WO2002101234A1 - Turbina eolica autotimonante - Google Patents

Turbina eolica autotimonante Download PDF

Info

Publication number
WO2002101234A1
WO2002101234A1 PCT/ES2002/000303 ES0200303W WO02101234A1 WO 2002101234 A1 WO2002101234 A1 WO 2002101234A1 ES 0200303 W ES0200303 W ES 0200303W WO 02101234 A1 WO02101234 A1 WO 02101234A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
mark
self
wind
head
Prior art date
Application number
PCT/ES2002/000303
Other languages
English (en)
French (fr)
Inventor
Iván LAHUERTA ANTOUNE
Sebastián Manuel LAHUERTA ANTOUNE
Maria Lahuerta Antoune
Original Assignee
Lahuerta Antoune Ivan
Lahuerta Antoune Sebastian Man
Maria Lahuerta Antoune
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lahuerta Antoune Ivan, Lahuerta Antoune Sebastian Man, Maria Lahuerta Antoune filed Critical Lahuerta Antoune Ivan
Priority to AU2002314219A priority Critical patent/AU2002314219B2/en
Priority to DE60210279T priority patent/DE60210279T2/de
Priority to EP02740780A priority patent/EP1400688B1/en
Priority to MXPA03011528A priority patent/MXPA03011528A/es
Publication of WO2002101234A1 publication Critical patent/WO2002101234A1/es
Priority to US10/733,429 priority patent/US6974307B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • F03D7/0208Orientating out of wind
    • F03D7/0212Orientating out of wind the rotating axis remaining horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • F03D7/0208Orientating out of wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • F03D7/0208Orientating out of wind
    • F03D7/0216Orientating out of wind the rotating axis changing to vertical position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/915Mounting on supporting structures or systems on a stationary structure which is vertically adjustable
    • F05B2240/9152Mounting on supporting structures or systems on a stationary structure which is vertically adjustable by being hinged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a new design of Self-firing Wind Turbine, with which it is intended to simplify the execution of this type of machines by providing them with more degrees of freedom by having self-tuning structures and self-stable rotors, in which the wind force itself it is used to protect them instead of destroying them, since they work in favor of the current, making better use of this force and guaranteeing that in no case, structure, footing and ground withstand forces greater than the nominal ones.
  • the property that the structure can tilt to lower the head and rotor at a low height above the ground reduces assembly and maintenance times and costs, as well as the necessary infrastructure, resulting in a highly competitive and profitable product applied to the manufacture of wind turbines connected to the network and / or in those cases in which it is intended to take advantage of wind energy for pumping, energy saving, in isolated areas of the network.
  • the current systems are:
  • SUBSTITUTE SHEET (RULE 26) Three-pole wind turbines with aerodynamic loss regulation with fixed speed asynchronous generator.
  • the type of wind turbine is tripala with tubular tower to leeward, regulation by loss and / or change of step and active guidance system.
  • the rotor drives a multiplier and this to the generator;
  • a disc brake is placed on the output shaft of the multiplier.
  • the gutter whose bushing is rigidly fixed to the shaft that is embedded in two bearings moored solidly to the gondola chassis, or is mounted directly on the input shaft of the multiplier.
  • They are slow rotors, with blade tip speeds of about 55 m / s, separated their plane of rotation about five meters from the axis of the
  • the rotor In most cases the rotor is located windward from the tower (frontal wind). This has the advantage of reducing the fatigue loads on the blades by minimizing the shadow effect of the tower and avoiding the aerodynamic noise produced by the blades when the rotor is in the lee.
  • three-sided machines represent 80% of the wind turbines installed. However, as the diameter of the rotor increases, the number of two-bladed wind turbines increases, these being usually leeward design, in which the shadow effect of the tower on the blade is more pronounced, producing significant fatigue and vibration.
  • SUBSTITUTE SHEET (RULE 26) structures Power control: The power generated is regulated by two methods, aerodynamic loss control or step change control. The latter allows an optimal generation over a wide range of wind speeds, allowing, in addition, a safety system against high winds (flag blades), while. additional braking devices are necessary with the first system. Those of the change of step carry complex moving parts with the consequent risk of failures and greater maintenance needs.
  • SUBSTITUTE SHEET (RULE 26) unwind them.
  • the specific energy (kWh / m 2 ) increases with the diameter of the rotor due to the higher tower height, which in most cases leads to an increase in wind speed.
  • this increase in speed may not compensate for the increase in manufacturing costs when, while maintaining the current technical concepts of design, attempts are made to design machines with diameters greater than 50 meters of rotor.
  • said self-stimulating structure formed by two parallel armed beams positioned as a "trellis"
  • the structure in the form of "Boomerang" allows us, on the one hand, to distance it from the plane of rotation of the blades, while still maintaining the dihedral shape, and on the other, to locate the center of gravity of the
  • SUBSTITUTE SHEET (RULE 26) rotor in the vertical axis of the column, eliminating the gyroscopic effects (precession) that tend to dislodge the rotor.
  • the blades are two instead of three, of smaller unit weight, being constructed by an aluminum core trunk elliptic of density 2.65 Kg / dm 3 , on which the aluminum ribs are dragged aerodynamically, covered by a 1.2 mm sheet of polycarbonate with a density of 1.2 kg / dm 3 riveted on the ribs, aerodynamically shaping the blade. Its center of gravity is 39% of its length from the mooring flange.
  • SUBSTITUTE SHEET (RULE 26) of the centrifugal action, they result in a dominant tensile stress, supported by the entire elliptical section that forms the blade's core, allowing rapid rotors to be designed with tangential speeds of the order of 75 m / s instead of 55 m / s of the traditional shovels, which reduces the input pairs in the multiplier, yes as its degree of multiplication, resulting multipliers that for our application weigh 2.2 Tm, instead of 7.6 Tm for machines of 1 MW of power, with rotor diameters from 60 m to 11 m / s wind speed.
  • the blades that form the dihedral have an angle of 12 ° to 14 ° with the vertical, leaving the center of application of the axial thrust, 70% of the bisector of the dihedral, far behind its center of gravity, which makes it self-stable.
  • the use of four-pole generators (1,500 rpm) and medium voltage, 6 KV, reduces their weight and eliminates the transformers at the foot of the machine, while reducing the number and section of the electric power transmitting cables .
  • the generator is located on the axis of the column ( Figure 5 Mark 9) (fixed to its upper end instead of being located on the head) to avoid the use of rotating power transmission fittings, the
  • SUBSTITUTE SHEET (RULE 26) Power captured by the rotor is transmitted by an oleohydraulic circuit (Figure 5 Mark 15), whose central and pumps will be located in the rotor head, further reducing the specific weight of the same by having high pressure hydraulic pumps (350Kg / c 2 ), a power to weight ratio of the order of 0.4 kg / Kw instead of 5.5 kg / Kw of electric generators.
  • Rotary fittings on high power machines are expensive and complicated components
  • Figure 1 It serves as a clarification to claims 1,7 and 8. It shows the wind turbine and leeward wind turbine drawings, profile views. The scale corresponds to machines of 1MW at 11 m / s. The different brands of this figure indicate:
  • Figure 2 It serves as a clarification to claims 2 and 3. It shows the tilting of the head and rotor assembly due to the axial thrust, as opposed to the hydraulic cylinders, for the windward version.
  • SUBSTITUTE SHEET (RULE 26) parallel armed beams positioned on edge, on which it tilts.
  • the different brands of this figure indicate:
  • SUBSTITUTE SHEET (RULE 26) bearing located at the top end of the column on which it pivots.
  • the servomotor that drives the generator through the hydrostatic transmission located from the hydraulic power plant located in the rotor head at the upper end of the self-tuning structure, is placed on the mobile ring.
  • the different brands of this figure indicate:

