WO2003008096A1 - Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos - Google Patents

Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos Download PDF

Info

Publication number
WO2003008096A1
WO2003008096A1 PCT/ES2002/000357 ES0200357W WO03008096A1 WO 2003008096 A1 WO2003008096 A1 WO 2003008096A1 ES 0200357 W ES0200357 W ES 0200357W WO 03008096 A1 WO03008096 A1 WO 03008096A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst according
water
oxidation
solid
Prior art date
Application number
PCT/ES2002/000357
Other languages
English (en)
French (fr)
Inventor
José Manuel LOPEZ NIETO
Pablo Botella Asuncion
Benjamin Solsona Espriu
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to EP02748887A priority Critical patent/EP1473081A1/en
Priority to JP2003513694A priority patent/JP2004534650A/ja
Publication of WO2003008096A1 publication Critical patent/WO2003008096A1/es
Priority to US10/759,384 priority patent/US7355062B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8894Technetium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention encompasses in the technical field of catalysts in petrochemicals and in the selective oxidation and amoxidation of alkanes and alkenes. It also belongs to the sector of catalysts for processes of obtaining acrylic acid, acrylonitrile and derivatives thereof.
  • ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid or methacrylic acid
  • these acids are monomers of industrial interest for obtaining synthetic and plastic resins.
  • these acids are obtained by direct oxidation of an olefin (propylene or isobutylene) with oxygen (or air) and high temperatures in the presence of a catalyst.
  • olefin propylene or isobutylene
  • oxygen or air
  • ⁇ , ⁇ -unsaturated aldehydes acrolein or methacrolein
  • Catalysts based on metal oxides with molybdenum and / or vanadium for propane oxidation are described in US Patent US-A-5198580, although the acrylic acid yields achieved with this type of catalysts are low.
  • the metal oxides of Mo-N-Te-Nb are found to be more effective for the selective oxidation of propane to acrylic acid, such as from, for example, T. Ushikubo et al, US-A-5380933; EP-608838-B1, M. Lin, M.W. Linsen, EP-A-0962253; S. Komada, H. Hinago, M. Kaneta, M. Watanabe, EP-A- 0896809.
  • patent EP-A-0962253 refers to a method in the preparation of MoNTe ⁇ b catalysts different from that proposed in US-A-5380933 and related patent applications EP-A-0608838, WO-A -98/22421 and WO-A-99/3825.
  • metal oxides of Mo-V-Sb-A appear to be effective in the oxidation of propane to acrylic acid (M. Ta ayashi, X. Tu, T. Hirose, M. Ishii, FR-A-2754817; US-A- 5994580).
  • A can be ⁇ b, Ta, Sn, W, Ti, ⁇ i, Fe, Cr or Co
  • an acrylic acid selectivity of 72.6% has been obtained for a propane conversion of 35%.
  • the present invention relates to a catalyst for the selective oxidation and amoxidation of alkanes and / or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and derivatives thereof, whose catalyst, apart from Mo, Te, V and at least one other component A selected from Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, a rare earth, alkaline or alkaline earth, also comprises Cu, so that at less Mo, Te, V and Cu are present in the form of at least one oxide, preferably a calcined mixed oxide, the catalyst, in calcined form, having a diffractogram of
  • SUBSTITUTE SHEET (RULE 26) X-rays with five intense diffraction lines, typically the most intense, corresponding to 2 ⁇ diffraction angles of 22.1 + 0.4; 27.1 + 0.4; 28.1 + 0.4; 36.0 + 0.4 and 45.1 ⁇ 0.4.
  • the catalyst has the empirical formula: MoTe h ViCujA k O x in which h, i, j, k are values between 0.001 and 4.0 and x depends on the oxidation or valence state of the Mo elements, Te, N, Cu and A, that is, the amount x of oxygen in the catalyst may depend on the composition and the method of activation.
  • h, i, j, k are values between 0.001 and 4.0 and x depends on the oxidation or valence state of the Mo elements, Te, N, Cu and A, that is, the amount x of oxygen in the catalyst may depend on the composition and the method of activation.
  • preferably hei are between 0.01 and 3, preferably between 0.02 and 2
  • the i / h ratio is between 0.3 and 10
  • j is between 0.001 and 2
  • k is between 0.001 and 2.
  • A is ⁇ b or Ta, preferably hei are between 0.02 and 2, the ratio i / h is between 0.3 and lo, j is between 0.001 and 1.5 and k is between 0.001 and 2.
  • the catalyst can be a mixed oxide supported on a solid, such as silica, alumina, titanium oxide and mixtures thereof, the silica being present in a proportion of 20 to 70% by weight of the total weight of catalyst.
  • the catalyst can also be in the form of a mixed oxide supported on a silicon carbide.
  • the catalyst according to the invention has an X-ray diffractogram whose five most intense diffraction lines, as well as the corresponding intensities relative to the peak of greater intensity, are those shown in Table 1.
  • the catalyst of the present invention can be used especially in * selective oxidation processes of propane to acrolein and / or acrylic acid, in the gas phase, and in the presence of water vapor,
  • the method of incorporating copper into the catalyst and the optimal copper content depends on the method of preparation of the catalyst and / or the composition of the other elements.
  • the catalyst of the present invention can be prepared by conventional methods from aqueous solutions of the different elements with the desired atomic ratios, and also using hydrothermal methods (containing two or more elements in the synthesis, especially containing Mo and Te).
  • the temperature and synthesis time can be decisive.
  • the synthesis temperature is preferably performed between 100 and 250 ° C and, more specifically, between 150 and 180 ° C.
  • the synthesis time was preferably between 6 and 500 hours, and more specifically between 24 and 200
  • the main elements can be incorporated as salts, oxides, hydroxides, chlorides, or alkoxides, pure or as mixtures of two or more elements: Mo: molybdic acid, ammonium molybdate, ammonium heptamolybdate, molybdenum oxide;
  • Te telluric acid, tellurium oxide, metallic tellurium
  • N ammonium vanadate, vanadium oxide, vanadyl sulfate, vanadyl oxalate; vanadyl chloride;
  • Cu copper nitrate, copper oxide, copper oxalate, copper sulfate;
  • the elements ⁇ b, Ta, Sn, Se, W, Ti, Fe, Co, ⁇ i, Cr, Ga, Sb, Bi, rare earth, alkaline or alkaline earth can also be incorporated as salts, oxides, hydroxides, chlorides, or alkoxides , oxalates, pure or as mixtures of two or more elements, although preferably they have been incorporated as salts.
  • the solid is dried and calcined. Drying can be carried out by conventional methods in an oven, evaporation with stirring, evaporation in a rotary evaporator, or vacuum drying.
  • the dried solid is calcined in the presence of an inert gas, such as nitrogen, helium, argon or mixtures.
  • the calcination can be carried out by passing a flow of inert gas (with space velocities between 1 and 400 h "1 ) or static.
  • the temperature is preferably between 250 and 1000 ° C and more preferably between 350 and 800 ° C.
  • the calcination time is not decisive, but between 0.5 hours and 20 hours is preferred.
