | 2014-02-25 | Qualcomm Mems Technologies, Inc. | Mechanical layer and methods of making the same |
US8643140B2 (en) * | 2011-07-11 | 2014-02-04 | United Microelectronics Corp. | Suspended beam for use in MEMS device |
KR101919118B1 (en) * | 2012-01-18 | 2018-11-15 | 삼성전자주식회사 | Bulk acoustic wave resonator |
US9209778B2 (en) * | 2013-03-15 | 2015-12-08 | Infineon Technologies Dresden Gmbh | Microelectromechanical resonators |
DE102013106353B4 (en) * | 2013-06-18 | 2018-06-28 | Tdk Corporation | Method for applying a structured coating to a component |
US9646874B1 (en) * | 2013-08-05 | 2017-05-09 | Sandia Corporation | Thermally-isolated silicon-based integrated circuits and related methods |
JP6299142B2 (en) * | 2013-10-21 | 2018-03-28 | セイコーエプソン株式会社 | Vibrator, vibrator manufacturing method, electronic device, electronic apparatus, and moving body |
CN105203235B (en) * | 2014-06-19 | 2018-04-13 | 中芯国际集成电路制造(上海)有限公司 | The manufacture method and electronic device of a kind of MEMS pressure sensor |
US9637371B2 (en) | 2014-07-25 | 2017-05-02 | Semiconductor Manufacturing International (Shanghai) Corporation | Membrane transducer structures and methods of manufacturing same using thin-film encapsulation |
US20170240418A1 (en) * | 2016-02-18 | 2017-08-24 | Knowles Electronics, Llc | Low-cost miniature mems vibration sensor |
CN106374055B (en) * | 2016-10-19 | 2019-04-30 | 深圳市华星光电技术有限公司 | The production method of OLED display panel |
DE102017125140B4 (en) * | 2017-10-26 | 2021-06-10 | Infineon Technologies Ag | Method for producing a hermetically sealed housing with a semiconductor component |
US10352995B1 (en) | 2018-02-28 | 2019-07-16 | Nxp Usa, Inc. | System and method of multiplexing laser triggers and optically selecting multiplexed laser pulses for laser assisted device alteration testing of semiconductor device |
US10782343B2 (en) | 2018-04-17 | 2020-09-22 | Nxp Usa, Inc. | Digital tests with radiation induced upsets |
WO2021108421A1 (en) * | 2019-11-25 | 2021-06-03 | Aita Bio Inc. | Micropump and method of fabricating the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5919548A (en) * | 1996-10-11 | 1999-07-06 | Sandia Corporation | Chemical-mechanical polishing of recessed microelectromechanical devices |
US6069392A (en) * | 1997-04-11 | 2000-05-30 | California Institute Of Technology | Microbellows actuator |
US6123985A (en) * | 1998-10-28 | 2000-09-26 | Solus Micro Technologies, Inc. | Method of fabricating a membrane-actuated charge controlled mirror (CCM) |
Family Cites Families (230)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE16767E (en) | 1927-10-11 | Charles prancis jenkins | ||
USRE16757E (en) | 1922-10-31 | 1927-10-04 | knight | |
US1548262A (en) | 1924-07-02 | 1925-08-04 | Freedman Albert | Manufacture of bicolored spectacles |
US1814701A (en) | 1930-05-31 | 1931-07-14 | Perser Corp | Method of making viewing gratings for relief or stereoscopic pictures |
US2415226A (en) | 1943-11-29 | 1947-02-04 | Rca Corp | Method of and apparatus for producing luminous images |
US2920529A (en) | 1952-05-23 | 1960-01-12 | Blythe Richard | Electronic control of optical and near-optical radiation |
US2991690A (en) | 1953-09-04 | 1961-07-11 | Polaroid Corp | Stereoscopic lens-prism optical system |
US2783406A (en) | 1954-02-09 | 1957-02-26 | John J Vanderhooft | Stereoscopic television means |
USRE25169E (en) | 1954-06-01 | 1962-05-15 | Colored light system | |
US3256465A (en) | 1962-06-08 | 1966-06-14 | Signetics Corp | Semiconductor device assembly with true metallurgical bonds |
US3388301A (en) | 1964-12-09 | 1968-06-11 | Signetics Corp | Multichip integrated circuit assembly with interconnection structure |
US3443871A (en) | 1965-12-07 | 1969-05-13 | Optomechanisms Inc | Single optical block interferometer means |
US3553364A (en) | 1968-03-15 | 1971-01-05 | Texas Instruments Inc | Electromechanical light valve |
US3576394A (en) | 1968-07-03 | 1971-04-27 | Texas Instruments Inc | Apparatus for display duration modulation |
US3600798A (en) | 1969-02-25 | 1971-08-24 | Texas Instruments Inc | Process for fabricating a panel array of electromechanical light valves |
US3792916A (en) | 1969-02-25 | 1974-02-19 | Us Army | Anti-laser optical filter assembly |
JPS4831507B1 (en) | 1969-07-10 | 1973-09-29 | ||
US3693239A (en) | 1969-07-25 | 1972-09-26 | Sidney Dix | A method of making a micromodular package |
US3871014A (en) | 1969-08-14 | 1975-03-11 | Ibm | Flip chip module with non-uniform solder wettable areas on the substrate |
BE757764A (en) | 1969-10-21 | 1971-04-21 | Itt | SOLID STATE EXPLORATION SYSTEM |
US3743507A (en) | 1970-10-23 | 1973-07-03 | Rca Corp | Recording of a continuous tone focused image on a diffraction grating |