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

Turbina eólica, de ejecución barlovento o satavento, de estructura autotimónante formada por dos vigas paralelas armadas de 'enrejado' cuyo centro de empuje lateral queda desplazado del eje de la columna donde se apaya y gira. Su rotor bipala en forma de diedro, es autoestable, por tener su centro de empuje detrás de su centro de gravedad y del eje de timonación de la turbina mejorando la auto timo nación de la turbina mejorando la auto timo nación en marcha. El empuje axial es controlado, basculando cabeza y rotor, por contrapresión hidráulicamente, garantizando que no superen la potencia captada y momentos sobre estructura, zapata y terreno. La estructura autotimón ante puede bascular hidráulicamente descendiendo cabeza y rotor, facilitando su montaje y manteniendo, a un nivel más bajo, pudiendo permanecer 'acostada' cuando no produce, reduciendo su impacto visual. Esta turbina aprovecha la fuerza del viento para autocontrolarse, simplificando la fabricación de grandes turbinas conectadas a red o en aplicaciones aisladas.

Description

TEKEIUA EO ICA AOTOTIMOΪTAMΕ
La presente invención se refiere a un nuevo diseño de Turbina Eólica Autotirαonante, con la que se pretende simplificar la ejecución de este tipo de máquinas al dotarlas de más grados de libertad por tener estructuras autotimonantes y rotores autoestables, en los que la propia fuerza del viento se emplea para protegerlos en lugar de destruirlos, ya que trabajan a "favor de la corriente", aprovechando mejor dicha fuerza y garantizando que en ningún caso, estructura, zapata y terreno soporten fuerzas superiores a las nominales. La propiedad de que la estructura pueda bascular hasta bajar la cabeza y rotor a poca altura sobre el suelo, reduce los tiempos y costes de montaje y mantenimiento, así como las infraestructuras necesarias, resultando un producto altamente competitivo y rentable aplicado a la fabricación de aerogeneradores conectados a red y / o en aquellos casos en que se pretenda aprovechar la energía del viento para bombeo, ahorro de energía, en lugares aislados de red.
Estado de la Técnica.
La mayor parte del parque eólico a nivel mundial, lo constituyen aerogeneradores tripala de eje horizontal. No obstante, existe un gran número de aerobombas y aerogeneradores de pequeña potencia que
HOJA DE SUSTITUCIÓN (REGLA 26) constituyen una parte (poco significativa) muy pequeña de la total instalada.
En cuanto al tamaño unitario, se detectan diferentes estados de madurez tecnológica. Sus dimensiones han ido aumentando paulatinamente pasando de aerogeneradores de 15 m de diámetro y 75 kW, a máquinas de 40-65 m de diámetro y 500-1.500 kw nominales, todos ellos con rotor tripala a barlovento y torre tubular a sotavento. Durante el desarrollo de la tecnología no ha habido grandes innovaciones. El proceso ha consistido en optimizar y mejorar los diseños y procedimientos de fabricación, teniendo como consecuencia una mejora de la disponibilidad del aerogenerador, rendimientos de producción, disminución de pesos específicos (Peso Específico= Peso [rotor + góndola] / área barrida rotor) , disminución de costes de instalación, operación y mantenimiento pero siempre manteniendo los mismos parámetros estructurales (Altura de la torre = H diámetro rotor + 10 expresado en metros) .
En concreto, los sistemas actuales son:
- Aerogeneradores tripala con regulación por pérdida aerodinámica con dos velocidades de giro mediante el típico sistema de conexión de polos en generadores asincronos.
HOJA DE SUSTITUCIÓN (REGLA 26) - Aerogeneradores tripala con regulación por pérdida aerodinámica con generador asincrono a velocidad fija.
- Aerogeneradores tripala con regulación por cambio de paso, combinado con un sistema de velocidad variable de pequeño rango (Opti- slip) .
- Sistemas de regulación por cambio de paso a velocidad constante. - Aerogeneradores tripala sin caja de multiplicación mediante generadores síncronos multipolos, regulados por cambio de paso y sistema de velocidad variable.
Generalmente, el tipo de aerogenerador es tripala con torre tubular a sotavento, regulación por pérdida y / o cambio de paso y sistema de orientación activo. El rotor acciona un multiplicador y éste al generador; en el eje de salida del multiplicador se coloca un freno de disco.
A pesar de su contrastado buen funcionamiento a nivel de generación y aprovechamiento del viento, estructuralmente tienen diferentes problemas motivados por el efecto de sombra de las torres sobre las palas, los momentos giroscópicos generados por estar desplazado el centro de gravedad del rotor respecto al eje de giro, los pesos específicos del orden de 14
HOJA DE SUSTITUCIÓN (REGLA 26) kg/m2 y los momentos de cabeceo por cambios continuos en la dirección del viento y por diferencias de velocidades entre la pala superior y la inferior, que se repercuten a toda la estructura, fatigándola al montar rotores rígidos, además del inconveniente que representa su montaje y mantenimiento a gran altura.
Es importante resaltar el incremento de peso específico en grandes aerogeneradores. Comparando valores de aerogeneradores de 45 m de diámetro (600k de potencia nominal) y de 60 m de diámetro (1 MW) , encontramos un incremento superior al 30%, lo que repercute en definitiva en un incremento en coste específico (coste total/área barrida) así como en un incremento del 35% en el coste de kW instalado.
A continuación pasamos a describir algunos de sus componentes fundamentales:
Rotor
Generalmente tripala, cuyo buje se fija rígidamente al eje que está empotrado sobre dos rodamientos amarrados sólidamente al chasis de la góndola, o se monta directamente sobre el eje de entrada del multiplicador. Son rotores lentos, con velocidades en punta de pala de unos 55 m / s, separado su plano de rotación unos cinco metros del eje de la
HOJA DE SUSTITUCIÓN (REGLA 26) columna sobre la que pivota, producen efectos giroscópicos que tienden a destimonar la máquina. En la mayoría de los casos el rotor se encuentra situado a barlovento de la torre (viento frontal) . Esto presenta la ventaja de reducir las cargas de fatiga sobre las palas al minimizar el efecto sombra de la torre y evitar el ruido aerodinámico producido por las palas cuando el rotor se sitúa a sotavento. Actualmente, las máquinas tripala representan el 80% de los aerogeneradores instalado. Sin embargo, a medida que aumenta el diámetro del rotor se incrementa el número de aerogeneradores bipala, siendo éstos usualmente de diseño sotavento, en los que se acusa más el efecto sombra de la torre sobre la pala, produciendo fatigas y vibraciones importantes.
Timonación
La mayoría de los aerogeneradores utilizan un sistema de orientación asistida mediante un servomotor que acciona los engranajes que actúan sobre la corona dentada del rodamiento de acoplamiento de la góndola con la torre soporte. El sistema se complementa con un disco y pinzas de frenado, que lo bloquea cuando está orientado. Esta solución genera además de momentos giroscópicos, otros momentos de cabeceo por los cambios permanentes en la dirección del viento, que se repercuten a través del rotor al multiplicador y
HOJA DE SUSTITUCIÓN (REGLA 26) estructuras. Control de potencia: La potencia generada se regula por dos métodos, control por pérdida aerodinámica o control por cambio de paso. Este último permite una generación óptima en un amplio margen de velocidades de viento permitiendo además, contar con un sistema de seguridad contra vientos altos (palas en bandera) , mientras que . con el primer sistema son necesarios dispositivos de frenado adicionales. Los del cambio de paso llevan aparejados complejas partes móviles con el consiguiente riesgo de fallos y mayores necesidades de mantenimiento.
Torre
En cuanto a la estructura de la torre, la mayor parte son de tipo tubular vertical autoportante en acero. La optimización estructural conduce a una forma troncocónica, con reducción gradual del diámetro desde la base hasta la góndola. Su gran altura representa un inconveniente tanto a la hora de montarlos como a la de hacer su mantenimiento. Por otra parte, el hecho de situar el generador en la góndola y ser esta pivotante, presenta el problema de transmitir la potencia a través de cables hasta el suelo. Hasta ahora, los diferentes fabricantes hacen un bucle con ellos para minimizar el efecto de los enrollamientos derivados de los cambios de timonación, debiendo prever un sistema controlado por ordenador que tenga en cuenta vueltas acumuladas y ordene giros contrarios de la góndola para
HOJA DE SUSTITUCIÓN (REGLA 26) desenrollarlos. Aunque ha existido un gradual desarrollo tecnológico relacionado con los trenes de potencia, paso y velocidad variable, sistemas de control, materiales y otras áreas, quizá lo más destacado haya sido los resultados obtenidos con máquinas de gran tamaño. La energía específica (kWh / m2) se incrementa con el diámetro del rotor debido a la mayor altura de la torre, que conlleva en la mayoría de los casos, un incremento de velocidad del viento. No obstante, este aumento de velocidad puede no llegar a compensar el incremento de costes de fabricación cuando, manteniendo los conceptos técnicos actuales de diseño, se intenta diseñar máquinas con diámetros superiores a los 50 metros de rotor.
Ello es debido a que las cargas principales que actúan sobre los aerogeneradores son función del cubo del diámetro del rotor, por lo que el peso y los costes de fabricación aumentan en la misma relación, mientras que el incremento de energía producida crece con el áreas del rotor. Por otra parte, los costes específicos de transporte, instalación, operación y mantenimiento de estas máquinas de elevada potencia son superiores a los de los aerogeneradores actualmente comercializados.
La opción de fabricar grandes máquinas competitivas pasa por el desarrollo de nuevas y apropiadas concepciones en los diseños, de tal manera
HOJA DE SUSTITUCIÓN (REGLA 26) que no se incremente sensiblemente el peso específico de las mismas.
Explicación de la invención.
Con la presente patente de invención, pretendemos aprovechar la energía del viento con turbinas más sencillas que las clásicas del mercado, por tener una estructura de diseño autotimonante que le confiere total libertad a la hora de orientarse en la dirección del viento, aprovechando mejor la energía del flujo incidente cuya fuerza sirve no solo para captar potencia, sino para autoprotegerla, evitando superar esfuerzos y momentos superiores a los calculados. El diseño de dicha estructura autotimonante, formada por- dos vigas paralelas armadas posicionadas de canto a modo de "enrejado", presenta una menor sección proyectada en la dirección frontal del viento (máquina orientada) , lo que permite que éste la atraviese con menor resistencia, a la vez que disminuye el efecto sombra sobre la pala y le confiere la propiedad de ser autotimonante por estar su centro de empuje lateralmente desfasado con respecto al eje de giro de la columna sobre la que se apoya. En la ejecución Barlovento, la estructura en forma de "Boomerang" nos permite por una parte, distanciarla del plano de rotación de las palas, aún manteniendo éstas la forma de diedro, y por otra, situar el centro de gravedad del
HOJA DE SUSTITUCIÓN (REGLA 26) rotor en la vertical del eje de la columna, eliminando los efectos giroscópicos (precesión) que tienden a destimonar el rotor.
En la ejecución Sotavento, la conicidad del rotor y la inclinación de la estructura autotimonante, hace que estos sean divergentes, eliminando el efecto "sombra" de la estructura sobre la pala. Estos dos diseños nos permiten disponer de máquinas de rotor bajo (Barlovento) y de rotor alto (Sotavento) según interese. En lo que se refiere a los pesos específicos ( peso rotor + góndola/área barrida) , la presente invención los disminuye notablemente, pasando a 4,5 kg/m2 en lugar de 14 Kg/m2 de las máquinas clásicas, por lo siguiente:
A) las palas son dos en lugar de tres, de menor peso unitario al estar construidas por una alma troncoelíptica de aluminio de densidad 2,65 Kg/dm3 , sobre la que se calan los costillares de aluminio de forma aerodinámica, revestidas por una lámina de 1,2 mm de policarbonato de densidad de 1,2 kg/dm3 remachada sobre los costillares, conformando aerodinámicamente la pala. Su centro de gravedad se sitúa al 39% de su longitud desde la brida de amarre.
B) El rotor por tener forma de diedro y compensarse las fuerzas de sustentación con las procedentes
HOJA DE SUSTITUCIÓN (REGLA 26) de la acción centrífuga, dan como resultante un esfuerzo dominante a tracción, soportado por toda la sección elíptica que forma el alma de la pala, permitiendo diseñar rotores rápidos con velocidades tangenciales del orden de 75 m /s en lugar de 55 m /s de las palas tradicionales, lo que reduce los pares de entrada en el multiplicador, sí como su grado de multiplicación, resultando multiplicadores que para nuestra aplicación pesan 2,2 Tm, en lugar de 7,6 Tm para máquinas de 1 MW de potencia, con diámetros de rotor de 60 m a 11 m /s de velocidad de viento. En nuestro caso, las palas que forman el diedro tienen un ángulo de 12° a 14° con la vertical, quedando el centro de aplicación del empuje axial, al 70% de la bisectriz del diedro, muy por detrás de su centro de gravedad, lo que lo hace autoestable. El empleo de generadores de cuatro polos (1.500 r.p.m.) y media tensión, 6 KV, reduce el peso de los mismos y elimina los transformadores a pie de máquina, a la vez que reduce el número y sección de los cables transmisores de la potencia eléctrica. Cuando el generador se sitúe en el eje de la columna (Figura 5 Marca 9) (fijo a su extremo superior en lugar de estar situado en la cabeza) para evitar el empleo de racores giratorios de transmisión de potencia, la
HOJA DE SUSTITUCIÓN (REGLA 26) potencia captada por el rotor se transmite mediante un circuito oleohidráulico (Figura 5 Marca 15), cuya central y bombas se ubicarán en la cabeza de rotor, disminuyendo aun más el peso específico de la misma por tener las bombas hidráulicas de alta presión (350Kg/ c 2) , una relación peso potencia del orden de 0,4 kg/ Kw en lugar de 5,5 kg /Kw de los generadores eléctricos. Los racores rotativos en máquinas de gran potencia son componentes caros y complicados
La alternativa de emplear una transmisión hidrostática compuesta por bomba de cilindrada fija (Figura 4 Marca 2) y servomotor de cilindrada variable (Figura 5 Marca 14) unidos por sus correspondientes conductos hidráulicos nos permite accionar generadores a velocidad fija, con rotores de velocidad variable que estén diseñados a λ (Lambda) constante, lo que mejora el rendimiento a cualquier velocidad y permite el empleo de generadores síncronos que entregarán energía de mejor calidad a la red. Si el generador se sitúa en el aro fijo del rodamiento, concéntrico, fijo a la columna y el servomotor que lo acciona se sitúa concéntrico sobre el aro móvil sobre el que se apoya la estructura autotimonante, tenemos una gran ventaja competitiva al permitirnos fabricar aerogeneradores
HOJA DE SUSTITUCIÓN (REGLA 26) autotimonantes de baso peso específico de gran calidad de la electricidad generada.
Como hemos explicado en el estado de la técnica, los diversos fabricantes se preocupan de controlar la potencia captada, controlando en definitiva no sobrepasar el par de entrada del rotor. En nuestra invención lo que se controla es el empuje axial, auténtica fuerza generatriz causante de todos los momentos dinámicos sobre la máquina, zapata y terreno. El empuje axial (Figura 2) nace como consecuencia de las diferencias de presiones dinámicas entre las caras anterior y posterior del rotor, siendo este empuje la autentica fuerza motriz que el rotor transformará en potencia mecánica. Por tanto, controlado el empuje axial no sólo se controla la potencia captada por la turbina, sino que se garantiza que estructuras, zapata y terreno no sobrepasen los esfuerzos previstos. Como consecuencia de todo esto, se reduce la envergadura de la obra civil y se construyen máquinas más ligeras. Al reducir los pesos específicos con cabezas y rotores más ligeros, podemos hacer estructuras basculantes que faciliten su montaje y mantenimiento a menor altura del suelo, logrando con todo ello parques eólicos más rentables. Emplazamientos con velocidades medias de 5,4 m /s pueden ser explotados ampliandose las áreas de mercado.
HOJA DE SUSTITUCIÓN (REGLA 26) Descripción de los Dibujos.
Figura 1: Sirve de aclaración a la reivindicaciones 1,7 y 8. Muestra los dibujos de las turbinas eólicas en versión barlovento y sotavento, vistas de perfil. La escala corresponde a máquinas de 1MW a 11 m /s. Las diferentes , marcas de esta figura indican:
Marca 6: Columna
Marca 7: Contrapeso
Marca 8: Estructura Autotimonante
Marca 12 : Rodamiento
Marca 13: Rotor Marca 16: Zapata
Marca 19: Eje de Pivotamiento
Marca 21: Cabeza de Rotor
Figura 2: Sirve de aclaración a las reivindicaciones 2 y 3. Muestra el basculamiento del conjunto cabeza y rotor por efecto del empuje axial, en oposición a los cilindros hidráulicos, para la versión barlovento.
Figura 3: Sirve de aclaración a las reivindicación
4. Muestra perfil y planta del conjunto cabeza y rotor sobre la parte superior de la estructura autotimonante en cuya planta se aprecia que está formada por dos
HOJA DE SUSTITUCIÓN (REGLA 26) vigas paralelas armadas posícionadas de canto, sobre las que bascula. Las diferentes marcas de esta figura indican:
Marca 1: Amortiguador
Marca 5: Cilindro Hidráulico
Marca 8 : Estructura Autotimonante
Marca 18: Eje de Basculamiento
Marca 19: Eje de Pivotamiento Marca 20: Punto de Aplicación del empuje
Axial
Figura 4: Sirve de aclaración a la reivindicación
5. Representa la Cabeza de Rotor, mostrando el montaje de la horquilla de rotor a través del rodamiento solidario a la carcasa del multiplicador epicicloidal . Las diferentes marcas de esta figura indican:
Marca 2: Bomba Hidráulica Marca 3: Brida de Amarre
Marca 4: Central Hidráulica
Marca 8 : Estructura Autotimonante
Marca 10: Horquilla
Marca 12: Rodamiento Marca 13: Rotor Oscilante
Figura 5 : Sirve de aclaración a la reivindicación
6. Muestra el montaje del generador sobre aro fijo del
HOJA DE SUSTITUCIÓN (REGLA 26) rodamiento situado en el extremo superior de la columna sobre la que pivota. Sobre el aro móvil se sitúa el servomotor que acciona al generador a través de la transmisión hidrostática, procedente de la central hidráulica situada en la cabeza de rotor en el extremo superior de la estructura autotimonante. Las diferentes marcas de esta figura indican:
Marca 4 Central Hidráulica Marca 6 Columna
Marca 8 Estructura Autotimonante Marca 9 Generador Marca 12 : Rodamiento Marca 14: Servomotor Hidráulico Marca 15: Transmisión Hidrostática
Marca 16: Zapata
Figura 6: Sirve de aclaración a la reivindicación
7. Muestra la turbina eólica de diseño barlovento autotimonante con estructura en forma de "Boomerang" con la cabeza y rotor en posición semibasculada.
Figura 7: Sirve de aclaración a la reivindicación
8. Muestra la turbina eólica de diseño sotavento autotimonante en posición semibasculada.
HOJA DE SUSTITUCIÓN (REGLA 26) Figura 8: Sirve de aclaración a la reivindicación 9. Muestra ambos diseños en posición de mantenimiento completamente basculados.
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES
Se reivindica como de nueva y propia invención la propiedad y explotación exclusiva de:
1) Turbina eólica caracterizada por tener una estructura autotimonante (Figura 1 Marca 8) formada por dos o más vigas paralelas armadas, posicionadas de canto a modo de "enrejado", cuya área proyectada es mínima en la dirección del viento incidente, minimizando el efecto sombra sobre la pala, capaz de pivotar con la sola acción del viento, respecto al eje (Figura 1 Marca 19) de una columna (Figura 1 Marca 6) de altura variable sobre la que se apoya, al estar equilibrada por un contrapeso (Figura 1 Marca 7) situado en el extremo inferior. En el extremo superior se sitúan cabeza y rotor, pudiendo ser tanto de diseño Barlovento como Sotavento (Figura 1) .
2) Turbina eólica de acuerdo en todo con la reivindicación anterior, caracterizada porque la fuerza generatriz de todos los esfuerzos, denominada empuje axial (Figura 2) (fuerza derivada de la diferencia de presiones dinámicas entre las caras anterior y posterior del rotor (Figura 1 Marca 13), es controlada para evitar sobreesfuerzos en la turbina, zapata (Figura 1
HOJA DE SUSTITUCIÓN (REGLA 26) Marca 16) y terreno. Su control se realiza permitiendo el basculamiento del conjunto cabeza y rotor, mediante la oposición de dos cilindros hidráulicos cuya presión ha sido tarada hasta que el momento de vuelco producido por el empuje axial se equilibra con el momento resistente de los cilindros hidráulicos, adoptando el ángulo de trabajo conveniente sin dejar de producir (Figura 2,6 y 7). Con esto se logra que la propia máquina aproveche la fuerza del viento para autoprotegerse estructuralmente sin perjuicio de la potencia generada.
3) Turbina eólica de acuerdo en todo con las reivindicaciones anteriores, caracterizada porque el control de potencia se realiza como consecuencia directa del control del empuje axial por basculación del rotor, al reducirse la sección proyectada del rotor en la dirección del viento (Figura 2, 6 y 7) . Esta característica nos permite efectuar arranques y paradas suaves, eliminando sistemas de frenado de emergencia a la vez que facilita el acoplamiento de generadores a la red sin riesgo de sobrevelocidades peligrosas.
4) Turbina eólica de acuerdo en todo con las reivindicaciones anteriores, caracterizada por disponer de un rotor bipala. (Figura 1 Marca 13)
HOJA DE SUSTITUCIÓN (REGLA 26) autoestable, que mejora la autotimonación de la turbina en marcha por tener forma de diedro cuyo centro de empuje axial (Figura 3 Marca 20) se sitúa por detrás de su centro de gravedad (Figura 3 Marca 17), visto en la dirección del viento incidente, lo que le confiere la característica de autoestabilidad, mejorando la autotimonación en marcha del conjunto de la turbina por situarse el punto de aplicación del empuje axial por detrás del eje de giro de la columna sobre la que pivota
(Figura 3 Marca 19) . Este rotor bipala autoestable se soporta mediante un conjunto Horquilla-Bulón
(Figura 3 Marca 10) situado éste en un eje que pasa por el centro de gravedad del rotor, lo que le permite oscilar, atenuando mediante amortiguador (Figura 3 Marca 1) , los momentos de cabeceo generados al incidir el viento con pequeños ángulos de ataque por los continuos cambios de dirección del mismo y con diferente velocidad entre la pala superior y la inferior.
Este rotor bipala puede adoptar la forma de "W" a modo de alas de gaviota, cuando interese que el centro de gravedad quede dentro de su estructura.
Turbina eólica de acuerdo en todo con las reivindicaciones anteriores, caracterizada porque su diseño permite que los elementos internos del multiplicador (Figura 4 Marca 11) no soporten
HOJA DE SUSTITUCIÓN (REGLA 26) empuje axial, momentos de cabeceo, ni vibraciones procedentes del rotor ya que la horquilla (Figura 4 Marca 10) encargada de transmitir el par motor, empuje axial, momentos de cabeceo y vibraciones, procedentes del rotor, se fija al aro móvil de un gran rodamiento (Figura 4 Marca 12) , cuyo aro fijo está solidario exteriormente a la brida (Figura 4 Marca 3) que amarra sobre forma la carcasa de un multiplicador epicicloidal (Figura 4 Marca 11) de manera que estos esfuerzos (excepto el par motor) , se transmiten desde la horquilla a la carcasa del multiplicador, sin que pasen a través de su eje primario, condición que favorece enormemente la vida útil de los ejes, rodamientos y engranajes del multiplicador.
6) Turbina eólica de acuerdo en todo con las reivindicaciones anteriores, caracterizada porque puede montar el generador, bomba, compresor o elemento a accionar (Figura 5 Marca 2) sobre el aro fijo del rodamiento (Figura 5 Marca 12) situado en la cabeza de la columna (Figura 5 Marca 6) sobre la que pivota, concéntrico con ésta al objeto de eliminar los racores rotativos transmisores de potencia, disponiendo sobre el aro móvil de dicho rodamiento, solidario a la estructura autotimonante, un servomotor oleohidráulico de cilindrada fija o variable
HOJA DE SUSTITUCIÓN (REGLA 26) (Figura 5 Marca 14), encargado de transmitir la potencia al eje del elemento a accionar (Figura 5 Marca 9) . En este caso, una central oleohidráulica (Figura Marca 4) ubicada en la cabeza del rotor, transforma la energía mecánica del rotor en energía oleohidráulica transmitiendo la potencia a través de tuberías de presión (Figura 5 Marca 15) hasta el servomotor, formando un circuito cerrado.
7) Turbina eólica de acuerdo en todo con las reivindicaciones anteriores, caracterizada porque cuando es de diseño Barlovento autotimonante, está compuesta por una estructura en forma de "Boomerang", equilibrada en su extremo inferior por una plataforma practicable que sirve de contrapeso, teniendo en su extremo superior la cabeza y el rotor, ubicados de tal manera que el centro de gravedad del rotor se encuentra en la vertical al eje de la columna, sobre la que pivota, eliminándose los efectos giroscópicos, y que cuando deben bascular por efecto del empuje axial, basculan cabeza y rotor sobre la estructura, que permanece fija (Figura 6) .
8) Turbina eólica de acuerdo en todo con las reivindicaciones número 1, 2, 3, 4, 5 y 6, de diseño sotavento autotimonante, compuesta por una estructura recta que se monta inclinada sobre la
HOJA DE SUSTITUCIÓN (REGLA 26) columna, al objeto de desequilibrarla bajo la acción del viento lateral y conferirle la condición de autotimonante, que cuando debe bascular por efecto del empuje axial, basculan a la vez rotor, cabeza, estructura y contrapeso
(Figura 7) .
9) Turbina eólica de acuerdo en todo con las reivindicaciones anteriores, caracterizada porque la parte superior de la estructura autotimonante puede ser basculada a voluntad permitiendo descender su cabeza y rotor, facilitando las operaciones de montaje y mantenimiento que se realizan a menor altura. Ambas ejecuciones (Barlovento y Sotavento) pueden permanecer
"acostadas" en épocas no productivas, minimizando su impacto ambiental (Figura 8).
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2002/000303 2001-06-12 2002-06-11 Turbina eolica autotimonante WO2002101234A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002314219A AU2002314219B2 (en) 2001-06-12 2002-06-11 Self-steering wind turbine
DE60210279T DE60210279T2 (de) 2001-06-12 2002-06-11 Selbststeuernde windturbine
EP02740780A EP1400688B1 (en) 2001-06-12 2002-06-11 Self-steering wind turbine
MXPA03011528A MXPA03011528A (es) 2001-06-12 2002-06-11 Turbina eolica autotimonante.
US10/733,429 US6974307B2 (en) 2001-06-12 2003-12-11 Self-guiding wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200101404 2001-06-12
ES200101404A ES2179785B1 (es) 2001-06-12 2001-06-12 Turbina eolica autotimonante.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/733,429 Continuation US6974307B2 (en) 2001-06-12 2003-12-11 Self-guiding wind turbine

Publications (1)

Publication Number Publication Date
WO2002101234A1 true WO2002101234A1 (es) 2002-12-19

Family

ID=8498094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000303 WO2002101234A1 (es) 2001-06-12 2002-06-11 Turbina eolica autotimonante

Country Status (10)

Country Link
US (1) US6974307B2 (es)
EP (1) EP1400688B1 (es)
CN (1) CN1304753C (es)
AT (1) ATE321947T1 (es)
AU (1) AU2002314219B2 (es)
DE (1) DE60210279T2 (es)
ES (1) ES2179785B1 (es)
MX (1) MXPA03011528A (es)
PT (1) PT1400688E (es)
WO (1) WO2002101234A1 (es)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
ES2297998B1 (es) * 2005-10-28 2009-07-20 GAMESA INNOVATION & TECHNOLOGY, S.L. Pala partida para aerogeneradores.
US7276809B2 (en) * 2006-01-04 2007-10-02 Aerovironment, Inc. Wind turbine assembly and related method
FR2902158B1 (fr) * 2006-06-07 2008-08-22 Societe Francaise Des Alizes Sarl Eolienne munie d'un mat articule
US7569943B2 (en) * 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
CN100460669C (zh) * 2007-02-08 2009-02-11 上海交通大学 基于风向标和输出功率的风力机偏航控制方法
FR2918420B1 (fr) * 2007-07-02 2017-07-07 Serameca Eolienne dotee d'un mat rabattable
US20090167023A1 (en) * 2007-12-27 2009-07-02 Jacob Johannes Nies Forward leaning tower top section
FR2929345B1 (fr) * 2008-03-26 2017-06-23 Tecddis Dispositif de roulement pour nacelle d'eolienne
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
EP2280841A2 (en) 2008-04-09 2011-02-09 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
WO2010098814A1 (en) * 2009-02-28 2010-09-02 Ener2 Llc Improved wind energy device
WO2010105155A2 (en) 2009-03-12 2010-09-16 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8841794B2 (en) 2009-06-30 2014-09-23 Tempero 2000 S.L. Wind turbine with compensated motor torque
US20110044811A1 (en) * 2009-08-20 2011-02-24 Bertolotti Fabio P Wind turbine as wind-direction sensor
US7891939B1 (en) * 2009-09-05 2011-02-22 Zuteck Michael D Hybrid multi-element tapered rotating tower
US8562300B2 (en) * 2009-09-14 2013-10-22 Hamilton Sundstrand Corporation Wind turbine with high solidity rotor
DE102009051117B4 (de) * 2009-10-28 2014-12-11 Voith Patent Gmbh Horizontalläufer-Turbine mit passiver Gierwinkel-Einstellvorrichtung
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
GR1007431B (el) * 2010-01-08 2011-10-12 Μυρων Ιωαννη Νουρης Ανεμογεννητρια κατακορυφου αξονα με πτερυγια αναστολης υπερβολικης ταχυτητας
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8277184B2 (en) * 2010-04-22 2012-10-02 General Electric Company Tilt adjustment system
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
EP2715075A2 (en) 2011-05-17 2014-04-09 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US9046076B1 (en) * 2014-03-18 2015-06-02 Umm Al-Qura University Rail mounted wind turbine
EP3163073A4 (en) * 2014-06-27 2018-02-21 Nabrawind SL Device for changing the angle of inclination in wind turbines
CN105480407A (zh) * 2014-10-07 2016-04-13 姚元恺 旋转桨叶的叶端喷推技术
WO2016057107A1 (en) * 2014-10-11 2016-04-14 Richard Von Berg Spacer for wind turbine rotor blade
US9592910B1 (en) 2015-12-18 2017-03-14 Amazon Technologies, Inc. Geometrically reconfigurable propellers
US10287006B1 (en) * 2015-12-18 2019-05-14 Amazon Technologies, Inc. Adjustable propeller blades for sound control
US10370098B1 (en) * 2015-12-18 2019-08-06 Amazon Technologies, Inc. Adjustable propeller blade with sound flaps
EP4058670B1 (en) * 2019-11-12 2023-06-14 Vestas Wind Systems A/S A hinged blade wind turbine with tilted axis and/or coned rotor
CN111173676A (zh) * 2020-02-19 2020-05-19 扬州大学 一种背风型风力机
CN114184807B (zh) * 2021-10-20 2024-07-05 华能中电威海风力发电有限公司 一种基于物联网的风速风向监测系统
NL2033890B1 (nl) * 2023-01-02 2024-07-12 Lieyafan Beheer Bv Windmolen zonder een toren of lange schuinstaande as

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2916878A1 (de) * 1979-04-26 1980-11-06 Ernst Rogge Windkraftanlage
US4242043A (en) * 1977-07-22 1980-12-30 Poulsen Peder Ulrik Windmill
US4449889A (en) * 1983-01-20 1984-05-22 Belden Ralph A Windmill
US4533297A (en) * 1982-09-15 1985-08-06 Bassett David A Rotor system for horizontal axis wind turbines
US4630996A (en) * 1983-09-22 1986-12-23 Ken Hayashibara Windmill
DE4029932A1 (de) * 1990-09-21 1992-03-26 Siegfried Pretzsch Rohr-mast fuer windgeneratoren
ES2065803A2 (es) * 1992-02-24 1995-02-16 Antoune Ivan Lahuerta Turbina eolica pendular de potencia regulable por empuje axial.
WO2000036299A1 (de) * 1998-12-16 2000-06-22 Obec Domanín Anlage zur nutzung der windenergie

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295793A (en) * 1992-03-02 1994-03-22 Telect, Inc. Wind turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242043A (en) * 1977-07-22 1980-12-30 Poulsen Peder Ulrik Windmill
DE2916878A1 (de) * 1979-04-26 1980-11-06 Ernst Rogge Windkraftanlage
US4533297A (en) * 1982-09-15 1985-08-06 Bassett David A Rotor system for horizontal axis wind turbines
US4449889A (en) * 1983-01-20 1984-05-22 Belden Ralph A Windmill
US4630996A (en) * 1983-09-22 1986-12-23 Ken Hayashibara Windmill
DE4029932A1 (de) * 1990-09-21 1992-03-26 Siegfried Pretzsch Rohr-mast fuer windgeneratoren
ES2065803A2 (es) * 1992-02-24 1995-02-16 Antoune Ivan Lahuerta Turbina eolica pendular de potencia regulable por empuje axial.
WO2000036299A1 (de) * 1998-12-16 2000-06-22 Obec Domanín Anlage zur nutzung der windenergie

Also Published As

Publication number Publication date
ES2179785A1 (es) 2003-01-16
CN1304753C (zh) 2007-03-14
PT1400688E (pt) 2006-08-31
ATE321947T1 (de) 2006-04-15
US20040120801A1 (en) 2004-06-24
MXPA03011528A (es) 2004-10-28
EP1400688A1 (en) 2004-03-24
EP1400688B1 (en) 2006-03-29
CN1526054A (zh) 2004-09-01
DE60210279T2 (de) 2006-12-14
ES2179785B1 (es) 2006-10-16
AU2002314219B2 (en) 2006-04-27
US6974307B2 (en) 2005-12-13
DE60210279D1 (de) 2006-05-18

Similar Documents

Publication Publication Date Title
WO2002101234A1 (es) Turbina eolica autotimonante
US10871149B2 (en) Floating marine wind turbine
EP1861619B1 (en) Tension wheel in a rotor system for wind and water turbines
AU2008249241B2 (en) Coaxial multi-rotor wind turbine
EP1407139B1 (en) Coaxial multi-rotor wind turbine
US10844834B2 (en) Floating wind turbine having twin vertical-axis turbines with improved efficiency
EP2556244B1 (en) Wind energy conversion device
US7993096B2 (en) Wind turbine with adjustable airfoils
AU2002322125A1 (en) Coaxial multi-rotor wind turbine
US20120121379A1 (en) Tower type vertical axle windmill
US8137052B1 (en) Wind turbine generator
US20100158697A1 (en) Multi-rotor vertical axis wind turbine
US9041240B2 (en) Wind turbine apparatus
US20110272948A1 (en) Wind Driven Power Generator
US7766602B1 (en) Windmill with pivoting blades
KR100893299B1 (ko) 수직축 방식의 풍력발전장치
CN102121453A (zh) V型立式风车
CN114576091A (zh) 一种漂浮偏航式抗台风型风力发电装置和台风防御方法
CN2911236Y (zh) 立轴多叶风轮万向式低微风力发电机组
KR20130009937A (ko) 날개각도 제어기능을 갖는 수직축 풍력발전시스템
KR20120028500A (ko) 날개각도 제어기능을 갖는 수직축 풍력발전시스템

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002740780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/011528

Country of ref document: MX

Ref document number: 10733429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002314219

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20028138104

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002740780

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002740780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP