WO2003011794A1 - Verfahren zur herstellung einer gasdichten verbindung zwischen einem metallischen und einem keramischen substrat - Google Patents

Verfahren zur herstellung einer gasdichten verbindung zwischen einem metallischen und einem keramischen substrat Download PDF

Info

Publication number
WO2003011794A1
WO2003011794A1 PCT/DE2002/002226 DE0202226W WO03011794A1 WO 2003011794 A1 WO2003011794 A1 WO 2003011794A1 DE 0202226 W DE0202226 W DE 0202226W WO 03011794 A1 WO03011794 A1 WO 03011794A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
laser
metallic
gas
components
Prior art date
Application number
PCT/DE2002/002226
Other languages
English (en)
French (fr)
Inventor
Norbert Menzler
Frank Tietz
Hans Peter Buchkremer
Detlev STÖVER
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to EP02748594A priority Critical patent/EP1409433A1/de
Publication of WO2003011794A1 publication Critical patent/WO2003011794A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing a gas-tight connection between a metallic and a ceramic substrate, in particular for gas-tight connections in connection with corresponding components of a high-temperature fuel cell (SOFC) or a molten carbonate fuel cell (MCFC).
  • SOFC high-temperature fuel cell
  • MCFC molten carbonate fuel cell
  • a plurality of individual fuel cells are usually connected to one another by means of connecting elements, so-called bipolar plates or else interconnectors, electrically and mechanically with one another to form a fuel cell stack.
  • Various types of fuel cells are known. These include the alkaline fuel cells (ABZ), the polymer membrane fuel cells (PEM-BZ), the direct methanol fuel cells (D BZ), the oxide ceramic fuel cells (OKBZ) and the molten carbonate fuel cells (KSBZ).
  • the oxide-ceramic fuel cells are among the high-temperature fuel cells (SOFC), since their operating temperature is up to 1000 ° C, while the polymer membrane fuel cells count with a working temperature of 70 to 90 ° C to the low-temperature fuel cells.
  • glass solder is introduced between the components to be joined, and the components heated to temperatures up to about 900 ° C. At these temperatures, the glass solder melts. During targeted cooling, the glass solder crystallizes to a glass ceramic and thus forms a regular gas-tight connection between the components.
  • the object of the invention is a comparison with the state of
  • the inventive method for producing a gas-tight and high-temperature resistant connection between a metallic and a ceramic component for a high-temperature fuel cell is characterized in that a gap located between the ceramic and the metallic component is welded by means of a laser.
  • a gas-tight and temperature-resistant joint connection is produced in one step.
  • Another advantage of this method is that not the entirety of the components must be subjected to a heating process. Only the area in the immediate vicinity of the joint seam is thermally stressed.
  • the laser in particular a focused laser, advantageously heats the components only locally and at short notice in the joining region.
  • a particularly suitable laser is a C0 2 - or an excimer laser. This method is particularly advantageous if the thermal expansion coefficients of the components to be joined differ by less than 1 x 10 -6 l / K.
  • this additional material has a coefficient of thermal expansion between those of the components to be joined, so as to provide a gradual transition in thermal expansion between the components.
  • Materials suitable for this purpose whose coefficient of thermal expansion can be adapted within a certain range by a person skilled in the art, are, for example, glass materials, in particular silicate, borate, phosphatic or else mixed-bonded.
  • suitable as additional joining materials on or multi-phase ceramics which may also contain metallic or ceramic fibers or whiskers.
  • metals or metal / ceramic composites should be mentioned as additional joining materials.
  • the selection of suitable additional joining materials is not restricted to low-melting materials, as hitherto. As a result of the local heating, higher-melting materials can also be used in this process, without the components to be connected being thermally stressed too much.
  • the laser welding can be applied easily even with complicated geometries of the joining seams to be formed.
  • the seam is regularly gas-tight and extremely stable.
  • Variant 1 Laser welding without joining compound
  • Variant 2 Laser welding with jointing compound
  • the metallic interconnector (IK) and the substrate are welded together in such a way that the gap between the IK and the substrate is closed with the same kind of material. This is done by introducing energy with the help of a focused laser. After all-side shutdown of the laser, the gas channels between the anode and cathode side are gas-tight separated from each other. Advantage of this method is that no additional species-specific or foreign material must be used for gas-tight joining.
  • the variant is independent of shape, ie it can be used for planar rectangular or round, for three-dimensional ("egg carton") and on the other for tubular and quasi-tubular systems on the joints a permanent, non-detachable connection is formed within the fuel cell stack. The prerequisite for such joint seams is that the thermal expansion coefficients ⁇ of the materials have no differences greater than 1 ⁇ 10 -5 s / K.
  • some materials can be used, which are adapted in the coefficient of expansion to the surrounding material (cell and metal frame, ⁇ ⁇ 12 x 10 "6 l / K), including materials based on glass materials, silicate, borate, phosphatic or mixed with or without ceramic or metallic fillers, as well as ceramics, single- or multi-phase, filled with metallic or ceramic fibers or whiskers or unfilled, as well as metals or metal / ceramic composites (for cell sealing).
  • the materials are applied either as pasty materials, as a powder or semi-finished products on the sites to be joined and welded by laser firmly to the cell and the metal frame.
  • a separate heating phase such.
  • glass solders eliminating and thereby makes the manufacturing process easier and cheaper.
  • Suitable materials to be used are in particular: ceramics, in particular from natural raw materials such as quartz, feldspar, wollastonite, nepheline syenite and kaolin. Furthermore, amorphous solidifying ceramics are suitable after a heat treatment. These can be filled to improve the expansion coefficient with crystalline components such as MgO or Zr0 2 or metals or it can come during the temperature treatment for spontaneous targeted crystallization. Glasses, in particular based on joining glasses for alumina, kovar, platinum or titanium, for example glasses filled with MgO or ZrO 2 .
  • Metals in particular as semi-finished products or powders of the metal frame of the same steel material, such as Fe-Cr steels with chromium contents between 16 and 26% Cr and the material numbers 1.4016, 1.4113, 1.4509, 1.4502, 1.4510, 1.4511, 1.4513, 1.4520 , 1.4521, 1.4742, 1.4745, 1.4748, 1.4749 and 1.4763 or else materials according to DE 196 50 704; these can also serve as a filler for the above-mentioned ceramics or glasses.
  • Fe-Cr steels with chromium contents between 16 and 26% Cr and the material numbers 1.4016, 1.4113, 1.4509, 1.4502, 1.4510, 1.4511, 1.4513, 1.4520 , 1.4521, 1.4742, 1.4745, 1.4748, 1.4749 and 1.4763 or else materials according to DE 196 50 704; these can also serve as a filler for the above-mentioned ceramics or glasses.
  • float glass (CaNaSi glass):