US3752563A (en) | 1971-09-01 | 1973-08-14 | Sperry Rand Corp | Magnetic film stripe domain diffraction |
US3942245A (en) | 1971-11-20 | 1976-03-09 | Ferranti Limited | Related to the manufacture of lead frames and the mounting of semiconductor devices thereon |
US3781465A (en) | 1972-03-08 | 1973-12-25 | Hughes Aircraft Co | Field sequential color television systems |
US3783184A (en) | 1972-03-08 | 1974-01-01 | Hughes Aircraft Co | Electronically switched field sequential color television |
US3802769A (en) | 1972-08-28 | 1974-04-09 | Harris Intertype Corp | Method and apparatus for unaided stereo viewing |
US3811186A (en) | 1972-12-11 | 1974-05-21 | Ibm | Method of aligning and attaching circuit devices on a substrate |
DE2315658C3 (en) | 1973-03-29 | 1980-11-20 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Method and device for reducing or eliminating the granulation occurring in laser beam projections |
US3862360A (en) | 1973-04-18 | 1975-01-21 | Hughes Aircraft Co | Liquid crystal display system with integrated signal storage circuitry |
US4103273A (en) | 1973-04-26 | 1978-07-25 | Honeywell Inc. | Method for batch fabricating semiconductor devices |
US3915548A (en) | 1973-04-30 | 1975-10-28 | Hughes Aircraft Co | Holographic lens and liquid crystal image source for head-up display |
US3861784A (en) | 1973-06-29 | 1975-01-21 | Sperry Rand Corp | Programmable diffraction grating |
US4093346A (en) | 1973-07-13 | 1978-06-06 | Minolta Camera Kabushiki Kaisha | Optical low pass filter |
US3886310A (en) | 1973-08-22 | 1975-05-27 | Westinghouse Electric Corp | Electrostatically deflectable light valve with improved diffraction properties |
US3947105A (en) | 1973-09-21 | 1976-03-30 | Technical Operations, Incorporated | Production of colored designs |
US3896338A (en) | 1973-11-01 | 1975-07-22 | Westinghouse Electric Corp | Color video display system comprising electrostatically deflectable light valves |
US3969611A (en) | 1973-12-26 | 1976-07-13 | Texas Instruments Incorporated | Thermocouple circuit |
US3943281A (en) | 1974-03-08 | 1976-03-09 | Hughes Aircraft Company | Multiple beam CRT for generating a multiple raster display |
JPS5742849B2 (en) | 1974-06-05 | 1982-09-10 | ||
US4001663A (en) | 1974-09-03 | 1977-01-04 | Texas Instruments Incorporated | Switching regulator power supply |
US4012835A (en) | 1974-09-17 | 1977-03-22 | E. I. Du Pont De Nemours And Co. | Method of forming a dual in-line package |
US4100579A (en) | 1974-09-24 | 1978-07-11 | Hughes Aircraft Company | AC Operated flat panel liquid crystal display |
US3938881A (en) | 1974-11-25 | 1976-02-17 | Xerox Corporation | Acousto-optic modulation device |
US4090219A (en) | 1974-12-09 | 1978-05-16 | Hughes Aircraft Company | Liquid crystal sequential color display |
US3935500A (en) | 1974-12-09 | 1976-01-27 | Texas Instruments Incorporated | Flat CRT system |
US4020381A (en) | 1974-12-09 | 1977-04-26 | Texas Instruments Incorporated | Cathode structure for a multibeam cathode ray tube |
US3935499A (en) | 1975-01-03 | 1976-01-27 | Texas Instruments Incorporated | Monolythic staggered mesh deflection systems for use in flat matrix CRT's |
US3980476A (en) | 1975-01-27 | 1976-09-14 | Xerox Corporation | Imaging system |
US4017158A (en) | 1975-03-17 | 1977-04-12 | E. I. Du Pont De Nemours And Company | Spatial frequency carrier and process of preparing same |
US4006968A (en) | 1975-05-02 | 1977-02-08 | Hughes Aircraft Company | Liquid crystal dot color display |
US4011009A (en) | 1975-05-27 | 1977-03-08 | Xerox Corporation | Reflection diffraction grating having a controllable blaze angle |
US4012116A (en) | 1975-05-30 | 1977-03-15 | Personal Communications, Inc. | No glasses 3-D viewer |
US4034211A (en) | 1975-06-20 | 1977-07-05 | Ncr Corporation | System and method for providing a security check on a credit card |
US4035068A (en) | 1975-06-25 | 1977-07-12 | Xerox Corporation | Speckle minimization in projection displays by reducing spatial coherence of the image light |
US4021766A (en) | 1975-07-28 | 1977-05-03 | Aine Harry E | Solid state pressure transducer of the leaf spring type and batch method of making same |
US3991416A (en) | 1975-09-18 | 1976-11-09 | Hughes Aircraft Company | AC biased and resonated liquid crystal display |
US4084437A (en) | 1975-11-07 | 1978-04-18 | Texas Instruments Incorporated | Thermocouple circuit |
CH595664A5 (en) | 1975-11-17 | 1978-02-15 | Landis & Gyr Ag | |
US4184700A (en) | 1975-11-17 | 1980-01-22 | Lgz Landis & Gyr Zug Ag | Documents embossed with optical markings representing genuineness information |
US4127322A (en) | 1975-12-05 | 1978-11-28 | Hughes Aircraft Company | High brightness full color image light valve projection system |
