WO2003023849A1 - Microelectronic mechanical system and methods - Google Patents

Microelectronic mechanical system and methods Download PDF

Info

Publication number
WO2003023849A1
WO2003023849A1 PCT/US2002/027822 US0227822W WO03023849A1 WO 2003023849 A1 WO2003023849 A1 WO 2003023849A1 US 0227822 W US0227822 W US 0227822W WO 03023849 A1 WO03023849 A1 WO 03023849A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
etch
sacrificial
mems
release
Prior art date
Application number
PCT/US2002/027822
Other languages
French (fr)
Inventor
Mike Bruner
Original Assignee
Silicon Light Machines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Light Machines filed Critical Silicon Light Machines
Priority to JP2003527792A priority Critical patent/JP2005502481A/en
Priority to EP02798102A priority patent/EP1428255A4/en
Publication of WO2003023849A1 publication Critical patent/WO2003023849A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/00468Releasing structures
    • B81C1/00484Processes for releasing structures not provided for in group B81C1/00476
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00333Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0135Controlling etch progression
    • B81C2201/014Controlling etch progression by depositing an etch stop layer, e.g. silicon nitride, silicon oxide, metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0136Growing or depositing of a covering layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0735Post-CMOS, i.e. forming the micromechanical structure after the CMOS circuit

Definitions

  • the present invention relates to wafer processing. More particularly, the present invention relates to methods for encapsulation of microelectronic mechanical systems.
  • MEMS microelectronic mechanical systems
  • ICs integrated circuits
  • MEMS In addition to the MEMS and ICs processing incompatibilities, MEMS typically require encapsulation, whereby the active portions of the MEMS are sealed within a controlled storage environment.
  • One way to encapsulate the active portions of the MEMS is to provide unique customized packaging structure configured with conductive leads fitted for the MEMS.
  • the MEMS can be formed on a wafer substrate that serves as a bottom portion of the packaging structure. After the MEMS is formed on the wafer, then a matched lid structure is glued or soldered over the active potions of the MEMS within the suitable storage environment.
  • Shook describes a method and apparatus for hermetically passivating a MEMS on a semi-conductor substrate in U.S. Patent Application Serial No.
  • the current invention provides a method of making an encapsulated release structure.
  • the release structure is a MEMS device having a plurality of ribbons or beams, which may further have a comb structure.
  • the device comprises a resonator that can be used for periodic waveform generation (e.g. clock generation).
  • the device comprises a grating light valve for generation and/or transmission of optical information.
  • the device comprises a radio frequency (RF) generator for wireless transmission of information.
  • RF radio frequency
  • the release structure is formed between layers of a multi-layer structure.
  • the multilayer structure preferably comprises a first and second etch-stop layers, which can be the same as or different from each other, and a first sacrificial layer between the first and the second etch-stop layer. Release features are patterned into the second etch-stop layer.
  • the multi-layer structure is formed on a silicon wafer substrate.
  • the silicon wafer substrate is preferably configured to couple the MEMS device with an integrated circuit (IC), also formed on the silicon wafer substrate.
  • the multi-layer structure is formed with a first etch-stop layer that is deposited on or over a selected region of the silicon wafer substrate.
  • the first etch-stop layer is preferably a silicon dioxide layer, a silicon nitride layer or a combination thereof.
  • the first sacrificial layer is formed on top of or over the first etch-stop layer.
  • the first sacrificial layer preferably comprises a polysilicon material though other materials can also be used.
  • the second etch-stop layer is formed on or over the first sacrificial layer with a pattern corresponding to release features of the release structure.
  • the second etch-stop layer is patterned with the release structure features using any suitable patterning technique. Accordingly, a patterned photo-resist is formed on or over the second etch-stop layer prior to removing a portion thereof to form a patterned second etch- stop layer having gaps therein and between portions of the second etch-stop layer under the patterned phot resist.
  • the first sacrificial layer can be anisotropically etched with a positive impression of the release structure features. The positive impression of the release structure features provides nuclei for rapid anisotropic growth of release structure features onto the patterned portions of the first sacrificial layer during the deposition of the second etch-stop layer.
  • a second sacrificial layer is formed over the second etch-stop layer sandwiching the second etch-stop layer having the release structure features between the first and the second sacrificial layers.
  • the second sacrificial layer preferably comprises polysilicon.
  • a sealant layer or capping layer is formed on top of the second sacrificial layer.
  • the capping layer preferably comprises one or more conventional passivation layers and more preferably comprises a silicon oxide layer, a silicon nitride layer or a combination thereof.
  • the etch-stop layers are formed by any number of methods.
  • An etch-stop layer can be formed from any materials that show resistance to etching under specified etching conditions relative to the materials that form the sacrificial layer(s).
  • the etching rate (mass or thickness of material etched per unit time) of sacrificial materials(s) relative to the etch-stop layer materials is preferably greater than 10:1, more preferably greater than 50:1 and most preferably greater than 100:1. In developing the present invention, experimental results of approximately 2500:1 have been achieved.
  • Any particular etch-stop layer can comprise one or more layers, any of which can be exposed to the sacrificial layer etchant as long as the etch-stop layer exhibits sufficient resistance to the sacrificial layer etchant.
  • one or more of the etch-stop layers of the multi-layer structure comprise silicon oxide.
  • the silicon oxide is silicon dioxide; when silicon oxide is referred to in this document, silicon dioxide is the most preferred embodiment, although conventional, doped and/or non-stoichiometric silicon oxides are also contemplated.
  • Silicon oxide layers can be formed by thermal growth, whereby heating a silicon surface in the presence of an oxygen source forms the silicon oxide layer.
  • the silicon oxide layers can be formed by chemical vapor deposition processes, whereby an organic silicon vapor source is decomposed in the presence of oxygen.
  • the silicon nitride layers can be formed by thermal growth or chemical deposition processes.
  • the polysilicon sacrificial layers are preferably formed by standard IC processing methods, such as chemical vapor deposition, sputtering or plasma enhanced chemical vapor deposition (PECND).
  • the deposition surface can be cleaned or treated.
  • the deposition surface can be treated or cleaned with a solvent such as ⁇ -methyl-2-pyrolipone (NMP) in order to remove residual photo-resist polymer.
  • NMP ⁇ -methyl-2-pyrolipone
  • the deposition surface can be mechanically planarized.
  • access holes or trenches are formed in the capping or sealant layer, thereby exposing regions of the second sacrificial layer therebelow.
  • Access trenches are referred to, herein, generally as cavitations formed in the capping or sealant layer which is allows the etchant to etch the material in the sacrificial layer therebelow.
  • the term access trenches is used herein to encompass both elongated and symmetrical (e.g. holes, rectangles, squares, ovals, etc.) cavitations in the capping or sealant layer.
  • access trenches can have any number of shapes or geometries, but are preferably anisotropically etched to have steep wall profiles.
  • the access trenches are preferably formed by etching techniques including wet etching processes and reactive ion etching processes though other conventional techniques can be used.
  • the exposed regions of the second sacrificial layer are then treated to a suitable etchant which selectively etches substantial portions of the first and second sacrificial layers portion so the release structures are suspended under the capping or sealant layer.
  • the preferred etchant comprises a noble gas fluoride, such as xenon difluoride.
  • the exposed regions of the second sacrificial layer can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride prior to selectively etching the first and second sacrificial layers.
  • the pre-etch solution can prevent the formation of oxide, clean exposed regions of the second sacrificial layer, remove polymers and/or help to ensure that etching is not quenched by the formation of oxides.
  • the etching step is preferably performed in a chamber, wherein the etchant is a gas.
  • suitable liquid etchants are considered to be witliin the scope of the current invention, whereby the noble gas fluoride is a liquid or is dissolved in suitable solvent.
  • the multi-layer structure is placed under vacuum with a pressure of approximately 10 "5 Torr.
  • a container with Xenon Difluoride crystals is coupled to the chamber through a pressure controller (e.g. a controllable valve).
  • the crystals are preferably at room temperature within the container with the pressure of Xenon Difluoride of approximately 4.0 Torr.
  • the pressure controller is adjusted such that the pressure within the chamber is raised to approximately 50 milliTorr. This pressure, or an alternatively sufficient pressure, is provided to ensure a controllable etching rate, a positive flow of Xenon Difluoride to the chamber and excellent uniformity of the etch processes.
  • the access trenches maybe sealed to encapsulate the suspended release structure between the first etch-stop layer and the capping or sealant layer.
  • the sealing step is performed at a separate processing station within a multi-station wafer processing system or, alternatively, is performed within the chamber apparatus.
  • the access trenches can be sealed by any number of methods including sputtering, chemical vapor deposition (CND), plasma enhanced chemical vapor deposition (PECND), or spin on glass methods.
  • the access trenches can be sealed with any number of materials including metals, polymers and ceramics.
  • the access trenches are sealed by sputtering a layer of aluminum over the access trenches and the capping layer. For optical applications, excess aluminum can be removed from the capping or sealant layer using a suitable mechanical or chemical method.
  • the second etch-stop layer may have a reflective material deposited thereon.
  • the reflective material preferably comprises aluminum. Accordingly, after the sacrificial layers are etched away, the release features preferably have a reflective upper surface suitable for optical applications.
  • a gettering material such as titanium or a titanium-based alloy can be deposited within a cavity capped by the capping or sealant layer prior to sealing the access trenches in the capping or sealant layer.
  • the gettering material is provided to help reduce residual moisture and/or oxygen which can lead to performance degradation of the device over time.
  • the release structure is preferably sealed under a vacuum or, alternatively, under a suitable noble gas atmosphere, as described in detail below.
  • the invention provides a sealed MEMS device on an IC chip, intermediate elements thereof and also a method of forming the same using techniques that are preferably compatible with standard IC processing.
  • the method of the instant invention provides for processing steps that are preferably carried out at temperatures below 600 degrees Celsius and more preferably at temperatures below 550 degrees Celsius.
  • the current invention provides for a method to fabricate MEMS with active structures which are hermetically sealed in a variety of environments.
  • the current invention is not limited to making MEMS and can be used to make any number of simple or complex multi-cavity structures that have micro-fluid applications or any other application where an internalized multi-cavity silicon-based structure is preferred.
  • the method of the instant invention is capable of being used to form any number of separate or coupled release structures within a single etching process and that larger devices can be formed using the methods of the instant invention.
  • Figure 1 is a schematic illustrating a MEMS oscillator.
  • Figures 2a-h illustrate top views and cross-sectional views a multi-layer structure formed on silicon wafer substrate, in accordance with current invention.
  • Figures 3a-f show cross sectional views of a release features being formed from a multi-layer structure, in accordance with a preferred method of the current invention.
  • Figure 4 is a block diagram outlining steps for forming a multi-layer structure illustrated in Figure 3 a.
  • Figure 5 is a block-diagram outlining the method of forming a release structure from the multi-layered structure shown in Figure 2a.
  • Figure 6 is a block-diagram outlining the steps for etching sacrificial layers of the multi-layer structure illustrated in Figure 2b.
  • Figure 7 is a schematic diagram of a chamber apparatus configured to etch a multi- layered structure formed in accordance with the method of instant invention.
  • the present invention provides a method to make devices with encapsulated release structures.
  • the current invention is particularly useful for fabricating MEMS oscillators, optical display devices, optical transmission devices, RF devices and related devices.
  • MEMS oscillators can have any number or simple or complex configurations, but they all operate on the basic principle of using the fundamental oscillation frequency of the structure to provide a timing signal to a coupled circuit.
  • a resonator structure 102 has a set of movable comb features 101 and 101' that vibrate between a set of matched transducer combs 105 and 105'.
  • the resonator structure 102 like a pendulum, has a fundamental resonance frequency.
  • the comb features 101 and 101' are secured to a ground plate 109 through anchor features 103 and 103'.
  • a dc-bias is applied between the resonator 102 and a ground plate 109.
  • An ac-excitation frequency is applied to the comb transducers 105 and 105' causing the movable comb features 101 and 101' to vibrate and generate a motional output current.
  • the motional output current is amplified by the current to-voltage amplifier 107 and fed back to the resonator structure 102.
  • This positive feed-back loop destabilizes the oscillator 100 and leads to sustained oscillations of the resonator structure 102.
  • a second motional output current is generated to the connection 108, which is coupled to a circuit for receiving a timing signal generated by the oscillator 100.
  • a wafer structure 200 preferably comprises a silicon substrate 201 and a first etch-stop layer 203.
  • the first etch- stop layer 203 may not be required to perform the methods of the instant invention, especially when the silicon substrate 201 is sufficiently thick to allow sacrificial layers to be etched without completely etching away the silicon substrate 201.
  • the substrate 201 itself can be formed from or doped with a material that renders the substrate 201 substantially resistant to the etchant that is used, such that the formation of the first-etch-stop layer 203 is not required.
  • the first etch- stop layer 203 preferably comprises silicon oxide, silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used to etch the first sacrificial layer.
  • a region 251 of the wafer structure 200 is used to form the release structure.
  • Other portions of the wafer structure 200 can be reserved for forming an integrated circuit that can be electrically coupled to and that can control operation of the release structure formed in the region 251.
  • any number of release structures and release structure region 251 can be formed on the same wafer structure 200.
  • a first sacrificial layer 205 is formed over the first etch-stop layer 203 using any conventional technique.
  • the first sacrificial layer 205 is formed from any suitable material that is selectively etched relative to the underlying first etch-stop layer(s), but preferably comprises polysilicon.
  • a second etch-stop layer 207 is formed over the first sacrificial layer 205.
  • the second etch-stop layer 207 can be formed of the same or different material as the first etch-stop layer 203.
  • the second etch-stop layer 207 preferably comprises silicon oxide, a silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used.
  • the first sacrificial layer 205 is etched prior to depositing the second etch-stop layer 207 to provide raised support features 215 and 215' which support the subsequently formed release structures.
  • support posts may be formed 216, 216' and 216" in positions to provide support for the release structures formed in subsequent steps.
  • the support posts 216, 216' and 216" are formed from an etch resistant material(s) that are the same or different than material(s) used to form the etch-stop layer 203 and/or etch-stop layer 207 and capping layer 211, as described in detail below.
  • the second etch-stop layer 207 can be deposited in an area of the region 251 without underlying sacrificial layer 205 and such portions of the second etch-stop layer 207 maybe deposited directly onto and/or attached to the first etch-stop layer 203 and/or substrate 201, such as shown in Figure 2 d.
  • portions of the second etch-stop layer 207 deposited directly on the first etch-stop layer 203 provide structural supports for the release structures formed. There are any number of mechanisms to provide physical support for the release structures formed that are considered to be within the scope of the instant invention.
  • a reflective layer 233 is deposited over the second etch-stop layer 207 and/or the support features 215 and 215' and/or support posts 216, 216' and 216".
  • the reflective layer 233 preferably comprises aluminum or other suitable reflective material.
  • the reflective layer 233 is preferably resistant to enchant being used in removing the sacrificial layers, but is capable of being etched using other suitable techniques including photo-lithograph and plasma etch, wherein the patterned release structures formed in subsequent steps have reflective surfaces suitable for optical applications.
  • a set of bond pad 226, 227 and 228 are also formed on the wafer structure 200 for electrically coupling the release structure(s) to a circuit external to the integrated circuit containing/comprising the release structure(s).
  • the reflective layer 233 can alternatively be deposited on the release features 204 and 206 after they are formed.
  • the reflective layer 233 and the second etch-stop layer 207 is patterned to form the release structures/features 204 and 206.
  • the reflective layer 233 and the second etch-stop layer 207 are preferably patterned using conventional photo-lithography techniques and/or steps. For example, a photo-resist layer is formed on the reflective layer 233. The photo-resist is patterned and developed to form a patterned phot-resist mask (not shown). Portions of the reflective layer 233 and the second etch-stop layer 207 are then removed using conventional techniques leaving the patterned features 204 and 206 with a reflective layer 233 under the patterned photo-resist mask. The patterned photo-resist mask can then be removed from the patterned features 204 and 206 and the patterned features 204 and 206 can be encapsulated as described in detail below.
  • the first sacrificial layer 205 can be etched with a positive impression of the release features (not shown).
  • the positive impression of the release features then provide nuclei for rapid anisotropic growth of release structure features 204 and 206.
  • the release features 204 and 206 are shown in Figure 2f as comb structures.
  • the release features can be comb structures, ribbon structures, cantilevers or any number of other structures including, but not limited to, domain separators, support structures and/or cavity walls as described in detail below.
  • the additional step of forming a reflective layer 233 is not required when the patterned features 204 and 206 are not used to reflect light, such as in the case for micro- fluidic devices.
  • the line 270 shows an x-axis of the wafer structure 200 and the line 271 shows the y-axis of the wafer structure.
  • the z-axis 272 of the wafer structure 272 in Figure 2f is normal to the view shown.
  • Figure 2g shows a side cross-sectional view of the wafer structure 200 after a second sacrificial layer 209 is deposited over release features 204 and 206 with the reflective layer 233.
  • the y-axis 271 is now normal to the view shown and the z-axis 272 in now in the plane of the view shown.
  • the release features 204 and 206 are embedded between the sacrificial layers 205 and 209 and the sacrificial layers 205 and 209 are preferably in contact through gap regions between the release features 204 and 206.
  • the second sacrificial layer 209 is formed of any suitable material that is selectively etched relative to the etch-stop layer(s) used to form the release structure device, but preferably comprises polysilicon.
  • a capping layer 211 is deposited over the second sacrificial layer 209.
  • the capping layer 211 preferably comprises silicon dioxide, silicon nitride any combination thereof or any other suitable material(s) which exhibit(s) sufficient resistance to the etchant used.
  • the capping layer 211 can be formed of the same or different material as the first etch-stop layer 203 and/or the second etch-stop layer 207.
  • Figures 3a-3f will now be used to illustrate the preferred method of forming an encapsulated release structure from a portion 250 of the structure 200 as shown in Figure 2h.
  • a device with a release structure such as the MEMS resonators structure 102 described above, is preferably made from a multi-layer structure 250.
  • the multi-layer structure 250 has a first etch-stop layer 203 that is preferably formed on the region 251 of the silicon wafer substrate 201, such as previously described.
  • the first etch-stop layer 203 may comprise any material or materials that exhibit resistance to etching under the conditions for etching the first sacrificial layer.
  • the first etch sacrificial layer comprises polysilicon
  • the first sacrificial layer etchant comprises XeF 2
  • the first sacrificial layer etching conditions are described below for etching polysilicon with XeF 2
  • the first etch-stop layer 203 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 500 to 5000 Angstroms.
  • first sacrificial layer 205 On top of the first etch-stop layer 203 there is formed a first sacrificial layer 205.
  • the first sacrificial layer 205 may comprise any materials(s) that may be selectively etched relative to the underlying first etch-stop layer 203 (when present) or substrate 201 (when the first etch-stop layer is not present).
  • the first etch-stop layer 203 comprises silicon oxide or silicon nitride
  • the first sacrificial layer 205 preferably comprises a polysilicon.
  • the first sacrificial layer 205 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the first sacrificial layer 205 to be preferentially etched over the substrate 201 or etch-stop layer 203 and/or the etch-stop layer 206 and capping layer 211, described in detail below.
  • the first sacrificial layer 205 preferably has a layer thickness in a range of 0.1 to 3.0 microns.
  • the second etch-stop layer 207 is patterned with features 206 and 204 corresponding to the release structure.
  • the first etch-stop layer 203 may comprise any material(s) that exhibit resistance to etching under the conditions for etching the first sacrificial layer.
  • the first sacrificial layer etchant comprises XeF 2
  • the first sacrificial layer etching conditions are described below for etching polysilicon with XeF 2 .
  • the second etch-stop layer 207 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 300 to 5000 Angstroms.
  • the second sacrificial layer 209 may comprise any materials(s) that may be selectively etched relative to the underlying, the second etch-stop layer 207 and/or the first etch stop layer 203 (when present) or substrate (when the first etch-stop layer is not present).
  • the first and the second etch-stop layers 203 and 207 comprise silicon oxide or silicon nitride
  • the second sacrificial 209 layer preferably comprises a polysilicon.
  • second first sacrificial layer 209 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the sacrificial layer 209 to be preferentially etched over the substrate 201 or etch-stop layers 203 and 207.
  • the second sacrificial layer 209 preferably has a layer thickness in a range of 0.1 to 3.0 microns and preferably, the sacrificial layers 205 and 209 are in contact with each other in the patterned regions 208 or gaps between the features 206 and 204 of the release structure.
  • a capping or sealant layer 211 is deposited over second sacrificial layer 209.
  • the capping or sealant layer 211 preferably comprises a conventional passivation material (e.g. an oxide, nitride, and/or an oxynitride of silicon, aluminum and/or titanium).
  • the capping or sealant layer 211 also can comprise a silicon or aluminum-based passivation layer which is doped with a conventional dopant such as boron and/or phosphorus. More preferably, the capping layer or sealant layer 211 comprises a silicon oxide layer with a layer thickness in a range of 1.0 to 3.0 microns.
  • each can be formed of a sandwich of known layers to achieve the same result.
  • the layers are preferably taught as being formed one on top of the next, it will be apparent that intervening layers of varying thicknesses can be inserted.
  • access trenches 213 and 219 are formed in the capping layer 211 thereby exposing regions 215 and 217 of the second sacrificial layer 209.
  • the access trenches 213 and 219 are preferably anisotropically etched, although the access trenches 213 and 219 may be formed by any number of methods including wet and/or dry etching processes.
  • a photo-resist is provided on the capping layer and is exposed and developed to provide a pattern for anisotropically etching the access trenches 213 and 219.
  • an etchant may be selectively applied to a portion of the etch- stop layer 211 corresponding to the access trenches 213 and 219.
  • micro- droplets or thin streams of a suitable etchant can be controllably applied to the surface of the capping or sealant layer 211 using a micro-syringe technique, such as described by Dongsung Hong, in U.S. Patent Application No. 60/141,444, filed June 29, 1999 (Attorney Docket No. 0325,00226), the contents of which are hereby incorporated by reference.
  • the exposed regions 215 and 217 of the second sacrificial layer 209 can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride.
  • ethylene glycol and ammonium fluoride is commercially available under the name of NOE Etch I TM manufactured by ACSI, Inc., Milpitas, CA 95035. Oxides can form on the surfaces of exposed polysilicon regions, such as 215 and 217. Such oxides can interfere with polysilicon etching and result in an incomplete etch.
  • the pre-etch solution is believed to prevent and/or inhibit the formation of oxides on the surfaces of the exposed regions 215 and 217, or removes such oxides if present and/or formed, to avoid incomplete etching of the sacrificial layers 205 and 209.
  • the sacrificial layers 205 and 209 are selectively etched to release the features 204 and 206.
  • the features 204 and 206 can have any number of different geometries.
  • the release features are comb or ribbon structures.
  • the release features provide pathways which interconnect cavities 221 and 223.
  • the release features can be cantilevers.
  • a gettering material 231 such as titanium or a titanium-based alloy can be deposited within at least one of structure cavities 221 and 223 through the access trenches 213 and 219.
  • gettering material/agent 231 can be deposited at the time that the reflective layer 233 is formed.
  • a gettering material 231 is a dopant within the sacrificial layer 205 and 209 that is released during the etching of the sacrificial layers 205 and 209.
  • the access trenches 213 and 219 are preferably sealed.
  • the release features 204 and 206 are preferably sealed under a vacuum, but can be sealed within a predetermined or controlled gas and/or liquid for some applications.
  • the access trenches 213 and 219 are sealed by any of a number of methods and using any of a number of materials including metals, polymers and/or resins.
  • the access trenches 213 and 219 are sealed by sputtering conventionally sputtered metals over the access trenches 213 and 219 and the capping layer 211 and more preferably by sputtering aluminum over the access trenches 213 and 219 and capping layer to form the layer 242.
  • a portion of the layer 242 can be removed such that corking structures 240 and 241 remain in the access trenches 213 and 219.
  • the capping layer 211 may provide an optical window through which light can pass to the layer 233 on the release features 204 and 206.
  • Portions of the layer 242 are preferably removed by micro-polishing techniques. Alternatively, conventional photo-lithography techniques can be used to etch away a portion of layer 242.
  • portion of the layer 242 of the layer is selectively removed such that the capping layer 211 provides an optical aperture (not shown) through which light can pass to and/or from the layer 233 on the release features 204 and 206.
  • FIG 4 is a block diagram flow chart 300 outlining steps for forming a multi-layer structure shown in Figure 3 a in accordance with a preferred method of the instant invention.
  • the multi-layer structure shown in Figure 3a is preferably made by sequential deposition processes, such as described above, wherein the uniformity and thicknesses of each of the structure layers are readily controlled.
  • a silicon dioxide layer is formed by steam or dry thermal growth on a silicon substrate or by deposition on a selected region of the silicon wafer or other substrate.
  • the silicon dioxide layer is thermally grown to a thickness in a range of 250 to 5000 Angstroms and more preferably in a range of 250 to 750 Angstroms.
  • the thermal oxidation occurs by placing the wafer substrate at a temperature in a range of 600 to 800 degrees Celsius in a controlled oxygen environment.
  • a polysilicon layer is preferably deposited by Low Pressure Chemical Napor Deposition (LPCND) on the first etch stop layer to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns.
  • Low Pressure Chemical Napor Deposition of the amorphous polysilicon is preferably carried out at temperatures in a range of 450 to 550 degrees Celcius.
  • a silicon nitride device layer is formed on the first poly silicon sacrificial layer.
  • the silicon nitride layer is formed by LPCVD to a thicknesses in a range of 300 to 5000 Angstroms and more preferably in a range of 750 to 1250 Angstroms.
  • the silicon nitride device layer can be formed by thermal decomposition of dichlorosilane in the presence of ammonia.
  • the silicon nitride layer is patterned with structure features after the deposition of a photo-resist layer is deposited, exposed and developed (thereby forming an etch mask) in the step 303, or by selectively etching a pattern into the first polysilicon layer formed in the step 303 to initiate rapid growth of the silicon nitride in the etched areas of the polysilicon layer.
  • the silicon nitride layer is deposited as a continuous layer which is then selectively etched to form the release features of the release structure using a conventional photo-resist mask.
  • a second sacrificial layer is formed over the patterned silicon nitride layer, sandwiching the patterned layer between the first and the second sacrificial layers.
  • the second sacrificial layer is preferably also a polysilicon layer that is preferably deposited by LPCVD to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns.
  • the second sacrificial layer is preferably formed by thermal decomposition of an organosilicon reagent, as previously described.
  • the first and the second polysilicon layer have contact points whereby the etchant can pass through the contact points between the first and the second sacrificial layers to etch away portions of both the first and the second polysilicon sacrificial layers.
  • the deposition surface of the patterned silicon nitride layer is treated with a solvent such NMP (which can be heated) to clean its surface.
  • NMP which can be heated
  • surfaces can be treated at any time during the formation of the multi-layer structure to remove residues thereon that may lead to poor quality films.
  • the capping layer is preferably a silicon oxide capping layer deposited by Plasma Enhanced Chemical Vapor deposition (PECND) to a thickness in a range or 1.0 to 3.0 microns and more preferably in a range of 1.5 to 2.0 microns.
  • PECND Plasma Enhanced Chemical Vapor deposition
  • an organosilicon compound such as a tetraethyl orthosilicate (TEOS)
  • TEOS tetraethyl orthosilicate
  • the second polysilicon layer may be planarized and/or cleaned to prepare a suitable deposition surface for depositing or forming the capping layer.
  • FIG. 5 is a block diagram flow chart 400 outlining the preferred method of forming a device from the multi-layered structure shown in Figure 3 a.
  • access trenches are formed in the capping layer.
  • the access trenches are formed with diameters in a range of 0.4 to 1.5 microns and more preferably in a range of 0.6 to 0.8 microns.
  • the access trenches are preferably formed in the silicon oxide capping layer using a reactive ion etch process.
  • the reactive ion etch process can, under known or empirically determined conditions, etch trenches with sloped or straight walls which can be sealed in a subsequent step or steps.
  • the access trenches are preferably formed through the capping layer to exposed regions of the sacrificial material therebelow.
  • the exposed regions of the sacrificial layer are treated with a pre-etch cleaning solution of ethylene glycol and ammonium fluoride, that comprises approximately a 10% by weight solution of ammonium fluoride dissolved in ethylene glycol.
  • a pre-etch cleaning solution of ethylene glycol and ammonium fluoride that comprises approximately a 10% by weight solution of ammonium fluoride dissolved in ethylene glycol.
  • a gettering material may be deposited through one or more of the access trenches into the device cavity formed during the etching step 403.
  • the access trenches are sealed by sputtering aluminum onto the capping layer sufficiently to seal the access trenches. Excess aluminum can be removed from the capping layer by well known methods such as chemical, mechanical polishing or phot-lithography.
  • FIG. 6 is a block diagram outlining the preferred method of etching the polysilicon sacrificial layers in the step 403 shown in Figure 5.
  • the structure is place under a vacuum of approximately 10 "5 torr.
  • xenon difluoride crystals are preferably sublimed at a pressure in a range of 0.1 to 100 Torr, more preferably in a range of 0.5 to 20 Torr and most preferably at approximately 4.0 Torr.
  • a controlled stream of xenon difluoride is provided to the chamber.
  • the chamber is preferably maintained at a pressure lower than the sublimation pressure of the xenon difluoride crystals to ensures a positive flow of the xenon difluoride to the chamber.
  • the pressure in the chamber is preferably maintained in a range of 0.1 milliTorr to 1.0 Torr, more preferably in a range of 1.0 milliTorr to 100 milliTorr and most preferably at approximately 50 milliTorr (0.05 Torr).
  • Figure 7 illustrates a schematic diagram of an apparatus 600 for carrying out the etching step described in block-flow diagram 500 shown in Figure 5.
  • the apparatus 600 is preferably coupled with a vacuum source 607 that is capable of drawing a vacuum in the chamber environment 605'.
  • the apparatus 600 preferably includes a pressure measuring device 609 that allows a user to monitor the pressure within the chamber 610.
  • a container 608 containing an etchant source e.g. crystals of xenon difluoride
  • the container 608 can have a pressure measuring device 611 coupled to the container 608 to allow the user to monitor the pressure within the container 608.
  • a multi-layer structure 620 is placed in the chamber 610.
  • the vacuum control valve is opened and the vacuum source 607 draws a vacuum reducing the pressure of the chamber environment 605' preferably to or near to 10 "5 Torr.
  • the xenon difluoride crystals at room temperature form a vapor pressure of XeF 2 of approximately 4.0 Torr, as determined by the pressure measuring device 611.
  • the pressure controller 613 is adjusted to change the pressure of the chamber environment 605' to approximately 50 x 10 '3 Torr.
  • the structure 620 is etched for a time sufficient to form the release structure 623 within the cavity 621 of the structure 620. The etching process takes place over a period of approximately 20-30 minutes, depending on the etching pressure chosen, the physical details of the structure 620 and flow dynamics of the chamber apparatus 600.
  • a suitable sealing environment may then be provided. Accordingly, in one embodiment the patrial pressure control value 613 is shut off and a low pressure vacuum is reestablished using a draw from the vacuum source 607.
  • the trenches of the etched structure 620 may be sealed by a sputter beam 650 of aluminum, using a sputter device 630.
  • the chamber may be backfilled with a noble gas.
  • a noble gas source 615 may be coupled to the control chamber 610 through a control valve 612.
  • the chamber environment 605' is flushed with a noble gas by opening the gas valve 612 prior to sealing the trenches of the device 620.
  • the trenches of the device 620 may then be sealed with a polymer or ceramic material, thereby capturing a portion of the chamber environment 605' within the cavity 621 of the device 620.
  • a device with multiple layers of release structures can be formed by extending teachings of the invention and using multi- layer structures having more than one pattered layer. Further, it is clear that any number of devices with coupled and un-coupled release structures and with multi-cavity structures are capable of being fabricated using the method of the instant invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. The multi-layer structure has a capping layer (211) that preferably comprises silicon oxide and/or silicon nitride and which is formed over an etch resistant substrate (203). A patterned device layer (206), preferably comprising silicon nitride, is embedded in a sacrificial material (205, 209), preferably comprising polysilicon, and is disposed between the etch resistant substrate (203) and the capping layer (211). Access trenches or holes (219) are formed into the capping layer (211) and the sacrificial material (205, 209) is selectively etched through the access trenches (219) such that portions of the device layer (206) are released from the sacrificial material (205, 209). The etchant preferably comprises a noble gas fluoride NgF2x (wherein Ng = Xe, Kr or Ar: and where x = 1, 2 or 3). After etching that sacrificial material (205, 209), the access trenches (219) are sealed to encapsulate (241) released portions the device layer (206) between the etch resistant substrate (203) and the capping layer (211). The current invention is particularly useful for fabricating MEMs devices, multiple cavity devices and devices with multiple release features.