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Herstellung einer gasdichten und hochtemperaturbeständigen Verbindung zwischen einem metallischen und einem keramischen Bauteil für eine Hochtemperatur-Brennstoffzelle. Das Verfahren ist dadurch gekennzeichnet, dass ein Spalt zwischen dem keramischen und dem metallischen Substrat mit Hilfe eines Lasers verschweisst wird. Vorzugsweise werden fokussierte Laser eingesetzt. Optional werden zwischen den zu verbindenden Bauteilen zusätzliche Materialen, wie Glaslote oder Metalle, eingebracht, die insbesondere einen an die zu verbindenden Bauteile angepassten thermischen Ausdehnungskoeffizienten aufweisen.

Description

B e s c h r e i b u n g Verfahren zur Herstellung einer gasdichten Verbindung zwischen einem metallischen und einem keramischen Substrat
Die Erfindung betrifft ein Verfahren zur Herstellung einer gasdichten Verbindung zwischen einem metallischen und einem keramischen Substrat, insbesondere für gasdichte Verbindungen im Zusammenhang mit entsprechenden Bauteilen einer Hoch- temperatur-Brennstoffzelle (SOFC) oder einer Carbonat- schmelze Brennstoffzelle (MCFC) .
Stand der Technik
Zur Erzielung großer elektrischer Leistungen werden in der Regel mehrere einzelne Brennstoffzellen durch verbindende Elemente, sogenannte bipolare Platten oder auch Interkon- nektoren genannt, elektrisch und mechanisch miteinander zu einem Brennstoffzellenstapel verbunden. Verschiedene Brennstoffzellentypen sind bekannt. Dazu ge- hören die alkalischen Brennstoffzellen (ABZ) , die Polymermembran-Brennstoffzellen (PEM-BZ) , die Direkt-Methanol- Brennstoffzellen (D BZ) , die oxidkeramischen Brennstoffzellen (OKBZ) oder auch die Karbonatschmelze-Brennstoffzellen (KSBZ) . Die oxidkeramischen Brennstoffzellen gehören zu den Hochtemperatur-Brennstoffzellen (SOFC) , da ihre Betriebstemperatur bis zu 1000°C beträgt, während die Polymermembran-Brennstoffzellen mit einer Arbeitstemperatur von 70 bis 90 °C zu den Niedertemperatur-Brennstoffzellen zählen.
Bei der Stapelung der einzelnen Brennstoffzellen ist insbesondere darauf zu achten, dass die beiden Elektrodenräume anöden- und kathodenseitig gasdicht voneinander getrennt sind. Die Abdichtung muss dabei sowohl an den Zellen selbst, als auch an den entsprechenden Gaseinlass und -auslassele- menten erfolgen. Bei der Herstellung eines Hochtemperatur-Brennstoffzellen- stapels werden bislang Fügetechniken eingesetzt, die es erlauben, metallische und keramische Bauteile mit Hilfe eines Glaslots zu verbinden.
Dazu wird Glaslot zwischen die zu verbindenden Bauteile eingebracht, und die Bauteile auf Temperaturen bis ca. 900 °C erhitzt. Bei diesen Temperaturen schmilzt das Glaslot auf. Beim gezielten Abkühlen kristallisiert das Glaslot zu einer Glaskeramik aus und bildet so regelmäßig eine gasdichte Verbindung zwischen den Bauteilen.
Nachteilig können für die Brennstoffzelle selbst nur erk- stoffe eingesetzt werden, die diese hohen Temperaturen für eine Fügung schadlos überstehen (so ist die maximal zulässige Temperatur bei der Verwendung bipolarer Platten ca. 1000°C) . Zusätzlich ist eine Anpassung des Glaslots, als Paste oder auch als Formteil, an die Geometrie der zu ver- bindenden Bauteile erforderlich.
Aufgabe und Lösung
Aufgabe der Erfindung ist es, ein gegenüber dem Stand der
Technik verbessertes Verfahren zur Herstellung einer gas- dichten Verbindung von Metallen und/oder Keramiken für den Hochtemperatureinsatz zu schaffen. Weiterhin ist es die Aufgabe der Erfindung, eine nach diesem Verfahren erzeugte Hochtemperatur-Brennstoffzelle mit gasdichten Verbindungen zwischen Keramik- und/oder Metallteilen zu schaffen.