US4004849A (en) | 1975-12-08 | 1977-01-25 | International Business Machines Corporation | Display apparatus and process |
US4034399A (en) | 1976-02-27 | 1977-07-05 | Rca Corporation | Interconnection means for an array of majority carrier microwave devices |
CH594495A5 (en) | 1976-05-04 | 1978-01-13 | Landis & Gyr Ag | |
JPS5321771A (en) | 1976-08-11 | 1978-02-28 | Sharp Kk | Electronic parts mounting structure |
US4135502A (en) | 1976-09-07 | 1979-01-23 | Donald Peck | Stereoscopic patterns and method of making same |
US4139257A (en) | 1976-09-28 | 1979-02-13 | Canon Kabushiki Kaisha | Synchronizing signal generator |
US4067129A (en) | 1976-10-28 | 1978-01-10 | Trans-World Manufacturing Corporation | Display apparatus having means for creating a spectral color effect |
CH604279A5 (en) | 1976-12-21 | 1978-08-31 | Landis & Gyr Ag | |
US4143943A (en) | 1977-02-17 | 1979-03-13 | Xerox Corporation | Rear projection screen system |
US4093921A (en) | 1977-03-17 | 1978-06-06 | Texas Instruments Incorporated | Microcomputer processing approach for a non-volatile TV station memory tuning system |
US4093922A (en) | 1977-03-17 | 1978-06-06 | Texas Instruments Incorporated | Microcomputer processing approach for a non-volatile TV station memory tuning system |
CH616253A5 (en) | 1977-06-21 | 1980-03-14 | Landis & Gyr Ag | |
US4126380A (en) | 1977-06-30 | 1978-11-21 | International Business Machines Corporation | Probe with contact indicating means |
US4185891A (en) | 1977-11-30 | 1980-01-29 | Grumman Aerospace Corporation | Laser diode collimation optics |
US4389096A (en) | 1977-12-27 | 1983-06-21 | Matsushita Electric Industrial Co., Ltd. | Image display apparatus of liquid crystal valve projection type |
US4205428A (en) | 1978-02-23 | 1980-06-03 | The United States Of America As Represented By The Secretary Of The Air Force | Planar liquid crystal matrix array chip |
CH622896A5 (en) | 1978-03-20 | 1981-04-30 | Landis & Gyr Ag | |
US4256787A (en) | 1978-05-03 | 1981-03-17 | Massachusetts Institute Of Technology | Orientation of ordered liquids and their use in devices |
US4195915A (en) | 1978-05-05 | 1980-04-01 | Hughes Aircraft Company | Liquid crystal image projector system |
US4225913A (en) | 1978-09-19 | 1980-09-30 | Texas Instruments Incorporated | Self-referencing power converter |
US4331972A (en) | 1978-11-09 | 1982-05-25 | Rajchman Jan A | Light valve, light valve display, and method |
US4295145A (en) | 1978-12-29 | 1981-10-13 | International Business Machines Corporation | Acousto-optically modulated laser scanning arrangement for correcting for interference appearing therein |
US4257053A (en) | 1979-02-09 | 1981-03-17 | Geosource, Inc. | High-resolution laser plotter |
US4257016A (en) | 1979-02-21 | 1981-03-17 | Xerox Corporation | Piezo-optic, total internal reflection modulator |
US4338660A (en) | 1979-04-13 | 1982-07-06 | Relational Memory Systems, Inc. | Relational break signal generating device |
US4249796A (en) | 1979-06-21 | 1981-02-10 | International Business Machines Corporation | Projection display device |
US4290672A (en) | 1979-06-29 | 1981-09-22 | International Business Machines Corporation | Plural line acousto-optically modulated laser scanning system |
US4343535A (en) | 1979-12-14 | 1982-08-10 | Hughes Aircraft Company | Liquid crystal light valve |
US4311999A (en) | 1980-02-07 | 1982-01-19 | Textron, Inc. | Vibratory scan optical display |
US4327966A (en) | 1980-02-25 | 1982-05-04 | Bell Telephone Laboratories, Incorporated | Variable attenuator for laser radiation |
US4327411A (en) | 1980-03-04 | 1982-04-27 | Bell Telephone Laboratories, Incorporated | High capacity elastic store having continuously variable delay |
US4355463A (en) | 1980-03-24 | 1982-10-26 | National Semiconductor Corporation | Process for hermetically encapsulating semiconductor devices |
US4348079A (en) | 1980-04-08 | 1982-09-07 | Xerox Corporation | Acousto-optic device utilizing Fresnel zone plate electrode array |
US4346965A (en) | 1980-05-27 | 1982-08-31 | Xerox Corporation | Light modulator/deflector using acoustic surface waves |
US4361384A (en) | 1980-06-27 | 1982-11-30 | The United States Of America As Represented By The Secretary Of The Army | High luminance miniature display |
US4336982A (en) | 1980-08-04 | 1982-06-29 | Xerox Corporation | MgF2 Coating for promoting adherence of thin films to single crystal materials |
US4396246A (en) | 1980-10-02 | 1983-08-02 | Xerox Corporation | Integrated electro-optic wave guide modulator |
US4369524A (en) | 1980-10-14 | 1983-01-18 | Xerox Corporation | Single component transceiver device for linear fiber optical network |