Description

Microelectronic Mechanical System and Methods
Field of the Invention;
The present invention relates to wafer processing. More particularly, the present invention relates to methods for encapsulation of microelectronic mechanical systems.
Background of Invention;
The combination microelectronic mechanical systems (MEMS) and integrated circuits (ICs) allows for the possibility to make any number of micro-sensors, transducers and actuators. Unfortunately, typical methods for making MEMS are incompatible methods used to fabricate ICs. Hence, MEMS and ICs are usually fabricated separately and laboriously combined in subsequent and separate steps.
In addition to the MEMS and ICs processing incompatibilities, MEMS typically require encapsulation, whereby the active portions of the MEMS are sealed within a controlled storage environment. One way to encapsulate the active portions of the MEMS is to provide unique customized packaging structure configured with conductive leads fitted for the MEMS. Alternatively, the MEMS can be formed on a wafer substrate that serves as a bottom portion of the packaging structure. After the MEMS is formed on the wafer, then a matched lid structure is glued or soldered over the active potions of the MEMS within the suitable storage environment. For example, Shook describes a method and apparatus for hermetically passivating a MEMS on a semi-conductor substrate in U.S. Patent Application Serial No. 09/124,710, and also U.S. Patent Application Serial No. 08/744,372, filed 7/29/98 and entitled METHOD OF AND APPARATUS FOR SEALING A HERMETIC LID TO A SEMICONDUCTOR DIE, the contents of both of which are hereby incorporated reference.
What is needed is a method to make MEMS and other structures on a wafer substrates utilizing processes that are compatible with standard IC wafer processing, whereby MEMS and ICs are capable of being fabricated on the same wafer chip. Further, what is needed is a method to fabricate MEMS, wherein the active portions of the MEMS are readily encapsulated within a variety of suitable storage environments.
Summary of the Invention;
The current invention provides a method of making an encapsulated release structure. Preferably, the release structure is a MEMS device having a plurality of ribbons or beams, which may further have a comb structure. In an embodiment of the instant invention, the device comprises a resonator that can be used for periodic waveform generation (e.g. clock generation). In other embodiments, the device comprises a grating light valve for generation and/or transmission of optical information. In yet other embodiments the device comprises a radio frequency (RF) generator for wireless transmission of information.
The release structure is formed between layers of a multi-layer structure. The multilayer structure preferably comprises a first and second etch-stop layers, which can be the same as or different from each other, and a first sacrificial layer between the first and the second etch-stop layer. Release features are patterned into the second etch-stop layer. Preferably, the multi-layer structure is formed on a silicon wafer substrate. The silicon wafer substrate is preferably configured to couple the MEMS device with an integrated circuit (IC), also formed on the silicon wafer substrate.
Preferably, the multi-layer structure is formed with a first etch-stop layer that is deposited on or over a selected region of the silicon wafer substrate. The first etch-stop layer is preferably a silicon dioxide layer, a silicon nitride layer or a combination thereof. On top of or over the first etch-stop layer the first sacrificial layer is formed. The first sacrificial layer preferably comprises a polysilicon material though other materials can also be used. The second etch-stop layer is formed on or over the first sacrificial layer with a pattern corresponding to release features of the release structure.
The second etch-stop layer is patterned with the release structure features using any suitable patterning technique. Accordingly, a patterned photo-resist is formed on or over the second etch-stop layer prior to removing a portion thereof to form a patterned second etch- stop layer having gaps therein and between portions of the second etch-stop layer under the patterned phot resist. Alternatively, the first sacrificial layer can be anisotropically etched with a positive impression of the release structure features. The positive impression of the release structure features provides nuclei for rapid anisotropic growth of release structure features onto the patterned portions of the first sacrificial layer during the deposition of the second etch-stop layer. Regardless, of the method used to form the second etch-stop layer, a second sacrificial layer is formed over the second etch-stop layer sandwiching the second etch-stop layer having the release structure features between the first and the second sacrificial layers. The second sacrificial layer preferably comprises polysilicon. On top of the second sacrificial layer a sealant layer or capping layer is formed. The capping layer preferably comprises one or more conventional passivation layers and more preferably comprises a silicon oxide layer, a silicon nitride layer or a combination thereof.
The etch-stop layers are formed by any number of methods. An etch-stop layer can be formed from any materials that show resistance to etching under specified etching conditions relative to the materials that form the sacrificial layer(s). In the instant invention the etching rate (mass or thickness of material etched per unit time) of sacrificial materials(s) relative to the etch-stop layer materials is preferably greater than 10:1, more preferably greater than 50:1 and most preferably greater than 100:1. In developing the present invention, experimental results of approximately 2500:1 have been achieved. Any particular etch-stop layer can comprise one or more layers, any of which can be exposed to the sacrificial layer etchant as long as the etch-stop layer exhibits sufficient resistance to the sacrificial layer etchant.
In an embodiment of the instant invention, one or more of the etch-stop layers of the multi-layer structure comprise silicon oxide. Preferably the silicon oxide is silicon dioxide; when silicon oxide is referred to in this document, silicon dioxide is the most preferred embodiment, although conventional, doped and/or non-stoichiometric silicon oxides are also contemplated. Silicon oxide layers can be formed by thermal growth, whereby heating a silicon surface in the presence of an oxygen source forms the silicon oxide layer. Alternatively, the silicon oxide layers can be formed by chemical vapor deposition processes, whereby an organic silicon vapor source is decomposed in the presence of oxygen. Likewise, the silicon nitride layers can be formed by thermal growth or chemical deposition processes. The polysilicon sacrificial layers are preferably formed by standard IC processing methods, such as chemical vapor deposition, sputtering or plasma enhanced chemical vapor deposition (PECND). At any time before the formation of a subsequent layer, the deposition surface can be cleaned or treated. After the step of patterning the release structure, for example, the deposition surface can be treated or cleaned with a solvent such as Ν-methyl-2-pyrolipone (NMP) in order to remove residual photo-resist polymer. Further, at any time before the formation of a subsequent layer, the deposition surface can be mechanically planarized.
After the multi-layer structure is formed with the release structure (e.g. patterned from the second etch-stop) sandwiched between the first and the second sacrificial layers, access holes or trenches are formed in the capping or sealant layer, thereby exposing regions of the second sacrificial layer therebelow. Access trenches are referred to, herein, generally as cavitations formed in the capping or sealant layer which is allows the etchant to etch the material in the sacrificial layer therebelow. For simplicity, the term access trenches is used herein to encompass both elongated and symmetrical (e.g. holes, rectangles, squares, ovals, etc.) cavitations in the capping or sealant layer.
In accordance with the instant invention, access trenches can have any number of shapes or geometries, but are preferably anisotropically etched to have steep wall profiles. The access trenches are preferably formed by etching techniques including wet etching processes and reactive ion etching processes though other conventional techniques can be used. The exposed regions of the second sacrificial layer are then treated to a suitable etchant which selectively etches substantial portions of the first and second sacrificial layers portion so the release structures are suspended under the capping or sealant layer.
The preferred etchant comprises a noble gas fluoride, such as xenon difluoride. Preferably, the exposed regions of the second sacrificial layer can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride prior to selectively etching the first and second sacrificial layers. The pre-etch solution can prevent the formation of oxide, clean exposed regions of the second sacrificial layer, remove polymers and/or help to ensure that etching is not quenched by the formation of oxides. The etching step is preferably performed in a chamber, wherein the etchant is a gas. However, suitable liquid etchants are considered to be witliin the scope of the current invention, whereby the noble gas fluoride is a liquid or is dissolved in suitable solvent.
In the preferred method of the instant invention the multi-layer structure is placed under vacuum with a pressure of approximately 10"5 Torr. A container with Xenon Difluoride crystals is coupled to the chamber through a pressure controller (e.g. a controllable valve). The crystals are preferably at room temperature within the container with the pressure of Xenon Difluoride of approximately 4.0 Torr. The pressure controller is adjusted such that the pressure within the chamber is raised to approximately 50 milliTorr. This pressure, or an alternatively sufficient pressure, is provided to ensure a controllable etching rate, a positive flow of Xenon Difluoride to the chamber and excellent uniformity of the etch processes.
After the etching step, the access trenches maybe sealed to encapsulate the suspended release structure between the first etch-stop layer and the capping or sealant layer. The sealing step is performed at a separate processing station within a multi-station wafer processing system or, alternatively, is performed within the chamber apparatus. The access trenches can be sealed by any number of methods including sputtering, chemical vapor deposition (CND), plasma enhanced chemical vapor deposition (PECND), or spin on glass methods. The access trenches can be sealed with any number of materials including metals, polymers and ceramics. Preferably, the access trenches are sealed by sputtering a layer of aluminum over the access trenches and the capping layer. For optical applications, excess aluminum can be removed from the capping or sealant layer using a suitable mechanical or chemical method.
In accordance with alternative embodiments of the invention, before depositing the second sacrificial layer on the patterned second etch-stop layer, the second etch-stop layer may have a reflective material deposited thereon. The reflective material preferably comprises aluminum. Accordingly, after the sacrificial layers are etched away, the release features preferably have a reflective upper surface suitable for optical applications.
In yet other embodiments of the invention, a gettering material, such as titanium or a titanium-based alloy can be deposited within a cavity capped by the capping or sealant layer prior to sealing the access trenches in the capping or sealant layer. The gettering material is provided to help reduce residual moisture and/or oxygen which can lead to performance degradation of the device over time. The release structure is preferably sealed under a vacuum or, alternatively, under a suitable noble gas atmosphere, as described in detail below.
The invention provides a sealed MEMS device on an IC chip, intermediate elements thereof and also a method of forming the same using techniques that are preferably compatible with standard IC processing. For example, the method of the instant invention provides for processing steps that are preferably carried out at temperatures below 600 degrees Celsius and more preferably at temperatures below 550 degrees Celsius. Further, the current invention provides for a method to fabricate MEMS with active structures which are hermetically sealed in a variety of environments. The current invention is not limited to making MEMS and can be used to make any number of simple or complex multi-cavity structures that have micro-fluid applications or any other application where an internalized multi-cavity silicon-based structure is preferred. Also, as will be clear for the ensuing discussion that the method of the instant invention is capable of being used to form any number of separate or coupled release structures within a single etching process and that larger devices can be formed using the methods of the instant invention.
Brief Description of the Drawing:
Figure 1 is a schematic illustrating a MEMS oscillator.
Figures 2a-h illustrate top views and cross-sectional views a multi-layer structure formed on silicon wafer substrate, in accordance with current invention.
Figures 3a-f show cross sectional views of a release features being formed from a multi-layer structure, in accordance with a preferred method of the current invention.
Figure 4 is a block diagram outlining steps for forming a multi-layer structure illustrated in Figure 3 a.
Figure 5 is a block-diagram outlining the method of forming a release structure from the multi-layered structure shown in Figure 2a.
Figure 6 is a block-diagram outlining the steps for etching sacrificial layers of the multi-layer structure illustrated in Figure 2b.
Figure 7 is a schematic diagram of a chamber apparatus configured to etch a multi- layered structure formed in accordance with the method of instant invention.
Detailed Description of the Invention:
In general, the present invention provides a method to make devices with encapsulated release structures. The current invention is particularly useful for fabricating MEMS oscillators, optical display devices, optical transmission devices, RF devices and related devices. MEMS oscillators can have any number or simple or complex configurations, but they all operate on the basic principle of using the fundamental oscillation frequency of the structure to provide a timing signal to a coupled circuit. Referring to Figure 1, a resonator structure 102 has a set of movable comb features 101 and 101' that vibrate between a set of matched transducer combs 105 and 105'. The resonator structure 102, like a pendulum, has a fundamental resonance frequency. The comb features 101 and 101' are secured to a ground plate 109 through anchor features 103 and 103'. In operation, a dc-bias is applied between the resonator 102 and a ground plate 109. An ac-excitation frequency is applied to the comb transducers 105 and 105' causing the movable comb features 101 and 101' to vibrate and generate a motional output current. The motional output current is amplified by the current to-voltage amplifier 107 and fed back to the resonator structure 102. This positive feed-back loop destabilizes the oscillator 100 and leads to sustained oscillations of the resonator structure 102. A second motional output current is generated to the connection 108, which is coupled to a circuit for receiving a timing signal generated by the oscillator 100.
Referring now to Figure 2a showing a plan view of a wafer, a wafer structure 200 preferably comprises a silicon substrate 201 and a first etch-stop layer 203. The first etch- stop layer 203 may not be required to perform the methods of the instant invention, especially when the silicon substrate 201 is sufficiently thick to allow sacrificial layers to be etched without completely etching away the silicon substrate 201. Also, the substrate 201 itself can be formed from or doped with a material that renders the substrate 201 substantially resistant to the etchant that is used, such that the formation of the first-etch-stop layer 203 is not required. However, in an alternative embodiment, a material that can be selectively etched relative to a silicon substrate can be selected or used as the sacrificial layer. The first etch- stop layer 203 preferably comprises silicon oxide, silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used to etch the first sacrificial layer.
Still referring to Figure 2a, a region 251 of the wafer structure 200 is used to form the release structure. Other portions of the wafer structure 200 can be reserved for forming an integrated circuit that can be electrically coupled to and that can control operation of the release structure formed in the region 251. In addition, any number of release structures and release structure region 251 can be formed on the same wafer structure 200.
Now referring to Figure 2b, in the region 251, a first sacrificial layer 205 is formed over the first etch-stop layer 203 using any conventional technique. The first sacrificial layer 205 is formed from any suitable material that is selectively etched relative to the underlying first etch-stop layer(s), but preferably comprises polysilicon.
Referring now to Figure 2c, a second etch-stop layer 207 is formed over the first sacrificial layer 205. The second etch-stop layer 207 can be formed of the same or different material as the first etch-stop layer 203. The second etch-stop layer 207 preferably comprises silicon oxide, a silicon nitride, a combination thereof or any other suitable material which exhibits sufficient resistance to the etchant used. In an embodiment of the invention, the first sacrificial layer 205 is etched prior to depositing the second etch-stop layer 207 to provide raised support features 215 and 215' which support the subsequently formed release structures. Alternatively, or in addition to forming the raised support features 215 and 215', support posts may be formed 216, 216' and 216" in positions to provide support for the release structures formed in subsequent steps. Preferably, the support posts 216, 216' and 216" are formed from an etch resistant material(s) that are the same or different than material(s) used to form the etch-stop layer 203 and/or etch-stop layer 207 and capping layer 211, as described in detail below.
Alternatively to forming support features 215 and 215' and/or support posts 216, 216' and 216", or in addition to forming the support features 215 and 215' and/or support posts 216, 216' and 216", the second etch-stop layer 207 can be deposited in an area of the region 251 without underlying sacrificial layer 205 and such portions of the second etch-stop layer 207 maybe deposited directly onto and/or attached to the first etch-stop layer 203 and/or substrate 201, such as shown in Figure 2 d. After the second etch-stop layer 207 is patterned and the sacrificial layer 205 is etched, portions of the second etch-stop layer 207 deposited directly on the first etch-stop layer 203 provide structural supports for the release structures formed. There are any number of mechanisms to provide physical support for the release structures formed that are considered to be within the scope of the instant invention.
Now referring to Figure 2e, in accordance with a preferred embodiment of the instant invention a reflective layer 233 is deposited over the second etch-stop layer 207 and/or the support features 215 and 215' and/or support posts 216, 216' and 216". The reflective layer 233 preferably comprises aluminum or other suitable reflective material. The reflective layer 233 is preferably resistant to enchant being used in removing the sacrificial layers, but is capable of being etched using other suitable techniques including photo-lithograph and plasma etch, wherein the patterned release structures formed in subsequent steps have reflective surfaces suitable for optical applications. Preferably, a set of bond pad 226, 227 and 228 are also formed on the wafer structure 200 for electrically coupling the release structure(s) to a circuit external to the integrated circuit containing/comprising the release structure(s). It will be readily understood by those of ordinary skill in the art that the reflective layer 233 can alternatively be deposited on the release features 204 and 206 after they are formed.
Now referring to Figure 2f, the reflective layer 233 and the second etch-stop layer 207 is patterned to form the release structures/features 204 and 206. The reflective layer 233 and the second etch-stop layer 207 are preferably patterned using conventional photo-lithography techniques and/or steps. For example, a photo-resist layer is formed on the reflective layer 233. The photo-resist is patterned and developed to form a patterned phot-resist mask (not shown). Portions of the reflective layer 233 and the second etch-stop layer 207 are then removed using conventional techniques leaving the patterned features 204 and 206 with a reflective layer 233 under the patterned photo-resist mask. The patterned photo-resist mask can then be removed from the patterned features 204 and 206 and the patterned features 204 and 206 can be encapsulated as described in detail below.
Alternatively, the first sacrificial layer 205 can be etched with a positive impression of the release features (not shown). The positive impression of the release features then provide nuclei for rapid anisotropic growth of release structure features 204 and 206. The release features 204 and 206 are shown in Figure 2f as comb structures. However, it is clear that the release features can be comb structures, ribbon structures, cantilevers or any number of other structures including, but not limited to, domain separators, support structures and/or cavity walls as described in detail below. Further, while providing a reflective layer 233 is preferred, the additional step of forming a reflective layer 233 is not required when the patterned features 204 and 206 are not used to reflect light, such as in the case for micro- fluidic devices. The line 270 shows an x-axis of the wafer structure 200 and the line 271 shows the y-axis of the wafer structure. The z-axis 272 of the wafer structure 272 in Figure 2f is normal to the view shown.
Figure 2g shows a side cross-sectional view of the wafer structure 200 after a second sacrificial layer 209 is deposited over release features 204 and 206 with the reflective layer 233. In the Figure 2g, the y-axis 271 is now normal to the view shown and the z-axis 272 in now in the plane of the view shown. The release features 204 and 206 are embedded between the sacrificial layers 205 and 209 and the sacrificial layers 205 and 209 are preferably in contact through gap regions between the release features 204 and 206. The second sacrificial layer 209 is formed of any suitable material that is selectively etched relative to the etch-stop layer(s) used to form the release structure device, but preferably comprises polysilicon.
Now referring to Figure 2h, after the second sacrificial layer 209 is deposited over the release features 204 and 206, a capping layer 211 is deposited over the second sacrificial layer 209. The capping layer 211 preferably comprises silicon dioxide, silicon nitride any combination thereof or any other suitable material(s) which exhibit(s) sufficient resistance to the etchant used. The capping layer 211 can be formed of the same or different material as the first etch-stop layer 203 and/or the second etch-stop layer 207. Figures 3a-3f will now be used to illustrate the preferred method of forming an encapsulated release structure from a portion 250 of the structure 200 as shown in Figure 2h.
Referring now to Figure 3 a, a device with a release structure, such as the MEMS resonators structure 102 described above, is preferably made from a multi-layer structure 250. The multi-layer structure 250 has a first etch-stop layer 203 that is preferably formed on the region 251 of the silicon wafer substrate 201, such as previously described. The first etch-stop layer 203 may comprise any material or materials that exhibit resistance to etching under the conditions for etching the first sacrificial layer. For example, when the first etch sacrificial layer comprises polysilicon, the first sacrificial layer etchant comprises XeF2, and the first sacrificial layer etching conditions are described below for etching polysilicon with XeF2. The first etch-stop layer 203 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 500 to 5000 Angstroms.
On top of the first etch-stop layer 203 there is formed a first sacrificial layer 205. The first sacrificial layer 205 may comprise any materials(s) that may be selectively etched relative to the underlying first etch-stop layer 203 (when present) or substrate 201 (when the first etch-stop layer is not present). However, when the first etch-stop layer 203 comprises silicon oxide or silicon nitride, the first sacrificial layer 205 preferably comprises a polysilicon. Alternatively, the first sacrificial layer 205 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the first sacrificial layer 205 to be preferentially etched over the substrate 201 or etch-stop layer 203 and/or the etch-stop layer 206 and capping layer 211, described in detail below. The first sacrificial layer 205 preferably has a layer thickness in a range of 0.1 to 3.0 microns.
On top of the first sacrificial layer 205 is formed a second etch-stop layer 207. The second etch-stop layer 207 is patterned with features 206 and 204 corresponding to the release structure. The first etch-stop layer 203 may comprise any material(s) that exhibit resistance to etching under the conditions for etching the first sacrificial layer. For example, when the first sacrificial layer 205 comprises polysilicon, the first sacrificial layer etchant comprises XeF2, and the first sacrificial layer etching conditions are described below for etching polysilicon with XeF2. The second etch-stop layer 207 preferably comprises a silicon oxide layer or a silicon nitride layer with a layer thickness in a range of 300 to 5000 Angstroms.
On the second etch-stop layer 207 is formed a second sacrificial layer 209. The second sacrificial layer 209 may comprise any materials(s) that may be selectively etched relative to the underlying, the second etch-stop layer 207 and/or the first etch stop layer 203 (when present) or substrate (when the first etch-stop layer is not present). However, when the first and the second etch-stop layers 203 and 207 comprise silicon oxide or silicon nitride, the second sacrificial 209 layer preferably comprises a polysilicon. Alternatively, second first sacrificial layer 209 can comprise a doped silicon oxide layer that is doped with boron, phosphorus or any other dopant which renders the sacrificial layer 209 to be preferentially etched over the substrate 201 or etch-stop layers 203 and 207. The second sacrificial layer 209 preferably has a layer thickness in a range of 0.1 to 3.0 microns and preferably, the sacrificial layers 205 and 209 are in contact with each other in the patterned regions 208 or gaps between the features 206 and 204 of the release structure.
A capping or sealant layer 211 is deposited over second sacrificial layer 209. The capping or sealant layer 211 preferably comprises a conventional passivation material (e.g. an oxide, nitride, and/or an oxynitride of silicon, aluminum and/or titanium). The capping or sealant layer 211 also can comprise a silicon or aluminum-based passivation layer which is doped with a conventional dopant such as boron and/or phosphorus. More preferably, the capping layer or sealant layer 211 comprises a silicon oxide layer with a layer thickness in a range of 1.0 to 3.0 microns. It will be apparent to one of ordinary skill in the art that though the layers referred to above are preferably recited as being single layer structures, each can be formed of a sandwich of known layers to achieve the same result. Furthermore, though the layers are preferably taught as being formed one on top of the next, it will be apparent that intervening layers of varying thicknesses can be inserted.
Now referring to Figure 3b, access trenches 213 and 219 are formed in the capping layer 211 thereby exposing regions 215 and 217 of the second sacrificial layer 209. The access trenches 213 and 219 are preferably anisotropically etched, although the access trenches 213 and 219 may be formed by any number of methods including wet and/or dry etching processes. For example, a photo-resist is provided on the capping layer and is exposed and developed to provide a pattern for anisotropically etching the access trenches 213 and 219. Alternatively, an etchant may be selectively applied to a portion of the etch- stop layer 211 corresponding to the access trenches 213 and 219. For example micro- droplets or thin streams of a suitable etchant can be controllably applied to the surface of the capping or sealant layer 211 using a micro-syringe technique, such as described by Dongsung Hong, in U.S. Patent Application No. 60/141,444, filed June 29, 1999 (Attorney Docket No. 0325,00226), the contents of which are hereby incorporated by reference.
After the access trenches 213 and 219 are formed in the capping layer 211, when the second sacrificial layer comprises polysilicon, the exposed regions 215 and 217 of the second sacrificial layer 209 can be treated with a pre-etch solution of ethylene glycol and ammonium fluoride. A suitable pre-mixed solution of ethylene glycol and ammonium fluoride is commercially available under the name of NOE Etch I ™ manufactured by ACSI, Inc., Milpitas, CA 95035. Oxides can form on the surfaces of exposed polysilicon regions, such as 215 and 217. Such oxides can interfere with polysilicon etching and result in an incomplete etch. The pre-etch solution is believed to prevent and/or inhibit the formation of oxides on the surfaces of the exposed regions 215 and 217, or removes such oxides if present and/or formed, to avoid incomplete etching of the sacrificial layers 205 and 209.
Now referring to Figure 3c, after the access trenches 213 and 219 are formed in the capping layer 211, the sacrificial layers 205 and 209 are selectively etched to release the features 204 and 206. The features 204 and 206 can have any number of different geometries. For example, in the fabrication of a MEMS device the release features are comb or ribbon structures. In the fabrication of a micro-fluidic device the release features provide pathways which interconnect cavities 221 and 223. In the fabrication of electronic levels or electronic accelerometers the release features can be cantilevers. After the features 204 and 206 are released, then the access trenches 213 and 219 in the layer 211' are sealed to encapsulate the features 204 and 206 between the layers 203 and 211'.
Now referring to Figure 3d, in further embodiments of the instant invention, prior to sealing the access trenches 213 and 219 in the layer 211', a gettering material 231 such as titanium or a titanium-based alloy can be deposited within at least one of structure cavities 221 and 223 through the access trenches 213 and 219. Alternatively, gettering material/agent 231 can be deposited at the time that the reflective layer 233 is formed. In yet further embodiments, a gettering material 231 is a dopant within the sacrificial layer 205 and 209 that is released during the etching of the sacrificial layers 205 and 209.
Now referring to Figure 3e, after surfaces of the cavities 221 and 223 and/or the features 204 and 206 are treated and provided with a suitable environment, as described in detail below, the access trenches 213 and 219 are preferably sealed. The release features 204 and 206 are preferably sealed under a vacuum, but can be sealed within a predetermined or controlled gas and/or liquid for some applications. The access trenches 213 and 219 are sealed by any of a number of methods and using any of a number of materials including metals, polymers and/or resins. Preferably, the access trenches 213 and 219 are sealed by sputtering conventionally sputtered metals over the access trenches 213 and 219 and the capping layer 211 and more preferably by sputtering aluminum over the access trenches 213 and 219 and capping layer to form the layer 242.
Now referring to Figure 3f, for optical applications, a portion of the layer 242 can be removed such that corking structures 240 and 241 remain in the access trenches 213 and 219. The capping layer 211 may provide an optical window through which light can pass to the layer 233 on the release features 204 and 206. Portions of the layer 242 are preferably removed by micro-polishing techniques. Alternatively, conventional photo-lithography techniques can be used to etch away a portion of layer 242.
In an embodiment of the invention, portion of the layer 242 of the layer is selectively removed such that the capping layer 211 provides an optical aperture (not shown) through which light can pass to and/or from the layer 233 on the release features 204 and 206.
Figure 4 is a block diagram flow chart 300 outlining steps for forming a multi-layer structure shown in Figure 3 a in accordance with a preferred method of the instant invention. The multi-layer structure shown in Figure 3a is preferably made by sequential deposition processes, such as described above, wherein the uniformity and thicknesses of each of the structure layers are readily controlled.
Still referring to Figure 4, in the step 301, a silicon dioxide layer is formed by steam or dry thermal growth on a silicon substrate or by deposition on a selected region of the silicon wafer or other substrate. Preferably, the silicon dioxide layer is thermally grown to a thickness in a range of 250 to 5000 Angstroms and more preferably in a range of 250 to 750 Angstroms. The thermal oxidation occurs by placing the wafer substrate at a temperature in a range of 600 to 800 degrees Celsius in a controlled oxygen environment. In the step 303, a polysilicon layer is preferably deposited by Low Pressure Chemical Napor Deposition (LPCND) on the first etch stop layer to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns. Low Pressure Chemical Napor Deposition of the amorphous polysilicon is preferably carried out at temperatures in a range of 450 to 550 degrees Celcius.
After the first polysilicon layer is deposited in the step 303, then in the step 305 a silicon nitride device layer is formed on the first poly silicon sacrificial layer. Preferably, the silicon nitride layer is formed by LPCVD to a thicknesses in a range of 300 to 5000 Angstroms and more preferably in a range of 750 to 1250 Angstroms. The silicon nitride device layer can be formed by thermal decomposition of dichlorosilane in the presence of ammonia.
In accordance with alternative embodiment of the current invention, the silicon nitride layer is patterned with structure features after the deposition of a photo-resist layer is deposited, exposed and developed (thereby forming an etch mask) in the step 303, or by selectively etching a pattern into the first polysilicon layer formed in the step 303 to initiate rapid growth of the silicon nitride in the etched areas of the polysilicon layer. Preferably, the silicon nitride layer is deposited as a continuous layer which is then selectively etched to form the release features of the release structure using a conventional photo-resist mask.
After forming the patterned silicon nitride layer in the step 305, then in the step 307 a second sacrificial layer is formed over the patterned silicon nitride layer, sandwiching the patterned layer between the first and the second sacrificial layers. The second sacrificial layer is preferably also a polysilicon layer that is preferably deposited by LPCVD to a thickness in a range of 0.1 to 3.0 microns and more preferably to a thickness in a range of 0.5 to 1.0 microns. The second sacrificial layer is preferably formed by thermal decomposition of an organosilicon reagent, as previously described. Preferably, the first and the second polysilicon layer have contact points whereby the etchant can pass through the contact points between the first and the second sacrificial layers to etch away portions of both the first and the second polysilicon sacrificial layers. Preferably, in the step 311, and prior to the step 305 of forming the second polysilicon layer, the deposition surface of the patterned silicon nitride layer is treated with a solvent such NMP (which can be heated) to clean its surface. In accordance with the method of the current invention, surfaces can be treated at any time during the formation of the multi-layer structure to remove residues thereon that may lead to poor quality films.
After the second polysilicon layer is formed in the step 307, then in the step 309, a capping layer is formed over the second polysilicon layer. The capping layer is preferably a silicon oxide capping layer deposited by Plasma Enhanced Chemical Vapor deposition (PECND) to a thickness in a range or 1.0 to 3.0 microns and more preferably in a range of 1.5 to 2.0 microns. In the PECND process, an organosilicon compound, such as a tetraethyl orthosilicate (TEOS), is decomposed in the presence of an oxygen source, such as molecular oxygen, to form the silicon oxide capping layer. In the step 310, and prior to the step 309, the second polysilicon layer may be planarized and/or cleaned to prepare a suitable deposition surface for depositing or forming the capping layer.
Figure 5 is a block diagram flow chart 400 outlining the preferred method of forming a device from the multi-layered structure shown in Figure 3 a. In the step 401, access trenches are formed in the capping layer. The access trenches are formed with diameters in a range of 0.4 to 1.5 microns and more preferably in a range of 0.6 to 0.8 microns. The access trenches are preferably formed in the silicon oxide capping layer using a reactive ion etch process. The reactive ion etch process can, under known or empirically determined conditions, etch trenches with sloped or straight walls which can be sealed in a subsequent step or steps. The access trenches are preferably formed through the capping layer to exposed regions of the sacrificial material therebelow. Preferably, in step 402, and prior to the step 403, the exposed regions of the sacrificial layer are treated with a pre-etch cleaning solution of ethylene glycol and ammonium fluoride, that comprises approximately a 10% by weight solution of ammonium fluoride dissolved in ethylene glycol. After the exposed regions of the sacrificial layer are treated with the pre-etch solution in the step 402, then in the step 403 the polysilicon layers are selectively etched with an etchant comprising a noble gas fluoride NgF2x, (wherein Ng = Xe, Kr or Ar, and where x = 1, 2 or 3). More preferably, the etchant comprises xenon difluoride. Further advantages of using xenon difluoride etchant are described by Pister in U.S. Patent No. 5,726,480, the contents of which are hereby incorporated by reference.
After the etching step 403 is complete, then in the step 404 a gettering material may be deposited through one or more of the access trenches into the device cavity formed during the etching step 403. In the step 405, the access trenches are sealed by sputtering aluminum onto the capping layer sufficiently to seal the access trenches. Excess aluminum can be removed from the capping layer by well known methods such as chemical, mechanical polishing or phot-lithography.
Figure 6 is a block diagram outlining the preferred method of etching the polysilicon sacrificial layers in the step 403 shown in Figure 5. After the access trenches are formed in the step 401, and the exposed regions of the polysilicon layer are treated in the step 402, as described above, then in the step 501, the structure is place under a vacuum of approximately 10"5 torr. In the step 503, xenon difluoride crystals are preferably sublimed at a pressure in a range of 0.1 to 100 Torr, more preferably in a range of 0.5 to 20 Torr and most preferably at approximately 4.0 Torr. In the step 505, a controlled stream of xenon difluoride is provided to the chamber. The chamber is preferably maintained at a pressure lower than the sublimation pressure of the xenon difluoride crystals to ensures a positive flow of the xenon difluoride to the chamber. The pressure in the chamber is preferably maintained in a range of 0.1 milliTorr to 1.0 Torr, more preferably in a range of 1.0 milliTorr to 100 milliTorr and most preferably at approximately 50 milliTorr (0.05 Torr).
Figure 7 illustrates a schematic diagram of an apparatus 600 for carrying out the etching step described in block-flow diagram 500 shown in Figure 5. The apparatus 600 is preferably coupled with a vacuum source 607 that is capable of drawing a vacuum in the chamber environment 605'. The apparatus 600 preferably includes a pressure measuring device 609 that allows a user to monitor the pressure within the chamber 610. A container 608 containing an etchant source (e.g. crystals of xenon difluoride) is coupled to the chamber 610 through a pressure or flow controller 613. The container 608 can have a pressure measuring device 611 coupled to the container 608 to allow the user to monitor the pressure within the container 608.
In operation, a multi-layer structure 620, similar to those described previously, is placed in the chamber 610. The vacuum control valve is opened and the vacuum source 607 draws a vacuum reducing the pressure of the chamber environment 605' preferably to or near to 10"5 Torr. Under known conditions, the xenon difluoride crystals at room temperature form a vapor pressure of XeF2 of approximately 4.0 Torr, as determined by the pressure measuring device 611. The pressure controller 613 is adjusted to change the pressure of the chamber environment 605' to approximately 50 x 10'3 Torr. The structure 620 is etched for a time sufficient to form the release structure 623 within the cavity 621 of the structure 620. The etching process takes place over a period of approximately 20-30 minutes, depending on the etching pressure chosen, the physical details of the structure 620 and flow dynamics of the chamber apparatus 600.
After the etching step is complete, a suitable sealing environment may then be provided. Accordingly, in one embodiment the patrial pressure control value 613 is shut off and a low pressure vacuum is reestablished using a draw from the vacuum source 607. The trenches of the etched structure 620 may be sealed by a sputter beam 650 of aluminum, using a sputter device 630.
Alternatively, after reestablishing a low pressure vacuum, the chamber may be backfilled with a noble gas. Accordingly, a noble gas source 615 may be coupled to the control chamber 610 through a control valve 612. The chamber environment 605' is flushed with a noble gas by opening the gas valve 612 prior to sealing the trenches of the device 620. The trenches of the device 620 may then be sealed with a polymer or ceramic material, thereby capturing a portion of the chamber environment 605' within the cavity 621 of the device 620.
The above examples have been described in detail to illustrate the preferred embodiments of the instant invention. It will be clear to one of ordinary skilled in the art that there are many variations to the invention that are within the scope of the invention. For example, a device with multiple layers of release structures can be formed by extending teachings of the invention and using multi- layer structures having more than one pattered layer. Further, it is clear that any number of devices with coupled and un-coupled release structures and with multi-cavity structures are capable of being fabricated using the method of the instant invention.