Die Aufgabe wird gelöst durch ein Verfahren gemäß Hauptanspruch, sowie durch eine Hochtemperatur-Brennstoffzelle gemäß Nebenanspruch. Weitere vorteilhafte Ausgestaltungen des Verfahrens und der Brennstoffzelle finden sich in den jeweils darauf rückbezogenen Unteransprüchen. Gegenstand der Erfindung
Das erfindungsgemäße Verfahren zur Herstellung einer gasdichten und hochtemperaturbeständigen Verbindung zwischen einem metallischen und einem keramischen Bauteil für eine Hochtemperatur-Brennstoffzelle ist dadurch gekennzeichnet, daß ein zwischen dem keramischen und dem metallischen Bauteil befindlicher Spalt mit Hilfe eines Lasers verschweißt wird. Dadurch wird in einem Schritt eine gasdichte und temperaturbeständige Fügeverbindung hergestellt. Vorteilhaft ist kein weiteres Fügematerial, wie z. B. Glaslot, für die Verbindung notwendig. Weiterhin von Vorteil bei diesem Verfahren ist es, daß nicht die Gesamtheit der Bauteile einem Erhitzungsprozeß unterworfen werden muß. Lediglich der Bereich in der direkten Umgebung der Fügenaht wird thermisch beansprucht. Der Laser, insbesondere ein fokussierter Laser, erhitzt die Bauteile vorteilhaft nur lokal und kurzfristig in dem Fügebereich. Ein dafür besonders gut geeigneter Laser ist ein C02- oder auch ein Excimer-Laser. Dieses Verfahren ist besonders dann von Vorteil, wenn die thermischen Ausdehnungskoeffizienten der zu verbindenden Bauteile um weniger als 1 x 10"6 l/K differieren.
Liegen die thermischen Ausdehnungskoeffizienten weiter auseinander, ist bei dem Verfahren vorteilhaft zusätzliches Fügematerial zwischen den zu verbindenden Bauteilen vorzusehen. Dieses zusätzliche Material weist insbesondere einen thermischen Ausdehnungskoeffizienten auf, der zwischen denen der zu verbindenden Bauteile liegt, um so einen graduellen Übergang bezüglich der thermischen Ausdehnung zwischen den Bauteilen zu schaffen. Dafür geeignete Materialien, deren thermischer Ausdehnungskoeffizient durch einen Fachmann in einem gewissen Rahmen angepaßt werden kann, sind beispielsweise Glasmaterialien, insbesondere silikatische, boratische, phosphatische oder auch gemischtgebundene. Weiterhin eignen sich als zusätzliche Fügematerialien ein- oder mehrphasige Keramiken, die auch metallische oder keramische Fasern oder Whisker enthalten können. Auch Metalle oder Metall-/Keramikverbunde sind als zusätzliche Fügematerialien zu nennen. Die Auswahl an geeigneten zusätzlichen Fügematerialien ist dabei nicht wie bisher auf niedrigschmelzende Materialien beschränkt. Durch die lokale Erhitzung können bei diesem Verfahren auch höherschmelzende Materialien zum Einsatz kommen, ohne daß dadurch die zu verbindenden Bauteile ther- misch zu sehr beansprucht werden.
Das Laserverschweißen kann auch bei komplizierten Geometrien der zu bildenden Fügenähte problemlos angewandt werden. Die Fügenaht ist regelmäßig gasdicht und äußerst stabil .
Spezieller Beschreibungsteil
Bei der Herstellung einer Brennstoffzelle werden mehrere
Einzelzellen zu einem Brennstoffzellenstapel (stack) ver- eint. Bei der Stapelung der Zellen ist darauf zu achten, daß die beiden Brennräume anöden- und kathodenseitig gasdicht voneinander getrennt sind. Die Abdichtung muß sowohl an den Zellen als auch an den Gaseinlass- und -auslasselementen erfolgen (siehe Figur 1) . Wichtige Voraussetzung für die Abdichtung ist, daß der elektrische Strom nur über die Zellen geleitet wird und nicht auch über die bipolaren Platten, da sonst ein Kurzschluß erzeugt wird. Dies bedeutet für die hier vorgestellten Abdichtungen a) daß die Zellen derart ausgestaltet sein müssen, daß sich nach dem Laserschweißen kein direkter Kontakt zwischen
Anode und Kathode ausbildet, und b) daß die Fügung an den Gaseinlass- und -auslasselementen immer isolierend ausgestaltet wird. Für diese gasdichte Trennung werden zwei alternative Varianten des erfindungsgemäßen Verfahrens vorgestellt .
Variante 1: Laser-Schweißen ohne Fügemasse Variante 2 : Laser-Schweißen mit Fügemasse
Variante 1 (Figur 1)
Bei Variante 1 werden der metallische Interkonnektor (IK) und das Substrat derart miteinander verschweißt, daß die Lücke zwischen IK und Substrat mit dem IK artgleichen Material verschlossen wird. Dies geschieht durch Einbringen von Energie mit Hilfe eines fokussierten Lasers. Nach allseitigem Abfahren des Lasers sind die Gaskanäle zwischen Anoden- und Kathodenseite gasdicht voneinander getrennt. Vorteil dieses Verfahrens ist es, daß kein zusätzliches arteigenes oder artfremdes Material zur gasdichten Fügung verwendet werden muß. Die Variante ist formunabhängig, d. h. sie kann einerseits für planare rechteckige oder runde, für dreidimensionale („Eierkartonform") und andererseits für tubulare und quasi-tubulare Systeme angewandt werden. An den Fügenähten wird eine permanente, nicht wieder lösbare Verbindung innerhalb des Brennstoffzellenstapels gebildet. Voraussetzung für derartige Fügenähte ist daher, daß die thermischen Ausdehnungskoeffizienten α der Werkstoffe keine Differenzen von größer als 1 x 10"s 1/K aufweisen.
Variante 2 (Figur 2)
Im Gegensatz zu Variante 1 muß für diese Variante zusätzliches Material zur Schweißung zur Verfügung stehen. Vorteile dieser Variante sind eine von der Form der Brennstoffzelle unabhängige Verschweißbarkeit , die Verwendungsmöglichkeit von unterschiedlichen Werkstoffen innerhalb eines Brennstoffzellenstapels, die dadurch einen, soweit nötig z. B. graduellen Übergang der physikalischen Eigenschaften zwi- sehen Interkonnektor und Zelle bilden können, die Unabhän- gigkeit der Zelle vom umgebenden Interkonnektor und eine höhere Toleranz gegenüber Fertigungsprozessen (siehe Figur 2) .
Für diese Technologie sind beispielsweise einige Werkstoffe einsetzbar, die im Ausdehnungskoeffizienten an das Umgebungsmaterial (Zelle und Metallfassung, α ~ 12 x 10"6 l/K) angepaßt sind. Dazu gehören Werkstoffe auf der Basis von Glasmaterialien, silikatisch, boratisch, phosphatisch oder gemischtgebunden; mit oder ohne keramischen oder metalli- sehen Füllstoffen, sowie Keramiken, ein- oder mehrphasig, mit metallischen oder keramischen Fasern oder Whiskern gefüllt oder ungefüllt, sowie Metalle oder Metall-/Keramikverbunde (für die Zellenabdichtung) .
Beide Varianten sind im Verbindungssystem eines Brennstoff- zellenstapels starr, d. h. bevorzugt geeignet für eine stationäre Anwendung. Es ist jedoch auch möglich durch Verwendung eines geeigneten Dichtungsdesigns, siehe hierzu die deutsche Patentanmeldung DE 100 33 898.4-45, mobile Anwen- düngen der Brennstoffzelle vorzunehmen.
Die Werkstoffe werden entweder als pastöse Materialien, als Pulver oder als Formhalbzeug auf die zu fügenden Stellen aufgebracht und mittels Laser fest mit der Zelle und der Metallfassung verschweißt. Eine separate Aufheizphase, wie z. B. bei der Verwendung von Glasloten, entfällt und macht dadurch den Herstellungsprozeß einfacher und kostengünstiger.
Durch den Einsatz eines Lasers zum Fügen besteht keine Be- schränkung auf niedrigschmelzende Glaslote, Glaskeramiklote oder Kompositglaslote, sondern es kann auf höher schmelzende Gläser, kristallisierende Gläser, Keramiken oder Metallwerkstoffe zurückgegriffen werden, da beim Fügeprozeß nur die zu fügende (zu schweißende) Masse lokal erhitzt wird und die Umgebung vergleichsweise "kalt" bleibt. Die Fügestellen der Gasdurchführungen können derart gestaltet sein, dass die Durchführung der unteren Platte kleiner ist als die der darauf liegenden, so daß mittels des Lasers "innenverschweißt" werden kann (Variante 2) .
Geeignete zu verwendende Werkstoffe sind insbesondere : Keramiken, insbesondere aus natürlichen Rohstoffen wie Quarz, Feldspat, Wollastonit, Nephelinsyenit und Kaolin. Ferner sind geeignet nach einer Temperaturbehandlung amorph erstarrende Keramiken. Diese können zur Verbesserung des Ausdehnungskoeffizienten mit kristallinen Komponenten wie MgO oder Zr02 oder Metallen gefüllt sein oder es kann während der Temperaturbehandlung zur spontanen gezielten Aus- kristallisation kommen. Gläser, insbesondere auf der Basis von Fügegläsern für Aluminiumoxid, Kovar, Platin oder Titan, beispielsweise mit MgO oder Zr02 gefüllte Gläser.
Metalle, insbesondere als Halbzeuge oder Pulver aus der Metallfassung artgleichem Stahlwerkstoff, wie beispielsweise Fe-Cr-Stahlsorten mit Chromgehalten zwischen 16 und 26 Mas- sen-% Cr und den Werkstoffnummern 1.4016, 1.4113, 1.4509, 1.4502, 1.4510, 1.4511, 1.4513, 1.4520, 1.4521, 1.4742, 1.4745, 1.4748, 1.4749 und 1.4763 oder aber Werkstoffe entsprechend der DE 196 50 704; diese können ebenfalls als Füllmaterial für oben genannte Keramiken oder Gläser dienen.
Ausführungsbeispiele : Float-Glas (CaNaSi-Glas) :
Nach Aufbringung einer entsprechenden Menge an CaNaSi-Glas (pastös, pulvrig oder als Halbzeug) wird mittels eines fo- kussierten Lasers (z. B. C02- oder Excimer-Laser) die Umrandung abgefahren und in einem Schritt geschweißt/gefügt. Hierbei kommt es zu einer innigen, nicht wieder lösbaren Verbindung zwischen der Zelle und der Metallfassung sowie aufgrund nur lokaler Erhitzung in der Fügemasse zu keiner größeren thermischen Beeinträchtigung der Umgebung. Untersuchungen von A. Helebrandt et al . : Merthamatical mode- ling of temperature distribution during C=2 laser irradiati- on of glass, Glass Technology Vol. 34, No. 4 (1993), S. 154 - 158, an einem Float-Glas zeigten, daß bei einer C02-Laser- leistung von 142 W/cm2 die Temperatur an der Glasoberfläche ca. 1150 °C beträgt, diese aber in der Tiefe von 1 mm nur noch ca. 950 °C erreicht (nach einer Laser-Einwirkdauer von 1 sec; Rechteckverteilung; diese Werte verschieben sich zu 1150 °C respektive ca. 800 °C bei Verwendung einer Gauss- Intensitätsverteilung) .
Dies bedeutet, daß die mit hoher Temperatur (> 1000 °C) beeinflußte Zone vergleichsweise gering ist.
Metall (Inconel 600 Alloy) :
Das prinzipielle Vorgehen entspricht dem vorgenannten Beispiel. Untersuchungen von Kim et al . : Surface modification of Inconel 600 alloy by laser surface melting and alloying to improve i ts corrosion resistance; Proc. of lst Int . Conf. On Advanced Materials Processing 2000, S. 237-243, an einem Inconel 600, bei welchem eine Oberflächenmodifikation durchgeführt werden sollte, zeigen, daß mittels eines C02-Lasers bei Leistungen zwischen 500 und 1300 W pro 1 mm 0-Fläche eine Laserbearbeitung möglich ist. Die erzielten Schichtdicken variieren zwischen 150 und 200 μm oder zwischen 300 und 400 μm je nach Parametern. Diese Schicht wurde auf einer chromreicheren Untergrundschicht erzeugt, welche eine Dicke von 50-80 μm aufwies.
Legende zu den Figuren 1 und 2
1 Interkonnektor (erstes Bauteil)
2 Substrat (zweites Bauteil) Kathode Gaskanal Spalt Schweißnaht zusätzliches Fügematerial

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung einer gasdichten und hochtemperaturbeständigen Verbindung zwischen einem metallischen und einem keramischen Bauteil für eine Hochtemperatur- Brennstoffzelle, dadurch gekennzeichnet, daß ein zwischen dem keramischen und dem metallischen Bauteil befindlicher Spalt mit Hilfe eines Lasers verschweißt wird.
2. Verfahren nach vorhergehendem Anspruch, bei dem ein fokussierter Laser eingesetzt wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Laser den Spalt zwischen keramischem und metal- lischem Bauteil abfährt und so die Bauteile in einem Schritt verschweißt und fügt.
4. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, bei dem ein C02-Laser als fokussierter Laser einge- setzt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 3, bei dem ein Excimer Laser als fokussierter Laser eingesetzt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 5, bei dem ein zusätzliches Material zwischen dem keramischen und dem metallischen Bauteil eingebracht wird.
7. Verfahren nach vorhergehendem Anspruch 6, bei dem als zusätzliches Material Glas, Keramik, Metall bzw. ein Me- tallverbund eingesetzt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche 6 bis
7, bei dem ein zusätzliches Material eingesetzt wird, dessen thermischer Ausdehnungskoeffizient zwischen denjenigen der zu verbindenden Bauteile liegt.
9. Verfahren nach einem der vorhergehenden Ansprüche 6 bis
8, bei dem keramische und metallische Bauteile eingesetzt werden, deren thermische Ausdehnungskoeffizienten um mehr als 1*10"6 1/K differieren.
PCT/DE2002/002226 2001-07-24 2002-06-19 Verfahren zur herstellung einer gasdichten verbindung zwischen einem metallischen und einem keramischen substrat WO2003011794A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02748594A EP1409433A1 (de) 2001-07-24 2002-06-19 Verfahren zur herstellung einer gasdichten verbindung zwischen einem metallischen und einem keramischen substrat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10135235.2 2001-07-24
DE10135235A DE10135235C2 (de) 2001-07-24 2001-07-24 Verfahren zur Herstellung einer gasdichten Verbindung zwischen einem metallischen und einem keramischen Substrat

Publications (1)

Publication Number Publication Date
WO2003011794A1 true WO2003011794A1 (de) 2003-02-13

Family

ID=7692394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002226 WO2003011794A1 (de) 2001-07-24 2002-06-19 Verfahren zur herstellung einer gasdichten verbindung zwischen einem metallischen und einem keramischen substrat

Country Status (3)

Country Link
EP (1) EP1409433A1 (de)
DE (1) DE10135235C2 (de)
WO (1) WO2003011794A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001380A2 (en) * 2004-09-22 2007-01-04 Battelle Memorial Institute High strength insulating joints for solid oxide fuel cells and other high temperature applications and method of making
WO2008145221A1 (de) * 2007-05-31 2008-12-04 Bayerische Motoren Werke Aktiengesellschaft Einzel-brennstoffzelle für einen brennstoffzellen-stapel
US7534465B2 (en) * 2002-05-09 2009-05-19 Honda Motor Co., Ltd Fuel cell assembly and method for bonding a separator and an electrolyte layer of a fuel cell assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325862A1 (de) * 2003-06-06 2004-12-23 Bayerische Motoren Werke Ag Festoxid-Brennstoffzelle mit einem metallischen Trägersubstrat
DE102004063173A1 (de) 2004-12-29 2006-07-13 Robert Bosch Gmbh Gasmessfühler
CN116693313A (zh) * 2023-05-24 2023-09-05 北京科技大学 一种c/c复合材料的激光焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242122A1 (de) * 1992-12-14 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer vakuumdichten Abdichtung zwischen einem keramischen und einem metallischen Partner, insbesondere zur Anwendung bei der Herstellung eines Entladungsgefäßes für eine Lampe, sowie damit hergestellte Entladungsgefäße und Lampen
US5407119A (en) * 1992-12-10 1995-04-18 American Research Corporation Of Virginia Laser brazing for ceramic-to-metal joining
US5503703A (en) * 1994-01-10 1996-04-02 Dahotre; Narendra B. Laser bonding process
DE19848179A1 (de) * 1998-10-20 2000-05-18 Horst Exner Verfahren zum Verschweißen von Körpern und Verwendung von Laserstrahlen zum Verschweißen von Körpern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496889B1 (de) * 1990-07-24 1997-03-19 Kabushiki Kaisha Toshiba Separator und sein herstellungsverfahren
DE4119910C1 (en) * 1991-06-17 1992-12-17 Abb Patent Gmbh, 6800 Mannheim, De Mfr. or treatment of material layers of high temp. fuel cell - involves irradiation with laser, IR or electron beam or microwaves in selected areas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407119A (en) * 1992-12-10 1995-04-18 American Research Corporation Of Virginia Laser brazing for ceramic-to-metal joining
DE4242122A1 (de) * 1992-12-14 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer vakuumdichten Abdichtung zwischen einem keramischen und einem metallischen Partner, insbesondere zur Anwendung bei der Herstellung eines Entladungsgefäßes für eine Lampe, sowie damit hergestellte Entladungsgefäße und Lampen
US5503703A (en) * 1994-01-10 1996-04-02 Dahotre; Narendra B. Laser bonding process
DE19848179A1 (de) * 1998-10-20 2000-05-18 Horst Exner Verfahren zum Verschweißen von Körpern und Verwendung von Laserstrahlen zum Verschweißen von Körpern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534465B2 (en) * 2002-05-09 2009-05-19 Honda Motor Co., Ltd Fuel cell assembly and method for bonding a separator and an electrolyte layer of a fuel cell assembly
WO2007001380A2 (en) * 2004-09-22 2007-01-04 Battelle Memorial Institute High strength insulating joints for solid oxide fuel cells and other high temperature applications and method of making
WO2007001380A3 (en) * 2004-09-22 2007-07-26 Battelle Memorial Institute High strength insulating joints for solid oxide fuel cells and other high temperature applications and method of making
WO2008145221A1 (de) * 2007-05-31 2008-12-04 Bayerische Motoren Werke Aktiengesellschaft Einzel-brennstoffzelle für einen brennstoffzellen-stapel