US4398798A (en) | 1980-12-18 | 1983-08-16 | Sperry Corporation | Image rotating diffraction grating |
US4391490A (en) | 1981-04-02 | 1983-07-05 | Xerox Corporation | Interface for proximity coupled electro-optic devices |
US4374397A (en) | 1981-06-01 | 1983-02-15 | Eastman Kodak Company | Light valve devices and electronic imaging/scan apparatus with locationally-interlaced optical addressing |
US4400740A (en) | 1981-08-24 | 1983-08-23 | Xerox Corporation | Intensity control for raster output scanners |
US4561011A (en) | 1982-10-05 | 1985-12-24 | Mitsubishi Denki Kabushiki Kaisha | Dimensionally stable semiconductor device |
US4487677A (en) | 1983-04-11 | 1984-12-11 | Metals Production Research, Inc. | Electrolytic recovery system for obtaining titanium metal from its ore |
US4618541A (en) * | 1984-12-21 | 1986-10-21 | Advanced Micro Devices, Inc. | Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article |
US5354416A (en) * | 1986-09-05 | 1994-10-11 | Sadayuki Okudaira | Dry etching method |
US4765865A (en) * | 1987-05-04 | 1988-08-23 | Ford Motor Company | Silicon etch rate enhancement |
KR970003915B1 (en) * | 1987-06-24 | 1997-03-22 | 미다 가쓰시게 | Semiconductor device and the use memory module |
US5310624A (en) * | 1988-01-29 | 1994-05-10 | Massachusetts Institute Of Technology | Integrated circuit micro-fabrication using dry lithographic processes |
US5066614A (en) * | 1988-11-21 | 1991-11-19 | Honeywell Inc. | Method of manufacturing a leadframe having conductive elements preformed with solder bumps |
US4893509A (en) * | 1988-12-27 | 1990-01-16 | General Motors Corporation | Method and product for fabricating a resonant-bridge microaccelerometer |
US5025346A (en) * | 1989-02-17 | 1991-06-18 | Regents Of The University Of California | Laterally driven resonant microstructures |
US5868854A (en) * | 1989-02-27 | 1999-02-09 | Hitachi, Ltd. | Method and apparatus for processing samples |
US4930043A (en) * | 1989-02-28 | 1990-05-29 | United Technologies | Closed-loop capacitive accelerometer with spring constraint |
US4945773A (en) * | 1989-03-06 | 1990-08-07 | Ford Motor Company | Force transducer etched from silicon |
US5068205A (en) * | 1989-05-26 | 1991-11-26 | General Signal Corporation | Header mounted chemically sensitive ISFET and method of manufacture |
US5077598A (en) * | 1989-11-08 | 1991-12-31 | Hewlett-Packard Company | Strain relief flip-chip integrated circuit assembly with test fixturing |
US5074947A (en) | 1989-12-18 | 1991-12-24 | Epoxy Technology, Inc. | Flip chip technology using electrically conductive polymers and dielectrics |
DE4000903C1 (en) * | 1990-01-15 | 1990-08-09 | Robert Bosch Gmbh, 7000 Stuttgart, De | |
US5428259A (en) * | 1990-02-02 | 1995-06-27 | Nec Corporation | Micromotion mechanical structure and a process for the production thereof |
US5126812A (en) * | 1990-02-14 | 1992-06-30 | The Charles Stark Draper Laboratory, Inc. | Monolithic micromechanical accelerometer |
GB9006471D0 (en) * | 1990-03-22 | 1990-05-23 | Surface Tech Sys Ltd | Loading mechanisms |
US5239806A (en) * | 1990-11-02 | 1993-08-31 | Ak Technology, Inc. | Thermoplastic semiconductor package and method of producing it |
US5493177A (en) * | 1990-12-03 | 1996-02-20 | The Regents Of The University Of California | Sealed micromachined vacuum and gas filled devices |
US5216278A (en) | 1990-12-04 | 1993-06-01 | Motorola, Inc. | Semiconductor device having a pad array carrier package |
US5221400A (en) * | 1990-12-11 | 1993-06-22 | Delco Electronics Corporation | Method of making a microaccelerometer having low stress bonds and means for preventing excessive z-axis deflection |
US5112436A (en) * | 1990-12-24 | 1992-05-12 | Xerox Corporation | Method of forming planar vacuum microelectronic devices with self aligned anode |
US5212115A (en) * | 1991-03-04 | 1993-05-18 | Motorola, Inc. | Method for microelectronic device packaging employing capacitively coupled connections |
US5747857A (en) * | 1991-03-13 | 1998-05-05 | Matsushita Electric Industrial Co., Ltd. | Electronic components having high-frequency elements and methods of manufacture therefor |
US5137836A (en) * | 1991-05-23 | 1992-08-11 | Atmel Corporation | Method of manufacturing a repairable multi-chip module |
US5233874A (en) * | 1991-08-19 | 1993-08-10 | General Motors Corporation | Active microaccelerometer |
US5313835A (en) * | 1991-12-19 | 1994-05-24 | Motorola, Inc. | Integrated monolithic gyroscopes/accelerometers with logic circuits |
US5300813A (en) * | 1992-02-26 | 1994-04-05 | International Business Machines Corporation | Refractory metal capped low resistivity metal conductor lines and vias |
US5357803A (en) * | 1992-04-08 | 1994-10-25 | Rochester Institute Of Technology | Micromachined microaccelerometer for measuring acceleration along three axes |