  • the heating rate is not decisive, but is preferred between 0, 1 ° C / minute and 10 ° C / minute, although the catalyst is it can be used as described herein, it could also be used by supporting it on a solid such as: silica, alumina, titanium oxide or mixtures thereof, as well as on silicon carbide, in these cases the fixing of the different elements
  • the catalyst on the support can be carried out by conventional impregnation methods (pore volume, excess solution) or simply by precipitation on the support of a solution containing the active elements.
  • This catalyst is especially active for the selective oxidation and amoxidation of alkanes and / or alkenes.
  • propane and / or can be used are especially active for the selective oxidation and amoxidation of alkanes and / or alkenes.
  • propane and / or can be used are especially active for the selective oxidation and amoxidation of alkanes and / or alkenes.
  • SUBSTITUTE SHEET (RULE 26) isobutane As propylene and / or isobutylene olefins.
  • oxidizing agent pure oxygen, air, inert oxygen-gas mixtures (with different proportions of both) or oxygen enriched air can be used.
  • water may or may not be incorporated into the feed although, generally, an increase in selectivity to acrylic acid is observed when the reaction is carried out in the presence of water vapor.
  • the water content in the reaction mixture may be from 0 to 80%, and more preferably between 20 and 60%.
  • the concentration of ammonia in the reaction mixture may be from 2 to 40%, but preferably between 8 and 15%.
  • Both the oxidation and amoxidation processes can be carried out in a fixed bed reactor or in a fluidized bed reactor.
  • the reaction temperature is between 250 and 550 ° C, preferably between 300 and 480 ° C, and more preferably between 350 and 440 ° C.
  • the contact time defined as the ratio between the catalyst volume and the total flow of gases fed, is between 0.001 and 100 s. Although the contact time depends on the method of preparation and composition of the catalyst employed, in general it is preferable between 0.05 and 50, and more preferably between 0.1 and 25 s.
  • EXAMPLE 1 Preparation of an oxidation catalyst from a solution containing Mo-V-Te-Nb to which a copper salt has been added
  • SUBSTITUTE SHEET (RULE 26) 10.0 g of the calcined soda are added to 10 ml of an aqueous solution with 0.305 g of copper nitrate (11). The resulting solid after evaporation of the excess water, with stirring at 80 ° C, was dried in an oven at 110 ° C for 24 h and ground to reach particle sizes below 0.25 mm. The resulting powder was calcined at 600 ° C for 1 h under nitrogen to obtain the catalyst.
  • the catalyst has an X-ray diffractogram as shown in Figure 1.
  • EXAMPLE 3 Preparation of an oxidation catalyst from a solution containing Mo-V-Te-Nb without the incorporation of a copper salt
  • EXAMPLE 4 In this example the use of the catalyst described in comparative example 3 for the selective oxidation of propane to acrylic acid is presented
  • the results are shown in Table 2. From the results obtained it is shown that the introduction of copper into the catalyst composition produces an increase in both the propane conversion and the selectivity to acrylic acid.
  • EXAMPLE 9 Preparation of an oxidation catalyst based on a mixed oxide of Mo-Te-V-Cu-O
  • EXAMPLE 10 Preparation of an oxidation catalyst based on a mixed oxide of Mo-Te-V-O that does not contain copper
  • EXAMPLE 11 Use of the oxidation catalyst described in example 9 for the selective oxidation of propane to acrylic acid
  • EXAMPLE 13 Preparation of an oxidation catalyst based on a mixed oxide of Mo-Te-V-Nb-Cu-O
  • EXAMPLE 14 Preparation of an oxidation catalyst based on a mixed oxide of Mo-Te-V-Nb-O to which copper has not been incorporated
  • EXAMPLE 16 Use of the catalyst described in comparative example 14 for the selective oxidation of propane to acrylic acid
  • EXAMPLE 18 Preparation of an oxidation catalyst similar to example 13 to which a smaller amount of copper has been added
  • the autoclave is kept at 175 ° C, in static, for 2 days.
  • the contents of the autoclave are filtered, washed with distilled water and dried at 80 ° C.
  • the solid obtained is calcined at 600 ° C for 2 h under a stream of nitrogen.
  • EXAMPLE 19 Use of the oxidation catalyst described in example 18 for the selective oxidation of propane to acrylic acid
  • EXAMPLE 20 Use of the catalyst described in example 18 for the selective oxidation of propane to acrylic acid under different reaction conditions
  • EXAMPLE 21 Preparation of an oxidation catalyst similar to those described in examples 13 and 18 but with more copper
  • the solid obtained is calcined for 2 h at 600 ° C under a stream of nitrogen.
  • EXAMPLE 25 Preparation of an oxidation catalyst similar to that of example 24 but without incorporating copper
  • SUBSTITUTE SHEET (RULE 26) static, for 2 days.
  • the contents of the autoclave are filtered, washed with distilled water and dried at 80 ° C.
  • the stubborn solid is calcined for 2 h at 600 ° C under a stream of nitrogen to obtain the catalyst.
  • EXAMPLE 26 Use of the catalyst described in example 24 for the selective oxidation of propane to acrylic acid
  • EXAMPLE 27 Use of the catalyst described in comparative example 25 for the selective oxidation of propane to acrylic acid
  • EXAMPLE 28 Preparation, under hydrothermal conditions, of an oxidation catalyst based on a mixed oxide of Mo-Te-V-Nb-Cu-O
  • EXAMPLE 30 Preparation, under hydrothermal conditions, of an oxidation catalyst similar to example 28 with a higher Mo: Cu ratio
  • Example 4 1 / 0.23 / 0.3 / 0.12 0 380 25.4 7.5 25.3 co Example 6 1 / 0.23 / 0.3 / 0.12 0.8 380 22.0 10 , 5 26.9 or
  • Example 8 1 / 0.23 / 0.3 / 0.12 2.4 380 20.3 11.0 14.9
  • Example 11 1 / 0.17 / 0.30 / 0 0.9 380 33.6 5.8 20.3 6.8 D m
  • Example 12 1 / 0.17 / 0.30 / 0 0 380 32.1 5.5 13.4 4.3 co c co
  • Example 15 1 / 0.17 / 0.30 / 0.12 0.50 380 36.8 5.3 68.6 25.2
  • Example 16 1 / 0.17 / 0.30 / 0.12 c 0 380 38.5 5.2 34.0 13.1 oo
  • Example 17 1 / 0.17 / 0.30 / 0.12 0.50 400 71.1 1 1.3 54.6 38.8
  • Example 19 1 / 0.17 / 0.30 / 0.12 0.25 380 31.3 7.9 64.0 20.0 m O
  • Example 20 1 / 0.17 / 0.30 / 0.12 0 , 25 390 70.8 1 1.6 45.9 32.5 t
  • Example 22 1 / 0.17 / 0.30 / 0.12 1.0 380 37.9 5.9 65.1 24.7
  • Example 26 1 / 0.17 / 0.7 / 0.12 0.7 380 44.9 3.4 50.8 22.8 to Example 27 1 / 0.17 / 0.7 / 0.12 0 380 49 , 4 4.2 35.2 17.4
  • Example 29 1 / 0.17 / 0.3 / 0.12 17.2 380 0 - - -
  • Example 31 1 / 0.17 / 0.3 / 0.12 3.0 380 21.4 11.4 18.0 3.9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos, que comprende al menos un óxido, preferentemente un óxido mixto calcinado, de Mo, Te, V, Cu y al menos otro componente A seleccionado entre Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, una tierra rara, alcalino o alcalinotérreo, presentado el catalizador, en forma calcinada, un difractograma de rayos X con cinco líneas de difracción intensas, típicamente las más intensas, correspondientes ángulos 20 de difracción de 22,1+0,4; 27,1+0,4; 28,1+0,4; 36,0+0,4 y 45,1+0,4. En una realización preferida, el catalizador tiene la fórmula empírica: MoTehViCujAkOx en la que h, i, j, k son valores comprendidos entre 0,001 y x depende del estado de oxidación o valencia de los elementos Mo, Te, V, Cu y A.

Description

TÍTULO
UN CATALIZADOR PARA LA OXIDACIÓN SELECTIVA Y LA AMOXTOACIÓN DE ALCANOS Y/O ALQUENOS, PARTICULARMENTE EN PROCESOS DE OBTENCIÓN DE ÁCIDO ACRÍLICO, ACRILONITRILO Y DERIVADOS DE LOS MISMOS
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se engloba en el campo técnico de los catalizadores en petroquímica y en la oxidación selectiva y amoxidación de alcanos y alquenos. También pertenece al sector de los catalizadores para procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
Los ácidos carboxílicos α,β-insaturados, tales como el ácido acrílico o el ácido metacrílico, son monómeros de interés industrial para la obtención de resinas sintéticas y plásticos. En general, estos ácidos se obtienen por oxidación directa de una olefina (propileno o isobutileno) con oxígeno (o aire) y altas temperaturas en presencia de un catalizador. También se pueden obtener a partir de los aldehidos α,β-insaturados (acroleina o metacroleina) por oxidación en fase gaseosa en presencia de un catalizador. Por razones económicas, es de interés industrial sustituir olefmas por hidrocarburos saturados.
Catalizadores basados en óxidos metálicos con molibdeno y/o vanadio para la oxidación de propano se describen en la patente estadounidense US-A-5198580, aunque los rendimientos a ácido acrílico que se consiguen con este tipo de catalizadores son bajos. Los óxidos metálicos de Mo-N-Te-Nb resultan ser más efectivos para la oxidación selectiva de propano a ácido acrílico tal como de desprende de, por ejemplo, T. Ushikubo et al, US-A-5380933; EP-608838-B1, M. Lin, M.W. Linsen, EP-A-0962253; S. Komada, H. Hinago, M. Kaneta, M. Watanabe, EP-A- 0896809.
También se ha propuesto como sistema efectivo el sistema de óxidos metálicos basados en Mo-N-Te-Nb-X donde X puede ser otro elemento químico. Así, en la patente
US-A-5380933 y en las solicitudes de patente relacionadas EP-A-0608838, WO-A- 98/22421 y WO-A-99/3825, se propone un sistema catalítico caracterizado por su
HOJA DE SUSTITUCIÓN (REGLA 26) composición Mo-N-Te-X-O, donde X es Νb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Νi, Pd, Pt, Sb, Bi, B, hi, Ce, y por su estructura cristalina definida por un difractograma de rayos X que presenta ángulos de difracción 2Θ a 22.1, 28.2, 36.2, 45.2, 50.0. En la solicitud de patente europea EP-A-0962253 se propone el sistema AMΝXO donde A= Mo, W, Fe, Νb, Ta, Zr; M= N, Ce, Cr; Ν= Te, Bi, Sb, Se; X= Νb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Νi, Pd, Pt, Sb, Bi, B, hi, Ce)
Estos catalizadores son similares a otros propuestos para la obtención de acrilonitrilo por amoxidación de propano tales como los propuestos por T. Ushi ubo, K. Oshima, A. Kayo, T. Umezawa, K. Kiyono, I. Sawaki, (EP-A-0529853). Asimismo, tanto el tipo de elementos propuestos como la estructura cristalina del sistema catalítico son similares a los indicados anteriormente para la obtención de ácido acrílico.
Sin embargo el método de preparación y la composición de estos catalizadores convencionales, parecen tener una gran influencia sobre las propiedades catalíticas de estos materiales (M.M. Lin, Appl. Catal. A 207, 1, 2001; H. Watanabe, Y. Koyasu, Appl. Catal. A 1994-195, 479, 2000). En este sentido, la patente EP-A-0962253 se refiere a un método en la preparación de catalizadores de MoNTeΝb diferente al propuesto en la patente US- A-5380933 y en las solicitudes de patente relacionadas EP-A-0608838, WO-A-98/22421 y WO-A-99/3825.
También los óxidos metálicos de Mo-V-Sb-A (donde A puede ser Νb, Ta, Sn, W, Ti, Νi, Fe, Cr ó Co) parecen ser efectivos en la oxidación de propano a ácido acrílico (M. Ta ayashi, X. Tu, T. Hirose, M. Ishii, FR-A-2754817; US-A- 5994580). En el caso de estos catalizadores se ha obtenido una selectividad a ácido acrílico del 72,6% para una conversión de propano del 35%.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos, cuyo catalizador, a parte de Mo, Te, V y al menos otro componente A seleccionado entre Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Ga, Sb, Bi, una tierra rara, alcalino o alcalinotérreo, comprende además Cu, de tal forma que al menos Mo, Te, V y Cu están presentes en forma de al menos un óxido, preferentemente un óxido mixto calcinado, presentando el catalizador, en forma calcinada, un difractograma de
HOJA DE SUSTITUCIÓN (REGLA 26) rayos X con cinco líneas de difracción intensas, típicamente las más intensas, correspondientes a ángulos 2Θ de difracción de 22,1+0,4; 27,1+0,4; 28,1+0,4; 36,0+0,4 y 45,1±0,4.
En una realización preferida, el catalizador tiene la fórmula empírica: MoTehViCujAkOx en la que h, i, j, k son valores comprendidos entre 0,001 y 4,0 y x depende del estado de oxidación o valencia de los elementos Mo, Te, N, Cu y A, es decir, la cantidad x de oxígeno del catalizador puede depender de la composición y del método de activación. En esta realización, prefentemente h e i están comprendidos entre 0,01 y 3, preferentemente entre 0,02 y 2, la relación i/h está comprendida entre 0,3 y 10, j está comprendido entre 0,001 y 2, preferentemente entre 0,001 y 0,5, y k está comprendido entre 0,001 y 2.
Por otra parte, cuando en esta realización A es Νb o Ta, preferentemente h e i están comprendidos entre 0,02 y 2, la relación i/h está comprendida entre 0,3 y lo, j está comprendido entre 0,001 y 1,5 y k está comprendido entre 0,001 y 2.
Según la invención, el catalizador puede ser un óxido mixto soportado en un sólido, como por ejemplo sílice, alúmina, óxido de titanio y mezclas de los mismos, pudiendo estar presente la sílice en una proporción de 20 a 70% en peso del peso total de catalizador. Por otra parte, el catalizador también puede estar en forma de un óxido mixto soportado en un carburo de silicio.
Típicamente, en su forma calcinada el catalizador según la invención presenta un difractograma de rayos X cuyas cinco líneas de difracción más intensas, así como las correspondientes intensidades relativas al pico de mayor intensidad, son las que se muestran en la Tabla 1.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 1
Ángulo 2θ de Espaciado medio Intensidad difraccion (Á) relativa
(± 0,4)
22,1 4,02 100
27,1 3,29 20-120
28,1 3,17 20-120
36,0 2,49 10-50
45,1 2,01 10-60
El catalizador de la presente invención puede usarse especialmente en * procesos de oxidación selectiva de propano a acroleina y/o ácido acrílico, en fase gaseosa, y en presencia de vapor de agua,
* procesos de obtención de ácido acrílico por reacción de propileno y oxígeno en fase gaseosa en presencia de agua,
* procesos de obtención de acrilonitrilo por reacción de propileno y/o propileno, y oxígeno, en fase gaseosa en presencia de amoniaco y vapor de agua, y
* procesos de obtención de ácido metacrílico por reacción de oxidación de isobutano y/o isobutileno con oxígeno en fase gaseosa y en presencia de agua.
El método de incorporación del cobre en el catalizador y el contenido óptimo de cobre depende del método de preparación del catalizador y/o de la composición de los otros elementos.
El catalizador de la presente invención puede prepararse por métodos convencionales a partir de soluciones acuosas de los distintos elementos con las relaciones atómicas deseadas, y también empleando métodos hidrotermales (conteniendo dos o más elementos en la síntesis, especialmente conteniendo Mo y Te). La temperatura y tiempo de síntesis pueden ser determinantes. Así, la temperatura de síntesis se realiza, preferiblemente, entre 100 y 250°C y, más concretamente, entre 150 y 180°C. El tiempo de síntesis fue, preferiblemente, entre 6 y 500 horas, y más concretamente entre 24 y 200
HOJA DE SUSTITUCIÓN (REGLA 26) horas.
Los principales elementos se pueden incorporar como sales, óxidos, hidróxidos, cloruros, o alcóxidos, puros o como mezclas de dos o más elementos: Mo: ácido molíbdico, molibdato amónico, heptamolibdato amónico, óxido de molibdeno;
Te: ácido telúrico, óxido teluro, teluro metálico;
N: vanadato amónico, óxido de vanadio, sulfato de vanadilo, oxalato de vanadilo; cloruro de vanadilo; Cu: nitrato de cobre, óxido de cobre, oxalato de cobre, sulfato de cobre;