Claims

CLAIMS What is claimed is:
1. A method of making a release structure from a multi-layer structure comprising first and second etch-stop layers, a first sacrificial layer between the first and the second etch-stop layers, a cap layer and a second sacrificial layer between the second etch- stop layer and the cap layer with at least one access trench, wherein the second etch- stop layer includes a release feature, the method comprising; a. creating an access opening in the cap layer; and b. etching portions of the first and the second sacrificial layers through the at least one access opening to form the release structure.
2. The method of claim 1, further comprising the step of applying a pre-etch solution in the at least one access trench prior to the etching step.
3. The method of claim 1, wherein each of the first and second etch-stop layers are formed of a material selected from the group consisting of oxides, oxynitrides and nitrides of silicon.
4. The method of claim 1, wherein the first sacrificial layer and the second sacrificial layer comprise polysilicon.
5. The method of claim 4, wherein the first sacrificial layer and the second sacrificial layer independently have a thickness in a range of 0.1 to 3.0 microns thick.
6. The method of claim 1, wherein the multi-layer structure further comprises a silicon substrate.
7. The method of claim 6, wherein the first sacrificial layer, the second etch-stop layer, the second sacrificial layer and the cap layer are formed by sequential deposition on the silicon substrate.
8. The method of claim 1, wherein the access opening is formed by anisotropically etching the cap layer.
9. The method of claim 1, wherein the etching portions of the first and second sacrificial layers is performed with an etchant comprising a noble gas fluoride.
10. The method of claim 1, wherein the etching portions of the first and second sacrificial layers is performed with an etchant comprising xenon difluoride.
11. The method of claim 1, further comprising sealing the access opening with a sealing material.
12. The method of claim 11, wherein the sealing material comprises a material selected from the group consisting of polymers, metals and ceramics.
13. The method of claim 11 , wherein the sealing material is aluminum metal.
14. The method of claim 1, wherein the release structure comprises a microelectronic mechanical structure (MEMS).
15. A method of making a MEMS device comprising: a forming a first sacrificial layer on a substrate; c. forming a MEM feature comprising an etch resistant material over the first sacrificial layer, the MEM structure layer having at least one gap therein; d. forming a second sacrificial layer on the MEM structure layer; and e. forming a capping layer over the second sacrificial layer.
16. The method of claim 15, further comprising: a. providing at least one access opening through the capping exposing a portion of the first sacrificial layer therebelow; and
etching the first and the second sacrificial layers through the at least one access trench to release a portion of the MEM feature from the first and the second sacrificial layers.
17. The method of claim 15, further comprising forming a bottom etch-stop layer on a process wafer prior to forming a first sacrificial layer.
18. The method of claim 16, wherein the etching is accomplished with an etchant comprising a noble gas fluoride.
19. The method of claim 16, wherein the etching is accomplished with an etchant comprising xenon difluoride.
20. A method of claim 16, further comprising sealing the at least one access opening with a sealing material.
21. A method of claim 20, wherein the sealing material is selected from the group consisting of metals, polymers and ceramics.
22. A structure for fabricating a MEMS comprising: a. a substrate; b. a capping layer over a portion of the substrate; and c. a release structure with release features, the release features being positioned between the wafer structure and embedded with a sacrificial material.
23. The structure of claim 22, wherein the sacrificial material is capable of being selectively etched relative to the capping layer by an etchant comprising a noble gas fluoride.
24. The structure of claim 22, wherein the etchant comprises Xenon Difluoride.
25. The structure of claim 22, wherein the sacrificial material is selectively etched relative to the capping layer by a rate (mass/time) of greater than 50:1.
26. The structure of claim 22, wherein the substrate comprises a layer of crystalline silicon.
27. The structure of claim 26, wherein the layer of crystalline silicon is doped with a dopant
28. The structure of claim 27, wherein the dopant comprises an element selected from the groups consisting of Boron and Phosphorus.
29. The structure of claim 22, wherein the substrate further comprises an etch-stop layer between the sacrificial material and the substrate.
30. The structure of claim 29, wherein the etch-stop layer comprising a material selected from the group consisting of oxides, oxynitrides and nitrites of silicon.
31. The structure of claim 22, wherein the capping layer comprises a plurality of access openings.
32. The structure of claim 22, wherein the sacrificial material comprises polysilicon.
33. The structure of claim 22, wherein the release structure comprises a material selected from the group consisting of oxides, oxynitrides and nitrites of silicon.
34. The structure of claim 22, wherein the capping layer comprises a material selected from the group consisting of oxides, oxynitrides and nitrites of silicon.
35. The structure of claim 22, wherein the release structure is a microelectronic mechanical structure (MEMS).
36. The structure of claim 22, further comprising an integrated circuit, wherein the integrated circuit is electrically couple to the release structure.
37. A structure for forming a plurality of interconnected cavities, comprising a multi- layer structure comprising at least a first etch-stop layer, a second etch-stop layer, a capping layer, and polysilicon between the first and second etch-stop layers and between the second etch stop layer and the capping layer, the structure further comprising at least one internal passage in the second etch-stop layer for forming the plurality of interconnected cavities.
38. The structure of claim 37 further comprising at least hole through the capping for accessing the polysilicon thereunder.
39. The structure of claim 37, wherein the second etch-stop layer is patterned with release features and wherein the at least one internal passage is between the release features.
40. The structure of claim 39, wherein at least one of the release features is a portion of a MEMS oscillator.
41. The structure of claim 39, wherein a capping comprises and optical window that is transparent to one or more selected wavelengths of light.
42. A MEMS comprising: a. a wafer structure; b. a capping layer formed on the wafer structure; and c. a release structure comprising a plurality of movable release features encapsulated between the wafer structure and the capping layer.
43. The MEMS of claim 42, wherein the capping layer further comprises a plurality of sealed trenches.
44. The MEMS of claim 43, wherein the plurality of sealed trenches are sealed with a material selected from the group consisting of metals, polymers and ceramics
45. The MEMS of claim 44, wherein the plurality of sealed trenches are sealed with material comprising aluminum.
46. The MEMS of claim 42, wherein a portion the release structure comprises a layer of reflective material.
47. The MEMS of claim 46, wherein the reflective material comprises aluminum.
48. The MEMS of claim 42, wherein the capping layer comprises a material selected from the group consisting of oxides, oxynitrides and nitrites of silicon.
49. The MEMS of claim 48, wherein the capping layer has a thickness in a range of 1.0 to 3.0 microns.
50. The structure claim 42, wherein the release structure comprises a material selected from the group consisting of oxides, oxynitrides and nitrites of silicon.
51. The MEMS of claim 50, wherein the plurality of movable features have feature thickness in the range of 300 to 5000 Angstroms.
52. The MEMS of claim 42, further comprising an etch resistant layer between the wafer and the release structure.
53. The MEMS of claim 52, wherein the etch resistant layer comprises a material selected from the group consisting of oxides, oxynitrides and nitrites of silicon.
54. The MEMS of claim 53, wherein the etch resistant layer has a thickness in a range of 0.1 to 3.0 microns.
55. The MEMS of claim 42, further comprising an integrated circuit on the wafer structure, the integrated circuit being electrically coupled to the release structure.
56. The MEMS of claim 42, wherein the release structure comprises a resonator comb feature.
57. The MEMS of claim 42, wherein the release structure comprise a plurality of ribbon features.
58. The MEMS of claim 42, wherein the capping layer comprises at least one optical aperture for transmitting light through the capping layer.
PCT/US2002/027822 2001-09-13 2002-08-29 Microelectronic mechanical system and methods WO2003023849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003527792A JP2005502481A (en) 2001-09-13 2002-08-29 Microelectromechanical system and method
EP02798102A EP1428255A4 (en) 2001-09-13 2002-08-29 Microelectronic mechanical system and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/952,626 2001-09-13
US09/952,626 US6930364B2 (en) 2001-09-13 2001-09-13 Microelectronic mechanical system and methods

Publications (1)

Publication Number Publication Date
WO2003023849A1 true WO2003023849A1 (en) 2003-03-20

Family

ID=25493082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/027822 WO2003023849A1 (en) 2001-09-13 2002-08-29 Microelectronic mechanical system and methods

Country Status (5)

Country Link
US (4) US6930364B2 (en)
EP (1) EP1428255A4 (en)
JP (1) JP2005502481A (en)
TW (1) TW587060B (en)
WO (1) WO2003023849A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6785001B2 (en) 2001-08-21 2004-08-31 Silicon Light Machines, Inc. Method and apparatus for measuring wavelength jitter of light signal
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6839479B2 (en) 2002-05-29 2005-01-04 Silicon Light Machines Corporation Optical switch
US6872984B1 (en) 1998-07-29 2005-03-29 Silicon Light Machines Corporation Method of sealing a hermetic lid to a semiconductor die at an angle
JP2005105416A (en) * 2003-09-30 2005-04-21 Agere Systems Inc Selective isotropic etching process of titanium-based materials
US6908201B2 (en) 2002-06-28 2005-06-21 Silicon Light Machines Corporation Micro-support structures
US6922272B1 (en) 2003-02-14 2005-07-26 Silicon Light Machines Corporation Method and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US6922273B1 (en) 2003-02-28 2005-07-26 Silicon Light Machines Corporation PDL mitigation structure for diffractive MEMS and gratings
US6927891B1 (en) 2002-12-23 2005-08-09 Silicon Light Machines Corporation Tilt-able grating plane for improved crosstalk in 1×N blaze switches
US6928207B1 (en) 2002-12-12 2005-08-09 Silicon Light Machines Corporation Apparatus for selectively blocking WDM channels
US6934070B1 (en) 2002-12-18 2005-08-23 Silicon Light Machines Corporation Chirped optical MEM device
US6947613B1 (en) 2003-02-11 2005-09-20 Silicon Light Machines Corporation Wavelength selective switch and equalizer
US6956995B1 (en) 2001-11-09 2005-10-18 Silicon Light Machines Corporation Optical communication arrangement
US6987600B1 (en) 2002-12-17 2006-01-17 Silicon Light Machines Corporation Arbitrary phase profile for better equalization in dynamic gain equalizer
US7027202B1 (en) 2003-02-28 2006-04-11 Silicon Light Machines Corp Silicon substrate as a light modulator sacrificial layer
US7042611B1 (en) 2003-03-03 2006-05-09 Silicon Light Machines Corporation Pre-deflected bias ribbons
US7046420B1 (en) 2003-02-28 2006-05-16 Silicon Light Machines Corporation MEM micro-structures and methods of making the same
US7049164B2 (en) 2001-09-13 2006-05-23 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US7054515B1 (en) 2002-05-30 2006-05-30 Silicon Light Machines Corporation Diffractive light modulator-based dynamic equalizer with integrated spectral monitor
US7057819B1 (en) 2002-12-17 2006-06-06 Silicon Light Machines Corporation High contrast tilting ribbon blazed grating
US7057795B2 (en) 2002-08-20 2006-06-06 Silicon Light Machines Corporation Micro-structures with individually addressable ribbon pairs
US7068372B1 (en) 2003-01-28 2006-06-27 Silicon Light Machines Corporation MEMS interferometer-based reconfigurable optical add-and-drop multiplexor
JP2006526509A (en) * 2003-06-04 2006-11-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Micro electromechanical device and sealing method and manufacturing method thereof
US7177081B2 (en) 2001-03-08 2007-02-13 Silicon Light Machines Corporation High contrast grating light valve type device
US7286764B1 (en) 2003-02-03 2007-10-23 Silicon Light Machines Corporation Reconfigurable modulator-based optical add-and-drop multiplexer
US7391973B1 (en) 2003-02-28 2008-06-24 Silicon Light Machines Corporation Two-stage gain equalizer
US7518775B2 (en) 2004-09-27 2009-04-14 Idc, Llc Method and system for packaging a MEMS device
US7532385B2 (en) 2003-08-18 2009-05-12 Qualcomm Mems Technologies, Inc. Optical interference display panel and manufacturing method thereof
US7573547B2 (en) 2004-09-27 2009-08-11 Idc, Llc System and method for protecting micro-structure of display array using spacers in gap within display device
US8742872B2 (en) 2010-03-18 2014-06-03 Panasonic Corporation MEMS element, and manufacturing method of MEMS element

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297471B1 (en) * 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US7550794B2 (en) * 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US6908793B2 (en) * 2000-11-22 2005-06-21 The Johns Hopkins University Method for fabricating a semiconductor device
US6947195B2 (en) * 2001-01-18 2005-09-20 Ricoh Company, Ltd. Optical modulator, optical modulator manufacturing method, light information processing apparatus including optical modulator, image formation apparatus including optical modulator, and image projection and display apparatus including optical modulator
US7943412B2 (en) * 2001-12-10 2011-05-17 International Business Machines Corporation Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US7172911B2 (en) * 2002-02-14 2007-02-06 Silex Microsystems Ab Deflectable microstructure and method of manufacturing the same through bonding of wafers
US20030183916A1 (en) * 2002-03-27 2003-10-02 John Heck Packaging microelectromechanical systems
US6777258B1 (en) * 2002-06-28 2004-08-17 Silicon Light Machines, Inc. Conductive etch stop for etching a sacrificial layer
US7045381B1 (en) 2002-06-28 2006-05-16 Silicon Light Machines Corporation Conductive etch stop for etching a sacrificial layer
DE10238523B4 (en) * 2002-08-22 2014-10-02 Epcos Ag Encapsulated electronic component and method of manufacture
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
US6835589B2 (en) * 2002-11-14 2004-12-28 International Business Machines Corporation Three-dimensional integrated CMOS-MEMS device and process for making the same
US6800503B2 (en) * 2002-11-20 2004-10-05 International Business Machines Corporation MEMS encapsulated structure and method of making same
JP3703480B2 (en) * 2002-12-27 2005-10-05 松下電器産業株式会社 Electronic device and manufacturing method thereof
JP4333417B2 (en) * 2003-04-02 2009-09-16 ソニー株式会社 Micromachine manufacturing method
TW594360B (en) * 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US6951769B2 (en) * 2003-06-04 2005-10-04 Texas Instruments Incorporated Method for stripping sacrificial layer in MEMS assembly
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
FR2857002B1 (en) * 2003-07-04 2005-10-21 Commissariat Energie Atomique METHOD OF DESOLIDARIZING A USEFUL LAYER AND COMPONENT OBTAINED THEREBY
TWI231865B (en) * 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TWI232333B (en) * 2003-09-03 2005-05-11 Prime View Int Co Ltd Display unit using interferometric modulation and manufacturing method thereof
TW593126B (en) 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
US7215460B2 (en) * 2003-11-01 2007-05-08 Fusao Ishii Sequence and timing control of writing and rewriting pixel memories for achieving higher number of gray scales
US20050170670A1 (en) * 2003-11-17 2005-08-04 King William P. Patterning of sacrificial materials
DE10353767B4 (en) * 2003-11-17 2005-09-29 Infineon Technologies Ag Device for packaging a micromechanical structure and method for producing the same
US7248278B1 (en) * 2003-12-10 2007-07-24 Silicon Light Machines Corporation Apparatus and method for laser printing using a spatial light modulator
US6995622B2 (en) 2004-01-09 2006-02-07 Robert Bosh Gmbh Frequency and/or phase compensated microelectromechanical oscillator
US7316844B2 (en) * 2004-01-16 2008-01-08 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
JP2005265795A (en) * 2004-03-22 2005-09-29 Denso Corp Semiconductor mechanical quantity sensor
DE102004020204A1 (en) * 2004-04-22 2005-11-10 Epcos Ag Encapsulated electrical component and method of manufacture
US7102467B2 (en) 2004-04-28 2006-09-05 Robert Bosch Gmbh Method for adjusting the frequency of a MEMS resonator
JP4617743B2 (en) * 2004-07-06 2011-01-26 ソニー株式会社 Functional element, method for manufacturing the same, and fluid discharge head
WO2006014929A1 (en) * 2004-07-29 2006-02-09 Idc, Llc System and method for micro-electromechanical operating of an interferometric modulator
US7608789B2 (en) * 2004-08-12 2009-10-27 Epcos Ag Component arrangement provided with a carrier substrate
US7349136B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US7405861B2 (en) * 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US20060065366A1 (en) * 2004-09-27 2006-03-30 Cummings William J Portable etch chamber
US20060067650A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method of making a reflective display device using thin film transistor production techniques
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US20060065622A1 (en) * 2004-09-27 2006-03-30 Floyd Philip D Method and system for xenon fluoride etching with enhanced efficiency
US7161730B2 (en) 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7417783B2 (en) * 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US20060066932A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method of selective etching using etch stop layer
US7492502B2 (en) * 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
US7420728B2 (en) 2004-09-27 2008-09-02 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7553684B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7273762B2 (en) * 2004-11-09 2007-09-25 Freescale Semiconductor, Inc. Microelectromechanical (MEM) device including a spring release bridge and method of making the same
TW200628877A (en) * 2005-02-04 2006-08-16 Prime View Int Co Ltd Method of manufacturing optical interference type color display
DE102005008511B4 (en) 2005-02-24 2019-09-12 Tdk Corporation MEMS microphone
DE102005008512B4 (en) 2005-02-24 2016-06-23 Epcos Ag Electrical module with a MEMS microphone
US7288464B2 (en) * 2005-04-11 2007-10-30 Hewlett-Packard Development Company, L.P. MEMS packaging structure and methods
US20060234412A1 (en) * 2005-04-19 2006-10-19 Hewlett-Packard Development Company, L.P. Intellectual Property Administration MEMS release methods
JP4791766B2 (en) * 2005-05-30 2011-10-12 株式会社東芝 Semiconductor device using MEMS technology
JP5084175B2 (en) * 2005-05-31 2012-11-28 株式会社半導体エネルギー研究所 Micro structure and manufacturing method thereof
CN101228093B (en) 2005-07-22 2012-11-28 高通Mems科技公司 MEMS devices having support structures and methods of fabricating the same
JP2009503564A (en) 2005-07-22 2009-01-29 クアルコム,インコーポレイテッド Support structure for MEMS device and method thereof
WO2007013992A1 (en) * 2005-07-22 2007-02-01 Qualcomm Incorporated Support structure for mems device and methods therefor
EP2495212A3 (en) * 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
US7695890B2 (en) * 2005-09-09 2010-04-13 Brewer Science Inc. Negative photoresist for silicon KOH etch without silicon nitride
JP2009509786A (en) 2005-09-30 2009-03-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド MEMS device and interconnection in MEMS device
DE102005050398A1 (en) * 2005-10-20 2007-04-26 Epcos Ag Cavity housing for a mechanically sensitive electronic device and method of manufacture
FR2892714B1 (en) * 2005-10-27 2007-12-21 Commissariat Energie Atomique METHOD FOR ETCHING A SACRIFICIAL LAYER FOR A MICRO-FACTORY STRUCTURE
US7630114B2 (en) 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
DE102005053767B4 (en) 2005-11-10 2014-10-30 Epcos Ag MEMS microphone, method of manufacture and method of installation
DE102005053765B4 (en) 2005-11-10 2016-04-14 Epcos Ag MEMS package and method of manufacture
US7838321B2 (en) * 2005-12-20 2010-11-23 Xerox Corporation Multiple stage MEMS release for isolation of similar materials
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) * 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7652814B2 (en) 2006-01-27 2010-01-26 Qualcomm Mems Technologies, Inc. MEMS device with integrated optical element
US7547568B2 (en) * 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US7643203B2 (en) 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US7527996B2 (en) * 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7623287B2 (en) 2006-04-19 2009-11-24 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7417784B2 (en) 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US7369292B2 (en) * 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US7405863B2 (en) 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7584649B2 (en) * 2006-06-02 2009-09-08 Board Of Trustees Of Michigan State University Sensor with microelectro-mechanical oscillators
US7824943B2 (en) * 2006-06-04 2010-11-02 Akustica, Inc. Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
JP4327183B2 (en) * 2006-07-31 2009-09-09 株式会社日立製作所 High pressure fuel pump control device for internal combustion engine
US7566664B2 (en) * 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
CN101578687A (en) * 2007-01-05 2009-11-11 明锐有限公司 Methods and systems for wafer level packaging of MEMS structures
US8236592B2 (en) * 2007-01-12 2012-08-07 Globalfoundries Inc. Method of forming semiconductor device
US20080217666A1 (en) * 2007-03-07 2008-09-11 United Microelectronics Corp. Cmos image sensor and method of fabricating the same
US7736929B1 (en) 2007-03-09 2010-06-15 Silicon Clocks, Inc. Thin film microshells incorporating a getter layer
US7923790B1 (en) 2007-03-09 2011-04-12 Silicon Laboratories Inc. Planar microshells for vacuum encapsulated devices and damascene method of manufacture
US7595209B1 (en) 2007-03-09 2009-09-29 Silicon Clocks, Inc. Low stress thin film microshells
US7659150B1 (en) 2007-03-09 2010-02-09 Silicon Clocks, Inc. Microshells for multi-level vacuum cavities
US7733552B2 (en) * 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
KR20100016195A (en) * 2007-04-04 2010-02-12 퀄컴 엠이엠스 테크놀로지스, 인크. Eliminate release etch attack by interface modification in sacrificial layers
US7709178B2 (en) 2007-04-17 2010-05-04 Brewer Science Inc. Alkaline-resistant negative photoresist for silicon wet-etch without silicon nitride
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7569488B2 (en) * 2007-06-22 2009-08-04 Qualcomm Mems Technologies, Inc. Methods of making a MEMS device by monitoring a process parameter
US7570415B2 (en) * 2007-08-07 2009-08-04 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US8192642B2 (en) 2007-09-13 2012-06-05 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
JP2009072845A (en) * 2007-09-19 2009-04-09 Oki Semiconductor Co Ltd Manufacturing method of semiconductor device
JP2009088254A (en) * 2007-09-28 2009-04-23 Toshiba Corp Electronic component package, and manufacturing method for electronic component package
US7989262B2 (en) 2008-02-22 2011-08-02 Cavendish Kinetics, Ltd. Method of sealing a cavity
US8343824B2 (en) * 2008-04-29 2013-01-01 International Rectifier Corporation Gallium nitride material processing and related device structures
US7993950B2 (en) * 2008-04-30 2011-08-09 Cavendish Kinetics, Ltd. System and method of encapsulation
US7851239B2 (en) 2008-06-05 2010-12-14 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in MEMS devices
US8266962B2 (en) 2009-01-28 2012-09-18 Infineon Technologies Ag Acceleration sensor
US7998775B2 (en) * 2009-02-09 2011-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon undercut prevention in sacrificial oxide release process and resulting MEMS structures
US8430255B2 (en) * 2009-03-19 2013-04-30 Robert Bosch Gmbh Method of accurately spacing Z-axis electrode
US8877648B2 (en) * 2009-03-26 2014-11-04 Semprius, Inc. Methods of forming printable integrated circuit devices by selective etching to suspend the devices from a handling substrate and devices formed thereby
US7864403B2 (en) * 2009-03-27 2011-01-04 Qualcomm Mems Technologies, Inc. Post-release adjustment of interferometric modulator reflectivity
US20100310961A1 (en) * 2009-06-06 2010-12-09 Dr. Robert Daniel Clark Integratable and Scalable Solid Oxide Fuel Cell Structure and Method of Forming
US8338205B2 (en) * 2009-08-31 2012-12-25 Shanghai Lexvu Opto Microelectronics Technology Co., Ltd. Method of fabricating and encapsulating MEMS devices
US7989246B2 (en) * 2009-09-11 2011-08-02 Pixart Imaging Incorporation Package method of micro-electro-mechanical system chip
US7985659B1 (en) * 2010-03-31 2011-07-26 Freescale Semiconductor, Inc. Semiconductor device with a controlled cavity and method of formation
US8458888B2 (en) * 2010-06-25 2013-06-11 International Business Machines Corporation Method of manufacturing a micro-electro-mechanical system (MEMS)
US8535966B2 (en) * 2010-07-27 2013-09-17 International Business Machines Corporation Horizontal coplanar switches and methods of manufacture
US8660164B2 (en) 2011-03-24 2014-02-25 Axsun Technologies, Inc. Method and system for avoiding package induced failure in swept semiconductor source
US8461655B2 (en) * 2011-03-31 2013-06-11 Infineon Technologies Ag Micromechanical sound transducer having a membrane support with tapered surface
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8643140B2 (en) * 2011-07-11 2014-02-04 United Microelectronics Corp. Suspended beam for use in MEMS device
KR101919118B1 (en) * 2012-01-18 2018-11-15 삼성전자주식회사 Bulk acoustic wave resonator
US9209778B2 (en) * 2013-03-15 2015-12-08 Infineon Technologies Dresden Gmbh Microelectromechanical resonators
DE102013106353B4 (en) * 2013-06-18 2018-06-28 Tdk Corporation Method for applying a structured coating to a component
US9646874B1 (en) * 2013-08-05 2017-05-09 Sandia Corporation Thermally-isolated silicon-based integrated circuits and related methods
JP6299142B2 (en) * 2013-10-21 2018-03-28 セイコーエプソン株式会社 Vibrator, vibrator manufacturing method, electronic device, electronic apparatus, and moving body
CN105203235B (en) * 2014-06-19 2018-04-13 中芯国际集成电路制造(上海)有限公司 The manufacture method and electronic device of a kind of MEMS pressure sensor
US9422149B2 (en) 2014-07-25 2016-08-23 Semiconductor Manufacturing International (Shanghai) Corporation Trapped sacrificial structures and methods of manufacturing same using thin-film encapsulation
US20170240418A1 (en) * 2016-02-18 2017-08-24 Knowles Electronics, Llc Low-cost miniature mems vibration sensor
CN106374055B (en) * 2016-10-19 2019-04-30 深圳市华星光电技术有限公司 OLED display panel manufacturing method
DE102017125140B4 (en) * 2017-10-26 2021-06-10 Infineon Technologies Ag Method for producing a hermetically sealed housing with a semiconductor component
US10352995B1 (en) 2018-02-28 2019-07-16 Nxp Usa, Inc. System and method of multiplexing laser triggers and optically selecting multiplexed laser pulses for laser assisted device alteration testing of semiconductor device
US10782343B2 (en) 2018-04-17 2020-09-22 Nxp Usa, Inc. Digital tests with radiation induced upsets
WO2021108421A1 (en) * 2019-11-25 2021-06-03 Aita Bio Inc. Micropump and method of fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919548A (en) * 1996-10-11 1999-07-06 Sandia Corporation Chemical-mechanical polishing of recessed microelectromechanical devices
US6069392A (en) * 1997-04-11 2000-05-30 California Institute Of Technology Microbellows actuator
US6123985A (en) * 1998-10-28 2000-09-26 Solus Micro Technologies, Inc. Method of fabricating a membrane-actuated charge controlled mirror (CCM)

Family Cites Families (881)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE16767E (en) * 1927-10-11 Charles prancis jenkins
USRE16757E (en) 1922-10-31 1927-10-04 knight
US1548262A (en) 1924-07-02 1925-08-04 Freedman Albert Manufacture of bicolored spectacles
US1814701A (en) 1930-05-31 1931-07-14 Perser Corp Method of making viewing gratings for relief or stereoscopic pictures
US2415226A (en) 1943-11-29 1947-02-04 Rca Corp Method of and apparatus for producing luminous images
US2920529A (en) 1952-05-23 1960-01-12 Blythe Richard Electronic control of optical and near-optical radiation
US2991690A (en) 1953-09-04 1961-07-11 Polaroid Corp Stereoscopic lens-prism optical system
US2783406A (en) 1954-02-09 1957-02-26 John J Vanderhooft Stereoscopic television means
NL113615C (en) * 1954-06-01 1900-01-01
US3256465A (en) 1962-06-08 1966-06-14 Signetics Corp Semiconductor device assembly with true metallurgical bonds
US3388301A (en) 1964-12-09 1968-06-11 Signetics Corp Multichip integrated circuit assembly with interconnection structure
US3443871A (en) 1965-12-07 1969-05-13 Optomechanisms Inc Single optical block interferometer means
US3553364A (en) 1968-03-15 1971-01-05 Texas Instruments Inc Electromechanical light valve
US3576394A (en) 1968-07-03 1971-04-27 Texas Instruments Inc Apparatus for display duration modulation
US3600798A (en) 1969-02-25 1971-08-24 Texas Instruments Inc Process for fabricating a panel array of electromechanical light valves
US3792916A (en) 1969-02-25 1974-02-19 Us Army Anti-laser optical filter assembly
JPS4831507B1 (en) 1969-07-10 1973-09-29
US3693239A (en) 1969-07-25 1972-09-26 Sidney Dix A method of making a micromodular package
US3871014A (en) 1969-08-14 1975-03-11 Ibm Flip chip module with non-uniform solder wettable areas on the substrate
BE757764A (en) 1969-10-21 1971-04-21 Itt SOLID STATE EXPLORATION SYSTEM
US3743507A (en) 1970-10-23 1973-07-03 Rca Corp Recording of a continuous tone focused image on a diffraction grating
US3752563A (en) 1971-09-01 1973-08-14 Sperry Rand Corp Magnetic film stripe domain diffraction
US3942245A (en) 1971-11-20 1976-03-09 Ferranti Limited Related to the manufacture of lead frames and the mounting of semiconductor devices thereon
US3783184A (en) 1972-03-08 1974-01-01 Hughes Aircraft Co Electronically switched field sequential color television
US3781465A (en) 1972-03-08 1973-12-25 Hughes Aircraft Co Field sequential color television systems
US3802769A (en) 1972-08-28 1974-04-09 Harris Intertype Corp Method and apparatus for unaided stereo viewing
US3811186A (en) 1972-12-11 1974-05-21 Ibm Method of aligning and attaching circuit devices on a substrate
DE2315658C3 (en) 1973-03-29 1980-11-20 Philips Patentverwaltung Gmbh, 2000 Hamburg Method and device for reducing or eliminating the granulation occurring in laser beam projections
US3862360A (en) 1973-04-18 1975-01-21 Hughes Aircraft Co Liquid crystal display system with integrated signal storage circuitry
US4103273A (en) 1973-04-26 1978-07-25 Honeywell Inc. Method for batch fabricating semiconductor devices
US3915548A (en) 1973-04-30 1975-10-28 Hughes Aircraft Co Holographic lens and liquid crystal image source for head-up display
US3861784A (en) 1973-06-29 1975-01-21 Sperry Rand Corp Programmable diffraction grating
US4093346A (en) 1973-07-13 1978-06-06 Minolta Camera Kabushiki Kaisha Optical low pass filter
US3886310A (en) 1973-08-22 1975-05-27 Westinghouse Electric Corp Electrostatically deflectable light valve with improved diffraction properties
US3947105A (en) 1973-09-21 1976-03-30 Technical Operations, Incorporated Production of colored designs
US3896338A (en) 1973-11-01 1975-07-22 Westinghouse Electric Corp Color video display system comprising electrostatically deflectable light valves
US3969611A (en) 1973-12-26 1976-07-13 Texas Instruments Incorporated Thermocouple circuit
US3943281A (en) 1974-03-08 1976-03-09 Hughes Aircraft Company Multiple beam CRT for generating a multiple raster display
JPS5742849B2 (en) 1974-06-05 1982-09-10
US4001663A (en) 1974-09-03 1977-01-04 Texas Instruments Incorporated Switching regulator power supply
US4012835A (en) 1974-09-17 1977-03-22 E. I. Du Pont De Nemours And Co. Method of forming a dual in-line package
US4100579A (en) 1974-09-24 1978-07-11 Hughes Aircraft Company AC Operated flat panel liquid crystal display
US3938881A (en) 1974-11-25 1976-02-17 Xerox Corporation Acousto-optic modulation device
US4020381A (en) 1974-12-09 1977-04-26 Texas Instruments Incorporated Cathode structure for a multibeam cathode ray tube
US3935500A (en) 1974-12-09 1976-01-27 Texas Instruments Incorporated Flat CRT system
US4090219A (en) 1974-12-09 1978-05-16 Hughes Aircraft Company Liquid crystal sequential color display
JPS5169281A (en) 1974-12-12 1976-06-15 Eguro Tetsukosho Kk KOSAKUKIKAIYOPUROGURAMUSEIGYOSOCHI
US3935499A (en) 1975-01-03 1976-01-27 Texas Instruments Incorporated Monolythic staggered mesh deflection systems for use in flat matrix CRT's
US3980476A (en) 1975-01-27 1976-09-14 Xerox Corporation Imaging system
US4017158A (en) 1975-03-17 1977-04-12 E. I. Du Pont De Nemours And Company Spatial frequency carrier and process of preparing same
US4006968A (en) 1975-05-02 1977-02-08 Hughes Aircraft Company Liquid crystal dot color display
US4011009A (en) 1975-05-27 1977-03-08 Xerox Corporation Reflection diffraction grating having a controllable blaze angle
US4012116A (en) 1975-05-30 1977-03-15 Personal Communications, Inc. No glasses 3-D viewer
US4034211A (en) 1975-06-20 1977-07-05 Ncr Corporation System and method for providing a security check on a credit card
US4035068A (en) 1975-06-25 1977-07-12 Xerox Corporation Speckle minimization in projection displays by reducing spatial coherence of the image light
US4021766A (en) 1975-07-28 1977-05-03 Aine Harry E Solid state pressure transducer of the leaf spring type and batch method of making same
US3991416A (en) 1975-09-18 1976-11-09 Hughes Aircraft Company AC biased and resonated liquid crystal display
US4084437A (en) 1975-11-07 1978-04-18 Texas Instruments Incorporated Thermocouple circuit
US4184700A (en) 1975-11-17 1980-01-22 Lgz Landis & Gyr Zug Ag Documents embossed with optical markings representing genuineness information
CH595664A5 (en) 1975-11-17 1978-02-15 Landis & Gyr Ag
US4127322A (en) 1975-12-05 1978-11-28 Hughes Aircraft Company High brightness full color image light valve projection system
US4004849A (en) 1975-12-08 1977-01-25 International Business Machines Corporation Display apparatus and process
US4034399A (en) 1976-02-27 1977-07-05 Rca Corporation Interconnection means for an array of majority carrier microwave devices
CH594495A5 (en) 1976-05-04 1978-01-13 Landis & Gyr Ag
JPS5321771A (en) 1976-08-11 1978-02-28 Sharp Kk Electronic parts mounting structure
US4135502A (en) 1976-09-07 1979-01-23 Donald Peck Stereoscopic patterns and method of making same
US4139257A (en) 1976-09-28 1979-02-13 Canon Kabushiki Kaisha Synchronizing signal generator
US4067129A (en) 1976-10-28 1978-01-10 Trans-World Manufacturing Corporation Display apparatus having means for creating a spectral color effect
CH604279A5 (en) 1976-12-21 1978-08-31 Landis & Gyr Ag
US4143943A (en) 1977-02-17 1979-03-13 Xerox Corporation Rear projection screen system
US4093922A (en) 1977-03-17 1978-06-06 Texas Instruments Incorporated Microcomputer processing approach for a non-volatile TV station memory tuning system
US4093921A (en) 1977-03-17 1978-06-06 Texas Instruments Incorporated Microcomputer processing approach for a non-volatile TV station memory tuning system
CH616253A5 (en) 1977-06-21 1980-03-14 Landis & Gyr Ag
US4126380A (en) 1977-06-30 1978-11-21 International Business Machines Corporation Probe with contact indicating means
US4185891A (en) 1977-11-30 1980-01-29 Grumman Aerospace Corporation Laser diode collimation optics
US4389096A (en) 1977-12-27 1983-06-21 Matsushita Electric Industrial Co., Ltd. Image display apparatus of liquid crystal valve projection type
US4205428A (en) 1978-02-23 1980-06-03 The United States Of America As Represented By The Secretary Of The Air Force Planar liquid crystal matrix array chip
CH622896A5 (en) 1978-03-20 1981-04-30 Landis & Gyr Ag
US4256787A (en) 1978-05-03 1981-03-17 Massachusetts Institute Of Technology Orientation of ordered liquids and their use in devices
US4195915A (en) 1978-05-05 1980-04-01 Hughes Aircraft Company Liquid crystal image projector system
JPS5731166Y2 (en) 1978-06-08 1982-07-08
US4225913A (en) 1978-09-19 1980-09-30 Texas Instruments Incorporated Self-referencing power converter
US4331972A (en) 1978-11-09 1982-05-25 Rajchman Jan A Light valve, light valve display, and method
US4295145A (en) 1978-12-29 1981-10-13 International Business Machines Corporation Acousto-optically modulated laser scanning arrangement for correcting for interference appearing therein
US4257053A (en) 1979-02-09 1981-03-17 Geosource, Inc. High-resolution laser plotter
JPS55111151A (en) 1979-02-20 1980-08-27 Nec Corp Integrated circuit device
US4257016A (en) 1979-02-21 1981-03-17 Xerox Corporation Piezo-optic, total internal reflection modulator
US4338660A (en) 1979-04-13 1982-07-06 Relational Memory Systems, Inc. Relational break signal generating device
US4249796A (en) 1979-06-21 1981-02-10 International Business Machines Corporation Projection display device
US4290672A (en) 1979-06-29 1981-09-22 International Business Machines Corporation Plural line acousto-optically modulated laser scanning system
US4343535A (en) 1979-12-14 1982-08-10 Hughes Aircraft Company Liquid crystal light valve
DE3001613C2 (en) 1980-01-17 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Attachment of a silicon semiconductor body containing a monolithically integrated semiconductor circuit to a support using a corresponding method for this purpose
US4311999A (en) 1980-02-07 1982-01-19 Textron, Inc. Vibratory scan optical display
US4327966A (en) 1980-02-25 1982-05-04 Bell Telephone Laboratories, Incorporated Variable attenuator for laser radiation
US4327411A (en) 1980-03-04 1982-04-27 Bell Telephone Laboratories, Incorporated High capacity elastic store having continuously variable delay
US4355463A (en) 1980-03-24 1982-10-26 National Semiconductor Corporation Process for hermetically encapsulating semiconductor devices
US4348079A (en) 1980-04-08 1982-09-07 Xerox Corporation Acousto-optic device utilizing Fresnel zone plate electrode array
US4346965A (en) 1980-05-27 1982-08-31 Xerox Corporation Light modulator/deflector using acoustic surface waves
US4430584A (en) 1980-05-29 1984-02-07 Texas Instruments Incorporated Modular input/output system
US4454591A (en) 1980-05-29 1984-06-12 Texas Instruments Incorporated Interface system for bus line control
US4447881A (en) 1980-05-29 1984-05-08 Texas Instruments Incorporated Data processing system integrated circuit having modular memory add-on capacity
US4418397A (en) 1980-05-29 1983-11-29 Texas Instruments Incorporated Address decode system
US4503494A (en) 1980-06-26 1985-03-05 Texas Instruments Incorporated Non-volatile memory system
US4443845A (en) 1980-06-26 1984-04-17 Texas Instruments Incorporated Memory system having a common interface
US4361384A (en) 1980-06-27 1982-11-30 The United States Of America As Represented By The Secretary Of The Army High luminance miniature display
US4336982A (en) 1980-08-04 1982-06-29 Xerox Corporation MgF2 Coating for promoting adherence of thin films to single crystal materials
JPS6049638B2 (en) 1981-06-02 1985-11-02 大塚化学薬品株式会社 Carbamate insecticide
US4396246A (en) 1980-10-02 1983-08-02 Xerox Corporation Integrated electro-optic wave guide modulator
US4420717A (en) 1980-10-06 1983-12-13 Texas Instruments Incorporated Use of motor winding as integrator to generate sawtooth for switch mode current regulator
US4594501A (en) 1980-10-09 1986-06-10 Texas Instruments Incorporated Pulse width modulation of printhead voltage
US4369524A (en) 1980-10-14 1983-01-18 Xerox Corporation Single component transceiver device for linear fiber optical network
US4398798A (en) 1980-12-18 1983-08-16 Sperry Corporation Image rotating diffraction grating
JPS57122981U (en) 1981-01-27 1982-07-31
US4456338A (en) 1981-03-05 1984-06-26 Macdonald Dettwiler & Associates Ltd. Electronically tuneable light source
US4440839A (en) 1981-03-18 1984-04-03 United Technologies Corporation Method of forming laser diffraction grating for beam sampling device
US4391490A (en) 1981-04-02 1983-07-05 Xerox Corporation Interface for proximity coupled electro-optic devices
US4374397A (en) 1981-06-01 1983-02-15 Eastman Kodak Company Light valve devices and electronic imaging/scan apparatus with locationally-interlaced optical addressing
JPS57210638A (en) 1981-06-18 1982-12-24 Mitsubishi Electric Corp Hybrid integrated circuit
US4408884A (en) 1981-06-29 1983-10-11 Rca Corporation Optical measurements of fine line parameters in integrated circuit processes
US4400740A (en) 1981-08-24 1983-08-23 Xerox Corporation Intensity control for raster output scanners
JPS5843554A (en) 1981-09-08 1983-03-14 Mitsubishi Electric Corp Semiconductor device
US4414583A (en) 1981-11-02 1983-11-08 International Business Machines Corporation Scanned light beam imaging method and apparatus
US4571603A (en) 1981-11-03 1986-02-18 Texas Instruments Incorporated Deformable mirror electrostatic printer
US4426768A (en) 1981-12-28 1984-01-24 United Technologies Corporation Ultra-thin microelectronic pressure sensors
US4571041A (en) 1982-01-22 1986-02-18 Gaudyn Tad J Three dimensional projection arrangement
US4422099A (en) 1982-02-03 1983-12-20 International Business Machines Corporation Optical communication on variable power beam
US4483596A (en) 1982-03-01 1984-11-20 Xerox Corporation Interface suppression apparatus and method for a linear modulator
JPS58158950A (en) 1982-03-16 1983-09-21 Nec Corp Semiconductor device
GB2117564B (en) 1982-03-26 1985-11-06 Int Computers Ltd Mounting one integrated circuit upon another
FR2527385B1 (en) 1982-04-13 1987-05-22 Suwa Seikosha Kk THIN FILM TRANSISTOR AND LIQUID CRYSTAL DISPLAY PANEL USING THIS TYPE OF TRANSISTOR
US4484188A (en) 1982-04-23 1984-11-20 Texas Instruments Incorporated Graphics video resolution improvement apparatus
US4435041A (en) 1982-05-28 1984-03-06 Sperry Corporation Chromatic aberration correction in a multiwavelength light beam deflection system
US4588957A (en) 1982-06-09 1986-05-13 International Business Machines Corporation Optical pulse compression apparatus and method
US4460907A (en) 1982-06-15 1984-07-17 Minnesota Mining And Manufacturing Company Electrographic imaging apparatus
US4468725A (en) 1982-06-18 1984-08-28 Texas Instruments Incorporated Direct AC converter for converting a balanced AC polyphase input to an output voltage
US4462046A (en) 1982-07-02 1984-07-24 Amaf Industries Incorporated Machine vision system utilizing programmable optical parallel processing
US4492435A (en) 1982-07-02 1985-01-08 Xerox Corporation Multiple array full width electro mechanical modulator
US4467342A (en) 1982-07-15 1984-08-21 Rca Corporation Multi-chip imager
US4561011A (en) 1982-10-05 1985-12-24 Mitsubishi Denki Kabushiki Kaisha Dimensionally stable semiconductor device
US4511220A (en) 1982-12-23 1985-04-16 The United States Of America As Represented By The Secretary Of The Air Force Laser target speckle eliminator
JPS59117876A (en) 1982-12-24 1984-07-07 Seiko Epson Corp Personal LCD video display
JPS602073A (en) 1983-04-06 1985-01-08 テキサス・インスツルメンツ・インコ−ポレイテツド Ac converting device and method
US4724467A (en) 1983-04-11 1988-02-09 Xerox Corporation Light blocking stop for electro-optic line printers
US4487677A (en) 1983-04-11 1984-12-11 Metals Production Research, Inc. Electrolytic recovery system for obtaining titanium metal from its ore
US4655539A (en) 1983-04-18 1987-04-07 Aerodyne Products Corporation Hologram writing apparatus and method
US4538883A (en) 1983-05-26 1985-09-03 Xerox Corporation Conformable electrodes for proximity coupled electro-optic devices
JPS603164A (en) 1983-06-21 1985-01-09 Sanyo Electric Co Ltd Method of manufacturing photovoltaic device
CH661683A5 (en) 1983-09-19 1987-08-14 Landis & Gyr Ag DEVICE FOR MAINTAINING HIGH-RESOLUTION RELIEF PATTERNS.
US4561044A (en) 1983-09-22 1985-12-24 Citizen Watch Co., Ltd. Lighting device for a display panel of an electronic device
US4809078A (en) 1983-10-05 1989-02-28 Casio Computer Co., Ltd. Liquid crystal television receiver
FR2553893B1 (en) 1983-10-19 1986-02-07 Texas Instruments France METHOD AND DEVICE FOR DETECTING A TRANSITION OF THE CONTINUOUS COMPONENT OF A PERIODIC SIGNAL, IN PARTICULAR FOR A TELEPHONE TRUNK
US4567585A (en) 1983-10-31 1986-01-28 Daniel Gelbart Optical tape recorder using linear scanning
US4545610A (en) 1983-11-25 1985-10-08 International Business Machines Corporation Method for forming elongated solder connections between a semiconductor device and a supporting substrate
JPS6094756U (en) 1983-12-02 1985-06-28 オムロン株式会社 Knob devices for electrical equipment, etc.
US4577933A (en) 1983-12-15 1986-03-25 Xerox Corporation Gap modulator for high speed scanners
JPS60127888A (en) 1983-12-15 1985-07-08 Citizen Watch Co Ltd Liquid crystal display device
JPS60158780A (en) 1984-01-27 1985-08-20 Sony Corp Display
JPS60185918A (en) 1984-03-05 1985-09-21 Canon Inc Optical modulating method
JPS60214684A (en) 1984-04-10 1985-10-26 Citizen Watch Co Ltd Liquid crystal television device
US4577932A (en) 1984-05-08 1986-03-25 Creo Electronics Corporation Multi-spot modulator using a laser diode
US4797918A (en) 1984-05-09 1989-01-10 Communications Satellite Corporation Subscription control for television programming
JPS60250639A (en) 1984-05-25 1985-12-11 Nec Kansai Ltd Hybrid ic
CH664030A5 (en) 1984-07-06 1988-01-29 Landis & Gyr Ag METHOD FOR GENERATING A MACROSCOPIC SURFACE PATTERN WITH A MICROSCOPIC STRUCTURE, IN PARTICULAR A STRUCTURALLY EFFECTIVE STRUCTURE.
US4963012A (en) 1984-07-20 1990-10-16 The United States Of America As Represented By The United States Department Of Energy Passivation coating for flexible substrate mirrors
US4566935A (en) 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4710732A (en) 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
US4709995A (en) 1984-08-18 1987-12-01 Canon Kabushiki Kaisha Ferroelectric display panel and driving method therefor to achieve gray scale
US4649085A (en) 1984-08-29 1987-03-10 The United States Of America As Represented By The Secretary Of The Air Force Cryogenic glass-to-metal seal
US4596992A (en) 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
US4662746A (en) 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US5096279A (en) 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
JPS6188676A (en) 1984-10-05 1986-05-06 Citizen Watch Co Ltd Liquid crystal television device
US4615595A (en) 1984-10-10 1986-10-07 Texas Instruments Incorporated Frame addressed spatial light modulator
US4558171A (en) 1984-10-12 1985-12-10 General Electric Company Hermetic enclosure for electronic components with an optionally transparent cover and a method of making the same
US5281957A (en) 1984-11-14 1994-01-25 Schoolman Scientific Corp. Portable computer and head mounted display
US4641193A (en) 1984-12-07 1987-02-03 New York Institute Of Technology Video display apparatus and method
US4618541A (en) * 1984-12-21 1986-10-21 Advanced Micro Devices, Inc. Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article
JPH0752762B2 (en) 1985-01-07 1995-06-05 株式会社日立製作所 Semiconductor resin package
US4772094A (en) 1985-02-05 1988-09-20 Bright And Morning Star Optical stereoscopic system and prism window
DE3605516A1 (en) 1985-02-21 1986-09-04 Canon K.K., Tokio/Tokyo OPTICAL FUNCTIONAL ELEMENT AND OPTICAL FUNCTIONAL DEVICE
JPH032539Y2 (en) 1985-02-27 1991-01-23
JPS61145838U (en) 1985-03-01 1986-09-09
US4660938A (en) 1985-03-11 1987-04-28 Xerox Corporation Optical display device
US4661828A (en) 1985-03-20 1987-04-28 Miller Jr Verelyn A Optical imaging head
US4866488A (en) 1985-03-29 1989-09-12 Texas Instruments Incorporated Ballistic transport filter and device
US4636039A (en) 1985-04-12 1987-01-13 Xerox Corporation Nonuniformity of fringe field correction for electro-optic devices
US4623219A (en) 1985-04-15 1986-11-18 The United States Of America As Represented By The Secretary Of The Navy Real-time high-resolution 3-D large-screen display using laser-activated liquid crystal light valves
US4719507A (en) 1985-04-26 1988-01-12 Tektronix, Inc. Stereoscopic imaging system with passive viewing apparatus
US4751509A (en) 1985-06-04 1988-06-14 Nec Corporation Light valve for use in a color display unit with a diffraction grating assembly included in the valve
US4728185A (en) 1985-07-03 1988-03-01 Texas Instruments Incorporated Imaging system
US4836649A (en) 1985-07-12 1989-06-06 Hughes Aircraft Company Optical layout for a three light valve full-color projector employing a dual relay lens system and a single projection lens
CA1250170A (en) 1985-07-16 1989-02-21 Jerzy A. Dobrowolski Optical mixing/demixing device
JPH0535388Y2 (en) 1985-07-29 1993-09-08
US5299037A (en) 1985-08-07 1994-03-29 Canon Kabushiki Kaisha Diffraction grating type liquid crystal display device in viewfinder
DE3677455D1 (en) 1985-09-30 1991-03-14 Siemens Ag METHOD FOR LIMITING OUTBREAKS WHILE SAWING A SEMICONDUCTOR DISC.
US4698602A (en) 1985-10-09 1987-10-06 The United States Of America As Represented By The Secretary Of The Air Force Micromirror spatial light modulator
US5172262A (en) 1985-10-30 1992-12-15 Texas Instruments Incorporated Spatial light modulator and method
US4687326A (en) 1985-11-12 1987-08-18 General Electric Company Integrated range and luminance camera
JPS62119521A (en) 1985-11-19 1987-05-30 Canon Inc Optical modulating element and its driving method
US4859060A (en) 1985-11-26 1989-08-22 501 Sharp Kabushiki Kaisha Variable interferometric device and a process for the production of the same
US4811210A (en) 1985-11-27 1989-03-07 Texas Instruments Incorporated A plurality of optical crossbar switches and exchange switches for parallel processor computer
US4700276A (en) 1986-01-03 1987-10-13 Motorola Inc. Ultra high density pad array chip carrier
JPS6323105A (en) 1986-02-06 1988-01-30 Fujitsu Ltd Optical multiplexer/demultiplexer
US4744633A (en) 1986-02-18 1988-05-17 Sheiman David M Stereoscopic viewing system and glasses
US4803560A (en) 1986-02-21 1989-02-07 Casio Computer Co., Ltd. Liquid-crystal television receiver with cassette tape recorder
US4717066A (en) 1986-02-24 1988-01-05 American Telephone And Telegraph Company, At&T Bell Laboratories Method of bonding conductors to semiconductor devices
US4829365A (en) 1986-03-07 1989-05-09 Dimension Technologies, Inc. Autostereoscopic display with illuminating lines, light valve and mask
US4807021A (en) 1986-03-10 1989-02-21 Kabushiki Kaisha Toshiba Semiconductor device having stacking structure
US4856869A (en) 1986-04-08 1989-08-15 Canon Kabushiki Kaisha Display element and observation apparatus having the same
US5835255A (en) 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
US5189404A (en) 1986-06-18 1993-02-23 Hitachi, Ltd. Display apparatus with rotatable display screen
US4711526A (en) 1986-07-07 1987-12-08 Coherent, Inc. Attenuating beam splitter
US4954875A (en) 1986-07-17 1990-09-04 Laser Dynamics, Inc. Semiconductor wafer array with electrically conductive compliant material
US4897708A (en) 1986-07-17 1990-01-30 Laser Dynamics, Inc. Semiconductor wafer array
US5354416A (en) * 1986-09-05 1994-10-11 Sadayuki Okudaira Dry etching method
GB8622717D0 (en) 1986-09-20 1986-10-29 Emi Plc Thorn Display device
US4743091A (en) 1986-10-30 1988-05-10 Daniel Gelbart Two dimensional laser diode array
US4811082A (en) 1986-11-12 1989-03-07 International Business Machines Corporation High performance integrated circuit packaging structure
GB2198867A (en) 1986-12-17 1988-06-22 Philips Electronic Associated A liquid crystal display illumination system
US4882683B1 (en) 1987-03-16 1995-11-07 Fairchild Semiconductor Cellular addrssing permutation bit map raster graphics architecture
JPS63234767A (en) 1987-03-24 1988-09-30 Fujitsu Ltd How to drive an EL panel light source
US4940309A (en) 1987-04-20 1990-07-10 Baum Peter S Tessellator
US4763975A (en) 1987-04-28 1988-08-16 Spectra Diode Laboratories, Inc. Optical system with bright light output
US4765865A (en) * 1987-05-04 1988-08-23 Ford Motor Company Silicon etch rate enhancement
US4807965A (en) 1987-05-26 1989-02-28 Garakani Reza G Apparatus for three-dimensional viewing
US4924413A (en) 1987-05-29 1990-05-08 Hercules Computer Technology Color conversion apparatus and method
JPS63305323A (en) 1987-06-08 1988-12-13 Jeco Co Ltd Stereoscopic display device
KR970003915B1 (en) * 1987-06-24 1997-03-22 미다 가쓰시게 Semiconductor memory device and semiconductor memory module using same
US4814759A (en) 1987-07-08 1989-03-21 Clinicom Incorporated Flat panel display monitor apparatus
US5003300A (en) 1987-07-27 1991-03-26 Reflection Technology, Inc. Head mounted display for miniature video display system
US4934773A (en) 1987-07-27 1990-06-19 Reflection Technology, Inc. Miniature video display system
US4859012A (en) 1987-08-14 1989-08-22 Texas Instruments Incorporated Optical interconnection networks
EP0304263A3 (en) 1987-08-17 1990-09-12 Lsi Logic Corporation Semiconductor chip assembly
US5142677A (en) 1989-05-04 1992-08-25 Texas Instruments Incorporated Context switching devices, systems and methods
US5155812A (en) 1989-05-04 1992-10-13 Texas Instruments Incorporated Devices and method for generating and using systems, software waitstates on address boundaries in data processing
US4879602A (en) 1987-09-04 1989-11-07 New York Institute Of Technology Electrode patterns for solid state light modulator
US5072418A (en) 1989-05-04 1991-12-10 Texas Instruments Incorporated Series maxium/minimum function computing devices, systems and methods
US4801194A (en) 1987-09-23 1989-01-31 Eastman Kodak Company Multiplexed array exposing system having equi-angular scan exposure regions
US4797694A (en) 1987-09-23 1989-01-10 Eastman Kodak Company Scan-multiplexed light valve printer with band-reducing construction
US5024494A (en) 1987-10-07 1991-06-18 Texas Instruments Incorporated Focussed light source pointer for three dimensional display
HU197469B (en) 1987-10-23 1989-03-28 Laszlo Holakovszky Spectacle like, wearable on head stereoscopic reproductor of the image
US5155604A (en) 1987-10-26 1992-10-13 Van Leer Metallized Products (Usa) Limited Coated paper sheet embossed with a diffraction or holographic pattern
US4968354A (en) 1987-11-09 1990-11-06 Fuji Electric Co., Ltd. Thin film solar cell array
JPH01155637A (en) 1987-12-14 1989-06-19 Hitachi Ltd Multichip module
EP0322714B1 (en) 1987-12-24 1996-09-11 Kuraray Co., Ltd. Polarizing optical element and device using the same
US5040052A (en) 1987-12-28 1991-08-13 Texas Instruments Incorporated Compact silicon module for high density integrated circuits
US4952925A (en) 1988-01-25 1990-08-28 Bernd Haastert Projectable passive liquid-crystal flat screen information centers
US5310624A (en) * 1988-01-29 1994-05-10 Massachusetts Institute Of Technology Integrated circuit micro-fabrication using dry lithographic processes
US4926241A (en) 1988-02-19 1990-05-15 Microelectronics And Computer Technology Corporation Flip substrate for chip mount
US4956619A (en) 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
US5039628A (en) 1988-02-19 1991-08-13 Microelectronics & Computer Technology Corporation Flip substrate for chip mount
US4961633A (en) 1988-02-22 1990-10-09 Xerox Corporation VLSI optimized modulator
DE3866230D1 (en) 1988-03-03 1991-12-19 Landis & Gyr Betriebs Ag DOCUMENT.
US4817850A (en) 1988-03-28 1989-04-04 Hughes Aircraft Company Repairable flip-chip bumping
JPH01265293A (en) 1988-04-15 1989-10-23 Sharp Corp Miniature display device
JPH01296214A (en) 1988-05-25 1989-11-29 Canon Inc Display device
US4902083A (en) 1988-05-31 1990-02-20 Reflection Technology, Inc. Low vibration resonant scanning unit for miniature optical display apparatus
US5009473A (en) 1988-05-31 1991-04-23 Reflection Technology, Inc. Low vibration resonant scanning unit for miniature optical display apparatus
US4827391A (en) 1988-06-01 1989-05-02 Texas Instruments Incorporated Apparatus for implementing output voltage slope in current mode controlled power supplies
JP2585717B2 (en) 1988-06-03 1997-02-26 キヤノン株式会社 Display device
JPH01306886A (en) 1988-06-03 1989-12-11 Canon Inc Volume phase type diffraction grating
US4856863A (en) 1988-06-22 1989-08-15 Texas Instruments Incorporated Optical fiber interconnection network including spatial light modulator
JP2612475B2 (en) 1988-06-24 1997-05-21 日本航空電子工業株式会社 Display control device for color display panel
JPH0225057A (en) 1988-07-13 1990-01-26 Mitsubishi Electric Corp Manufacture of semiconductor device
US4950890A (en) 1988-07-13 1990-08-21 Creo Electronics Corp. Method and apparatus for correcting position errors using writable encoders
US5048077A (en) 1988-07-25 1991-09-10 Reflection Technology, Inc. Telephone handset with full-page visual display
US5023905A (en) 1988-07-25 1991-06-11 Reflection Technology, Inc. Pocket data receiver with full page visual display
US4896325A (en) 1988-08-23 1990-01-23 The Regents Of The University Of California Multi-section tunable laser with differing multi-element mirrors
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
US5216544A (en) 1988-08-26 1993-06-01 Fuji Photo Film Co., Ltd. Beam-combining laser beam source device
US5058992A (en) 1988-09-07 1991-10-22 Toppan Printing Co., Ltd. Method for producing a display with a diffraction grating pattern and a display produced by the method
DE58906429D1 (en) 1988-09-30 1994-01-27 Landis & Gyr Business Support Diffraction element.
US4915463A (en) 1988-10-18 1990-04-10 The United States Of America As Represented By The Department Of Energy Multilayer diffraction grating
JPH07121097B2 (en) 1988-11-18 1995-12-20 株式会社日立製作所 Liquid crystal television and manufacturing method thereof
US5066614A (en) * 1988-11-21 1991-11-19 Honeywell Inc. Method of manufacturing a leadframe having conductive elements preformed with solder bumps
US5184207A (en) 1988-12-07 1993-02-02 Tribotech Semiconductor die packages having lead support frame
US5191405A (en) 1988-12-23 1993-03-02 Matsushita Electric Industrial Co., Ltd. Three-dimensional stacked lsi
US4893509A (en) * 1988-12-27 1990-01-16 General Motors Corporation Method and product for fabricating a resonant-bridge microaccelerometer
US4982184A (en) 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
US4949148A (en) 1989-01-11 1990-08-14 Bartelink Dirk J Self-aligning integrated circuit assembly
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
US4896948A (en) 1989-02-21 1990-01-30 International Business Machines Corporation Simplified double-cavity tunable optical filter using voltage-dependent refractive index
US5868854A (en) * 1989-02-27 1999-02-09 Hitachi, Ltd. Method and apparatus for processing samples
US5128660A (en) 1989-02-27 1992-07-07 Texas Instruments Incorporated Pointer for three dimensional display
US5170156A (en) 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
US5446479A (en) 1989-02-27 1995-08-29 Texas Instruments Incorporated Multi-dimensional array video processor system
US5214419A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
US5272473A (en) 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5214420A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5192946A (en) 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5287096A (en) 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
KR100202246B1 (en) 1989-02-27 1999-06-15 윌리엄 비. 켐플러 Apparatus and method for digitalized video system
US5206629A (en) 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5162787A (en) 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
US5079544A (en) 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US4930043A (en) * 1989-02-28 1990-05-29 United Technologies Closed-loop capacitive accelerometer with spring constraint
US4945773A (en) * 1989-03-06 1990-08-07 Ford Motor Company Force transducer etched from silicon
FR2645680B1 (en) 1989-04-07 1994-04-29 Thomson Microelectronics Sa Sg ENCAPSULATION OF ELECTRONIC MODULES AND MANUFACTURING METHOD
US5188280A (en) 1989-04-28 1993-02-23 Hitachi Ltd. Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
US4895291A (en) 1989-05-04 1990-01-23 Eastman Kodak Company Method of making a hermetic seal in a solid-state device
US4978202A (en) 1989-05-12 1990-12-18 Goldstar Co., Ltd. Laser scanning system for displaying a three-dimensional color image
JPH02299311A (en) 1989-05-15 1990-12-11 Fujitsu Ltd Surface acoustic wave device
US5068205A (en) * 1989-05-26 1991-11-26 General Signal Corporation Header mounted chemically sensitive ISFET and method of manufacture
US5060058A (en) 1989-06-07 1991-10-22 U.S. Philips Corporation Modulation system for projection display
US5153773A (en) 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
US4943815A (en) 1989-06-29 1990-07-24 International Business Machines Corporation Laser printer with light-exposure prevention
WO1991002429A1 (en) 1989-08-03 1991-02-21 Nippon Hoso Kyokai Optically writing projection-type display
US5022750A (en) 1989-08-11 1991-06-11 Raf Electronics Corp. Active matrix reflective projection system
US5399898A (en) 1992-07-17 1995-03-21 Lsi Logic Corporation Multi-chip semiconductor arrangements using flip chip dies
DE59003860D1 (en) 1989-09-04 1994-01-27 Gretag Ag Lighting device for projection purposes.
JPH0343682U (en) 1989-09-06 1991-04-24
US5107372A (en) 1989-09-06 1992-04-21 Daniel Gelbart Focus servo actuator for moving lens scanners
GB8921722D0 (en) 1989-09-26 1989-11-08 British Telecomm Micromechanical switch
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
JPH03116857A (en) 1989-09-29 1991-05-17 Mitsui Petrochem Ind Ltd Light emitting or receiving device
US5251057A (en) 1989-10-13 1993-10-05 Xerox Corporation Multiple beam optical modulation system
US5251058A (en) 1989-10-13 1993-10-05 Xerox Corporation Multiple beam exposure control
JP2508387B2 (en) 1989-10-16 1996-06-19 凸版印刷株式会社 Method of manufacturing display having diffraction grating pattern
DE3934748A1 (en) 1989-10-18 1991-04-25 Standard Elektrik Lorenz Ag LASER WAFER AND METHOD FOR THE PRODUCTION THEREOF
US5185660A (en) 1989-11-01 1993-02-09 Aura Systems, Inc. Actuated mirror optical intensity modulation
US5126836A (en) 1989-11-01 1992-06-30 Aura Systems, Inc. Actuated mirror optical intensity modulation
US5150205A (en) 1989-11-01 1992-09-22 Aura Systems, Inc. Actuated mirror optical intensity modulation
US5260798A (en) 1989-11-01 1993-11-09 Aura Systems, Inc. Pixel intensity modulator
US5077598A (en) * 1989-11-08 1991-12-31 Hewlett-Packard Company Strain relief flip-chip integrated circuit assembly with test fixturing
US5136695A (en) 1989-11-13 1992-08-04 Reflection Technology, Inc. Apparatus and method for updating a remote video display from a host computer
US5037173A (en) 1989-11-22 1991-08-06 Texas Instruments Incorporated Optical interconnection network
US5074947A (en) 1989-12-18 1991-12-24 Epoxy Technology, Inc. Flip chip technology using electrically conductive polymers and dielectrics
US5072239A (en) 1989-12-21 1991-12-10 Texas Instruments Incorporated Spatial light modulator exposure unit and method of operation
US5237340A (en) 1989-12-21 1993-08-17 Texas Instruments Incorporated Replaceable elements for xerographic printing process and method of operation
US5041851A (en) 1989-12-21 1991-08-20 Texas Instruments Incorporated Spatial light modulator printer and method of operation
US5142303A (en) 1989-12-21 1992-08-25 Texas Instruments Incorporated Printing system exposure module optic structure and method of operation
US5105369A (en) 1989-12-21 1992-04-14 Texas Instruments Incorporated Printing system exposure module alignment method and apparatus of manufacture
US5101236A (en) 1989-12-21 1992-03-31 Texas Instruments Incorporated Light energy control system and method of operation
DE4000903C1 (en) * 1990-01-15 1990-08-09 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4001448C1 (en) 1990-01-19 1991-07-11 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
CA2034703A1 (en) 1990-01-23 1991-07-24 Masanori Nishiguchi Substrate for packaging a semiconductor device
CA2034700A1 (en) 1990-01-23 1991-07-24 Masanori Nishiguchi Substrate for packaging a semiconductor device
JPH03217814A (en) 1990-01-24 1991-09-25 Canon Inc Liquid crystal projector
US5260718A (en) 1990-01-24 1993-11-09 Xerox Corporation Liquid crystal shutter xerographic printer with offset configuration lamp aperture and copier/printer with optically aligned lamps, image bars, and lenses
US5428259A (en) * 1990-02-02 1995-06-27 Nec Corporation Micromotion mechanical structure and a process for the production thereof
US5113272A (en) 1990-02-12 1992-05-12 Raychem Corporation Three dimensional semiconductor display using liquid crystal
US5126812A (en) * 1990-02-14 1992-06-30 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical accelerometer
US5031144A (en) 1990-02-28 1991-07-09 Hughes Aircraft Company Ferroelectric memory with non-destructive readout including grid electrode between top and bottom electrodes
US5085497A (en) 1990-03-16 1992-02-04 Aura Systems, Inc. Method for fabricating mirror array for optical projection system
GB9006471D0 (en) * 1990-03-22 1990-05-23 Surface Tech Sys Ltd Loading mechanisms
JPH0787171B2 (en) 1990-04-06 1995-09-20 ローム株式会社 Method for manufacturing solid electrolytic capacitor
US5121231A (en) 1990-04-06 1992-06-09 University Of Southern California Incoherent/coherent multiplexed holographic recording for photonic interconnections and holographic optical elements
EP0527166B1 (en) 1990-05-02 1995-06-14 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Illumination device
US5147815A (en) 1990-05-14 1992-09-15 Motorola, Inc. Method for fabricating a multichip semiconductor device having two interdigitated leadframes
US5144472A (en) 1990-05-17 1992-09-01 Xerox Corporation Electrical contacts for an electro-optic modulator
US5202844A (en) 1990-05-22 1993-04-13 Kabushiki Kaisha Toshiba Computer having integral type hand writing input/display device and keyboard
US5291473A (en) 1990-06-06 1994-03-01 Texas Instruments Incorporated Optical storage media light beam positioning system
US5502481A (en) 1992-11-16 1996-03-26 Reveo, Inc. Desktop-based projection display system for stereoscopic viewing of displayed imagery over a wide field of view
US5165013A (en) 1990-09-26 1992-11-17 Faris Sadeg M 3-D stereo pen plotter
JP2622185B2 (en) 1990-06-28 1997-06-18 シャープ株式会社 Color liquid crystal display
US5216537A (en) 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
EP0467048B1 (en) 1990-06-29 1995-09-20 Texas Instruments Incorporated Field-updated deformable mirror device
US5018256A (en) 1990-06-29 1991-05-28 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5142405A (en) 1990-06-29 1992-08-25 Texas Instruments Incorporated Bistable dmd addressing circuit and method
US5099353A (en) 1990-06-29 1992-03-24 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5083857A (en) 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5049901A (en) 1990-07-02 1991-09-17 Creo Products Inc. Light modulator using large area light sources
JPH0739935B2 (en) 1990-07-02 1995-05-01 株式会社東芝 Image sensor
US5291317A (en) 1990-07-12 1994-03-01 Applied Holographics Corporation Holographic diffraction grating patterns and methods for creating the same
US5121343A (en) 1990-07-19 1992-06-09 Faris Sadeg M 3-D stereo computer output printer
GB2249450A (en) 1990-09-05 1992-05-06 Marconi Gec Ltd A display arrangement including linear array of light emitting elements
US5182665A (en) 1990-09-07 1993-01-26 Displaytech, Inc. Diffractive light modulator
US5081617A (en) 1990-09-24 1992-01-14 Creo Products Inc. Optical system for simultaneous reading of multiple data tracks
US5148157A (en) 1990-09-28 1992-09-15 Texas Instruments Incorporated Spatial light modulator with full complex light modulation capability
US5113285A (en) 1990-09-28 1992-05-12 Honeywell Inc. Full color three-dimensional flat panel display
USD334742S (en) 1990-10-03 1993-04-13 Reflection Technology, Inc. Miniature video display
USD337320S (en) 1990-10-03 1993-07-13 Reflection Technology, Inc. Combined display and headband for miniature video display unit
US5115344A (en) 1990-10-03 1992-05-19 Motorola, Inc. Tunable diffraction grating
USD334557S (en) 1990-10-23 1993-04-06 Reflection Technology, Inc. Combined headband and attachment arm for a miniature video display box
US5206829A (en) 1990-10-24 1993-04-27 Sarita Thakoor Thin film ferroelectric electro-optic memory
US5239806A (en) * 1990-11-02 1993-08-31 Ak Technology, Inc. Thermoplastic semiconductor package and method of producing it
US5103334A (en) 1990-11-06 1992-04-07 Xerox Corporation Resolution improvement in flying spot scanner
US5602671A (en) 1990-11-13 1997-02-11 Texas Instruments Incorporated Low surface energy passivation layer for micromechanical devices
US5331454A (en) 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
US5231363A (en) 1990-11-26 1993-07-27 Texas Instruments Incorporated Pulse width modulating producing signals centered in each cycle interval
JP2932686B2 (en) 1990-11-28 1999-08-09 日本電気株式会社 Driving method of plasma display panel
US5181231A (en) 1990-11-30 1993-01-19 Texas Instruments, Incorporated Non-volatile counting method and apparatus
US5493177A (en) * 1990-12-03 1996-02-20 The Regents Of The University Of California Sealed micromachined vacuum and gas filled devices
US5216278A (en) 1990-12-04 1993-06-01 Motorola, Inc. Semiconductor device having a pad array carrier package
US5220200A (en) 1990-12-10 1993-06-15 Delco Electronics Corporation Provision of substrate pillars to maintain chip standoff
US5221400A (en) * 1990-12-11 1993-06-22 Delco Electronics Corporation Method of making a microaccelerometer having low stress bonds and means for preventing excessive z-axis deflection
US5185823A (en) 1990-12-13 1993-02-09 Japan Aviation Electronics Industry Limited Waveguide type optical device
US5157304A (en) 1990-12-17 1992-10-20 Motorola, Inc. Field emission device display with vacuum seal
US5112436A (en) * 1990-12-24 1992-05-12 Xerox Corporation Method of forming planar vacuum microelectronic devices with self aligned anode
US5258325A (en) 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
US5376979A (en) 1990-12-31 1994-12-27 Kopin Corporation Slide projector mountable light valve display
US5105207A (en) 1990-12-31 1992-04-14 Texas Instruments Incorporated System and method for achieving gray scale DMD operation
US5172161A (en) 1990-12-31 1992-12-15 Texas Instruments Incorporated Unibody printing system and process
US5151718A (en) 1990-12-31 1992-09-29 Texas Instruments Incorporated System and method for solid state illumination for dmd devices
US5105299A (en) 1990-12-31 1992-04-14 Texas Instruments Incorporated Unfolded optics for multiple row deformable mirror device
US5159485A (en) 1990-12-31 1992-10-27 Texas Instruments Incorporated System and method for uniformity of illumination for tungsten light
GB2251511A (en) 1991-01-04 1992-07-08 Rank Brimar Ltd Display device.
CA2060057C (en) 1991-01-29 1997-12-16 Susumu Takahashi Display having diffraction grating pattern
US5151724A (en) 1991-01-30 1992-09-29 Dan Kikinis Dynamic holographic display with cantilever
US5255358A (en) 1991-02-14 1993-10-19 International Business Machines Action bar processing on non-programmable workstations
JP3150351B2 (en) 1991-02-15 2001-03-26 株式会社東芝 Electronic device and method of manufacturing the same
US5212115A (en) * 1991-03-04 1993-05-18 Motorola, Inc. Method for microelectronic device packaging employing capacitively coupled connections
US5747857A (en) * 1991-03-13 1998-05-05 Matsushita Electric Industrial Co., Ltd. Electronic components having high-frequency elements and methods of manufacture therefor
US5219794A (en) 1991-03-14 1993-06-15 Hitachi, Ltd. Semiconductor integrated circuit device and method of fabricating same
US5178728A (en) 1991-03-28 1993-01-12 Texas Instruments Incorporated Integrated-optic waveguide devices and method
CA2063744C (en) 1991-04-01 2002-10-08 Paul M. Urbanus Digital micromirror device architecture and timing for use in a pulse-width modulated display system
US5347378A (en) 1991-04-04 1994-09-13 Displaytech, Inc. Fast switching color filters for frame-sequential video using ferroelectric liquid crystal color-selective filters
US5329289A (en) 1991-04-26 1994-07-12 Sharp Kabushiki Kaisha Data processor with rotatable display
US5148506A (en) 1991-04-26 1992-09-15 Texas Instruments Incorporated Optical crossbar switch
US5226099A (en) 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
US5168401A (en) 1991-05-07 1992-12-01 Spectra Diode Laboratories, Inc. Brightness conserving optical system for modifying beam symmetry
US5137836A (en) * 1991-05-23 1992-08-11 Atmel Corporation Method of manufacturing a repairable multi-chip module
US5149405A (en) 1991-05-28 1992-09-22 Lehr Precision Inc. Four-axis ECM machine and method of operation
US5170269A (en) 1991-05-31 1992-12-08 Texas Instruments Incorporated Programmable optical interconnect system
US5299289A (en) 1991-06-11 1994-03-29 Matsushita Electric Industrial Co., Ltd. Polymer dispersed liquid crystal panel with diffraction grating
US5153770A (en) 1991-06-27 1992-10-06 Xerox Corporation Total internal reflection electro-optic modulator
US5155778A (en) 1991-06-28 1992-10-13 Texas Instruments Incorporated Optical switch using spatial light modulators
US5221982A (en) 1991-07-05 1993-06-22 Faris Sadeg M Polarizing wavelength separator
US5179274A (en) 1991-07-12 1993-01-12 Texas Instruments Incorporated Method for controlling operation of optical systems and devices
US5287215A (en) 1991-07-17 1994-02-15 Optron Systems, Inc. Membrane light modulation systems
WO1993002269A1 (en) 1991-07-17 1993-02-04 Chaddesley Investments Pty. Ltd. Transparent laminates and monolithic transparencies
US5170283A (en) 1991-07-24 1992-12-08 Northrop Corporation Silicon spatial light modulator
US5240818A (en) 1991-07-31 1993-08-31 Texas Instruments Incorporated Method for manufacturing a color filter for deformable mirror device
US5168406A (en) 1991-07-31 1992-12-01 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
US5164019A (en) 1991-07-31 1992-11-17 Sunpower Corporation Monolithic series-connected solar cells having improved cell isolation and method of making same
CA2075026A1 (en) 1991-08-08 1993-02-09 William E. Nelson Method and apparatus for patterning an imaging member
JP2538456B2 (en) 1991-08-12 1996-09-25 浜松ホトニクス株式会社 Optical displacement measuring device
US5233874A (en) * 1991-08-19 1993-08-10 General Motors Corporation Active microaccelerometer
US5418546A (en) 1991-08-20 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Visual display system and exposure control apparatus
US5198895A (en) 1991-08-29 1993-03-30 Rockwell International Corporation Holographic head-up display
JPH0563029A (en) 1991-09-02 1993-03-12 Fujitsu Ltd Semiconductor element
US5132723A (en) 1991-09-05 1992-07-21 Creo Products, Inc. Method and apparatus for exposure control in light valves
US5307056A (en) 1991-09-06 1994-04-26 Texas Instruments Incorporated Dynamic memory allocation for frame buffer for spatial light modulator
US5245686A (en) 1991-09-06 1993-09-14 Faris Sadeg M Method of fabricating an image plane translator device and apparatus incorporating such device
US5254980A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated DMD display system controller
US5255100A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated Data formatter with orthogonal input/output and spatial reordering
US5208891A (en) 1991-10-07 1993-05-04 The United State Of America As Represented By The Secretary Of The Navy Fiber-optic viewgraph projector
US5177724A (en) 1991-10-08 1993-01-05 Crea Products Inc. Optical tape recorder using a resonant flexure scanner
US5239448A (en) 1991-10-28 1993-08-24 International Business Machines Corporation Formulation of multichip modules
JPH0770469B2 (en) 1991-10-30 1995-07-31 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン Lighting equipment
DE69221987T2 (en) 1991-11-01 1998-02-05 Sega Enterprises Kk Imaging device attached to the head
US5230005A (en) 1991-11-05 1993-07-20 The United States Of America As Represented By The Secretary Of The Navy Electronic tuning of a broadband laser
US5210637A (en) 1991-11-12 1993-05-11 International Business Machines Corp. High speed light modulation
CA2081753C (en) 1991-11-22 2002-08-06 Jeffrey B. Sampsell Dmd scanner
JPH05142490A (en) 1991-11-25 1993-06-11 Fuji Xerox Co Ltd Laser scanning optical system with nonlinear frequency characteristic
US5231432A (en) 1991-12-03 1993-07-27 Florida Atlantic University Projector utilizing liquid crystal light-valve and color selection by diffraction
EP0841810B1 (en) 1991-12-05 2000-06-21 Texas Instruments Incorporated Method to improve a video signal
US5208818A (en) 1991-12-12 1993-05-04 Creo Products Inc. Laser system for recording data patterns on a planar substrate
US5323051A (en) 1991-12-16 1994-06-21 Motorola, Inc. Semiconductor wafer level package
US5231388A (en) 1991-12-17 1993-07-27 Texas Instruments Incorporated Color display system using spatial light modulators
US5212555A (en) 1991-12-17 1993-05-18 Texas Instruments Incorporated Image capture with spatial light modulator and single-cell photosensor
US5247593A (en) 1991-12-18 1993-09-21 Texas Instruments Incorporated Programmable optical crossbar switch
US5311349A (en) 1991-12-18 1994-05-10 Texas Instruments Incorporated Unfolded optics for multiple row spatial light modulators
US5313835A (en) * 1991-12-19 1994-05-24 Motorola, Inc. Integrated monolithic gyroscopes/accelerometers with logic circuits
US5233456A (en) 1991-12-20 1993-08-03 Texas Instruments Incorporated Resonant mirror and method of manufacture
CA2084923A1 (en) 1991-12-20 1993-06-21 Ronald E. Stafford Slm spectrometer
US5202785A (en) 1991-12-20 1993-04-13 Texas Instruments Incorporated Method and device for steering light
CA2085961A1 (en) 1991-12-23 1993-06-24 William E. Nelson Method and apparatus for steering light
US5247180A (en) 1991-12-30 1993-09-21 Texas Instruments Incorporated Stereolithographic apparatus and method of use
US5189548A (en) 1991-12-31 1993-02-23 Xerox Corporation Electrooptic TIR light modulator image bar having multiple electrodes per pixel
US5285407A (en) 1991-12-31 1994-02-08 Texas Instruments Incorporated Memory circuit for spatial light modulator
US5233460A (en) 1992-01-31 1993-08-03 Regents Of The University Of California Method and means for reducing speckle in coherent laser pulses
US5296950A (en) 1992-01-31 1994-03-22 Texas Instruments Incorporated Optical signal free-space conversion board
US5224088A (en) 1992-02-10 1993-06-29 Creo Products Inc. High resolution optical scanner
US5504514A (en) 1992-02-13 1996-04-02 Texas Instruments Incorporated System and method for solid state illumination for spatial light modulators
US5315423A (en) 1992-02-18 1994-05-24 Rockwell International Corporation Wavelength multiplexed two dimensional image transmission through single mode optical fiber
US5300813A (en) * 1992-02-26 1994-04-05 International Business Machines Corporation Refractory metal capped low resistivity metal conductor lines and vias
US5212582A (en) 1992-03-04 1993-05-18 Texas Instruments Incorporated Electrostatically controlled beam steering device and method
US6140980A (en) 1992-03-13 2000-10-31 Kopin Corporation Head-mounted display system
DE69310974T2 (en) 1992-03-25 1997-11-06 Texas Instruments Inc Built-in optical calibration system
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
US5319214A (en) 1992-04-06 1994-06-07 The United States Of America As Represented By The Secretary Of The Army Infrared image projector utilizing a deformable mirror device spatial light modulator
US5357803A (en) * 1992-04-08 1994-10-25 Rochester Institute Of Technology Micromachined microaccelerometer for measuring acceleration along three axes
GB9208705D0 (en) 1992-04-22 1992-07-22 Smiths Industries Plc Head-mounted display assemblies
US5459592A (en) 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center
JPH05303348A (en) 1992-04-24 1993-11-16 Nec Eng Ltd Lcd video signal interface device
WO1993022694A1 (en) 1992-04-28 1993-11-11 Leland Stanford Junior University Modulating a light beam
US6219015B1 (en) 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
US5311360A (en) 1992-04-28 1994-05-10 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for modulating a light beam
GB2267579A (en) 1992-05-15 1993-12-08 Sharp Kk Optical device comprising facing lenticular or parallax screens of different pitch
US5334991A (en) 1992-05-15 1994-08-02 Reflection Technology Dual image head-mounted display
US5307185A (en) 1992-05-19 1994-04-26 Raychem Corporation Liquid crystal projection display with complementary color dye added to longest wavelength imaging element
US5347433A (en) 1992-06-11 1994-09-13 Sedlmayr Steven R Collimated beam of light and systems and methods for implementation thereof
US5281887A (en) 1992-06-15 1994-01-25 Engle Craig D Two independent spatial variable degree of freedom wavefront modulator
US5486841A (en) 1992-06-17 1996-01-23 Sony Corporation Glasses type display apparatus
US5315418A (en) 1992-06-17 1994-05-24 Xerox Corporation Two path liquid crystal light valve color display with light coupling lens array disposed along the red-green light path
FR2693033B1 (en) 1992-06-30 1994-08-19 Commissariat Energie Atomique Large imaging device.
US5256869A (en) 1992-06-30 1993-10-26 Texas Instruments Incorporated Free-space optical interconnection using deformable mirror device
US5370742A (en) 1992-07-13 1994-12-06 The Clorox Company Liquid/supercritical cleaning with decreased polymer damage
JPH0637143A (en) 1992-07-15 1994-02-10 Toshiba Corp Semiconductor device and manufacture thereof
US5340772A (en) 1992-07-17 1994-08-23 Lsi Logic Corporation Method of increasing the layout efficiency of dies on a wafer and increasing the ratio of I/O area to active area per die
US5430524A (en) 1992-07-22 1995-07-04 Texas Instruments Incorporated Unibody printing and copying system and process
US5321416A (en) 1992-07-27 1994-06-14 Virtual Research Systems Head-mounted visual display apparatus
US5313479A (en) 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
US5605406A (en) 1992-08-24 1997-02-25 Bowen; James H. Computer input devices with light activated switches and light emitter protection
US5327286A (en) 1992-08-31 1994-07-05 Texas Instruments Incorporated Real time optical correlation system
US5249245A (en) 1992-08-31 1993-09-28 Motorola, Inc. Optoelectroinc mount including flexible substrate and method for making same
US5303043A (en) 1992-09-01 1994-04-12 Florida Atlantic University Projection television display utilizing Bragg diffraction cell for producing horizontal scan
US5348619A (en) 1992-09-03 1994-09-20 Texas Instruments Incorporated Metal selective polymer removal
JP3105089B2 (en) 1992-09-11 2000-10-30 株式会社東芝 Semiconductor device
US5455455A (en) * 1992-09-14 1995-10-03 Badehi; Peirre Methods for producing packaged integrated circuit devices and packaged integrated circuit devices produced thereby
US5325116A (en) 1992-09-18 1994-06-28 Texas Instruments Incorporated Device for writing to and reading from optical storage media
GB9220412D0 (en) 1992-09-28 1992-11-11 Texas Instruments Holland Transponder systems for automatic identification purposes
US5493439A (en) 1992-09-29 1996-02-20 Engle; Craig D. Enhanced surface deformation light modulator
US5319668A (en) 1992-09-30 1994-06-07 New Focus, Inc. Tuning system for external cavity diode laser
US5661593A (en) 1992-10-01 1997-08-26 Engle; Craig D. Linear electrostatic modulator
ATE261168T1 (en) 1992-10-15 2004-03-15 Texas Instruments Inc DISPLAY DEVICE
US5285196A (en) 1992-10-15 1994-02-08 Texas Instruments Incorporated Bistable DMD addressing method
JP2934357B2 (en) 1992-10-20 1999-08-16 富士通株式会社 Semiconductor device
US5289172A (en) 1992-10-23 1994-02-22 Texas Instruments Incorporated Method of mitigating the effects of a defective electromechanical pixel
US5355901A (en) 1992-10-27 1994-10-18 Autoclave Engineers, Ltd. Apparatus for supercritical cleaning
GB2272555A (en) 1992-11-11 1994-05-18 Sharp Kk Stereoscopic display using a light modulator
DE59309409D1 (en) 1992-11-20 1999-04-08 Ascom Tech Ag Light modulator
US5450088A (en) 1992-11-25 1995-09-12 Texas Instruments Deutschland Gmbh Transponder arrangement
US5410315A (en) 1992-12-08 1995-04-25 Texas Instruments Incorporated Group-addressable transponder arrangement
KR100285696B1 (en) 1992-12-16 2001-09-17 윌리엄 비. 켐플러 Cleaning method of patterned metal layer
US5420655A (en) 1992-12-16 1995-05-30 North American Philips Corporation Color projection system employing reflective display devices and prism illuminators
EP0608440A1 (en) 1992-12-18 1994-08-03 Fujitsu Limited Semiconductor device having a plurality of chips having identical circuit arrangements sealed in package
US5357369A (en) 1992-12-21 1994-10-18 Geoffrey Pilling Wide-field three-dimensional viewing system
FR2699690B1 (en) 1992-12-22 1995-01-27 Thomson Csf Low field moving image projector.
US5296408A (en) * 1992-12-24 1994-03-22 International Business Machines Corporation Fabrication method for vacuum microelectronic devices
US5418584A (en) 1992-12-31 1995-05-23 Honeywell Inc. Retroreflective array virtual image projection screen
US5352926A (en) 1993-01-04 1994-10-04 Motorola, Inc. Flip chip package and method of making
US5315429A (en) 1993-01-04 1994-05-24 Xerox Corporation Micromechanical light modulator with optically interlaced output
US5371618A (en) 1993-01-05 1994-12-06 Brite View Technologies Color liquid crystal display employing dual cells driven with an EXCLUSIVE OR relationship
AU5306494A (en) 1993-01-08 1994-07-14 Richard A Vasichek Magnetic keeper accessory for wrench sockets
JP3547160B2 (en) 1993-01-11 2004-07-28 テキサス インスツルメンツ インコーポレイテツド Spatial light modulator
JP3457348B2 (en) 1993-01-15 2003-10-14 株式会社東芝 Method for manufacturing semiconductor device
US5426072A (en) 1993-01-21 1995-06-20 Hughes Aircraft Company Process of manufacturing a three dimensional integrated circuit from stacked SOI wafers using a temporary silicon substrate
US5359451A (en) 1993-01-29 1994-10-25 Creo Products Inc. High efficiency acousto-optic modulator
JPH06244359A (en) 1993-02-19 1994-09-02 Takashi Murai Multilayer chip
US5320709A (en) 1993-02-24 1994-06-14 Advanced Chemical Systems International Incorporated Method for selective removal of organometallic and organosilicon residues and damaged oxides using anhydrous ammonium fluoride solution
US5371543A (en) 1993-03-03 1994-12-06 Texas Instruments Incorporated Monolithic color wheel
US5404485A (en) 1993-03-08 1995-04-04 M-Systems Flash Disk Pioneers Ltd. Flash file system
US5903098A (en) 1993-03-11 1999-05-11 Fed Corporation Field emission display device having multiplicity of through conductive vias and a backside connector
US5293511A (en) 1993-03-16 1994-03-08 Texas Instruments Incorporated Package for a semiconductor device
US5461411A (en) 1993-03-29 1995-10-24 Texas Instruments Incorporated Process and architecture for digital micromirror printer
US5435876A (en) 1993-03-29 1995-07-25 Texas Instruments Incorporated Grid array masking tape process
US5455602A (en) 1993-03-29 1995-10-03 Texas Instruments Incorporated Combined modulation schemes for spatial light modulators
US5461410A (en) 1993-03-29 1995-10-24 Texas Instruments Incorporated Gray scale printing using spatial light modulators
JPH06281988A (en) 1993-03-30 1994-10-07 Nikon Corp Vibration proof optical device
US5451103A (en) 1993-04-06 1995-09-19 Sony Corporation Projector system
US5510758A (en) 1993-04-07 1996-04-23 Matsushita Electric Industrial Co., Ltd. Multilayer microstrip wiring board with a semiconductor device mounted thereon via bumps
US5539422A (en) 1993-04-12 1996-07-23 Virtual Vision, Inc. Head mounted display system
EP0622897B1 (en) * 1993-04-28 2001-03-07 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device and method of manufacturing the same
US5427975A (en) * 1993-05-10 1995-06-27 Delco Electronics Corporation Method of micromachining an integrated sensor on the surface of a silicon wafer
US5321450A (en) 1993-05-11 1994-06-14 Proxima Corporation Low profile liquid crystal projector and method of using same
US5485172A (en) 1993-05-21 1996-01-16 Sony Corporation Automatic image regulating arrangement for head-mounted image display apparatus
KR970003007B1 (en) 1993-05-21 1997-03-13 대우전자 주식회사 Optical path adjusting device for projection type image display device and driving method thereof
JPH06331928A (en) 1993-05-24 1994-12-02 Sony Corp Spectacles type display device
DE69429209T2 (en) 1993-06-01 2002-06-27 Sharp K.K., Osaka Image display device with back lighting
WO1994029761A1 (en) 1993-06-07 1994-12-22 A.T.M.A. S.R.L. Stereoscopic vision device of virtual realities and corresponding stereoscopic vision method
US5445559A (en) 1993-06-24 1995-08-29 Texas Instruments Incorporated Wafer-like processing after sawing DMDs
US5491715A (en) 1993-06-28 1996-02-13 Texas Instruments Deutschland Gmbh Automatic antenna tuning method and circuit
US5453747A (en) 1993-06-28 1995-09-26 Texas Instruments Deutschland Gmbh Transponder systems for automatic identification purposes
US5345521A (en) 1993-07-12 1994-09-06 Texas Instrument Incorporated Architecture for optical switch
US5513198A (en) * 1993-07-14 1996-04-30 Corning Incorporated Packaging of high power semiconductor lasers
US5489952A (en) 1993-07-14 1996-02-06 Texas Instruments Incorporated Method and device for multi-format television
US5365283A (en) 1993-07-19 1994-11-15 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
US5673139A (en) 1993-07-19 1997-09-30 Medcom, Inc. Microelectromechanical television scanning device and method for making the same
US5461547A (en) 1993-07-20 1995-10-24 Precision Lamp, Inc. Flat panel display lighting system
US5510824A (en) 1993-07-26 1996-04-23 Texas Instruments, Inc. Spatial light modulator array
US5453778A (en) 1993-07-30 1995-09-26 Texas Instruments Incorporated Method and apparatus for spatial modulation in the cross-process direction
JP3185831B2 (en) 1993-07-30 2001-07-11 富士写真フイルム株式会社 Polarization coherent multiplex laser
US5389182A (en) 1993-08-02 1995-02-14 Texas Instruments Incorporated Use of a saw frame with tape as a substrate carrier for wafer level backend processing
US5438477A (en) 1993-08-12 1995-08-01 Lsi Logic Corporation Die-attach technique for flip-chip style mounting of semiconductor dies
US5581272A (en) 1993-08-25 1996-12-03 Texas Instruments Incorporated Signal generator for controlling a spatial light modulator
US5459492A (en) 1993-08-30 1995-10-17 Texas Instruments Incorporated Method and apparatus for printing stroke and contone data together
US5485354A (en) 1993-09-09 1996-01-16 Precision Lamp, Inc. Flat panel display lighting system
KR0171921B1 (en) * 1993-09-13 1999-03-30 모리시타 요이찌 Electronic component and method of fabricating the same
JP3322283B2 (en) 1993-09-14 2002-09-09 ソニー株式会社 Image display device
US5457493A (en) 1993-09-15 1995-10-10 Texas Instruments Incorporated Digital micro-mirror based image simulation system
EP0657760A1 (en) 1993-09-15 1995-06-14 Texas Instruments Incorporated Image simulation and projection system
US5377705A (en) 1993-09-16 1995-01-03 Autoclave Engineers, Inc. Precision cleaning system
KR970003466B1 (en) 1993-09-28 1997-03-18 대우전자 주식회사 Method for manufacturing optical path adjusting device of projection image display device
US5347321A (en) 1993-09-30 1994-09-13 Texas Instruments Incorporated Color separator for digital television
US5815126A (en) 1993-10-22 1998-09-29 Kopin Corporation Monocular portable communication and display system
WO1995011473A1 (en) 1993-10-22 1995-04-27 Kopin Corporation Head-mounted display system
US5420722A (en) 1993-10-25 1995-05-30 Creo Products Inc. Self-registering microlens for laser diodes
US5367585A (en) 1993-10-27 1994-11-22 General Electric Company Integrated microelectromechanical polymeric photonic switch
US5497197A (en) 1993-11-04 1996-03-05 Texas Instruments Incorporated System and method for packaging data into video processor
US5508558A (en) 1993-10-28 1996-04-16 Digital Equipment Corporation High density, high speed, semiconductor interconnect using-multilayer flexible substrate with unsupported central portion
US5734224A (en) 1993-11-01 1998-03-31 Canon Kabushiki Kaisha Image forming apparatus and method of manufacturing the same
US5452024A (en) 1993-11-01 1995-09-19 Texas Instruments Incorporated DMD display system
US5398071A (en) 1993-11-02 1995-03-14 Texas Instruments Incorporated Film-to-video format detection for digital television
US5523619A (en) * 1993-11-03 1996-06-04 International Business Machines Corporation High density memory structure
CA2134370A1 (en) 1993-11-04 1995-05-05 Robert J. Gove Video data formatter for a digital television system
US5508561A (en) 1993-11-15 1996-04-16 Nec Corporation Apparatus for forming a double-bump structure used for flip-chip mounting
US5412501A (en) 1993-11-17 1995-05-02 Xerox Corporation System for controlling spot power in a raster output scanner
US5450219A (en) 1993-11-17 1995-09-12 Hughes Aircraft Company Raster following telecentric illumination scanning system for enhancing light throughout in light valve projection systems
US6362835B1 (en) 1993-11-23 2002-03-26 Texas Instruments Incorporated Brightness and contrast control for a digital pulse-width modulated display system
GB2294350A (en) 1994-10-21 1996-04-24 Sharp Kk Light source and display
US5517347A (en) 1993-12-01 1996-05-14 Texas Instruments Incorporated Direct view deformable mirror device
US5491510A (en) 1993-12-03 1996-02-13 Texas Instruments Incorporated System and method for simultaneously viewing a scene and an obscured object
US5454160A (en) 1993-12-03 1995-10-03 Ncr Corporation Apparatus and method for stacking integrated circuit devices
DE69409257T2 (en) * 1993-12-13 1998-09-10 Honeywell, Inc., Minneapolis, Minn. INTEGRATED SILICON VACUUM MICROPACK FOR INFRARED DEVICES
US5473512A (en) 1993-12-16 1995-12-05 At&T Corp. Electronic device package having electronic device boonded, at a localized region thereof, to circuit board
EP1001323A3 (en) 1993-12-17 2005-10-12 Denso Corporation Data backup apparatus utilized in an electronic control system and data backup method performed in the data backup apparatus
JP2722314B2 (en) 1993-12-20 1998-03-04 日本信号株式会社 Planar type galvanometer mirror and method of manufacturing the same
US5523920A (en) 1994-01-03 1996-06-04 Motorola, Inc. Printed circuit board comprising elevated bond pads
US5442411A (en) 1994-01-03 1995-08-15 Texas Instruments Incorporated Displaying video data on a spatial light modulator with line doubling
US5499060A (en) 1994-01-04 1996-03-12 Texas Instruments Incorporated System and method for processing video data
US5448314A (en) 1994-01-07 1995-09-05 Texas Instruments Method and apparatus for sequential color imaging
KR970005712B1 (en) 1994-01-11 1997-04-19 삼성전자 주식회사 High heat sink package
CA2139794C (en) 1994-01-18 2006-11-07 Robert John Gove Frame pixel data generation
US5455445A (en) 1994-01-21 1995-10-03 Kulite Semiconductor Products, Inc. Multi-level semiconductor structures having environmentally isolated elements
US5500761A (en) 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
US5658698A (en) 1994-01-31 1997-08-19 Canon Kabushiki Kaisha Microstructure, process for manufacturing thereof and devices incorporating the same
US5467106A (en) 1994-02-10 1995-11-14 Hughes-Avicom International, Inc. Retractable face-up LCD monitor with off-monitor power supply and back-EMF braking
US5412186A (en) 1994-02-23 1995-05-02 Texas Instruments Incorporated Elimination of sticking of micro-mechanical devices
US5444566A (en) 1994-03-07 1995-08-22 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
US5439731A (en) 1994-03-11 1995-08-08 Cornell Research Goundation, Inc. Interconnect structures containing blocked segments to minimize stress migration and electromigration damage
US5447600A (en) 1994-03-21 1995-09-05 Texas Instruments Polymeric coatings for micromechanical devices
US5380681A (en) 1994-03-21 1995-01-10 United Microelectronics Corporation Three-dimensional multichip package and methods of fabricating
US6097352A (en) * 1994-03-23 2000-08-01 Kopin Corporation Color sequential display panels
JP3537881B2 (en) 1994-03-29 2004-06-14 株式会社リコー LED array head
US5576878A (en) 1994-03-30 1996-11-19 Texas Instruments Incorporated Use of incompatible materials to eliminate sticking of micro-mechanical devices
US5467146A (en) 1994-03-31 1995-11-14 Texas Instruments Incorporated Illumination control unit for display system with spatial light modulator
US5459528A (en) 1994-03-31 1995-10-17 Texas Instruments Incorporated Video signal processor and method for secondary images
US5640216A (en) * 1994-04-13 1997-06-17 Hitachi, Ltd. Liquid crystal display device having video signal driving circuit mounted on one side and housing
JPH07281161A (en) 1994-04-13 1995-10-27 Hitachi Ltd Liquid crystal display
US5486698A (en) 1994-04-19 1996-01-23 Texas Instruments Incorporated Thermal imaging system with integrated thermal chopper
DE59504639D1 (en) 1994-05-02 1999-02-04 Siemens Matsushita Components ENCLOSURE FOR ELECTRONIC COMPONENTS
US5544306A (en) 1994-05-03 1996-08-06 Sun Microsystems, Inc. Flexible dram access in a frame buffer memory and system
US6040937A (en) 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US5512374A (en) 1994-05-09 1996-04-30 Texas Instruments Incorporated PFPE coatings for micro-mechanical devices
US5442414A (en) 1994-05-10 1995-08-15 U. S. Philips Corporation High contrast illumination system for video projector
US5458716A (en) 1994-05-25 1995-10-17 Texas Instruments Incorporated Methods for manufacturing a thermally enhanced molded cavity package having a parallel lid
US5497172A (en) 1994-06-13 1996-03-05 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing
US5534107A (en) * 1994-06-14 1996-07-09 Fsi International UV-enhanced dry stripping of silicon nitride films
US5521748A (en) 1994-06-16 1996-05-28 Eastman Kodak Company Light modulator with a laser or laser array for exposing image data
US5920418A (en) 1994-06-21 1999-07-06 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator
US5482564A (en) 1994-06-21 1996-01-09 Texas Instruments Incorporated Method of unsticking components of micro-mechanical devices
US5454906A (en) 1994-06-21 1995-10-03 Texas Instruments Inc. Method of providing sacrificial spacer for micro-mechanical devices
US5499062A (en) 1994-06-23 1996-03-12 Texas Instruments Incorporated Multiplexed memory timing with block reset and secondary memory
US5523878A (en) 1994-06-30 1996-06-04 Texas Instruments Incorporated Self-assembled monolayer coating for micro-mechanical devices
US5504504A (en) 1994-07-13 1996-04-02 Texas Instruments Incorporated Method of reducing the visual impact of defects present in a spatial light modulator display
WO1996002941A1 (en) 1994-07-19 1996-02-01 Johnson Matthey Electronics, Inc. Metal cover for ceramic package and method of making same
US5704700A (en) 1994-07-25 1998-01-06 Proxima Corporation Laser illuminated image projection system and method of using same
US5696560A (en) 1994-07-25 1997-12-09 Magma, Inc. Motion picture distribution system
US5512748A (en) 1994-07-26 1996-04-30 Texas Instruments Incorporated Thermal imaging system with a monolithic focal plane array and method
US5485304A (en) 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
US5523628A (en) 1994-08-05 1996-06-04 Hughes Aircraft Company Apparatus and method for protecting metal bumped integrated circuit chips during processing and for providing mechanical support to interconnected chips
JP3233535B2 (en) 1994-08-15 2001-11-26 株式会社東芝 Semiconductor device and manufacturing method thereof
US5903395A (en) 1994-08-31 1999-05-11 I-O Display Systems Llc Personal visual display system
EP0778982B1 (en) 1994-09-02 2000-07-12 DABBAJ, Rad H., Reflective light valve modulator
US5747874A (en) * 1994-09-20 1998-05-05 Fujitsu Limited Semiconductor device, base member for semiconductor device and semiconductor device unit
US5483307A (en) 1994-09-29 1996-01-09 Texas Instruments, Inc. Wide field of view head-mounted display
US5995303A (en) 1994-09-30 1999-11-30 Kabushiki Kaisha Toshiba Optical element and optical device
JP3707084B2 (en) 1994-10-31 2005-10-19 ソニー株式会社 Display device and display method
US5490009A (en) 1994-10-31 1996-02-06 Texas Instruments Incorporated Enhanced resolution for digital micro-mirror displays
US5519450A (en) 1994-11-14 1996-05-21 Texas Instruments Incorporated Graphics subsystem for digital television
US5516125A (en) 1994-11-30 1996-05-14 Texas Instruments Incorporated Baffled collet for vacuum pick-up of a semiconductor die
US5463347A (en) 1994-12-12 1995-10-31 Texas Instruments Incorporated MOS uni-directional, differential voltage amplifier capable of amplifying signals having input common-mode voltage beneath voltage of lower supply and integrated circuit substrate
GB2296152B (en) 1994-12-13 1999-07-07 Gec Marconi Avionics Holdings An autostereoscopic display
US5668611A (en) 1994-12-21 1997-09-16 Hughes Electronics Full color sequential image projection system incorporating pulse rate modulated illumination
US5486946A (en) 1994-12-21 1996-01-23 Motorola Integrated electro-optic package for reflective spatial light modulators
US5524155A (en) 1995-01-06 1996-06-04 Texas Instruments Incorporated Demultiplexer for wavelength-multiplexed optical signal
US5623361A (en) 1995-01-09 1997-04-22 Engle; Craig D. Enhanced wavefront phase modulator device
JP3171043B2 (en) * 1995-01-11 2001-05-28 株式会社村田製作所 Surface acoustic wave device
US5517359A (en) 1995-01-23 1996-05-14 Gelbart; Daniel Apparatus for imaging light from a laser diode onto a multi-channel linear light valve
US5726480A (en) * 1995-01-27 1998-03-10 The Regents Of The University Of California Etchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same
US5517340A (en) 1995-01-30 1996-05-14 International Business Machines Corporation High performance projection display with two light valves
JPH08201757A (en) 1995-01-30 1996-08-09 A G Technol Kk Projection type color display device
US5504614A (en) 1995-01-31 1996-04-02 Texas Instruments Incorporated Method for fabricating a DMD spatial light modulator with a hardened hinge
US5508750A (en) 1995-02-03 1996-04-16 Texas Instruments Incorporated Encoding data converted from film format for progressive display
DE19549395A1 (en) 1995-02-07 1996-10-31 Ldt Gmbh & Co Image generation system for detecting and treating sight defects
US5491612A (en) 1995-02-21 1996-02-13 Fairchild Space And Defense Corporation Three-dimensional modular assembly of integrated circuits
US5610438A (en) * 1995-03-08 1997-03-11 Texas Instruments Incorporated Micro-mechanical device with non-evaporable getter
DE19511593C2 (en) 1995-03-29 1997-02-13 Siemens Ag Micro-optical device
JP3209877B2 (en) 1995-03-31 2001-09-17 アルプス電気株式会社 Optical reader
JP3358688B2 (en) * 1995-04-10 2002-12-24 三洋電機株式会社 Surface acoustic wave device
JP3328102B2 (en) 1995-05-08 2002-09-24 松下電器産業株式会社 Surface acoustic wave device and method of manufacturing the same
JP2987750B2 (en) 1995-05-26 1999-12-06 日本信号株式会社 Planar type electromagnetic actuator
US5786738A (en) * 1995-05-31 1998-07-28 Fujitsu Limited Surface acoustic wave filter duplexer comprising a multi-layer package and phase matching patterns
US5744752A (en) 1995-06-05 1998-04-28 International Business Machines Corporation Hermetic thin film metallized sealband for SCM and MCM-D modules
US5841579A (en) 1995-06-07 1998-11-24 Silicon Light Machines Flat diffraction grating light valve
US5629801A (en) 1995-06-07 1997-05-13 Silicon Light Machines Diffraction grating light doubling collection system
US5661592A (en) 1995-06-07 1997-08-26 Silicon Light Machines Method of making and an apparatus for a flat diffraction grating light valve
US5798743A (en) 1995-06-07 1998-08-25 Silicon Light Machines Clear-behind matrix addressing for display systems
US6046840A (en) * 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US5835256A (en) 1995-06-19 1998-11-10 Reflectivity, Inc. Reflective spatial light modulator with encapsulated micro-mechanical elements
US5949570A (en) 1995-06-20 1999-09-07 Matsushita Electric Industrial Co., Ltd. Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator
JP3135107B2 (en) 1995-06-27 2001-02-13 シャープ株式会社 3D display device
US5886675A (en) 1995-07-05 1999-03-23 Physical Optics Corporation Autostereoscopic display system with fan-out multiplexer
US5837562A (en) 1995-07-07 1998-11-17 The Charles Stark Draper Laboratory, Inc. Process for bonding a shell to a substrate for packaging a semiconductor
GB2303265B (en) * 1995-07-10 1998-07-08 Matsushita Electric Ind Co Ltd Spread spectrum communication apparatus,and demodulator,surface acoustic wave element and surface acoustic wave parts for spread spectrum communication
US5691836A (en) 1995-07-11 1997-11-25 Sy Technology, Inc. Optically addressed spatial light modulator and method
JPH09121138A (en) * 1995-08-24 1997-05-06 Fujitsu Ltd Filter device and wireless device using the same
US5742373A (en) 1995-10-13 1998-04-21 Massachusetts Institute Of Technology Color microdisplays and methods of manufacturing same
JP3435925B2 (en) * 1995-08-25 2003-08-11 ソニー株式会社 Semiconductor device
US5757536A (en) 1995-08-30 1998-05-26 Sandia Corporation Electrically-programmable diffraction grating
US5963788A (en) * 1995-09-06 1999-10-05 Sandia Corporation Method for integrating microelectromechanical devices with electronic circuitry
US6012336A (en) * 1995-09-06 2000-01-11 Sandia Corporation Capacitance pressure sensor
JP3205981B2 (en) * 1995-09-29 2001-09-04 住友電気工業株式会社 Surface acoustic wave device
US6072620A (en) 1995-11-01 2000-06-06 Matsushita Electric Industrial Co., Ltd. Output efficiency control device, projection-type display apparatus, infrared sensor, and non-contact thermometer
US5907425A (en) 1995-12-19 1999-05-25 The Board Of Trustees Of The Leland Stanford Junior University Miniature scanning confocal microscope
US6376921B1 (en) * 1995-11-08 2002-04-23 Fujitsu Limited Semiconductor device, method for fabricating the semiconductor device, lead frame and method for producing the lead frame
EP0865626B1 (en) 1995-12-09 1999-07-21 STREET, Graham Stewart Brandon Autostereoscopic display
US5832148A (en) 1995-12-20 1998-11-03 California Institute Of Technology Electrically controlled wavelength multiplexing waveguide filter
US6242842B1 (en) * 1996-12-16 2001-06-05 Siemens Matsushita Components Gmbh & Co. Kg Electrical component, in particular saw component operating with surface acoustic waves, and a method for its production
DE19548048C2 (en) * 1995-12-21 1998-01-15 Siemens Matsushita Components Electronic component, in particular component working with surface acoustic waves (SAW component)
DE19548051A1 (en) * 1995-12-21 1997-06-26 Siemens Matsushita Components Electronic component, in particular component working with surface acoustic waves - SAW component -
JP2765545B2 (en) 1995-12-26 1998-06-18 日本電気株式会社 Optical wavelength discriminating circuit and method of manufacturing the same
US6025859A (en) 1995-12-27 2000-02-15 Sharp Kabushiki Kaisha Electrostatic printer having an array of optical modulating grating valves
US5689361A (en) 1996-01-22 1997-11-18 Lucent Technologies Inc. Apparatus and method for femtosecond pulse compression based on selective attenuation of a portion of an input power spectrum
JPH09230321A (en) 1996-02-20 1997-09-05 Denso Corp Color liquid crystal display device
US5801074A (en) * 1996-02-20 1998-09-01 Kim; Jong Tae Method of making an air tight cavity in an assembly package
US5942791A (en) * 1996-03-06 1999-08-24 Gec-Marconi Limited Micromachined devices having microbridge structure
US5694740A (en) 1996-03-15 1997-12-09 Analog Devices, Inc. Micromachined device packaged to reduce stiction
US6090717A (en) * 1996-03-26 2000-07-18 Lam Research Corporation High density plasma etching of metallization layer using chlorine and nitrogen
US5731802A (en) 1996-04-22 1998-03-24 Silicon Light Machines Time-interleaved bit-plane, pulse-width-modulation digital display system
US5864092A (en) * 1996-05-16 1999-01-26 Sawtek Inc. Leadless ceramic chip carrier crosstalk suppression apparatus
EP0900477B1 (en) * 1996-05-24 2001-07-18 Epcos Ag Electronic component, in particular a component using acoustical surface acoustic waves
DE19723618B4 (en) 1996-06-05 2005-09-29 Creo Products Inc., Burnaby Mask and process for its preparation for exposing flexographic plates
US5699740A (en) 1996-06-17 1997-12-23 Creo Products Inc. Method of loading metal printing plates on a vacuum drum
US5862164A (en) 1996-07-26 1999-01-19 Zygo Corporation Apparatus to transform with high efficiency a single frequency, linearly polarized laser beam into beams with two orthogonally polarized frequency components orthogonally polarized
US5745271A (en) 1996-07-31 1998-04-28 Lucent Technologies, Inc. Attenuation device for wavelength multiplexed optical fiber communications
US6140144A (en) 1996-08-08 2000-10-31 Integrated Sensing Systems, Inc. Method for packaging microsensors
JP3424453B2 (en) * 1996-08-09 2003-07-07 松下電器産業株式会社 Spread spectrum communication equipment
US5798557A (en) * 1996-08-29 1998-08-25 Harris Corporation Lid wafer bond packaging and micromachining
US5914801A (en) 1996-09-27 1999-06-22 Mcnc Microelectromechanical devices including rotating plates and related methods
JP3222072B2 (en) * 1996-10-15 2001-10-22 富士通株式会社 Demultiplexer package
US6064404A (en) 1996-11-05 2000-05-16 Silicon Light Machines Bandwidth and frame buffer size reduction in a digital pulse-width-modulated display system
US5793519A (en) 1996-11-15 1998-08-11 Eastman Kodak Company Micromolded integrated ceramic light reflector
US5808802A (en) 1996-11-15 1998-09-15 Daewoo Electronics Co. Ltd. Head-mounted display apparatus with a single image display device
JP3604844B2 (en) 1996-11-20 2004-12-22 キヤノン株式会社 Color image reading device
US5898515A (en) 1996-11-21 1999-04-27 Eastman Kodak Company Light reflecting micromachined cantilever
DE19751716C2 (en) 1996-11-25 2002-06-20 Fraunhofer Ges Forschung Arrangement for shaping and guiding radiation
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
US6154259A (en) 1996-11-27 2000-11-28 Photera Technologies, Inc. Multi-beam laser scanning display system with speckle elimination
AU7412898A (en) 1996-11-27 1998-06-22 Laser Power Corporation Multi beam laser scanning display system
EP0851492A3 (en) 1996-12-06 1998-12-16 Texas Instruments Incorporated Surface-mounted substrate structure and method
US5986634A (en) 1996-12-11 1999-11-16 Silicon Light Machines Display/monitor with orientation dependent rotatable image
US5844711A (en) 1997-01-10 1998-12-01 Northrop Grumman Corporation Tunable spatial light modulator
JP3417239B2 (en) * 1997-01-17 2003-06-16 三菱電機株式会社 Manufacturing method of microelectromechanical device
US5920411A (en) 1997-02-14 1999-07-06 Duck; Gary S. Optical multiplexing/demultiplexing device
US6177980B1 (en) 1997-02-20 2001-01-23 Kenneth C. Johnson High-throughput, maskless lithography system
US5892505A (en) 1997-03-17 1999-04-06 Tropper Technologies, Inc. Image viewing apparatus and method
US5982553A (en) 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US5764280A (en) 1997-03-20 1998-06-09 Silicon Light Machines Inc. Display system including an image generator and movable scanner for same
US6071652A (en) 1997-03-21 2000-06-06 Digital Optics Corporation Fabricating optical elements using a photoresist formed from contact printing of a gray level mask
US5768009A (en) 1997-04-18 1998-06-16 E-Beam Light valve target comprising electrostatically-repelled micro-mirrors
US6034429A (en) * 1997-04-18 2000-03-07 Amkor Technology, Inc. Integrated circuit package
CH691559A5 (en) * 1997-04-21 2001-08-15 Asulab Sa magnetic micro-switch and its production process.
US5999319A (en) 1997-05-02 1999-12-07 Interscience, Inc. Reconfigurable compound diffraction grating
US6421179B1 (en) * 1997-05-02 2002-07-16 Interscience, Inc. Wavelength division multiplexing system and method using a reconfigurable diffraction grating
GB9709659D0 (en) * 1997-05-13 1997-07-02 Surface Tech Sys Ltd Method and apparatus for etching a workpiece
US5912094A (en) * 1997-05-15 1999-06-15 Lucent Technologies, Inc. Method and apparatus for making a micro device
JP3904671B2 (en) * 1997-05-28 2007-04-11 富士通株式会社 Virtual clay system and simulation method thereof
BR9815607A (en) 1997-08-01 2001-11-13 Scientific Atlanta Representation of authorizations for service in a conditional access system
US6096576A (en) 1997-09-02 2000-08-01 Silicon Light Machines Method of producing an electrical interface to an integrated circuit device having high density I/O count
US5978127A (en) 1997-09-09 1999-11-02 Zilog, Inc. Light phase grating device
GB9719929D0 (en) 1997-09-18 1997-11-19 Kobe Steel Europ Ltd Flame retardant polycarbonate-styrene(or acrylate)polymers,and/or copolymers and/or graft polymer/copolymer mixtures
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6018065A (en) * 1997-11-10 2000-01-25 Advanced Technology Materials, Inc. Method of fabricating iridium-based materials and structures on substrates, iridium source reagents therefor
US5955771A (en) * 1997-11-12 1999-09-21 Kulite Semiconductor Products, Inc. Sensors for use in high vibrational applications and methods for fabricating same
US5904737A (en) 1997-11-26 1999-05-18 Mve, Inc. Carbon dioxide dry cleaning system
US6075632A (en) 1997-11-26 2000-06-13 Hewlett-Packard Company Optical noise monitor
AU764799B2 (en) 1997-12-29 2003-08-28 Coretek, Inc. Microelectromechanically tunable, confocal, vertical cavity surface emitting laser and fabry-perot filter
US6122299A (en) 1997-12-31 2000-09-19 Sdl, Inc. Angled distributed reflector optical device with enhanced light confinement
US6124145A (en) 1998-01-23 2000-09-26 Instrumentarium Corporation Micromachined gas-filled chambers and method of microfabrication
US6396789B1 (en) 1998-02-27 2002-05-28 Calimetrics, Inc. Data storage system and methods using diffractive near-field optics
US6195196B1 (en) 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof
US6163402A (en) 1998-06-11 2000-12-19 3M Innovative Properties Company Rear projection screen
US6163026A (en) 1998-03-31 2000-12-19 Intel Corporation Chemically stabilized light selective element for imaging applications
US6359333B1 (en) * 1998-03-31 2002-03-19 Honeywell International Inc. Wafer-pair having deposited layer sealed chambers
US5926318A (en) 1998-04-06 1999-07-20 Optimize Incorporated Biocular viewing system with intermediate image planes for an electronic display device
US5910856A (en) 1998-04-16 1999-06-08 Eastman Kodak Company Integrated hybrid silicon-based micro-reflector
DE19818824B4 (en) * 1998-04-27 2008-07-31 Epcos Ag Electronic component and method for its production
US6084626A (en) 1998-04-29 2000-07-04 Eastman Kodak Company Grating modulator array
US6147789A (en) 1998-05-04 2000-11-14 Gelbart; Daniel High speed deformable mirror light valve
NZ507867A (en) 1998-05-08 2003-01-31 Qualcomm Inc Apparatus and method for distribution of high quality image and audio programs to remote locations
JPH11326826A (en) 1998-05-13 1999-11-26 Sony Corp Illuminating method and illuminator
US6388545B1 (en) * 1998-05-29 2002-05-14 Fujitsu Limited Surface-acoustic-wave filter having an improved suppression outside a pass-band
US5953161A (en) 1998-05-29 1999-09-14 General Motors Corporation Infra-red imaging system using a diffraction grating array
US6062461A (en) 1998-06-03 2000-05-16 Delphi Technologies, Inc. Process for bonding micromachined wafers using solder
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
US6004912A (en) 1998-06-05 1999-12-21 Silicon Light Machines Vapor phase low molecular weight lubricants
US6101036A (en) 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6130770A (en) 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US6268952B1 (en) 1998-07-14 2001-07-31 Lightconnect, Inc. Micromechanical light steering optical switch
JO2117B1 (en) 1998-07-15 2000-05-21 كانال + تيكنولوجيز سوسيته انونيم method and apparatus for secure communication of information between aplurality of digital audiovisual devices
US6303986B1 (en) * 1998-07-29 2001-10-16 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
JP3303791B2 (en) 1998-09-02 2002-07-22 株式会社村田製作所 Electronic component manufacturing method
JP2000091818A (en) * 1998-09-11 2000-03-31 Toyota Motor Corp Method of manufacturing film type transmission line and method of connecting the line
US6282213B1 (en) 1998-09-14 2001-08-28 Interscience, Inc. Tunable diode laser with fast digital line selection
US6300148B1 (en) * 1998-10-05 2001-10-09 Advanced Micro Devices Semiconductor structure with a backside protective layer and backside probes and a method for constructing the structure
DE19846532C1 (en) 1998-10-09 2000-05-31 Dilas Diodenlaser Gmbh Apparatus used for high performance diode lasers comprises an optical transformation device for dividing the laser beam into a number of partial beams
US6061166A (en) 1998-10-15 2000-05-09 Eastman Kodak Company Diffractive light modulator
US6091521A (en) 1998-10-16 2000-07-18 Digilens, Inc. Light collection from diffractive displays
JP3919954B2 (en) 1998-10-16 2007-05-30 富士フイルム株式会社 Array type light modulation element and flat display driving method
US6261494B1 (en) * 1998-10-22 2001-07-17 Northeastern University Method of forming plastically deformable microstructures
US6220713B1 (en) 1998-10-23 2001-04-24 Compaq Computer Corporation Projection lens and system
US6115168A (en) 1998-10-29 2000-09-05 Advanced Optical Technologies, Inc. Integrated optical retroreflecting modulator
US6215547B1 (en) 1998-11-19 2001-04-10 Eastman Kodak Company Reflective liquid crystal modulator based printing system
US6232150B1 (en) * 1998-12-03 2001-05-15 The Regents Of The University Of Michigan Process for making microstructures and microstructures made thereby
US6252697B1 (en) 1998-12-18 2001-06-26 Eastman Kodak Company Mechanical grating device
US6038057A (en) 1998-12-18 2000-03-14 Eastman Kodak Company Method and system for actuating electro-mechanical ribbon elements in accordance to a data stream
US6144481A (en) 1998-12-18 2000-11-07 Eastman Kodak Company Method and system for actuating electro-mechanical ribbon elements in accordance to a data stream
US6342960B1 (en) 1998-12-18 2002-01-29 The Boeing Company Wavelength division multiplex transmitter
US6335831B2 (en) 1998-12-18 2002-01-01 Eastman Kodak Company Multilevel mechanical grating device
US6181458B1 (en) 1998-12-18 2001-01-30 Eastman Kodak Company Mechanical grating device with optical coating and method of making mechanical grating device with optical coating
US6172796B1 (en) 1998-12-18 2001-01-09 Eastman Kodak Company Multilevel electro-mechanical grating device and a method for operating a multilevel mechanical and electro-mechanical grating device
US6188519B1 (en) 1999-01-05 2001-02-13 Kenneth Carlisle Johnson Bigrating light valve
WO2000042231A2 (en) 1999-01-15 2000-07-20 The Regents Of The University Of California Polycrystalline silicon germanium films for forming micro-electromechanical systems
JP2000307373A (en) * 1999-02-18 2000-11-02 Murata Mfg Co Ltd Surface wave unit and its manufacture
JP3399432B2 (en) 1999-02-26 2003-04-21 セイコーエプソン株式会社 Electro-optical device manufacturing method and electro-optical device
US6169565B1 (en) 1999-03-31 2001-01-02 Eastman Kodak Company Laser printer utilizing a spatial light modulator
JP4316050B2 (en) * 1999-05-31 2009-08-19 ボールセミコンダクター株式会社 Micromachine manufacturing method
US6426583B1 (en) * 1999-06-14 2002-07-30 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
JP2000357937A (en) * 1999-06-17 2000-12-26 Murata Mfg Co Ltd Surface acoustic wave device
US6096656A (en) 1999-06-24 2000-08-01 Sandia Corporation Formation of microchannels from low-temperature plasma-deposited silicon oxynitride
US6229683B1 (en) * 1999-06-30 2001-05-08 Mcnc High voltage micromachined electrostatic switch
US6057520A (en) * 1999-06-30 2000-05-02 Mcnc Arc resistant high voltage micromachined electrostatic switch
US6275623B1 (en) 1999-07-12 2001-08-14 Corning Incorporated Dynamically configurable spectral filter
US6356577B1 (en) 1999-07-15 2002-03-12 Silicon Light Machines Method and apparatus for combining light output from multiple laser diode bars
US6169624B1 (en) * 1999-08-11 2001-01-02 Asif A. Godil Achromatic optical modulators
JP3860364B2 (en) * 1999-08-11 2006-12-20 富士通メディアデバイス株式会社 Surface acoustic wave device
US6313901B1 (en) 1999-09-01 2001-11-06 National Semiconductor Corporation Liquid crystal display fabrication process using a final rapid thermal anneal
US6222954B1 (en) 1999-09-17 2001-04-24 Light Bytes, Inc. Fault-tolerant fiber-optical beam control modules
US6563974B2 (en) 1999-09-17 2003-05-13 Nuonics, Inc. High resolution fault-tolerant fiber-optical beam control modules
US6153927A (en) 1999-09-30 2000-11-28 Intel Corporation Packaged integrated processor and spatial light modulator
US6229650B1 (en) 1999-10-18 2001-05-08 Agfa Corporation Optical imaging head having a multiple writing bean source
US6456172B1 (en) * 1999-10-21 2002-09-24 Matsushita Electric Industrial Co., Ltd. Multilayered ceramic RF device
US6942811B2 (en) * 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US6290864B1 (en) * 1999-10-26 2001-09-18 Reflectivity, Inc. Fluoride gas etching of silicon with improved selectivity
US6290859B1 (en) 1999-11-12 2001-09-18 Sandia Corporation Tungsten coating for improved wear resistance and reliability of microelectromechanical devices
US6497490B1 (en) 1999-12-14 2002-12-24 Silicon Light Machines Laser beam attenuator and method of attenuating a laser beam
US6286231B1 (en) 2000-01-12 2001-09-11 Semitool, Inc. Method and apparatus for high-pressure wafer processing and drying
US6197610B1 (en) * 2000-01-14 2001-03-06 Ball Semiconductor, Inc. Method of making small gaps for small electrical/mechanical devices
US6663790B2 (en) 2000-01-26 2003-12-16 Eastman Kodak Company Method for manufacturing a mechanical conformal grating device with improved contrast and lifetime
US6274469B1 (en) * 2000-01-26 2001-08-14 Advanced Micro Devices, Inc. Process using a plug as a mask for a gate
US6956878B1 (en) 2000-02-07 2005-10-18 Silicon Light Machines Corporation Method and apparatus for reducing laser speckle using polarization averaging
US6418152B1 (en) 2000-02-18 2002-07-09 Trw Inc. Multi-amplifier, high power mode locked laser
US6525863B1 (en) 2000-02-25 2003-02-25 Nuonics, Inc. Multi-technology multi-beam-former platform for robust fiber-optical beam control modules
US6479811B1 (en) 2000-03-06 2002-11-12 Eastman Kodak Company Method and system for calibrating a diffractive grating modulator
US6356689B1 (en) * 2000-03-25 2002-03-12 Lucent Technologies, Inc. Article comprising an optical cavity
US6310018B1 (en) 2000-03-31 2001-10-30 3M Innovative Properties Company Fluorinated solvent compositions containing hydrogen fluoride
US6559070B1 (en) * 2000-04-11 2003-05-06 Applied Materials, Inc. Mesoporous silica films with mobile ion gettering and accelerated processing
US6480634B1 (en) 2000-05-18 2002-11-12 Silicon Light Machines Image projector including optical fiber which couples laser illumination to light modulator
US6509623B2 (en) * 2000-06-15 2003-01-21 Newport Fab, Llc Microelectronic air-gap structures and methods of forming the same
KR100463092B1 (en) * 2000-06-27 2004-12-23 마츠시타 덴끼 산교 가부시키가이샤 Multilayer ceramic device
EP1172686A3 (en) 2000-07-03 2004-07-14 Creo IL. Ltd. Controllable diffractive grating array with perpendicular diffraction
US6736987B1 (en) * 2000-07-12 2004-05-18 Techbank Corporation Silicon etching apparatus using XeF2
EP1172681A3 (en) 2000-07-13 2004-06-09 Creo IL. Ltd. Blazed micro-mechanical light modulator and array thereof
US6943950B2 (en) 2000-08-07 2005-09-13 Texas Instruments Incorporated Two-dimensional blazed MEMS grating
US6455980B1 (en) * 2000-08-28 2002-09-24 The Charles Stark Draper Laboratory, Inc. Resonator with preferred oscillation mode
US6377137B1 (en) * 2000-09-11 2002-04-23 Agilent Technologies, Inc. Acoustic resonator filter with reduced electromagnetic influence due to die substrate thickness
US6466354B1 (en) 2000-09-19 2002-10-15 Silicon Light Machines Method and apparatus for interferometric modulation of light
US6323984B1 (en) 2000-10-11 2001-11-27 Silicon Light Machines Method and apparatus for reducing laser speckle
US6565222B1 (en) 2000-11-17 2003-05-20 Sony Corporation High performance, low cost mirror for a rear projection television
NO20005980L (en) 2000-11-27 2002-05-28 Thin Film Electronics Ab Ferroelectric memory circuit and method of its manufacture
US6550664B2 (en) * 2000-12-09 2003-04-22 Agilent Technologies, Inc. Mounting film bulk acoustic resonators in microwave packages using flip chip bonding technology
US20020105725A1 (en) 2000-12-18 2002-08-08 Sweatt William C. Electrically-programmable optical processor with enhanced resolution
US6384959B1 (en) 2001-01-09 2002-05-07 Eastman Kodak Company Optical data modulation system with self-damped electromechanical conformal grating
US6387723B1 (en) 2001-01-19 2002-05-14 Silicon Light Machines Reduced surface charging in silicon-based devices
US6445502B1 (en) 2001-02-02 2002-09-03 Celeste Optics, Inc. Variable blazed grating
US6567584B2 (en) 2001-02-12 2003-05-20 Silicon Light Machines Illumination system for one-dimensional spatial light modulators employing multiple light sources
US6613157B2 (en) 2001-02-15 2003-09-02 Micell Technologies, Inc. Methods for removing particles from microelectronic structures
WO2002073671A1 (en) * 2001-03-13 2002-09-19 Rochester Institute Of Technology A micro-electro-mechanical varactor and a method of making and using
US7280014B2 (en) 2001-03-13 2007-10-09 Rochester Institute Of Technology Micro-electro-mechanical switch and a method of using and making thereof
GB0107404D0 (en) 2001-03-23 2001-05-16 Koninkl Philips Electronics Nv Display substrate and display device
JP3974346B2 (en) * 2001-03-30 2007-09-12 富士通メディアデバイス株式会社 Surface acoustic wave device
US7019883B2 (en) 2001-04-03 2006-03-28 Cidra Corporation Dynamic optical filter having a spatial light modulator
US6614580B2 (en) 2001-04-10 2003-09-02 Silicon Light Machines Modulation of light out of the focal plane in a light modulator based projection system
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US6438954B1 (en) 2001-04-27 2002-08-27 3M Innovative Properties Company Multi-directional thermal actuator
JP3848102B2 (en) 2001-05-22 2006-11-22 富士通メディアデバイス株式会社 Electronic device sealing apparatus and sealing method thereof
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6646778B2 (en) 2001-08-01 2003-11-11 Silicon Light Machines Grating light valve with encapsulated dampening gas
US6639722B2 (en) 2001-08-15 2003-10-28 Silicon Light Machines Stress tuned blazed grating light valve
US6587253B2 (en) 2001-08-16 2003-07-01 Silicon Light Machines Enhance thermal stability through optical segmentation
US6930364B2 (en) 2001-09-13 2005-08-16 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US7189332B2 (en) * 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
KR100616508B1 (en) * 2002-04-11 2006-08-29 삼성전기주식회사 FARA element and its manufacturing method
GB2391384A (en) * 2002-07-24 2004-02-04 Korea Electronics Technology Method of removing a sacrificial portion of a functional micro device by etching with xenon difluoride
US6913942B2 (en) * 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919548A (en) * 1996-10-11 1999-07-06 Sandia Corporation Chemical-mechanical polishing of recessed microelectromechanical devices
US6069392A (en) * 1997-04-11 2000-05-30 California Institute Of Technology Microbellows actuator
US6123985A (en) * 1998-10-28 2000-09-26 Solus Micro Technologies, Inc. Method of fabricating a membrane-actuated charge controlled mirror (CCM)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872984B1 (en) 1998-07-29 2005-03-29 Silicon Light Machines Corporation Method of sealing a hermetic lid to a semiconductor die at an angle
US7177081B2 (en) 2001-03-08 2007-02-13 Silicon Light Machines Corporation High contrast grating light valve type device
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6785001B2 (en) 2001-08-21 2004-08-31 Silicon Light Machines, Inc. Method and apparatus for measuring wavelength jitter of light signal
US7049164B2 (en) 2001-09-13 2006-05-23 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US6956995B1 (en) 2001-11-09 2005-10-18 Silicon Light Machines Corporation Optical communication arrangement
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US6839479B2 (en) 2002-05-29 2005-01-04 Silicon Light Machines Corporation Optical switch
US7054515B1 (en) 2002-05-30 2006-05-30 Silicon Light Machines Corporation Diffractive light modulator-based dynamic equalizer with integrated spectral monitor
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6908201B2 (en) 2002-06-28 2005-06-21 Silicon Light Machines Corporation Micro-support structures
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US7057795B2 (en) 2002-08-20 2006-06-06 Silicon Light Machines Corporation Micro-structures with individually addressable ribbon pairs
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US6928207B1 (en) 2002-12-12 2005-08-09 Silicon Light Machines Corporation Apparatus for selectively blocking WDM channels
US6987600B1 (en) 2002-12-17 2006-01-17 Silicon Light Machines Corporation Arbitrary phase profile for better equalization in dynamic gain equalizer
US7057819B1 (en) 2002-12-17 2006-06-06 Silicon Light Machines Corporation High contrast tilting ribbon blazed grating
US6934070B1 (en) 2002-12-18 2005-08-23 Silicon Light Machines Corporation Chirped optical MEM device
US6927891B1 (en) 2002-12-23 2005-08-09 Silicon Light Machines Corporation Tilt-able grating plane for improved crosstalk in 1×N blaze switches
US7068372B1 (en) 2003-01-28 2006-06-27 Silicon Light Machines Corporation MEMS interferometer-based reconfigurable optical add-and-drop multiplexor
US7286764B1 (en) 2003-02-03 2007-10-23 Silicon Light Machines Corporation Reconfigurable modulator-based optical add-and-drop multiplexer
US6947613B1 (en) 2003-02-11 2005-09-20 Silicon Light Machines Corporation Wavelength selective switch and equalizer
US6922272B1 (en) 2003-02-14 2005-07-26 Silicon Light Machines Corporation Method and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US7046420B1 (en) 2003-02-28 2006-05-16 Silicon Light Machines Corporation MEM micro-structures and methods of making the same
US7027202B1 (en) 2003-02-28 2006-04-11 Silicon Light Machines Corp Silicon substrate as a light modulator sacrificial layer
US6922273B1 (en) 2003-02-28 2005-07-26 Silicon Light Machines Corporation PDL mitigation structure for diffractive MEMS and gratings
US7391973B1 (en) 2003-02-28 2008-06-24 Silicon Light Machines Corporation Two-stage gain equalizer
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US7042611B1 (en) 2003-03-03 2006-05-09 Silicon Light Machines Corporation Pre-deflected bias ribbons
JP2006526509A (en) * 2003-06-04 2006-11-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Micro electromechanical device and sealing method and manufacturing method thereof
JP2011245620A (en) * 2003-06-04 2011-12-08 Robert Bosch Gmbh Micro electromechanical system, and method for encapsulating and fabricating the same
US8421167B2 (en) 2003-06-04 2013-04-16 Robert Bosch Gmbh Microelectromechanical device including an encapsulation layer of which a portion is removed to expose a substantially planar surface having a portion that is disposed outside and above a chamber and including a field region on which integrated circuits are formed, and methods for fabricating same
US7532385B2 (en) 2003-08-18 2009-05-12 Qualcomm Mems Technologies, Inc. Optical interference display panel and manufacturing method thereof
JP2005105416A (en) * 2003-09-30 2005-04-21 Agere Systems Inc Selective isotropic etching process of titanium-based materials
KR101214818B1 (en) * 2003-09-30 2012-12-24 에이저 시스템즈 엘엘시 Selective isotropic etch for titanium-based materials
US7518775B2 (en) 2004-09-27 2009-04-14 Idc, Llc Method and system for packaging a MEMS device
US7573547B2 (en) 2004-09-27 2009-08-11 Idc, Llc System and method for protecting micro-structure of display array using spacers in gap within display device
US8742872B2 (en) 2010-03-18 2014-06-03 Panasonic Corporation MEMS element, and manufacturing method of MEMS element

Also Published As

Publication number Publication date
US20040053434A1 (en) 2004-03-18
TW587060B (en) 2004-05-11
US6930364B2 (en) 2005-08-16
US7183637B2 (en) 2007-02-27
US20030138986A1 (en) 2003-07-24
US7049164B2 (en) 2006-05-23
EP1428255A4 (en) 2005-09-21
US20050221528A1 (en) 2005-10-06
JP2005502481A (en) 2005-01-27
EP1428255A1 (en) 2004-06-16
US6991953B1 (en) 2006-01-31

Similar Documents

Publication Publication Date Title
US6930364B2 (en) Microelectronic mechanical system and methods
EP1716072B1 (en) Integrated getter area for wafer level encapsulated microelectromechanical systems
US7767484B2 (en) Method for sealing and backside releasing of microelectromechanical systems
JP5889091B2 (en) Electromechanical system with controlled atmosphere and method of manufacturing the system
JP5748701B2 (en) Anchor for micro electro mechanical system having SOI substrate and method for manufacturing the same
US20100029031A1 (en) Method of fabricating a mems/nems electromechanical component
US20090142872A1 (en) Fabrication of capacitive micromachined ultrasonic transducers by local oxidation
WO2008067097A2 (en) Microelectromechanical devices and fabrication methods
US8592228B2 (en) Sealing structure and method of manufacturing the same
US6022754A (en) Electronic device and method for forming a membrane for an electronic device
US6777258B1 (en) Conductive etch stop for etching a sacrificial layer
KR20050119154A (en) Process for fabricating micromachine
WO2010052682A2 (en) Mems with poly-silicon cap layer
KR100578259B1 (en) Electronic device and film formation method for electronic device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002798102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003527792

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002798102

Country of ref document: EP