US6219015B1 (en) * | 1992-04-28 | 2001-04-17 | The Board Of Directors Of The Leland Stanford, Junior University | Method and apparatus for using an array of grating light valves to produce multicolor optical images |
US5311360A (en) * | 1992-04-28 | 1994-05-10 | The Board Of Trustees Of The Leland Stanford, Junior University | Method and apparatus for modulating a light beam |
HUT73312A (en) * | 1992-09-14 | 1996-07-29 | Badehi | Method and apparatus for producing integrated circuit devices, and integrated circuit device |
US5296408A (en) * | 1992-12-24 | 1994-03-22 | International Business Machines Corporation | Fabrication method for vacuum microelectronic devices |
US5320709A (en) | 1993-02-24 | 1994-06-14 | Advanced Chemical Systems International Incorporated | Method for selective removal of organometallic and organosilicon residues and damaged oxides using anhydrous ammonium fluoride solution |
DE69426789T2 (en) * | 1993-04-28 | 2001-08-02 | Matsushita Electric Industrial Co., Ltd. | Surface acoustic wave device and manufacturing method therefor |
US5427975A (en) * | 1993-05-10 | 1995-06-27 | Delco Electronics Corporation | Method of micromachining an integrated sensor on the surface of a silicon wafer |
US5513198A (en) * | 1993-07-14 | 1996-04-30 | Corning Incorporated | Packaging of high power semiconductor lasers |
KR0171921B1 (en) * | 1993-09-13 | 1999-03-30 | 모리시타 요이찌 | Electronic component and method of fabricating the same |
US5523619A (en) * | 1993-11-03 | 1996-06-04 | International Business Machines Corporation | High density memory structure |
CA2179052C (en) * | 1993-12-13 | 2001-02-13 | Robert E. Higashi | Integrated silicon vacuum micropackage for infrared devices |
KR970005712B1 (en) | 1994-01-11 | 1997-04-19 | 삼성전자 주식회사 | High heat sink package |
US6097352A (en) * | 1994-03-23 | 2000-08-01 | Kopin Corporation | Color sequential display panels |
US5640216A (en) * | 1994-04-13 | 1997-06-17 | Hitachi, Ltd. | Liquid crystal display device having video signal driving circuit mounted on one side and housing |
WO1995030276A1 (en) | 1994-05-02 | 1995-11-09 | Siemens Matsushita Components Gmbh & Co. Kg | Encapsulation for electronic components |
US5534107A (en) * | 1994-06-14 | 1996-07-09 | Fsi International | UV-enhanced dry stripping of silicon nitride films |
US5747874A (en) * | 1994-09-20 | 1998-05-05 | Fujitsu Limited | Semiconductor device, base member for semiconductor device and semiconductor device unit |
JP3171043B2 (en) * | 1995-01-11 | 2001-05-28 | 株式会社村田製作所 | Surface acoustic wave device |
US5726480A (en) * | 1995-01-27 | 1998-03-10 | The Regents Of The University Of California | Etchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same |
US5610438A (en) * | 1995-03-08 | 1997-03-11 | Texas Instruments Incorporated | Micro-mechanical device with non-evaporable getter |
JP3358688B2 (en) * | 1995-04-10 | 2002-12-24 | 三洋電機株式会社 | Surface acoustic wave device |
JP3328102B2 (en) | 1995-05-08 | 2002-09-24 | 松下電器産業株式会社 | Surface acoustic wave device and method of manufacturing the same |
US5786738A (en) * | 1995-05-31 | 1998-07-28 | Fujitsu Limited | Surface acoustic wave filter duplexer comprising a multi-layer package and phase matching patterns |
US5841579A (en) | 1995-06-07 | 1998-11-24 | Silicon Light Machines | Flat diffraction grating light valve |
US5835256A (en) | 1995-06-19 | 1998-11-10 | Reflectivity, Inc. | Reflective spatial light modulator with encapsulated micro-mechanical elements |
US6046840A (en) * | 1995-06-19 | 2000-04-04 | Reflectivity, Inc. | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
GB2303265B (en) * | 1995-07-10 | 1998-07-08 | Matsushita Electric Ind Co Ltd | Spread spectrum communication apparatus,and demodulator,surface acoustic wave element and surface acoustic wave parts for spread spectrum communication |
JPH09121138A (en) * | 1995-08-24 | 1997-05-06 | Fujitsu Ltd | Filter device and radio equipment using the same |
JP3435925B2 (en) * | 1995-08-25 | 2003-08-11 | ソニー株式会社 | Semiconductor device |
US6012336A (en) * | 1995-09-06 | 2000-01-11 | Sandia Corporation | Capacitance pressure sensor |
US5963788A (en) * | 1995-09-06 | 1999-10-05 | Sandia Corporation | Method for integrating microelectromechanical devices with electronic circuitry |
JP3205981B2 (en) * | 1995-09-29 | 2001-09-04 | 住友電気工業株式会社 | Surface acoustic wave device |
US6376921B1 (en) * | 1995-11-08 | 2002-04-23 | Fujitsu Limited | Semiconductor device, method for fabricating the semiconductor device, lead frame and method for producing the lead frame |
US5832148A (en) | 1995-12-20 | 1998-11-03 | California Institute Of Technology | Electrically controlled wavelength multiplexing waveguide filter |
DE19548051A1 (en) * | 1995-12-21 | 1997-06-26 | Siemens Matsushita Components | Electronic component, in particular component working with surface acoustic waves - SAW component - |
DE19548048C2 (en) * | 1995-12-21 | 1998-01-15 | Siemens Matsushita Components | Electronic component, in particular component working with surface acoustic waves (SAW component) |
US6242842B1 (en) * | 1996-12-16 | 2001-06-05 | Siemens Matsushita Components Gmbh & Co. Kg | Electrical component, in particular saw component operating with surface acoustic waves, and a method for its production |
JP2765545B2 (en) | 1995-12-26 | 1998-06-18 | 日本電気株式会社 | Optical wavelength discriminating circuit and method of manufacturing the same |
US5801074A (en) * | 1996-02-20 | 1998-09-01 | Kim; Jong Tae | Method of making an air tight cavity in an assembly package |
US5942791A (en) * | 1996-03-06 | 1999-08-24 | Gec-Marconi Limited | Micromachined devices having microbridge structure |
US5694740A (en) | 1996-03-15 | 1997-12-09 | Analog Devices, Inc. | Micromachined device packaged to reduce stiction |
US6090717A (en) * | 1996-03-26 | 2000-07-18 | Lam Research Corporation | High density plasma etching of metallization layer using chlorine and nitrogen |
US5864092A (en) * | 1996-05-16 | 1999-01-26 | Sawtek Inc. | Leadless ceramic chip carrier crosstalk suppression apparatus |
DE59704079D1 (en) * | 1996-05-24 | 2001-08-23 | Epcos Ag | ELECTRONIC COMPONENT, IN PARTICULAR WORKING COMPONENT WITH ACOUSTIC SURFACE WAVES - SAW COMPONENT |
JP3424453B2 (en) * | 1996-08-09 | 2003-07-07 | 松下電器産業株式会社 | Spread spectrum communication equipment |
US5798557A (en) * | 1996-08-29 | 1998-08-25 | Harris Corporation | Lid wafer bond packaging and micromachining |
JP3222072B2 (en) * | 1996-10-15 | 2001-10-22 | 富士通株式会社 | Demultiplexer package |
US5844711A (en) | 1997-01-10 | 1998-12-01 | Northrop Grumman Corporation | Tunable spatial light modulator |
JP3417239B2 (en) * | 1997-01-17 | 2003-06-16 | 三菱電機株式会社 | Manufacturing method of microelectromechanical device |
US6034429A (en) * | 1997-04-18 | 2000-03-07 | Amkor Technology, Inc. | Integrated circuit package |
CH691559A5 (en) * | 1997-04-21 | 2001-08-15 | Asulab Sa | magnetic micro-switch and its production process. |
US6421179B1 (en) * | 1997-05-02 | 2002-07-16 | Interscience, Inc. | Wavelength division multiplexing system and method using a reconfigurable diffraction grating |
GB9709659D0 (en) * | 1997-05-13 | 1997-07-02 | Surface Tech Sys Ltd | Method and apparatus for etching a workpiece |
US5912094A (en) * | 1997-05-15 | 1999-06-15 | Lucent Technologies, Inc. | Method and apparatus for making a micro device |
JP3904671B2 (en) * | 1997-05-28 | 2007-04-11 | 富士通株式会社 | Virtual clay system and simulation method thereof |
US6018065A (en) * | 1997-11-10 | 2000-01-25 | Advanced Technology Materials, Inc. | Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor |
US5955771A (en) * | 1997-11-12 | 1999-09-21 | Kulite Semiconductor Products, Inc. | Sensors for use in high vibrational applications and methods for fabricating same |
US6359333B1 (en) * | 1998-03-31 | 2002-03-19 | Honeywell International Inc. | Wafer-pair having deposited layer sealed chambers |
DE19818824B4 (en) * | 1998-04-27 | 2008-07-31 | Epcos Ag | Electronic component and method for its production |
EP0961404B1 (en) * | 1998-05-29 | 2008-07-02 | Fujitsu Limited | Surface-acoustic-wave filter having an improved suppression outside a pass-band |
US6303986B1 (en) * | 1998-07-29 | 2001-10-16 | Silicon Light Machines | Method of and apparatus for sealing an hermetic lid to a semiconductor die |
JP3303791B2 (en) * | 1998-09-02 | 2002-07-22 | 株式会社村田製作所 | Electronic component manufacturing method |
JP2000091818A (en) * | 1998-09-11 | 2000-03-31 | Toyota Motor Corp | Manufacture of film-type transmission line and method for connecting the same line |
US6300148B1 (en) * | 1998-10-05 | 2001-10-09 | Advanced Micro Devices | Semiconductor structure with a backside protective layer and backside probes and a method for constructing the structure |
US6261494B1 (en) * | 1998-10-22 | 2001-07-17 | Northeastern University | Method of forming plastically deformable microstructures |
US6232150B1 (en) * | 1998-12-03 | 2001-05-15 | The Regents Of The University Of Michigan | Process for making microstructures and microstructures made thereby |
JP2000307373A (en) * | 1999-02-18 | 2000-11-02 | Murata Mfg Co Ltd | Surface wave unit and its manufacture |
JP4316050B2 (en) * | 1999-05-31 | 2009-08-19 | ボールセミコンダクター株式会社 | Micromachine manufacturing method |
US6426583B1 (en) * | 1999-06-14 | 2002-07-30 | Matsushita Electric Industrial Co., Ltd. | Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same |
JP2000357937A (en) * | 1999-06-17 | 2000-12-26 | Murata Mfg Co Ltd | Surface acoustic wave device |
US6096656A (en) | 1999-06-24 | 2000-08-01 | Sandia Corporation | Formation of microchannels from low-temperature plasma-deposited silicon oxynitride |
US6229683B1 (en) * | 1999-06-30 | 2001-05-08 | Mcnc | High voltage micromachined electrostatic switch |
US6057520A (en) * | 1999-06-30 | 2000-05-02 | Mcnc | Arc resistant high voltage micromachined electrostatic switch |
JP3860364B2 (en) * | 1999-08-11 | 2006-12-20 | 富士通メディアデバイス株式会社 | Surface acoustic wave device |
US6169624B1 (en) * | 1999-08-11 | 2001-01-02 | Asif A. Godil | Achromatic optical modulators |
US6456172B1 (en) * | 1999-10-21 | 2002-09-24 | Matsushita Electric Industrial Co., Ltd. | Multilayered ceramic RF device |
US6942811B2 (en) * | 1999-10-26 | 2005-09-13 | Reflectivity, Inc | Method for achieving improved selectivity in an etching process |
US6290864B1 (en) * | 1999-10-26 | 2001-09-18 | Reflectivity, Inc. | Fluoride gas etching of silicon with improved selectivity |
US6197610B1 (en) * | 2000-01-14 | 2001-03-06 | Ball Semiconductor, Inc. | Method of making small gaps for small electrical/mechanical devices |
US6274469B1 (en) * | 2000-01-26 | 2001-08-14 | Advanced Micro Devices, Inc. | Process using a plug as a mask for a gate |
US6356689B1 (en) * | 2000-03-25 | 2002-03-12 | Lucent Technologies, Inc. | Article comprising an optical cavity |
US6559070B1 (en) * | 2000-04-11 | 2003-05-06 | Applied Materials, Inc. | Mesoporous silica films with mobile ion gettering and accelerated processing |
US6509623B2 (en) * | 2000-06-15 | 2003-01-21 | Newport Fab, Llc | Microelectronic air-gap structures and methods of forming the same |
US6570469B2 (en) * | 2000-06-27 | 2003-05-27 | Matsushita Electric Industrial Co., Ltd. | Multilayer ceramic device including two ceramic layers with multilayer circuit patterns that can support semiconductor and saw chips |
US6736987B1 (en) * | 2000-07-12 | 2004-05-18 | Techbank Corporation | Silicon etching apparatus using XeF2 |
US6455980B1 (en) * | 2000-08-28 | 2002-09-24 | The Charles Stark Draper Laboratory, Inc. | Resonator with preferred oscillation mode |
US6377137B1 (en) * | 2000-09-11 | 2002-04-23 | Agilent Technologies, Inc. | Acoustic resonator filter with reduced electromagnetic influence due to die substrate thickness |
US6550664B2 (en) * | 2000-12-09 | 2003-04-22 | Agilent Technologies, Inc. | Mounting film bulk acoustic resonators in microwave packages using flip chip bonding technology |
WO2002073673A1 (en) * | 2001-03-13 | 2002-09-19 | Rochester Institute Of Technology | A micro-electro-mechanical switch and a method of using and making thereof |
WO2002073671A1 (en) * | 2001-03-13 | 2002-09-19 | Rochester Institute Of Technology | A micro-electro-mechanical varactor and a method of making and using |
JP3974346B2 (en) * | 2001-03-30 | 2007-09-12 | 富士通メディアデバイス株式会社 | Surface acoustic wave device |
JP3848102B2 (en) * | 2001-05-22 | 2006-11-22 | 富士通メディアデバイス株式会社 | Electronic device sealing apparatus and sealing method thereof |
US7189332B2 (en) * | 2001-09-17 | 2007-03-13 | Texas Instruments Incorporated | Apparatus and method for detecting an endpoint in a vapor phase etch |
KR100616508B1 (en) * | 2002-04-11 | 2006-08-29 | 삼성전기주식회사 | Film bulk acoustic resonator and method for fabrication thereof |
GB2391384A (en) * | 2002-07-24 | 2004-02-04 | Korea Electronics Technology | Method of removing a sacrificial portion of a functional micro device by etching with xenon difluoride |
US6913942B2 (en) * | 2003-03-28 | 2005-07-05 | Reflectvity, Inc | Sacrificial layers for use in fabrications of microelectromechanical devices |
-
2001
- 2001-09-13 US US09/952,626 patent/US6930364B2/en not_active Expired - Lifetime
-
2002
- 2002-03-28 US US10/112,962 patent/US6991953B1/en not_active Expired - Lifetime
- 2002-08-09 TW TW091118034A patent/TW587060B/en active
- 2002-08-29 JP JP2003527792A patent/JP2005502481A/en active Pending
- 2002-08-29 WO PCT/US2002/027822 patent/WO2003023849A1/en active Application Filing
- 2002-08-29 EP EP02798102A patent/EP1428255A4/en not_active Withdrawn
- 2002-10-09 US US10/268,257 patent/US7049164B2/en not_active Expired - Lifetime
-
2005
- 2005-05-13 US US11/129,541 patent/US7183637B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5919548A (en) * | 1996-10-11 | 1999-07-06 | Sandia Corporation | Chemical-mechanical polishing of recessed microelectromechanical devices |
US6069392A (en) * | 1997-04-11 | 2000-05-30 | California Institute Of Technology | Microbellows actuator |
US6123985A (en) * | 1998-10-28 | 2000-09-26 | Solus Micro Technologies, Inc. | Method of fabricating a membrane-actuated charge controlled mirror (CCM) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6782205B2 (en) | 2001-06-25 | 2004-08-24 | Silicon Light Machines | Method and apparatus for dynamic equalization in wavelength division multiplexing |
US6829092B2 (en) | 2001-08-15 | 2004-12-07 | Silicon Light Machines, Inc. | Blazed grating light valve |
US6785001B2 (en) | 2001-08-21 | 2004-08-31 | Silicon Light Machines, Inc. | Method and apparatus for measuring wavelength jitter of light signal |
US6800238B1 (en) | 2002-01-15 | 2004-10-05 | Silicon Light Machines, Inc. | Method for domain patterning in low coercive field ferroelectrics |
US6822797B1 (en) | 2002-05-31 | 2004-11-23 | Silicon Light Machines, Inc. | Light modulator structure for producing high-contrast operation using zero-order light |
US6813059B2 (en) | 2002-06-28 | 2004-11-02 | Silicon Light Machines, Inc. | Reduced formation of asperities in contact micro-structures |
US6801354B1 (en) | 2002-08-20 | 2004-10-05 | Silicon Light Machines, Inc. | 2-D diffraction grating for substantially eliminating polarization dependent losses |
US6712480B1 (en) | 2002-09-27 | 2004-03-30 | Silicon Light Machines | Controlled curvature of stressed micro-structures |
US6829077B1 (en) | 2003-02-28 | 2004-12-07 | Silicon Light Machines, Inc. | Diffractive light modulator with dynamically rotatable diffraction plane |
JP2006526509A (en) * | 2003-06-04 | 2006-11-24 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Micro electromechanical device and sealing method and manufacturing method thereof |
JP2011245620A (en) * | 2003-06-04 | 2011-12-08 | Robert Bosch Gmbh | Micro electromechanical system, and method for encapsulating and fabricating the same |
JP4908202B2 (en) * | 2003-06-04 | 2012-04-04 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Micro electromechanical device and sealing method and manufacturing method thereof |
US8421167B2 (en) | 2003-06-04 | 2013-04-16 | Robert Bosch Gmbh | Microelectromechanical device including an encapsulation layer of which a portion is removed to expose a substantially planar surface having a portion that is disposed outside and above a chamber and including a field region on which integrated circuits are formed, and methods for fabricating same |
JP2005105416A (en) * | 2003-09-30 | 2005-04-21 | Agere Systems Inc | Selective isotropic etching process for titanium-based material |
KR101214818B1 (en) * | 2003-09-30 | 2012-12-24 | 에이저 시스템즈 엘엘시 | Selective isotropic etch for titanium-based materials |
US8742872B2 (en) | 2010-03-18 | 2014-06-03 | Panasonic Corporation | MEMS element, and manufacturing method of MEMS element |
Also Published As
Publication number | Publication date |
---|---|
US6930364B2 (en) | 2005-08-16 |
EP1428255A4 (en) | 2005-09-21 |
US7183637B2 (en) | 2007-02-27 |
US20050221528A1 (en) | 2005-10-06 |
TW587060B (en) | 2004-05-11 |
EP1428255A1 (en) | 2004-06-16 |
US20040053434A1 (en) | 2004-03-18 |
JP2005502481A (en) | 2005-01-27 |
US7049164B2 (en) | 2006-05-23 |
US20030138986A1 (en) | 2003-07-24 |
US6991953B1 (en) | 2006-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6930364B2 (en) | Microelectronic mechanical system and methods | |
EP1716072B1 (en) | Integrated getter area for wafer level encapsulated microelectromechanical systems | |
US7767484B2 (en) | Method for sealing and backside releasing of microelectromechanical systems | |
JP5889091B2 (en) | Electromechanical system with controlled atmosphere and method of manufacturing the system | |
JP5748701B2 (en) | Anchor for micro electro mechanical system having SOI substrate and method for manufacturing the same | |
US7906439B2 (en) | Method of fabricating a MEMS/NEMS electromechanical component | |
US7344907B2 (en) | Apparatus and methods for encapsulating microelectromechanical (MEM) devices on a wafer scale | |
US20090142872A1 (en) | Fabrication of capacitive micromachined ultrasonic transducers by local oxidation | |
WO2008067097A2 (en) | Microelectromechanical devices and fabrication methods | |
US20050260782A1 (en) | Conductive etch stop for etching a sacrificial layer | |
US8592228B2 (en) | Sealing structure and method of manufacturing the same | |
US6022754A (en) | Electronic device and method for forming a membrane for an electronic device | |
KR20050119154A (en) | Process for fabricating micromachine | |
WO2010052682A2 (en) | Mems with poly-silicon cap layer | |
KR100578259B1 (en) | Electronic device and film formation method for electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002798102 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003527792 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002798102 Country of ref document: EP |