Los elementos Νb, Ta, Sn, Se, W, Ti, Fe, Co, Νi, Cr, Ga, Sb, Bi, tierra rara, alcalino o alcalinotérreo, también se pueden incorporar como sales, óxidos, hidróxidos, cloruros, o alcóxidos, oxalatos, puros o como mezclas de dos o más elementos, aunque preferiblemente se han incorporado como sales. Una vez que se han mezclado los diferentes elementos (bien en disolución o por tratamiento hidrotermal), el sólido se seca y se calcina. El secado, se puede realizar por métodos convencionales en estufa, evaporación con agitación, evaporación en rotavapor, o secado a vacío. El sólido seco se calcina en presencia de un gas inerte, como por ejemplo, nitrógeno, helio, argón o mezclas. La calcinación puede llevarse a cabo haciendo pasar un flujo de gas inerte (con velocidades espaciales entre 1 y 400 h"1) o en estático. La temperatura se sitúa preferiblemente entre 250 y 1000°C y más preferiblemente entre 350 y 800°C. El tiempo de calcinación no es determinante, pero se prefiere entre 0,5 horas y 20 horas. La velocidad de calentamiento no es determinante, pero se prefiere entre 0,l°C/minuto y 10°C/minuto. Aunque el catalizador se puede usar tal y como se describe en esta memoria, también podría ser utilizado soportándolo sobre un sólido tal como: sílice, alúmina, óxido de titanio o mezclas de estos, así como sobre carburo de silicio. En estos casos la fijación de los diferentes elementos del catalizador sobre el soporte se puede realizar por métodos convencionales de impregnación (volumen de poro, exceso de disolución) o simplemente por precipitación sobre el soporte de una disolución que contiene los elementos activos.
Este catalizador es especialmente activo para la oxidación selectiva y la amoxidación de alcanos y/o alquenos. Como aléanos se puede emplear propano y/o
HOJA DE SUSTITUCIÓN (REGLA 26) isobutano. Como olefinas propileno y/o isobutileno. Como agente oxidante, se puede emplear oxígeno puro, aire, mezclas oxígeno-gas inerte (con diferente proporción de ambos) o aire enriquecido en oxígeno. En el proceso de oxidación, el agua puede, o no, ser incorporada en la alimentación aunque, generalmente, se observa un incremento de la selectividad a ácido acrílico cuando la reacción se lleva a cabo en presencia de vapor de agua. El contenido de agua en la mezcla de reacción puede ser de 0 a 80%, y más preferiblemente entre 20 y 60%.
En el proceso de amoxidación se requiere, además de los gases descritos para la oxidación, la presencia de amoníaco y agua. La concentración de amoníaco en la mezcla de reacción puede ser de 2 a 40%, pero preferiblemente entre 8 y 15 %.
Tanto el proceso de oxidación como el de amoxidación se puede llevar a cabo en un reactor de lecho fijo o en un reactor de lecho fluidizado. La temperatura de reacción está comprendida entre 250 y 550°C, preferiblemente entre 300 y 480°C, y más preferiblemente entre 350 y 440°C. El tiempo de contacto, definido como la relación entre el volumen de catalizador y el caudal total de gases alimentado, está comprendido entre 0,001 y 100 s. Aunque el tiempo de contacto depende del método de preparación y composición del catalizador empleado, en general es preferible entre 0,05 y 50, y más preferiblemente entre 0,1 y 25 s.
MODOS DE REALIZACIÓN DE LA INVENCIÓN
A continuación, se describirán aspectos de la invención en base a unos ejemplos. EJEMPLO 1: Preparación de un catalizador de oxidación a partir de una disolución que contiene Mo-V-Te-Nb al que se ha añadido una sal de cobre
En 1960 mi de agua caliente a 80°C se disolvieron 120,0 g de heptamolibdato amónico tetrahidratado, 23,80 g de metavanadato amónico, y 35,96 g de ácido telúrico, obteniéndose una disolución uniforme. Por otra parte y después de calentar a 40°C se preparó una disolución (535,2 g) de oxalato de niobio que contenía 80,96 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50°C, obteniéndose un sólido. Este sóhdo se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 2 h en ambiente de nitrógeno.
HOJA DE SUSTITUCIÓN (REGLA 26) 10,0 g del sóhdo calcinado se añaden a 10 mi de una disolución acuosa con 0,305 g de nitrato de cobre (11). El sólido resultante tras la evaporación del agua sobrante, con agitación a 80°C, se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador. El catalizador presenta un difractograma de rayos-X como el mostrado en la figura 1.
EJEMPLO 2: Utilización del catalizador descrito en el ejemplo 1 para la oxidación selectiva de propano a ácido acrílico 6,0 g del catalizador descrito en el ejemplo 1 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción de oxidación se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 4 s. Los resultados obtenidos se muestran en la tabla 2.
EJEMPLO 3: Preparación de un catalizador de oxidación a partir de una disolución que contiene Mo-V-Te-Nb sin la incorporación de una sal de cobre
En 1960 mi de agua caliente a 80°C se disolvieron 120,0 g de heptamolibdato amónico tetrahidratado, 23,80 g de metavanadato amónico, y 35,96 g de ácido telúrico, obteniéndose una disolución umforme. Por otra parte y después de calentar a 40°C se preparó una disolución (535,2 g) de oxalato de niobio que contenía 80,96 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50°C, obteniéndose un sólido. Este sólido se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 2 h en ambiente de nitrógeno para obtener el catalizador. En la figura 2 se muestra el difractograma de rayos X de dicho catalizador.
EJEMPLO 4: En este ejemplo se presenta la utilización del catalizador descrito en el ejemplo comparativo 3 para la oxidación selectiva de propano a ácido acrílico
12,0 g del catalizador descrito en el ejemplo comparativo 1 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción de oxidación se ha llevado a cabo empleando
HOJA DE SUSTITUCIÓN (REGLA 26) una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 9,6 s. Los resultados se muestran en la tabla 2. De los resultados obtenidos se muestra que la introducción de cobre en la composición del catalizador produce un aumento tanto de la conversión de propano como de la selectividad a ácido acrílico.
EJEMPLO 5: Preparación de un catalizador de oxidación similar al del ejemplo 1 al que se ha incorporado una menor cantidad de cobre
En 1960 mi de agua caliente a 80°C se disolvieron 120,0 g de heptamolibdato amónico tetrahidratado, 23,80 g de metavanadato amónico, y 35,96 g de ácido telúrico, obteniéndose una disolución uniforme. Por otra parte y después de calentar a 40°C se preparó una disolución (535,2 g) de oxalato de niobio que contenía 80,96 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50°C, obteniéndose un sólido. Este sólido se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 2 h en ambiente de nitrógeno.
10,0 g del sólido calcinado se suspenden en 10 mi de una disolución acuosa con
0,152 g de nitrato de cobre (H). Se evapora el agua con agitación a 800°C. El sólido resultante se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador.
EJEMPLO 6: Utilización del catalizador descrito en el ejemplo 5 para la oxidación selectiva de propano a ácido acrílico
6,0 g del sólido calcinado descrito en el ejemplo 1 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción de oxidación se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 4 s. Los resultados se muestran en la tabla 2. De los resultados obtenidos se muestra que las propiedades de estos sistemas catalíticos dependen de la cantidad de cobre incorporado al catalizador.
HOJA DE SUSTITUCIÓN (REGLA 26) EJEMPLO 7: Preparación de un catalizador de oxidación similar al del ejemplo 1 al que se ha incorporado una mayor cantidad de cobre
En 1960 mi de agua caliente a 80°C se disolvieron 120,0 g de heptamolibdato amónico tetrahidratado, 23,80 g de metavanadato amónico, y 35,96 g de ácido telúrico, obteniéndose una disolución uniforme. Por otra parte y después de calentar a 40°C se preparó una disolución (535,2 g) de oxalato de niobio que contenía 80,96 milimoles de niobio y se añadió a la disolución anterior obteniéndose una disolución. El agua de esta disolución se eliminó evaporando con rotavapor a 50°C, obteniéndose un sólido. Este sólido se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 2 h en ambiente de nitrógeno.
10,0 g del sólido obtenido del mismo modo que en el ejemplo 1 se mezclaron con 10,0 mi de una disolución acuosa con 0,458 g de nitrato de cobre (II). El sólido resultante tras la evaporación del agua sobrante, con agitación a 80°C, se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador.
EJEMPLO 8: Utilización del catalizador descrito en el ejemplo 7 para la oxidación selectiva de propano a ácido acrílico
6,0 g del catalizador descrito en el ejemplo 5 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 4 s. Los resultados se muestran en la tabla 2.
EJEMPLO 9: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Cu-O
Se disuelven 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. Se agita la mezcla y se deja evaporar el agua. El sólido obtenido se seca a 80°C.
21,8 g de este sólido se suspenden en 155,0 g de agua a 80°C y se añade 7,25 g de sulfato
HOJA DE SUSTITUCIÓN (REGLA 26) de vanadilo y 9,05 g de ácido oxáhco. Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80 °C. El sólido obtenido se calcina, en corriente de nitrógeno, a 600 C durante 2 h. 10,0 g del sólido calcinado se incorporan a 10,0 mi de una disolución acuosa con
0,174 g de nitrato de cobre (11) • Una vez evaporada el agua, el sólido resultante se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador. En la figura 3 se muestra el difractograma de rayos X del catalizador.
EJEMPLO 10: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-O que no contiene cobre
Se disuelven 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH^S. Se agita la mezcla y se deja evaporar el agua. El sólido obtenido se seca a 80°C.
21,8 g de este sólido se suspenden en 155,0 g de agua a 80°C y se añade 7,25 g de sulfato de vanadilo y 9,05 g de ácido oxálico. Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80 °C. El sólido obtenido se calcina, en corriente de nitrógeno, a 600°C durante 2 h para obtener el catalizador. En la figura 4 se muestra el difractograma de rayos X del catalizador.
EJEMPLO 11: Utilización del catalizador de oxidación descrito en el ejemplo 9 para la oxidación selectiva de propano a ácido acrílico
4,0 g del catalizador descrito en el ejemplo 9 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla 3.
HOJA DE SUSTITUCIÓN (REGLA 26) EJEMPLO 12: Utilización del catalizador descrito en el ejemplo 10 para la oxidación selectiva de propano a ácido acrílico
4,0 g del catalizador descrito en el ejemplo 10 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla
3.
EJEMPLO 13: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Nb-Cu-O
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. Se evapora el agua y el sólido resultante se seca en estufa a 90°C, obteniéndose el sólido MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80°C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (V). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80 °C. El sólido obtenido se calcina a 600°C durante 2 h en corriente de nitrógeno.
10,0 g del sólido calcinado se suspenden en 10,0 mi de una disolución acuosa con 0,080 g de nitrato de cobre (11). Una vez evaporada el agua, el sólido resultante se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador. En la figura 5 se muestra el difractograma de rayos X del catalizador.
EJEMPLO 14: Preparación de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Nb-O al que no se ha incorporado cobre
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución
HOJA DE SUSTITUCIÓN (REGLA 26) acuosa 25%») hasta pH=7,5. En la disolución obtenida, se evapora el agua, con agitación, a
80°C. El sólido resultante se seca en estufa a 90°C, obteniéndose el sóhdo MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80°C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (N). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80 °C. El sólido obtenido se calcina a 600°C durante 2 h en corriente de nitrógeno para obtener el catalizador. Este catalizador se caracteriza por presentar un difractograma de rayos X como el mostrado en la figura 6.
EJEMPLO 15: Utilización del catalizador descrito en el ejemplo 13 para la oxidación selectiva de propano a ácido acrílico
2,5 g del sólido calcinado preparado en el ejemplo 13 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla
3.
EJEMPLO 16: Utilización del catalizador descrito en el ejemplo comparativo 14 para la oxidación selectiva de propano a ácido acrílico
2,5 g del sólido calcinado preparado en el ejemplo 14 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla 3. De los resultados obtenidos se muestra que la incorporación del cobre al catalizador aumenta tanto la conversión de propano como la selectividad a ácido acrílico.
EJEMPLO 17: Utilización del catalizador descrito en el ejemplo 13 para la oxidación selectiva de propano a ácido acrílico con diferentes condiciones de reacción 2,5 g del catalizador descrito en el ejemplo 10 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano:oxígeno:helio:agua = 3,75:11,25:47,5:30, a una temperatura
HOJA DE SUSTITUCIÓN (REGLA 26) de reacción de 400°C y un tiempo de contacto de 3,75 s. Los resultados se muestran en la tabla 3.
EJEMPLO 18: Preparación de un catalizador de oxidación similar al ejemplo 13 al que se ha añadido una menor cantidad de cobre
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. Se evapora el agua y el sólido resultante se seca en estufa a 90°C, obteniéndose el sólido MT. 30,0 g del sólido MT se suspenden en 213,30 g de agua a 80°C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (N). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80 °C. El sólido obtenido se calcina a 600°C durante 2 h en corriente de nitrógeno.
10,0 g del sólido calcinado se incorporan a 10,0 mi de una disolución acuosa con 0,040 g de nitrato de cobre (II). Una vez evaporada el agua, el sólido resultante se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador.
EJEMPLO 19: Utilización del catalizador de oxidación descrito en el ejemplo 18 para la oxidación selectiva de propano a ácido acrílico
2,5 g del catalizador descrito en el ejemplo 18 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla 3.
EJEMPLO 20: Utilización del catalizador descrito en el ejemplo 18 para la oxidación selectiva de propano a ácido acrílico en diferentes condiciones de reacción
2,5 g del catalizador del ejemplo 18 se introdujeron en un reactor de cuarzo de
HOJA DE SUSTITUCIÓN (REGLA 26) lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 3:9:38:50, a una temperatura de reacción de 390°C y un tiempo de contacto de 4 s. Los resultados se muestran en la tabla 3.
EJEMPLO 21: Preparación de un catalizador de oxidación similar a los descritos en los ejemplos 13 y 18 pero con mayor cantidad de cobre
Se disuelve 26,5 g de heptamolibdato amónico tetrahidratado y 5,75 g de ácido telúrico en 195,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%>) hasta pH=7,5. Se evapora el agua y el sólido resultante se seca en estufa a 90°C, obteniéndose el sólido MT.
30,0 g del sólido MT se suspenden en 213,30 g de agua a 80°C y se añade 9,01 g de sulfato de vanadilo y 10,39 g de oxalato de niobio (V). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, se lava con agua destilada y se seca a 80 °C. El sólido obtemdo se calcina a 600°C durante 2h en corriente de nitrógeno.
10,0 g del sólido calcinado se incorporan a 10,0 mi de una disolución acuosa con
0,161 g de nitrato de cobre (11). Una vez evaporada el agua, el sólido resultante se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador.
EJEMPLO 22: Utilización del catalizador descrito en el ejemplo 15 para la oxidación selectiva de propano a ácido acrílico
2,5 g del catalizador preparado de acuerdo con el ejemplo 15 se introducen en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla 3. Los resultados obtemdos muestran que las propiedades catalíticas de estos catalizadores dependen del contenido de cobre en el catalizador.
EJEMPLO 23: Utilización del catalizador descrito en el ejemplo 15 para la oxidación selectiva de propano a ácido acrílico con diferentes condiciones de reacción
HOJA DE SUSTITUCIÓN (REGLA 26) 2,5 g del catalizador preparado de acuerdo con el ejemplo 15 se introducen en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 3:9:38:50, a una temperatura de reacción de 390°C y un tiempo de contacto de 4,0 s. Los resultados se muestran en la tabla 3.
EJEMPLO 24: Preparación de un catalizador de oxidación similar al del ejemplo 13 con una relación Mo:V menor
Se disuelven 31,80 g de heptamolibdato amónico tetrahidratado y 6,90 g de ácido telúrico en 234,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%>) hasta pH=7,5. Se evapora el agua en rotavapor a 80°C, obteniéndose un sólido blanco.
30,0 g de éste sólido se suspenden en 213,3 de agua a 80°C y se añade 29,9 g de sulfato de vanadilo y 15,6 g de oxalato de niobio (V). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, lava con agua destilada y seca a 80 °C.
El sólido obtenido se calcina durante 2 h a 600°C en corriente de nitrógeno.
14,0 g del sólido calcinado del ejemplo 11 se suspenden en 14,0 mi de una disolución acuosa con 0,190 g de nitrato de cobre (II). Una vez evaporada el agua, el sólido resultante se secó en una estufa a 110°C durante 24 h y se molturó hasta alcanzar tamaños de partícula inferiores a 0,25 mm. El polvo resultante fue calcinado a 600°C durante 1 h en ambiente de nitrógeno para obtener el catalizador.
EJEMPLO 25: Preparación de un catalizador de oxidación similar al del ejemplo 24 pero sin incorporar cobre
Se disuelven 31,80 g de heptamolibdato amónico tetrahidratado y 6,90 g de ácido telúrico en 234,0 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta pH=7,5. Se evapora el agua en rotavapor a 80°C, obteniéndose un sóüdo blanco. 30,0 g de éste sóhdo se suspenden en 213,3 de agua a 80°C y se añade 29,9 g de sulfato de vanadilo y 15,6 g de oxalato de niobio (V). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en
HOJA DE SUSTITUCIÓN (REGLA 26) estático, durante 2 días. El contenido del autoclave se filtra, lava con agua destilada y seca a 80 °C. El sólido obtemdo se calcina durante 2 h a 600°C en corriente de nitrógeno para obtener el catalizador.
EJEMPLO 26: Utilización del catalizador descrito en el ejemplo 24 para la oxidación selectiva de propano a ácido acrílico
2,0 g del sólido calcinado se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto 1 ,6 s. Los resultados se muestran en la tabla 4.
EJEMPLO 27: Utilización del catalizador descrito en el ejemplo comparativo 25 para la oxidación selectiva de propano a ácido acrílico
2,0 g del sólido calcinado se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto 1,6 s. Los resultados se muestran en la tabla 4.
EJEMPLO 28: Preparación, en condiciones hidrotermales, de un catalizador de oxidación basado en un óxido mixto de Mo-Te-V-Nb-Cu-O
Se disuelven 20,00 g de heptamolibdato amónico tetrahidratado, 4,34 g de ácido telúrico y 9,12 g de nitrato de cobre (11) en 180 mi de agua a 80°C. La mezcla se agita y, posterionnente, se deja evaporar el agua. El sólido obtenido se seca a 100°C.
16,24 g de este sólido se suspenden en 106,65 g de agua a 80°C y se añade 4,51 g de sulfato de vanadilo y 5,19 g de oxalato de niobio (V). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, lava con agua destilada y seca a 80 °C. El sólido obtenido se calcina 2 h a 600°C en corriente de nitrógeno para obtener el catalizador. En la figura 7 se muestra el difractograma de rayos X del catalizador.
EJEMPLO 29: Utilización del catalizador descrito en el ejemplo 28 para la oxidación
HOJA DE SUSTITUCIÓN (REGLA 26) selectiva de propano a ácido acrílico
2,0 g de este sóhdo se introdujo en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la tabla 4.
EJEMPLO 30: Preparación, en condiciones hidrotermales, de un catalizador de oxidación similar al ejemplo 28 con una relación Mo:Cu mayor
Se disuelven 10,00 g de heptamolibdato amónico tetrahidratado, 2,17 g de ácido telúrico y 4,56 g de mtrato de cobre (II) en 90 mi de agua a 80°C. La mezcla se deja evaporar en agitación a 80°C. El sólido obtenido se seca a 100°C durante 16 h. Se obtiene un sólido de color verde turquesa que denominamos sólido A.
Se disuelve 10,60 g de heptamolibdato amónico tetrahidratado y 2,30 g de ácido telúrico en 78,00 g de agua a 80°C. A continuación se añade hidróxido amónico (solución acuosa 25%) hasta alcanzar un pH de 7,5, se agita durante 1 hora y se deja evaporar, en agitación, a 80°C. El sólido obtenido se seca a 80°C durante 16 h. obteniéndose un sólido de color blanco al que se denominará sólido B.
2,72 g del sólido A y 12,56 g del sólido B se suspenden en 106,65 g de agua a 80°C y se añade 4,91 g de sulfato de vanadilo y 5,19 g de oxalato de niobio (V). Se agita la mezcla y se trasvasa a un autoclave de acero con una funda interna de teflón. El autoclave se mantiene a 175°C, en estático, durante 2 días. El contenido del autoclave se filtra, lava con agua destilada y seca a 80 °C. El sólido obtemdo se calcina 2 h a 600°C en corriente de nitrógeno. El compuesto calcinado presenta una estequiometría
Mθι)oTeo,17No,3Nbo,ι2Cuo,o5θn con un difractograma de rayos-X como el que se muestra en la figura 8.
EJEMPLO 31: Utilización del catalizador descrito en el ejemplo 30 para la oxidación selectiva de propano a ácido acrílico
2,0 g de este sólido se introdujo en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propano: oxígeno: helio: agua = 4:8:58:30, a una temperatura de reacción de 380°C y un tiempo de contacto de 1,6 s. Los resultados se muestran en la Tabla 4.
HOJA DE SUSTITUCIÓN (REGLA 26) EJEMPLO 32: Utilización del catalizador descrito en el ejemplo 13 para la oxidación selectiva de propileno a ácido acrílico
1,5 g del catalizador descrito en el ejemplo 13 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propileno: oxígeno: helio: agua = 2:8:80:10, a una temperatura de reacción de 380°C y un tiempo de contacto de 0,1 s. Los resultados se muestran en la tabla
4.
EJEMPLO 33: Utilización del catalizador descrito en el ejemplo 14 para la oxidación selectiva de propileno a ácido acrílico
1,5 g del catalizador del ejemplo 14 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propileno: oxígeno: helio: agua = 2:8:80:10, a una temperatura de reacción de 380°C y un tiempo de contacto de 0,2 s. Los resultados se muestran en la tabla 5.
EJEMPLO 34: Utilización del catalizador empleado en el ejemplo 32 para la oxidación selectiva de propileno a ácido acrílico al que se han modificado las condiciones de reacción 2,5 g del catalizador del ejemplo 13 se introdujeron en un reactor de cuarzo de lecho fijo. La reacción se ha llevado a cabo empleando una mezcla de gases, con relación molar de propileno: oxígeno: helio: agua = 2:8:80:10, a una temperatura de reacción de 380°C y un tiempo de contacto de 0,8 s. Los resultados se muestran en la tabla 5.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 2. Resultados catahticos para la oxidación selectiva de propano a ácido acrílico.
Ejemplo Relación molar % de Cu Temperatura, Conversión Selectividad a Selec o Mo/Te/N/Nb °C de propano propileno (%) AA
> D m (%) (%Ϋ co c Ejemplo 2 1/0,23/0,3/0,12 1,6 380 23,7 8,5 42,0 o
Ejemplo 4 1/0,23/0,3/0,12 0 380 25,4 7,5 25,3 c o Ejemplo 6 1/0,23/0,3/0,12 0,8 380 22,0 10,5 26,9 o
Ejemplo 8 1/0,23/0,3/0,12 2,4 380 20,3 11,0 14,9
7¡ m
t 1) AA= ácido acrílico
Tabla 3. Resultados catahticos para la oxidación selectiva de propano a ácido acrílico.
Ejemplo Relación molar % de Cu Temperatura, °C Conversión Selectividad a Selectividad a Rendimiento a Mo/Te/N/Nb de propano propileno (%) AA AA
(%) (% (%r o
> Ejemplo 11 1/0,17/0,30/0 0,9 380 33,6 5,8 20,3 6,8 D m Ejemplo 12 1/0,17/0,30/0 0 380 32,1 5,5 13,4 4,3 co c co Ejemplo 15 1/0,17/0,30/0,12 0,50 380 36,8 5,3 68,6 25,2
Ejemplo 16 1/0,17/0,30/0,12 c 0 380 38,5 5,2 34,0 13,1 o o Ejemplo 17 1/0,17/0,30/0,12 0,50 400 71.11 1,3 54,6 38,8
TÍ Ejemplo 19 1/0,17/0,30/0,12 0,25 380 31,3 7,9 64,0 20,0 m O Ejemplo 20 1/0,17/0,30/0,12 0,25 390 70,81 1,6 45,9 32,5 t Ejemplo 22 1/0,17/0,30/0,12 1,0 380 37,9 5,9 65,1 24,7
Ejemplo 23 1/0,17/0,30/0,12 1,0 390 65,3! 2,5 50,3 32,8
1) AA= ácido acrílico
O
> D m Tabla 4. Resultados catahticos para la oxidación selectiva de propano a ácido acrílico. co c co
Ejemplo Relación molar % de Cu Temperatura, °C Conversión Selectividad a Selectividad a Rendimiento a c o Mo/TeN/Nb de propano propileno (%) AA AA o [
(%Ϋ (%Ϋ
7¡ m
Ejemplo 26 1/0,17/0,7/0,12 0,7 380 44,9 3,4 50,8 22,8 to Ejemplo 27 1/0,17/0,7/0,12 0 380 49,4 4,2 35,2 17,4
Ejemplo 29 1/0,17/0,3/0,12 17,2 380 0 - - -
Ejemplo 31 1/0,17/0,3/0,12 3,0 380 21,4 11,4 18,0 3,9
1) AA= ácido acríHco
Tabla 5. Oxidación selectiva de propileno a ácido acrílico.
Ejemplo Relación molar % de Cu Temperatura, °C Conversión de Selectividad a Rendimiento a
Mo/Te/V/Nb propileno ' (%) AA AA (%Ϋ (%f
I Ejemplo 32 1/0,17/0,30/0,12 0,5 380 38,6 83,2 32,1 o C—
> Ejemplo 33 1/0,17/0,30/0,12 0 380 43,2 71,9 31,1
D m Ejemplo 34 1/0,17/0,30/0,12 0,5 380 97,2 78,1 75,3 co c co
1) AA= ácido acríhco c t o to o
7¡ m
to

Claims

REIVINDICACIONES
1. Un catalizador para la oxidación selectiva y la amoxidación de aléanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos, que comprende Mo, Te, V y al menos otro componente A seleccionado entre Nb, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr y una tierra rara, caracterizado porque comprende además Cu, porque al menos Mo, Te, N y Cu están presentes en forma de al menos un óxido y porque, en forma calcinada, presenta un difractograma de rayos X con cinco líneas de difracción intensas correspondientes a ángulos 2Θ de difracción de 22,1±0,4; 27,1±0,4; 28,1+0,4; 36,0±0,4 y 45,1+0,4.
2. Un catalizador según la reivindicación 1, caracterizado porque tiene la fórmula empírica:
MoTehViCujAkOx en la que h, i, j, k son valores comprendidos entre 0,001 y 4,0 y x depende del estado de oxidación o valencia de los elementos Mo, Te, N, Cu y A.
3. Un catalizador según la reivindicación 1 o 2, caracterizado porque h e i están comprendidos entre 0,01 y 3, la relación i/h está comprendida entre 0,3 y 1, y j y k están comprendidos entre 0,001 y 2.
4. Un catalizador según la reivindicación 1, 2 o 3, caracterizado porque A es Νb o Ta, y h e i están comprendidos entre 0,02 y 2, la relación i/h está comprendida entre 0,3 y 1 , j está comprendido entre 0,001 y 0,5 y k está comprendido entre 0,001 y 2.
5. Un catalizador según una cualquiera de las reivindicaciones precedentes, caracterizado porque presenta un difractograma de rayos X correspondiente a
HOJA DE SUSTITUCIÓN (REGLA 26) Ángulo 20 de Espaciado medio Intensidad difracción (Á) relativa
(± 0,4)
22,1 4,02 100
27,1 3,29 20-120
28,1 3,17 20-120
36,0 2,49 10-50
45,1 2,01 10-60
6. Un catalizador de oxidación según una cualquiera de las reivindicaciones precedentes, caracterizado porque es un óxido mixto calcinado.
7. Un catalizador de oxidación según una cualquiera de las reivindicaciones precedentes, caracterizado porque es un óxido mixto soportado en un sóhdo.
8. Un catalizador de oxidación según la reivindicación 8, caracterizado porque el sólido está seleccionado entre sílice, alúmina, óxido de titanio y mezclas de los mismos.
9. Un catalizador según la reivindicación 8 o 9, caracterizado porque el sólido es sílice contenida en una proporción de 20 a 70% en peso del peso total de catalizador.
10. Un catalizador de oxidación según una cualquiera de las reivindicaciones precedentes, caracterizado porque es un óxido mixto soportado en un carburo de silicio.
11. Uso de un catalizador según una cualquiera de las reivindicaciones precedentes, en procesos de oxidación selectiva de propano en fase gaseosa en presencia dé vapor de agua.
12. Uso de un catalizador según una cualquiera de las reivindicaciones precedentes, en procesos de obtención de ácido acrílico por reacción de propileno y oxígeno en fase
HOJA DE SUSTITUCIÓN (REGLA 26) gaseosa en presencia de agua.
13. Uso de un catalizador según una cualquiera de las reivindicaciones precedentes, en procesos de obtención de acrilonitrilo por reacción de propileno y/o propileno, y oxígeno, en fase gaseosa en presencia de amoniaco y vapor de agua.
14. Uso de un catalizador según una cualquiera de las reivindicaciones precedentes, en procesos de obtención de ácido metacrílico por reacción de oxidación de isobutano y/o isopropileno con oxígeno en fase gaseosa y en presencia de agua.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2002/000357 2001-07-17 2002-07-16 Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos WO2003008096A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02748887A EP1473081A1 (en) 2001-07-17 2002-07-16 Catalyst for the selective oxidation and ammoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and the derivatives thereof
JP2003513694A JP2004534650A (ja) 2001-07-17 2002-07-16 特にアクリル酸、アクリロニトリルおよびこれらの誘導体の入手法におけるアルカンおよび/またはアルケンの選択的酸化とアンモ酸化用触媒
US10/759,384 US7355062B2 (en) 2001-07-17 2004-01-16 Catalyst for selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and the derivatives thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200101756A ES2181600B1 (es) 2001-07-17 2001-07-17 Un catalizador para la oxidacion selectiva y la amoxidacion de alcanosy/o alquenos, particularmente en procesos de obtencion de acido acrilico, acrilonitrilo y derivadosn de los mismos.
ESP200101756 2001-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/759,384 Continuation US7355062B2 (en) 2001-07-17 2004-01-16 Catalyst for selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and the derivatives thereof

Publications (1)

Publication Number Publication Date
WO2003008096A1 true WO2003008096A1 (es) 2003-01-30

Family

ID=8498525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000357 WO2003008096A1 (es) 2001-07-17 2002-07-16 Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos

Country Status (5)

Country Link
US (1) US7355062B2 (es)
EP (1) EP1473081A1 (es)
JP (1) JP2004534650A (es)
ES (1) ES2181600B1 (es)
WO (1) WO2003008096A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064035A1 (es) * 2002-01-31 2003-08-07 Consejo Superior De Investigaciones Cientificas Procedimiento para la deshidrogenacion oxidativa de etano
CN103626676A (zh) * 2013-12-14 2014-03-12 济南开发区星火科学技术研究院 以丙烷为原料制备丙烯腈的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524792B2 (en) * 2003-06-04 2009-04-28 Basf Aktiengesellschaft Preparation of catalytically active multielement oxide materials which contain at least one of the elements Nb and W and the elements Mo, V and Cu
CN103073416A (zh) * 2013-01-29 2013-05-01 新兴能源科技有限公司 一种丙烯酸的制备方法
CN103073415B (zh) * 2013-01-29 2015-12-23 沈阳化工大学 一种丙烯一步氧化制备丙烯酸的工艺方法
CA2993683A1 (en) * 2018-02-02 2019-08-02 Nova Chemicals Corporation Method for in situ high activity odh catalyst
JP7186295B2 (ja) * 2019-06-05 2022-12-08 株式会社日本触媒 アクリル酸製造用触媒とその製造方法およびアクリル酸の製造方法
KR20230036136A (ko) * 2020-09-03 2023-03-14 가부시키가이샤 닛폰 쇼쿠바이 아크릴산 제조용 촉매와 그의 제조 방법 및 아크릴산의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031693A1 (en) * 1979-12-28 1981-07-08 The Standard Oil Company Promoted tin-antimonate catalysts and use thereof
EP0489506A1 (en) * 1990-12-03 1992-06-10 The Standard Oil Company Method for ammoxidation of paraffins
ES2061572T3 (es) * 1987-08-07 1994-12-16 Basf Plc Procedimiento para la fabricacion de acrilonitrilo.
EP0962253A2 (en) * 1998-05-21 1999-12-08 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst
EP0970942A1 (en) * 1996-11-15 2000-01-12 Mitsubishi Chemical Corporation Process for the simultaneous preparation of acrylonitrile and acrylic acid
EP0997454A1 (en) * 1997-07-14 2000-05-03 Mitsubishi Chemical Corporation Method for gas phase catalytic oxidation of hydrocarbon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG42912A1 (en) 1991-08-08 1997-10-17 Mitsubishi Chem Ind Catalyst and process for producing nitriles
US5198580A (en) * 1991-11-18 1993-03-30 The Standard Oil Company Process for oxidation of propane
EP0608838B1 (en) 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Method for producing an unsaturated carboxylic acid
FR2754817B1 (fr) 1996-10-21 2000-03-17 Toagosei Co Ltd Procede de production d'acide acrylique a partir de propane et d'oxygene gazeux
EP0895809B1 (en) 1997-08-05 2014-03-19 Asahi Kasei Kabushiki Kaisha Process Using Niobium-containing Aqueous Solution in Producing Niobium-containing Oxide Catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031693A1 (en) * 1979-12-28 1981-07-08 The Standard Oil Company Promoted tin-antimonate catalysts and use thereof
ES2061572T3 (es) * 1987-08-07 1994-12-16 Basf Plc Procedimiento para la fabricacion de acrilonitrilo.
EP0489506A1 (en) * 1990-12-03 1992-06-10 The Standard Oil Company Method for ammoxidation of paraffins
EP0970942A1 (en) * 1996-11-15 2000-01-12 Mitsubishi Chemical Corporation Process for the simultaneous preparation of acrylonitrile and acrylic acid
EP0997454A1 (en) * 1997-07-14 2000-05-03 Mitsubishi Chemical Corporation Method for gas phase catalytic oxidation of hydrocarbon
EP0962253A2 (en) * 1998-05-21 1999-12-08 Rohm And Haas Company A process for preparing a multi-metal oxide catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064035A1 (es) * 2002-01-31 2003-08-07 Consejo Superior De Investigaciones Cientificas Procedimiento para la deshidrogenacion oxidativa de etano
ES2192983A1 (es) * 2002-01-31 2003-10-16 Univ Politecnica De Valencia C Un catalizador para la deshidrogenacion oxidativa de etano a eteno
US7319179B2 (en) 2002-01-31 2008-01-15 Consejo Superior De Investigaciones Cientificas Method for the oxidative dehydrogenation of ethane
CN103626676A (zh) * 2013-12-14 2014-03-12 济南开发区星火科学技术研究院 以丙烷为原料制备丙烯腈的方法

Also Published As

Publication number Publication date
US20040230070A1 (en) 2004-11-18
US7355062B2 (en) 2008-04-08
JP2004534650A (ja) 2004-11-18
ES2181600A1 (es) 2003-02-16
EP1473081A1 (en) 2004-11-03
ES2181600B1 (es) 2004-01-16

Similar Documents

Publication Publication Date Title
US7319179B2 (en) Method for the oxidative dehydrogenation of ethane
JP6306559B2 (ja) 効率の高いアンモ酸化方法及び混合金属酸化物触媒
JP5828338B2 (ja) 耐摩耗性混合金属酸化物アンモ酸化触媒
ES2439697T3 (es) Procedimiento para la conversión selectiva de alcanos en ácidos carboxílicos insaturados
EP0767164B1 (en) Method for producing a nitrile
KR100905956B1 (ko) 어닐링되고 성능이 우수해진 촉매
EP1871522B8 (en) Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
KR100905958B1 (ko) 탄화수소의 선택적인 산화를 위해 열수적으로 합성된mo-v-m-x 산화물 촉매
RU2495024C2 (ru) Способ окислительного аммонолиза или окисления пропана и изобутана
JP2004148302A (ja) 炭化水素を選択的に酸化する、水熱的に合成したmo−v−m−nb−x酸化物触媒
JP2009142815A (ja) アルカン及びオレフィンのアンモ酸化のための触媒組成物、その製造方法、及び使用方法
EP1986986B1 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP2007530257A (ja) アルカンの不飽和カルボン酸への選択的転化のための触媒組成物、その製造方法およびその使用方法
KR20020082765A (ko) 재소성된 촉매
KR100905950B1 (ko) Nox로 처리한 혼합 금속 산화물 촉매
EP0574895B1 (en) Carrier-supported catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids, and process for preparing the same
CN117299142A (zh) 具有选择性共产物hcn生产的氨氧化催化剂
WO2003008096A1 (es) Un catalizador para la oxidación selectiva y la amoxidación de alcanos y/o alquenos, particularmente en procesos de obtención de ácido acrílico, acrilonitrilo y derivados de los mismos
JP2000070714A (ja) 不飽和ニトリル製造用触媒の製造方法
US9616415B2 (en) Steam re-calcination of mixed metal oxide catalysts
WO2002051542A1 (fr) Catalyseur d'oxydation d'alcane, procede de production correspondant et procede de production d'un compose insature contenant de l'oxygene
JP4179675B2 (ja) 不飽和ニトリルを製造する方法
US20070123730A1 (en) Catalyst composition without antimony or molybdenum for ammoxidation of alkanes, a process of making and a process of using thereof
JP5427580B2 (ja) 複合金属酸化物触媒及びその製造方法
JP3318962B2 (ja) アクロレイン酸化触媒の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10759384

Country of ref document: US

Ref document number: 2003513694

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002748887

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002748887

Country of ref document: EP