Also Published As

Publication number Publication date
EP1409433A1 (de) 2004-04-21
DE10135235A1 (de) 2003-02-13
DE10135235C2 (de) 2003-05-28

Similar Documents

Publication Publication Date Title
EP1662596B1 (de) Dichtungsanordnung für einen Hochtemperatur Brennstoffzellenstapel und Verfahren zum Herstellen dieses Brennstoffzellenstapels
DE102015100697B4 (de) Brennstoffzellenkassette und Verfahren zur Herstellung derselben und Brennstoffzellenstapel
EP1923944B1 (de) Silberbasislot mit Titanzusatz beinhaltende Dichtungsanordnung für eine Hochtemperaturbrennstoffzelle und Verfahren zur Herstellung eines Brennstoffzellenstapels
DE19710345C1 (de) Werkstoff für elektrische Kontaktschichten zwischen einer Elektrode einer Hochtemperatur-Brennstoffzelle und einem Verbindungselement
EP0425939B1 (de) Festelektrolyt-Hochtemperatur-Brennstoffzellenmodul
WO2011067025A1 (de) Verfahren zur herstellung einer elektrisch leitenden verbindung
DE102006058335A1 (de) Brennstoffzellenstapel und Dichtung für einen Brennstoffzellenstapel sowie deren Herstellungsverfahren
EP1989741B1 (de) Verfahren zum herstellen von peltier-modulen
DE19841919C2 (de) Verfahren zur Herstellung eines Brennstoffzellenmoduls
DE102005020332B4 (de) Verfahren zum Herstellen einer Versorgungsplatte für elektrochemische Systeme, Versorgungsplatte und deren Verwendung
DE60012799T2 (de) Verbinden von elektrochemischen zellenbauteilen
DE102005000727A1 (de) Elektrisches Kontaktelement und Verfahren zu dessen Herstellung sowie Vakuum-Trennschalter, Vakuum-Leistungsschutzschalter und Lastabtrennschalter unter Verwendung desselben
EP2149171B1 (de) Trägervorrichtung für eine elektrochemische funktionseinrichtung, brennstoffzellemodul und verfahren zur herstellung einer trägervorrichtung
WO2003011794A1 (de) Verfahren zur herstellung einer gasdichten verbindung zwischen einem metallischen und einem keramischen substrat
DE19805142A1 (de) Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel
DE102007024227A1 (de) Hochtemperatur-Brennstoffzellenmodul und Verfahren zur Herstellung eines Hochtemperatur-Brennstoffzellenmoduls
DE19941282A1 (de) Schicht zwischen Kathode und Interkonnektor einer Brennstoffzelle sowie Herstellungsverfahren einer solchen Schicht
AT400692B (de) Hartlot
DE102006040030B4 (de) Stapeleinheit für einen Stapel elektrochemischer Zellen, Stapelanordnung und Verfahren zum Herstellen einer Stapeleinheit
DE10317388B4 (de) Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DD296585A5 (de) Artikel, einschliesslich keramikteil und metallteil, die miteinander verbunden sind
DE102009008717B4 (de) Verfahren zur Herstellung einer elektrisch isolierenden Dichtungsanordnung und Dichtungsanordnung zum Abdichten zwischen zwei Bauteilen eines Brennstoffzellenstacks
DE10350478B4 (de) Brennstoffzelleneinheit
DE102009008988B4 (de) Verfahren zum Verbinden eines Gehäuseteils einer Brennstoffzelleneinheit mit einer elektrochemischen Zelle und Baugruppe mit Gehäuseteil und elektrochemischer Zelle
EP2850687B1 (de) Elektrischer energiespeicher

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002748594

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002748594

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP