WO2002097908A2 - Interconnecteur pour pile a combustible - Google Patents

Interconnecteur pour pile a combustible Download PDF

Info

Publication number
WO2002097908A2
WO2002097908A2 PCT/DE2002/001686 DE0201686W WO02097908A2 WO 2002097908 A2 WO2002097908 A2 WO 2002097908A2 DE 0201686 W DE0201686 W DE 0201686W WO 02097908 A2 WO02097908 A2 WO 02097908A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
interconnector
bores
cell stack
Prior art date
Application number
PCT/DE2002/001686
Other languages
German (de)
English (en)
Other versions
WO2002097908A3 (fr
Inventor
Jürgen Schüle
Helmut Ringel
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2002097908A2 publication Critical patent/WO2002097908A2/fr
Publication of WO2002097908A3 publication Critical patent/WO2002097908A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an interconnector for a fuel cell, in particular for a high-temperature fuel cell.
  • High-temperature fuel cells typically work with hydrogen as fuel and air as oxidant, with the hydrogen being reformed externally or internally from methane.
  • Air and fuel gas are electrochemically burned in a fuel cell to generate electrical energy. In a high-temperature fuel cell, this combustion takes place in the range between 700 and 1000 ° C. It is particularly important that the fuel cell is well defined and evenly supplied with air or fuel gas, so that despite the exothermic and, when using CH 4 , endothermic processes that take place at the Run off fuel cell, a temperature distribution as uniform as possible is given over the entire fuel cell. As a result, a maximum electrical power is delivered for a specific desired operating temperature and the material stress on the stacked materials is minimized.
  • the fuel cells are first integrated and sealed in a frame-like interconnector.
  • This represents the basic element for the SOFC stack.
  • the overall stack is created by stacking the basic elements. With this stacking, the gas supply and disposal rooms are formed by corresponding cutouts in the fuel cell frame.
  • the electrical potential is present at the interconnectors, which in turn must be electrically isolated from one another. In this construction, leaks are regularly reduced, since flat seals of the same type can advantageously be used.
  • a high-temperature fuel cell is operated in the so-called cross-flow of air and fuel gas.
  • the air or the fuel gas enters a distribution space on one side of the cell, flows through the cathode or anode space of the cell and is collected and discharged again in a gas collection space on the other side of the cell. This is sufficient for small cells
  • the object of the invention is to provide an interconnector for a fuel cell with which an improved uniform parallel flow distribution of the individual gases can be generated and which at the same time enables a very compact structure of the fuel cell. Furthermore, it is an object of the invention to provide an effective fuel cell stack which enables a compact structure. Another object of the invention is to provide a method for operating such a fuel cell stack. The object is achieved by an interconnector for a fuel cell with the entirety of the features according to main claim, a fuel cell stack according to secondary claim 5, and by a method according to secondary claim 10. Advantageous configurations result from the claims which refer back to them.
  • the interconnector according to the invention for a high-temperature fuel cell has two cutouts on the top and two cutouts on the bottom. These recesses result in closed rooms when covering, for example with a metal sheet. When used in a fuel cell, they then form gas distribution rooms or gas collection rooms.
  • parallel channels are arranged on the top and bottom sides, which connect the cutouts on one side of the interconnector.
  • the interconnector has bores that run almost vertically from the top of the interconnector to the bottom. Each of these holes ends in a recess. According to the invention, two bores open into at least one recess.
  • Bores in the sense of the invention are only to be understood as bores that are provided for the gas feedthrough. This should not be understood to mean openings that are only required for the assembly of a fuel cell stack.
  • interconnectors For the operation of a fuel cell, several interconnectors are stacked one above the other, which are separated by thin sheets and electrode-electrolyte units.
  • the bores are arranged in such a way that when the interconnectors are stacked on top of one another, they find a correspondence in an interconnector arranged above or below.
  • the cutouts are advantageously arranged such that a cutout to form a gas distribution space on one side of the interconnector corresponds to a cutout to form a gas collection space on the other side. In this way, identical interconnectors can advantageously be used to construct a fuel cell stack.
  • the aim of the arrangement of bores within the interconnector is to provide a fuel cell by stacking several interconnectors and membrane electrode units on top of one another, in which an improved flow of the gases used is achieved. Since the flow is preferably to be carried out in parallel, that is to say in countercurrent, only two sides of the fuel cell stack remain for the supply and discharge of the fuel gas and the supply and discharge of the oxidizing agent.
  • the interconnector according to the invention provides at least two bores for a gas distribution space. These are advantageously arranged in the flow direction of the gas on the right and left in the gas distribution space. This arrangement has the effect that the gas in the gas distribution space is advantageously distributed, and so similar conditions at the beginning of each parallel
  • the bores of the interconnectors are sensibly arranged in such a way that the gas supply of both gases, both the fuel gas and the oxidizing gas, is ensured when the interconnectors are assembled (stacked one on top of the other).
  • Mirror-image arrangements for the structures on the top and bottom of an interconnector are therefore particularly advantageous.
  • the oxidizing gas has a much larger volume flow than the fuel gas, the corresponding diameter of the holes for the individual types of gas can be adapted to it.
  • FIG. 1 shows an interconnector 1 of a fuel cell stack for countercurrent guidance, as is known from the Japanese company Tokio-Gas.
  • Air collection space 3 0 collected again and discharged via an air discharge opening 5. It is thereby achieved that the flow lines in the entire flow space are approximately of the same length and thus a uniform flow distribution is to be established. However, since the inflow or outflow from the cathode compartment of the cell are essentially different flow processes (diffusion, nozzle) there are significant flow differences in the individual air channels in the cathode compartment. The same applies to the anode side.
  • FIG. 2 shows the problem solution according to the invention for an interconnector of a fuel cell with a parallel flow of air and fuel gas.
  • a uniform flow in the individual air channels (or fuel gas channels) 8 0 , 8 U is achieved in that the air is introduced into a gas distribution space 2 0 , 2 U through two bores 4, 4a, 6, 6a and in the gas collection space 3 opposite 0 , 3 U is discharged again through a central bore 5, 7.
  • the two inlet openings 4, 4a and 6, 6a are arranged on the right and left, as seen in the direction of flow, of the inlet space 2 a , 2 U , whereas the outlet opening 5, 7 in the gas collection space 3 0 , 3 U is arranged in the center.
  • a symmetrical flow formation is given. This is a particular problem when designing the internal gas supply and disposal for countercurrent air and fuel gas at the cells. With the positioning of the inlet and outlet openings (bores), the air can be distributed as evenly as possible over the individual air ducts. A similar but opposite flow guidance is provided for the fuel gas. On the other side of the interconnector, a recess for a gas collection space is opposite a recess for a gas distribution space, as indicated by the dashed lines.
  • the distributor lines for the supply and discharge of the fuel and the oxidation gas can thus advantageously be arranged in a simple manner on two sides of the fuel cell stack.
  • a corresponding version is also appropriate for cross-current flow when using large cells.
  • the air volume is usually flow is a multiple of the fuel gas volume flow. This fact can be taken into account by appropriately designing the distribution and collection spaces for the air or the fuel gas and by the size of the respective inlet and outlet openings.
  • FIG. 3 shows a two-line fuel cell stack for a parallel flow, which is constructed from bottom to top as follows. On a lower end plate, a frame-shaped sheet is arranged, in which an electrode-electrolyte unit is located.
  • the interconnector according to the invention is arranged above this.
  • the conclusion is again a frame-shaped sheet with another electrode-electrolyte unit and an upper end plate.
  • the end plates are constructed similarly to the interconnector according to the invention, but have the cutouts and channels only on the side facing the stack. This arrangement results in a two-line fuel cell stack.
  • the arrows mark the different paths of the fuel and the oxidizing gas through this fuel cell stack.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne un interconnecteur pour un empilement de piles à combustible haute température. Il est avantageux que cet interconnecteur comprenne au moins deux orifices d'entrée de gaz (4, 4a), dans un espace de distribution de gaz (2o), et un orifice de sortie de gaz (5), dans un espace de collecte de gaz (3o). Des canaux parallèles (8o) sont montés entre ces deux orifices. Un tel guidage de l'écoulement du gaz lors de son entrée ou de sa sortie permet d'obtenir un écoulement particulièrement homogène dans chaque canal parallèle, puisqu'il n'y a aucune turbulence, ni aucune influence des tuyères aussi bien dans l'espace de distribution de gaz que dans l'espace de collecte de gaz. L'empilement de plusieurs interconnecteurs permet d'obtenir une pile à combustible de construction compacte, conçue pour un écoulement en parallèle, qui présente un meilleur guidage de l'écoulement du gaz, par rapport à la technique antérieure, ce qui permet d'obtenir un rendement plus élevé.
PCT/DE2002/001686 2001-05-31 2002-05-10 Interconnecteur pour pile a combustible WO2002097908A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10126723A DE10126723A1 (de) 2001-05-31 2001-05-31 Interkonnektor für eine Brennstoffzelle
DE10126723.1 2001-05-31

Publications (2)

Publication Number Publication Date
WO2002097908A2 true WO2002097908A2 (fr) 2002-12-05
WO2002097908A3 WO2002097908A3 (fr) 2003-10-16

Family

ID=7686894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001686 WO2002097908A2 (fr) 2001-05-31 2002-05-10 Interconnecteur pour pile a combustible

Country Status (2)

Country Link
DE (1) DE10126723A1 (fr)
WO (1) WO2002097908A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816050B2 (en) 2007-02-16 2010-10-19 Daimler Ag Unit cell header flow enhancement

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878477B2 (en) * 2001-05-15 2005-04-12 Hydrogenics Corporation Fuel cell flow field plate
US20050186458A1 (en) 2003-09-22 2005-08-25 Ali Rusta-Sallehy Electrolyzer cell stack system
US20050183948A1 (en) 2003-09-22 2005-08-25 Ali Rusta-Sallehy Apparatus and method for reducing instances of pump de-priming
FR2874129A1 (fr) * 2004-08-04 2006-02-10 Helion Sa Systeme de distribution des fluides dans une pile a combustible
DE102010020178A1 (de) 2010-05-11 2011-11-17 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Herstellung einer metallischen Biopolarplatte, Bipolarplatte sowie Brennstoffzellenstapel und Verfahren zu dessen Herstellung
EP3376575B1 (fr) 2017-03-16 2020-04-29 Hexis AG Procédé de fabrication d'un interconnecteur métallique pour un empilement de piles à combustible, interconnecteur métallique fabriqué selon le procédé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0668622A1 (fr) * 1994-02-19 1995-08-23 ROLLS-ROYCE plc Une batterie de pile à combustible à base d'oxydes solides
DE19607947C1 (de) * 1995-11-09 1997-06-19 Mtu Friedrichshafen Gmbh Schmelzkarbonat-Brennstoffzelle
EP1020942A1 (fr) * 1997-05-14 2000-07-19 SANYO ELECTRIC Co., Ltd. Cellule electrochimique a polymere solide permettant de fournir de maniere constante d'excellentes caracteristiques de production d'energie
WO2002023645A2 (fr) * 2000-09-14 2002-03-21 H Power Enterprises Of Canada Inc. Ensemble plaque bipolaire de separation pour piles a combustible

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210867A (ja) * 1985-07-05 1987-01-19 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレ−タ
JPS6276260A (ja) * 1985-09-30 1987-04-08 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用セパレ−タ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0668622A1 (fr) * 1994-02-19 1995-08-23 ROLLS-ROYCE plc Une batterie de pile à combustible à base d'oxydes solides
DE19607947C1 (de) * 1995-11-09 1997-06-19 Mtu Friedrichshafen Gmbh Schmelzkarbonat-Brennstoffzelle
EP1020942A1 (fr) * 1997-05-14 2000-07-19 SANYO ELECTRIC Co., Ltd. Cellule electrochimique a polymere solide permettant de fournir de maniere constante d'excellentes caracteristiques de production d'energie
WO2002023645A2 (fr) * 2000-09-14 2002-03-21 H Power Enterprises Of Canada Inc. Ensemble plaque bipolaire de separation pour piles a combustible

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 174 (E-513), 4. Juni 1987 (1987-06-04) -& JP 62 010867 A (ISHIKAWAJIMA HARIMA HEAVY IND CO LTD), 19. Januar 1987 (1987-01-19) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 275 (E-537), 5. September 1987 (1987-09-05) -& JP 62 076260 A (ISHIKAWAJIMA HARIMA HEAVY IND CO LTD), 8. April 1987 (1987-04-08) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816050B2 (en) 2007-02-16 2010-10-19 Daimler Ag Unit cell header flow enhancement

Also Published As

Publication number Publication date
WO2002097908A3 (fr) 2003-10-16
DE10126723A1 (de) 2002-12-12

Similar Documents

Publication Publication Date Title
DE102006019114B4 (de) Brennstoffzellensystem zur verbesserten Wasserstoff- und Sauerstoffverwendung
EP0876686B1 (fr) Cellule electrochimique refroidie par liquide et munie de canaux de distribution
DE102016107906A1 (de) Bipolarplatte aufweisend Reaktantengaskanäle mit variablen Querschnittsflächen, Brennstoffzellenstapel sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE112011101295T5 (de) Wärmemanagement in einem Brennstoffzellenstapel
DE102019206577A1 (de) Flussfeldplatte
DE19743067C2 (de) Strömungsmodul mit Strömungskammern für drei oder vier Fluide
WO2000031813A1 (fr) Pile a combustible avec introduction du combustible par une plaque perforee
DE102004058117B4 (de) Dickenoptimierte Bipolarplatte für Brennstoffzellenstapel sowie Bipolarplattenanordnung in einem Brennstoffzellenstapel
DE10243163A1 (de) Brennstoffzellenpaket
DE112004000156B4 (de) Brennstoffzellensystem zur Umwandlung von H2-Abgas von Brennstoffzellen und Verfahren
WO2002097908A2 (fr) Interconnecteur pour pile a combustible
DE102009037148B4 (de) Festoxid-Brennstoffzellen-System
DE102008005502A1 (de) Brennstoffzelle, insbesondere zur Anordnung in einem Brennstoffzellenstapel sowie Brennstoffzellenstapel
EP1750321B1 (fr) Procédé d'opération d'un ensemble de piles à combustible avec un mélange gazeux comprenant une proportion d'un gaz inerte et une proportion d'un gaz de réaction et batterie de piles à combustible pour celui-ci
DE102016200398A1 (de) Bipolarplatte für Brennstoffzellen mit drei Einzelplatten, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102016200055A1 (de) Flussfeldplatte und Bipolarplatte sowie Brennstoffzelle
DE10112074A1 (de) Brennstoffzelle mit gleichmäßiger Verteilung von Betriebsmitteln
DE10113001A1 (de) Brennstoffzelle mit optimierter Reaktandenverteilung
DE102005026909B4 (de) Brennstoffzellenstapel und Separatorplatte zur gleichmäßigen Reaktandendurchflussmengenverteilung
DE10233982A1 (de) Bipolare Platte für eine Brennstoffzelle
DE10110819B4 (de) Verfahren zum Betreiben einer Brennstoffzelle
DE102005053634A1 (de) Brennstoffzelle mit integrierter Nachverbrennung
DE102022103985B3 (de) Bipolarplatte, Brennstoffzellenvorrichtung und Verfahren zum Betreiben der Brennstoffzellenvorrichtung
DE102019203321A1 (de) Brennstoffzellenplatte, Brennstoffzellenaufbau und Brennstoffzellensystem
EP1665443B1 (fr) Pile a combustible, et module de pile a combustible correspondant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase