WO2002095197A1 - Dispositif d'echappement comportant des moyens pour purifier les gaz d'echappement d'un moteur diesel - Google Patents

Dispositif d'echappement comportant des moyens pour purifier les gaz d'echappement d'un moteur diesel Download PDF

Info

Publication number
WO2002095197A1
WO2002095197A1 PCT/JP2002/004974 JP0204974W WO02095197A1 WO 2002095197 A1 WO2002095197 A1 WO 2002095197A1 JP 0204974 W JP0204974 W JP 0204974W WO 02095197 A1 WO02095197 A1 WO 02095197A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
temperature range
engine
exhaust gas
intake
Prior art date
Application number
PCT/JP2002/004974
Other languages
English (en)
French (fr)
Inventor
Toshitaka Minami
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Priority to EP02730692A priority Critical patent/EP1389674A4/en
Priority to US10/333,634 priority patent/US6823661B2/en
Publication of WO2002095197A1 publication Critical patent/WO2002095197A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/10Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying inlet or exhaust valve timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying apparatus for removing particulates in exhaust gas of a diesel engine.
  • PM Patty Cattle Urate
  • DPF Diesel Particulate Filter
  • the collected PM accumulates on the DPF installed in the vehicle equipped with the diesel engine as the engine is repeatedly operated, and it is necessary to regenerate the DPF by burning the collected PM. .
  • As a means for this regeneration there is a method in which PM is burned by heating with an electric heater or a wrench, etc. According to this method, multiple DPFs are arranged in parallel in the exhaust passage to alternately collect and burn. The system to be performed.
  • the oxidation catalyst ' is disposed in the exhaust passage upstream of the DPF, by oxidizing N 0 in the exhaust gas to N_ ⁇ 2 by the oxidation catalyst, the N 0 2
  • a method of continuously burning while collecting PM that is, a so-called continuous regeneration type DPF has also been studied, and is disclosed in, for example, Japanese Patent No. 3012249.
  • an N.X storage / reduction catalyst described in Japanese Patent No. 2604002 is supported on the DPF to store and reduce N0X.
  • a method of continuously burning collected PM using the generated active oxygen is also known.
  • these continuous regenerative DPFs burn PM in a low temperature range of 250 ° to 400 ° C (it fluctuates somewhat depending on the catalyst material), so special heaters such as electric heaters and burners are used. It is not necessary to provide a simple heating means, It has the advantage that it can be implemented.
  • PM can be burned in the so-called catalyst active temperature range which can be easily achieved by the engine exhaust gas temperature, but it does not fall into this temperature range depending on the operating state of the engine. Operating conditions can occur. In particular, when the engine load is low, the exhaust gas temperature may not rise and reach 250 ° C. In addition, when the engine load is high, the exhaust gas temperature may exceed the active temperature range, and continuous combustion of PM cannot be performed. was there.
  • the exhaust gas temperature does not enter the active temperature region of the catalyst, and unless the PM collected by the DPF is burned, the PM is not burned to the DPF and is accumulated as collected.
  • the PM changes the operating state of the engine and enters the active temperature region of the catalyst, the PM is burned by the above-described action.
  • the combustion temperature of the PM reaches 2000 ° C., which causes a problem such as melting of the filter body.
  • the continuous regeneration type DPF performs regeneration continuously when exhaust gas flows while collecting PM. Therefore, it is important to keep the exhaust gas temperature in the above-mentioned catalyst active temperature range, because if the DPF is continuously regenerated continuously during engine operation, the temperature will not reach the temperature that would cause erosion. .
  • Japanese Patent Application No. 2000-1855897 discloses that an intake throttle valve and a variable turbocharger as air amount adjusting means are provided, and the intake throttle valve is throttled.
  • the exhaust gas temperature is controlled by reducing the intake air amount and controlling the variable air conditioner to increase the intake air amount.
  • Japanese Patent Application No. 2001-792926 discloses that the so-called EGR passage that communicates from the exhaust passage of the engine to the intake passage and the EGR valve that controls the passage area of the EG passage provides exhaust gas. Controls the flow rate of EGR gas that is recirculated from the recirculation (EGR) passage to the suction passage, and further restricts the amount of intake air by the intake shutter in the intake passage and the exhaust shutter in the exhaust passage. This controls the exhaust gas temperature.
  • EGR recirculation
  • the diesel engine is a well-known combustion system using compression self-ignition.
  • the intake air is compressed based on the cylinder bore diameter and the compression ratio of the cylinder defined by the piston stroke, and fuel is injected into the cylinder heated by compression to raise the temperature of the fuel itself. Self-ignites while evaporating.
  • the above-described method of reducing the amount of intake air impedes the temperature rise of the intake air due to compression and creates conditions that make it difficult for self-ignition to occur.
  • incomplete combustion in the cylinder is induced, and new problems such as emission of unburned H C (hide ⁇ carbon) occur.
  • Fig. 9 is a graph showing the effect of reducing the intake shutter.
  • the vertical axis shows the exhaust temperature C) and HC (X100 ppm), and the horizontal axis shows the intake air volume [kg / h].
  • the amount of intake air is limited by gradually reducing the intake shutter.
  • the solid line in the graph shows the so-called conventional change in exhaust temperature and the measurement of HC contained in exhaust gas when only the intake shutter is operated.
  • the measurement data of Figure 9, with 3 Li jitter one diesel engine of 4-cylinder, operating state engine speed (N e) 1 0 0 0 r pms fuel injection amount (Q) of 1 0 mm 3 /
  • the exhaust temperature was detected as the exhaust manifold outlet temperature.
  • the present invention has been made in view of the above points, and its main technical problem is that in a diesel engine exhaust purification device equipped with a continuously regenerating type DPF, an operation state in which the exhaust gas temperature is low without deteriorating combustion. Even in this case, the exhaust gas temperature is raised to continuously promote the combustion of PM in the continuously regenerating DPF, so that the PM is prevented from accumulating in the DPF. Disclosure of the invention
  • a diesel exhaust purifying apparatus including a continuous regeneration type diesel-powered particulate filter disposed in an exhaust passage of an engine.
  • An intake shutter located in the intake passage of the engine
  • Exhaust temperature range detection means for detecting an exhaust temperature range of the engine
  • control means for controlling the opening degree of the intake shutter to be narrowed
  • An exhaust valve operating mechanism having an exhaust introducing mechanism for opening an exhaust valve of the engine for a short period of time during an intake stroke, and an exhaust gas purifying apparatus for a diesel engine.
  • an exhaust gas purifying apparatus for a diesel engine including a continuous regeneration diesel particulate filter disposed in an exhaust passage of the engine,
  • An intake shutter located in the intake passage of the engine
  • An exhaust introduction mechanism that opens the exhaust passage to the cylinder during the intake stroke
  • Exhaust temperature range detection means for detecting an exhaust temperature range of the engine; If the exhaust gas temperature range of the engine detected by the exhaust gas temperature range detecting means is lower than a predetermined temperature range, the opening degree of the intake shutter is reduced and the exhaust gas introducing device ⁇ i is operated. And an exhaust gas purifying apparatus for a diesel engine.
  • the control means reduces the opening degree of the intake shutter as the temperature range becomes lower. It is desirable to control it.
  • An exhaust shutter is provided in the exhaust passage to narrow the exhaust passage, and the control means is configured to open the exhaust shutter when the exhaust temperature detected by the exhaust temperature region detecting means is in a low temperature range. It is desirable to control so as to narrow down.
  • the opening degree of the exhaust shutter is controlled stepwise so as to decrease as the temperature region decreases.
  • FIG. 1 is a block diagram of a configuration of a diesel engine exhaust gas purification apparatus configured according to the present invention.
  • FIG. 2 is a diagram showing an embodiment of an exhaust gas introduction mechanism according to the present invention.
  • FIG. 3 is a diagram showing lift curves of an intake valve and an exhaust valve in the configuration of FIG.
  • FIG. 4 is a view showing another embodiment of the exhaust gas introducing mechanism according to the present invention.
  • FIG. 5 is an exhaust gas temperature range map according to the present invention.
  • FIG. 6 is a control map for each exhaust gas temperature range in the present invention.
  • FIG. 7 is an opening control map of the intake and exhaust shutters according to the present invention.
  • FIG. 8 is a control flowchart of control means in the present invention.
  • Fig. 9 is a graph showing the effects of the intake shutter, exhaust two-stage cam, and exhaust shutter.
  • the engine shown in Fig. 1 consists of a cylinder block and a cylinder head.
  • the main body 2 is provided with an intake manifold 3 forming part of an intake passage and an exhaust manifold 4 forming part of an exhaust passage.
  • the intake manifold 3 is connected to an intake pipe 5 constituting a part of an intake passage, and an air cleaner 6 for purifying intake air is arranged at the most upstream portion of the intake pipe 5. .
  • the intake air purified by the air cleaner 6 passes through the intake pipe 5 and is supplied to the cylinder 1 as shown in FIG.
  • An exhaust pipe 7 forming a part of an exhaust passage is connected to the exhaust manifold 4, and the exhaust gas generated in the cylinder 1 is exhausted through the exhaust manifold 4 and the exhaust pipe 7.
  • the exhaust pipe 5 is provided with an intake shutter 9, and the exhaust pipe 7 is provided with an exhaust shutter 11.
  • Each of the intake shutter 9 and the exhaust shutter 11 includes an air actuator connected to an air tank (not shown), and the control means 10 controls the actuator.
  • the exhaust pipe 7 of the diesel engine shown in the figure includes a continuously regenerating diesel particulate filter (continuously regenerating DPF) 1 and an N 0 X catalyst, which consist of an oxidation catalyst 121 and a DPF 122 in this order from the upstream side. 14 are arranged.
  • the oxidation catalyst 122 is formed, for example, by coating activated alumina or the like on the surface of a honeycomb-shaped carrier or a carrier made of heat-resistant steel to form a wet coat layer, and forming a white coat layer on the coat layer. What carries a catalytically active component composed of a noble metal such as gold, palladium or rhodium is used.
  • the oxidation catalyst 1 2 1, together with to produce N_ ⁇ 2 by oxidizing N_ ⁇ in the exhaust gas, is oxidized to produce H 2 0 and C 0 2 of HC and CO in the exhaust gas.
  • the DPF 122 is a so-called wall-flow type honeycomb filter in which a large number of cells are formed in parallel with, for example, porous cored light or silicon carbide, and the inlets and outlets of the cells are alternately closed.
  • a fibrous filter made by winding ceramic fibers in multiple layers around a stainless steel perforated tube is used to trap PM in exhaust gas.
  • the NO x catalyst 1 4 the configuration and components can be used similar as the above oxidation catalyst 1 2 1, is based on changing the N_ ⁇ _X such N 0 in the exhaust gas to N 2 and H 2 0.
  • Such continuous regeneration type DPF 1 2 may flow into the N 0 in the exhaust gas by the oxidation catalyst 1 2 1 is oxidized to N 0 2, the DPF 1 2 2 which is disposed downstream of the oxidation catalyst 1 2 1 burning the PM collected by the N 0 2 to.
  • the diesel engine shown is an engine speed (Ne) sensor 15 that detects the engine speed, an accelerator sensor 16 that detects the amount of accelerator pedal depression (accelerator opening: ACL), and an intake manifold.
  • the intake air temperature sensor 17 is provided in the cylinder 3 and detects the temperature of the intake air drawn into the cylinder.
  • the exhaust temperature sensor 8 is provided in the exhaust pipe 7 and detects the exhaust temperature.
  • Control means 10 is provided for controlling the amount of fuel injected into the cylinder by a fuel injection device (not shown) based on the detection signal.
  • the control means 10 includes a memory storing a fuel injection amount map (not shown) in which a combustion injection amount (not shown) is set using the engine rotation speed and the accelerator opening as parameters.
  • the engine rotation speed detection sensor 15 and The basic fuel injection amount is determined based on the detection signal from the accelerator sensor 16. Then, the control means 10 corrects the basic fuel injection amount based on the detection value of the intake air temperature sensor 15 to determine the final fuel injection amount. It should be noted that the final fuel injection amount can be corrected as needed by referring to not only the intake air temperature but also various other parameters (such as atmospheric pressure and smoke limit injection amount).
  • the diesel engine of this embodiment is provided with an exhaust introduction mechanism (so-called exhaust two-stage cam mechanism) that opens the exhaust passage of the cylinder during the intake stroke to the cylinder.
  • FIG. 2 shows an intake valve 30 and an intake valve operating mechanism 31, and an exhaust valve 40 and an exhaust valve operating mechanism 41.
  • the exhaust valve mechanism 42 that constitutes the exhaust valve operating mechanism 41 is a normal force filter that activates the exhaust valve 40 during the exhaust stroke, and the cam profile 4 21 and the rear side in the rotational direction.
  • An exhaust introduction camp 1 o file 422 formed with a phase angle of about 90 ° is provided. As shown in FIG.
  • the exhaust power mechanism 42 constructed as described above has an exhaust valve lift curve (1) by the cam profile 421, and an exhaust valve lift curve (1) during the intake stroke (the intake valve assembly by the intake valve operating mechanism 31).
  • the exhaust valve 40 is operated with the exhaust valve lift curve (2) based on the exhaust introduction cam profile 4 22 in a short period of time (during the period when the foot force is high). Therefore
  • the exhaust introduction cam profile 42 formed on the exhaust cam 42 serves as an exhaust introduction mechanism for introducing exhaust gas into the cylinder during the intake stroke. Function.
  • the lift amount of the exhaust valve 40 by the exhaust introduction cam profile 422 may be about l to 3 mm.
  • the exhaust cam constituting the exhaust valve operating mechanism 41 is provided.
  • the exhaust introduction mechanism 50 in the embodiment shown in FIG. 4 includes an exhaust introduction valve 51 for opening the exhaust passage in the same cylinder to the cylinder during the intake stroke, and an exhaust introduction valve 50 for the exhaust cylinder. It consists of an electromagnetic solenoid 52 that operates. Exhaust introduction mechanism configured as above
  • the embodiment shown in FIG. 1 includes an exhaust gas temperature range detecting means for detecting an exhaust gas temperature range of a diesel engine.
  • the exhaust temperature range detection means is described below.
  • the exhaust temperature of the engine is largely determined mainly by the fuel injection amount (load) supplied to the engine and the engine speed.
  • the control means 10 of the exhaust gas purifying apparatus in the illustrated embodiment has an exhaust temperature range map in which an engine speed and an engine load are parameters in an internal memory (not shown) as shown in FIG. From the engine speed and the amount of fuel destruction (load), it detects where the current exhaust gas temperature is. The region shown here indicates a temperature region of the temperature of the exhaust gas discharged from the cylinder.
  • the boundaries of X and YZ shown in FIG. 5 are mainly set by referring to the test results regarding the exhaust gas temperature of the engine when defining the map and the active temperature region of the oxidation catalyst 12.
  • the X region is a region higher than the activation temperature region of the oxidation catalyst 12
  • the Y region is a region included in the activation temperature region of the oxidation catalyst 12
  • the Z region is the activation temperature region of the oxidation catalyst 12.
  • the area is lower than the area.
  • this boundary line can be appropriately changed by the user depending on the operating characteristics of the diesel engine used and the characteristics of the catalyst used.
  • the above-mentioned temperature regions do not necessarily have to be three, and may be further subdivided, or two regions can be defined.
  • the control means 10 reads the engine speed signal (N e) and the accelerator opening signal (ACL) from the engine speed sensor 15 and the accelerator sensor 16 (step S 1), and reads a fuel injection amount map (not shown). The fuel injection amount is determined with reference to (Step S2).
  • the control means 10 detects the fuel injection amount at this time as a load Q of the engine.
  • the control means 10 performs the operation shown in FIG. 5 based on the engine load and the engine rotation speed detected as described above.
  • the current exhaust temperature range is detected from the exhaust temperature range map (step S3).
  • the control means 10 controls the intake shutter 9 and the exhaust shutter 11 according to the control map shown in FIG. 6 based on the current exhaust temperature range. Control.
  • the control means 10 opens the intake shutter 9 and the exhaust shutter 11 fully according to the control map of FIG. Step S5). Then, the control means 10 executes the exhaust gas temperature lowering control (step S6).
  • the exhaust gas temperature lowering control may be performed, for example, by controlling the cooling of exhaust gas by cooling water, or may be performed by separately providing a means for increasing the amount of intake air by a mechanical supercharger (spar charger). Note that the exhaust gas temperature lowering control is not the main configuration of the present invention, and therefore the description is omitted.
  • the maps shown in (a) of FIG. 7 and (b) of FIG. 7 both divide the Z region of the map used for the exhaust temperature region detection means shown in FIG. The opening operation is set stepwise. "20% opening" means 80% closed with respect to the fully open position, and "5% opening” means 95% closed.
  • the exhaust valve 40 is opened during the intake stroke by the action of the exhaust introduction cam profile 42 of the exhaust cam 42 constituting the exhaust introduction mechanism shown in FIG. Exhaust gas is introduced inside.
  • the exhaust gas introduction mechanism 50 shown in FIG. 4 the electromagnetic solenoid 52 is driven during the intake stroke, the exhaust gas introduction valve 51 is opened, and exhaust gas is introduced into the cylinder. Is done.
  • the high-temperature exhaust gas in the exhaust passage flows back into the cylinder during the intake stroke, so that the exhaust temperature is raised as a result. .
  • the exhaust temperature range is detected based on the engine rotation speed and the load.
  • the exhaust temperature range may be detected by the exhaust temperature sensor 8 provided directly on the exhaust pipe 7 of the engine.
  • the oxidation catalyst and the DPF are described separately for the continuous regeneration type DPF, but the continuous regeneration type DPF is constructed integrally with the DPF directly supporting the material to be the oxidation catalyst.
  • the present invention is similarly applicable to a continuously regenerating DPF in which an X storage reduction catalyst is supported on a DPF, or another continuous regenerating DPF that uses a catalyst that functions effectively and has a limited temperature range. Needless to say. Industrial applicability
  • the exhaust purification device for a diesel engine based on the present invention when the exhaust gas temperature becomes lower than the active temperature region of the catalyst, the intake air amount is reduced by operating the intake shutter and the intake stroke is reduced.
  • the intake air amount is reduced by operating the intake shutter and the intake stroke is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

明 細 書 ディーゼルェンジンの排気浄化装置 技術分野
本発明はディ一ゼルエンジンの排気ガス中のパティキュレー トを除去するため の排気浄化装置に関する。 背景技術
車両に搭載されたディ一ゼルェンジンの排気ガスに対する規制は年々強化され ており、 特に力一ボンを主成分とするパティ牛ユレ一ト (以下、 P M ) の低減が 急務となっている。 この P Mを除去する装置としてディ一ゼルパティキュレート フィルタ一 (以下、 D P F ) が知られており、 ディーゼルエンジンを搭載した車 両に D P Fを装備させることを義務づける動きも本格化している。
ところで、 ディーゼルエンジンを搭載した車両に装備された D P Fには、 ェン ジンが繰り返し運転されることによって捕集した P Mが堆積するため、 捕集した P Mを燃焼して D P Fを再生させる必要がある。 この再生の手段としては、 電気 ヒータやパーナ等で加熱して P Mを燃焼させ-る方式があり、 この方式によると排 気通路に複数の D P Fを並列に配設して捕集と燃焼を交互に行う システムとなる 。 また、 D P Fを再生させる別の手段として、 D P Fに対して上流側の排気通路 に酸化触媒を'配設し、 酸化触媒によって排気ガス中の N 0を N〇 2 に酸化させ、 N 0 2 によって P Mを捕集しながら連続的に燃焼させる方式、 所謂連続再生式 D P Fも検討されており、 例えば日本国特許第 3 0 1 2 2 4 9号等に開示されてい る。 また、 別の連続再生式 D P Fとしては日本国特許第 2 6 0 0 4 9 2号に記載 された N◦ X吸蔵還元型触媒を D P Fに担持させて、 N 0 Xを吸蔵、 還元する際 に発生する活性酸素を利用して捕集した P Mを連続的に燃焼させる方式も知られ ている。 いずれにしてもこれら連続再生式 D P Fは、 2 5 0 ° 〜 4 0 0 °Cの低い 温度領域 (触媒の材料により多少前後する) で P Mが燃焼するため、 電気ヒータ やバ一ナ等の特別な加熱手段を設ける必要がなく、 装置全体を簡易に且つコンパ ク トにできるという利点を有している。
しかし、 上記したようにエンジンの排気ガス温度によって容易に達成すること が出来るいわゆる触媒の活性温度領域の範囲で P Mの燃焼が可能になるものの、 エンジンの運転状態によってはこの温度範西に入らない運転状態が起こりうる。 特にエンジンの低負荷時には排気温度が上がらず 2 5 0 °Cに達しない場合があり 、 また高負荷時にも排気温度が活性温度領域以上になり P Mの連続的な燃焼をさ せることができない場合があった。
そして、 運転状態によって排気温度が触媒の活性温度領域に入らず、 D P Fに 捕集された P Mの燃焼が行われないと D P Fに P Mが燃焼されず捕集されたまま 蓄積されていく。 蓄積された P Mはエンジンの運転状態が変化し触媒の活性温度 領域に突入すると上記した作用により P Mが燃焼せしめられる。 このとき、 蓄積 された P Mがー気に燃焼を開始すると P Mの燃焼温度は 2 0 0 0 °Cにも達するた めフィルタ体の溶損等を引き起こし問題となっていた。
上記したように連続再生式 D P Fは P Mを捕集しながら排気ガスの流れがある ときに連続的に再生を行う。 したがってェンジンの運転中に常に連続的に D P F の再生を実施できていれば溶損を引き起こすような温度に達しない為、 排気ガス 温度を常に上記した触媒の活性温度領域に保つことが重要となる。
以上の問題を踏まえ、 本出願人は排気温度領域を触媒の活性温度領域に維持で きるように日本国特願 2 0 0 0 _ 1 8 5 8 9 7号、 日本国特願 2 0 0 1— 7 9 2 6 6号を提案した。
上記 2件の発明では、 排気ガス温度はエンジンのシリ ンダ内に吸入される空気 量に大きく影響され、 燃料に対する空気過剰率 ( λ ) が大きい状態から λ = 1 に 近づく ほど、 またシリ ンダ内に吸入される空気の温度が高いほど温度が高くなる (逆にすれば排気ガス温度は低下する) という知見に基づき提案されたものであ る。
即ち、 曰本国特願 2 0 0 0 - 1 8 5 8 9 7号は、 空気量調整手段としての吸気 スロ ッ トル弁および可変過給機を配設し、 吸気スロ ッ トル弁を絞ることにより吸 入空気量を減少せしめ、 可変過紿機を制御して吸入空気量を増加させることによ つて排気ガス温度をコント口一ルしたものである。 また、 日本国特願 2 0 0 1 - 7 9 2 6 6号は、 エンジンの排気通路から吸気通 路に連通するいわゆる E G R通路及び E G 通路の通路面積を制御する E G Rパ ルブを設けて排気ガス還流 (E GR) 通路から吸入通路側に還流される E G Rガ スの流量をコントロールし、 さらには吸気通路の吸気シャ ッタ、 及び排気通路の 排気シャ ツタにより吸入空気量を制限したりすることにより排気ガス温度をコン トロ一ルしたものである。
ディ一ゼルエンジンでは、 通常の場合吸入空気量のコント口ールは行われず、 低負荷である程、 つまり燃料噴射量が少ない時ほど空気過剰率 ( λ) が大きくァ ィ ドル運転時で; 1 = 1 0以上になる。 よって空気過剰率 (ス) を 1 に近づけるた めには吸入空気量をかなり絞らねばならない。
一方、 ディ一ゼルエンジンはよく知られているように圧縮自己着火による燃焼 システムである。 つまりシリ ンダのボア径とビス トンス トロークにより規定され るシリ ンダの圧縮比に基づき吸入空気を圧縮し、 圧縮により昇温されたシリ ンダ 内に燃料を噴射して燃料自体を昇温させ、 燃料が蒸発しながら自己着火する。 こ のため上記した吸入空気量を減らす手法は、 圧縮による吸入空気の昇温を阻害し 自己着火しずらい条件を作り出すことになつてしまう。 すなわち、 シリ ンダ内で の不完全な燃焼を誘発し未燃 H C (ハイ ド πカーボン) の排出など新たな問題が 発生する。
図 9は吸気シャ ッタを絞ることにより生ずる影響について示したグラフであり 、 縦軸に排気温度 C) と H C (X 1 0 0 p p m) を合わせて示し、 横軸には 吸入空気量 [k g/h] を示したものである。 吸入空気量は吸気シャ ツタを段階 的に絞ることにより制限される。 グラフ中の実線は吸気シャ ッタのみを作動させ た場合、 いわゆる従来における排気温度の変化と排気ガス中に含まれる H Cを計 測したものである。 なお、 図 9の計測データは、 4気筒の 3 リ ッタ一デイーゼル エンジンを用い、 運転状態がエンジン回転 (N e ) = 1 0 0 0 r pms 燃料噴射 量 (Q) を 1 0 mm3 /s t とし、 排気温度を排気マユホールド出口温度として 検出した。
図 9からわかるとおり吸気シャ ツタを絞らない場合は排気温度は 1 5 0 ° C程 度である。 ここから吸気シャ ッタを徐々に絞っていく と排気温度は徐々に上昇す る。 しかし、 吸入空気量が 8 0 k g / h付近から H Cが急激に上昇し 7 0〜 8 0 k g / hの間で既に H Cが 1 0 0 0 0 p P mを超えるような異常な燃焼状態とな る。 すると白煙として排気管から漏れ出し燃焼が正常に行われなくなり、 これ以 上吸気シャ ッタを絞っても排気温度を上昇させることが出来ない。 よって吸気シ ャ ッタだけでは十分に排気温度を上昇させることが出来ない。
本発明は以上の点に鑑みなされたものであり、 その主たる技術的課題は、 連続 再生式 D P Fを搭載したディ一ゼルヱンジンの排気浄化装置において、 燃焼を悪 化させること無く排気温度が低い運転状態おいても排気温度を昇温させて連続的 に連続再生式 D P Fの P Mの燃焼を促進するようにして D P F内に P Mが堆積し ないよう に改善するものである。 発明の開示
上記した技術的課題を解決するために、 本発明によれば、 エンジンの排気通路 に配置された連続再生式ディーゼルパティキユレ一 トフィルタを備えたディーゼ ルェンジンの排気浄化装置において、
エンジンの吸気通路に配置された吸気シャ ッタと、
エンジンの排気温度領域を検出する排気温度領域検出手段と、
該排気温度領域'検出手段により検出されたェンジンの排気温度領域が所定の温 度領域より低温領域となる場合には、 該吸気シャ ッタの開度を絞るように制御す る制御手段と、
吸気行程中に短期間エンジンの排気バルブを開弁する排気導入機構を備えた排 気バルブ作動機構と、 を有することを特徴とするディ一ゼルエンジンの排気浄化 装置が提供される。
また、 上記した技術的課題を解決するために、 本発明によれば、 エンジンの排 気通路に配置された連続再生式ディ一ゼルパティキユレ一トフィルタを備えたデ イーゼルエンジンの排気浄化装置において、
エンジンの吸気通路に配置された吸気シャ ッタと、
吸気行程中に排気通路をシリ ンダ一に開放する排気導入機構と、
エンジンの排気温度領域を検出する排気温度領域検出手段と、 該排気温度領域検出手段により検出されたェンジンの排気温度領域が所定の温 度領域より低温領域となる場合には、 吸気シャ ッタの開度を絞るとともに該排気 導入機^ iを作動せしめる制御する制御手段と、 を有していることを特徴とするデ イ ーゼルヱンジンの排気浄化装置が提供される。
上記制御手段は、 排気温度領域検出手段により検出されたエンジンの排気温度 領域が所定の温度領域より低い低温領域においては、 温度領域が低い程、 該吸気 シャ ツタの開度を小さくするように段階的に制御することが望ましい。
また、 排気通路に配設され排気通路を絞る排気シャ ッタをを備え、 上記制御手 段は排気温度領域検出手段により検出される排気温度が低温領域である場合には 排気シャ ツタの開度を絞るように制御することが望ましい。 この排気シャ ツタの 開度は、 温度領域が低い程小さくなるように段階的に制御される。 図面の簡単な説明
第 1図は、 本発明に基づき構成されたディーゼルエンジンの排気浄化装置の構 成プロック図。
第 2図は、 本発明における排気導入機構の一実施形態を示す図。
第 3図は、 図 2の構成における吸気バルブ、 排気バルブのリフ トカーブを示す 図。
第 4図は、 本発明における排気導入機構の他の実施形態を示す図。
第 5図は、 本発明における、 排気温度領域マップ。
第 6図は、 本発明における排気温度領域別の制御マップ。
第 7図は、 本発明における吸気及び排気シャ ツタの開度制御マップ。
第 8図は、 本発明における制御手段の制御フローチャー ト。
第 9図は、 吸気シャ ツタ、 排気 2段カム及び排気シャ ッタの効果を示すグラフ
発明を実施するための最良の形態
以下に図面に基づいて本発明の実施形態について説明する。
図 1 に示された、 シリ ンダブ口ックおよびシリ ンダへッ ド等からなるェンジン 本体 2には、 吸気通路の一部を構成する吸気マユホールド 3および排気通路の一 部を構成する排気マ二ホールド 4が配設されている。 吸気マユホールド 3には吸 気通路の一部を構成する吸気管 5が接続されており、 この吸気管 5の最上流部に 吸入空気を清浄化するエアク リ一ナ 6が配設されている。 エアク リ一ナ 6で清浄 化された吸入空気は吸気管 5を通り吸気マユホール ド 3を介して図 2に示すよう なシリ ンダ 1内に供袷される。 上記排気マ二ホールド 4には排気通路の一部を形 成する排気管 7が接続されており、 シリ ンダ 1 内で生成された排気ガスは排気マ ュホールド 4および排気管 7を通して排出される。 そして排気管 5には吸気シャ ッタ 9が配設され、 排気管 7には排気シャ ツタ 1 1が配設されている。 この吸気 シャ ツタ 9および排気シャ ツタ 1 1 は、 それぞれ図示しないエアタンクに接続さ れたエアァクチユエータを備えており、 制御手段 1 0によりそのァクチユエ一タ がコ ン ト ロールされる。
図示のディーゼルヱンジンの排気管 7には、 上流側より順に酸化触媒 1 2 1 と D P F 1 2 2とからなる連続再生式ディ一ゼルパティキュレートフィルタ (連続 再生式 D P F ) 1 および N 0 X触媒 1 4が配設されている。 酸化触媒 1 2 1 は 、 例えばハニカム状のコ一デイエライ ト、 あるいは耐熱鋼からなる担体の表面に 、 活性アルミナ等をコートしてゥォ ッ シュコ一ト層を形成し、 このコー ト層に白 金、 パラジウム、 あるいはロジウム等の貴金属からなる触媒活性成分を担持させ たものが使用される。 この酸化触媒 1 2 1 は、 排気ガス中の N〇を酸化して N〇 2 を生成させるとともに、 排気ガス中の H Cと C Oを酸化して H 2 0と C 0 2 を 生成させる。 D P F 1 2 2は、 例えば多孔質のコ 一ディエライ ト、 あるいは炭化 珪素によって多数のセルが平行に形成され、 -セルの入口と出口が交互に閉鎖され た、 いわゆるウォールフロー型と呼ばれるハニカムフィルタや、 セラミ ツク繊維 をステンレス多孔管に何層にも巻き付けた繊維型フィルクが使用され、 排気ガス 中の P Mを捕集する。 N O x触媒 1 4は、 その構成や成分は上記酸化触媒 1 2 1 と同じようなものが使用でき、 排気ガス中の N 0等の N〇x を N 2 や H 2 0に還 元させる。 このような、 連続再生式 D P F 1 2は、 酸化触媒 1 2 1 によって排気 ガス中の N 0を N 0 2 に酸化させ、 酸化触媒 1 2 1の下流側に配設した D P F 1 2 2 に流入する N 0 2 によって捕集された P Mを燃焼させる。 この時、 4 0 0 °C
― 0 ― 以下の低い温度で P Mが燃焼するため、 電気ヒータやパーナ等の特別な加熱手段 を設ける必要がなく、 また、 低温にて P Mの燃焼を連続的に起こしながら、 同時 に P Mの捕集も行うため装置全体を簡易に且つコンパク 卜にできるという利点を 有している。
図示のデイ ーゼルェンジンは、 ェンジンの回転速度を検出するェンジン回転速 度 (N e ) 検出センサ 1 5、 アクセルペダルの踏み込み量 (アクセル開度: A C L ) を検出するアクセルセンサ 1 6、 吸気マ二ホールド 3内に配設されシリ ンダ 内に吸入される吸気の温度を検出する吸気温度センサ 1 7、 排気管 7内に配設さ れ排気温度を検出する排気温度センサ 8および上記各センサ等からの検出信号に 基づいて図示しない燃料噴射装置によってシリ ンダ内に噴射される燃料の噴射量 を制御する制御手段 1 0を具備している。 制御手段 1 0はェンジン回転速度とァ クセル開度をパラメ 一タとする図示しない燃焼噴射量を設定した燃料噴射量マッ プを格納したメモリを具備しており、 エンジン回転速度検出センサ 1 5およびァ クセルセンサ 1 6からの検出信号に基づいて基本燃料噴射量を決定する。 そして 、 制御手段 1 0は、 基本燃料噴射量を吸気温度センサ 1 5の検出値に基づき補正 し、 最終的な燃料噴射量を決定する。 なお、 最終的な燃料噴射量は吸気温度のみ ならず、 他の様々なパラメータ (大気圧やスモーク限界噴射量等) を参照して随 時補正することが可能である。
本実施形態のデイーゼルェンジンは、 図 2示すように吸気行程中のシリ ンダー の排気通路をシリ ンダ一に開放する排気導入機構 (いわゆる排気 2段カム機構) を具備している。 図 2には、 吸気バルブ 3 0と吸気バルブ作動機構 3 1および排 気バルブ 4 0 と排気バルブ作動機構 4 1が示されている。 排気バルブ作動機構 4 1を構成する排気力ム 4 2は、 排気行程でぉ気バルブ 4 0を作動する通常の力ム プ riフィール 4 2 1 と、 該カムプロフィール 4 2 1 と回転方向後側に略 9 0 ° の 位相角をもって形成された排気導入カムプ1 oフィ 一ル 4 2 2を備えている。 この ように構成された排気力ム 4 2は、 図 3に示すようにカムプロフィ一ル 4 2 1 に よる排気バルブリ フ トカーブ ( 1 ) と、 吸気行程中 (吸気バルブ作動機構 3 1 に よる吸気パルブリ フ ト力一ブ中) の短期間に排気導入カムプロフィール 4 2 2に よる排気バルブリ フ トカーブ ( 2 ) をもって排気バルブ 4 0を作動する。 従って 、 図 2示す実施形態においては、 排気カム 4 2に形成された排気導入カムプロフ ィ 一ル 4 2 2は、 吸気行程中にシ リ ンダ一内に排気ガスを導入するためのの排気 導入機構として機能する。 なお、 排気導入カムプロフィール 4 2 2による排気パ ルブ 4 0のリ フ ト量は、 l〜3 m m程度でよい。
次に、 排気導入機構の他の実施形態について、 図 4を参照して説明する。 なお 、 図 4に示す実施形態においては、 図 2の実施形態における同一部材には同一符 号を付して、 その詳細な説明は省略する。
図 4に示す実施形態においては、 排気バルブ作動機構 4 1 を構成する排気カム
4 2 aは、 通常のカムプロフィ 一ル 4 2 1だけを備えている。 そして、 図 4に示 す実施形態における排気導入機構 5 0は、 吸気行程中に同一シリ ンダ内の排気通 路内をシリ ンダに開放する排気導入バルブ 5 1 と、 該排気導入バルブ 5 0を作動 する電磁ソレノイ ド 5 2とからなっている。 このように構成された排気導入機構
5 0は、 エンジンの排気温度領域が所定の温度領域より低温領域である場合に、 制御手段 1 0から制御信号が電磁ソレノイ ド 5 2に駆動信号が与えられ排気導入 バルブ 5 1が吸気行程中に開弁駆動される。
図 1 に示す実施形態においては、 ディーゼルエンジンの排気温度領域を検出す る排気温度領域検出手段を具備している。 以下に排気温度領域検出手段について 述べる
エンジンの排気温度は、 主にエンジンに供袷される燃料噴射量 (負荷) とェン ジン回転速度によりほぼ決定される。 図示の実施形態における排気浄化装置の制 御手段 1 0 は、 図示しない内部メモリ に図 5 に示すようなエンジン回転速度とェ ンジン負荷をパラメ一タとする排気温度領域マツプを有しており、 エンジン回転 速度と燃料壞射量 (負荷) から現在の排気温度がどこの領域にあるかを検出する 。 ここで示される領域とは、 シリ ンダから排出された排気温度の温度領域を指す ものとする。
図 5に示す X、 Y Zの境界線は主にマップを定義する際のエンジンの排気温 度に関する試験結果と酸化触媒 1 2の活性温度領域を参照して設定される。 X領 域は酸化触媒 1 2の活性温度領域よりも高くなる領域であり、 Y領域は酸化触媒 1 2の活性温度領域に含まれる領域、 そして Z領域は酸化触媒 1 2の活性温度領 域よりも低くなる領域である。
なお、 この境界線は採用するディーゼルエンジンの運転特性、 採用する触媒の 特性によって使用者が適宜変更できることは言うまでもない。 更に、 上記温度領 域は必ずしも 3つである必要がなく、 更に細分化してもよいし、 あるいは二つに 領域を定義することも可能である
次に、 図 1 に示す実施形態における排気浄化装置の作動を図 8に示すフローチ ャ一 トに基づき説明する。 なお、 エンジンの始動時 (キーオン時) は吸気シャ ツ タは開放されており始動が悪化されないよう に配慮されている。 エンジンの運転 がスタートすると (エンジン始動後) 本フローチャー トの制御がスター ト し、 図 示しない燃料噴射装置によりェンジンに燃料が供給され始める。 制御手段 1 0は エンジン回転速度検出センサ 1 5およびアクセルセンサ 1 6からのエンジン回転 速度信号 (N e ) とアクセル開度信号 (A C L ) を読み込み (ステップ S 1 ) 、 図示しない燃料噴射量マップを参照し燃料噴射量を決定する (ステップ S 2 ) 。 制御手段 1 0は、 この時の燃料噴射量をエンジンの負荷 Qとして検出する。 図 1 に示す実施形態における排気浄化装置においては、 上述したようにェンジ ン負荷 Qを検出したら、 制御手段 1 0はエンジン負荷と上記のように検出された ェンジン回転速度に基づいて図 5に示す排気温度領域マップより現在の排気温度 領域を検出する (ステップ S 3 ) 。 このようにして、 現在の排気温度領域を検出 したならば、 制御手段 1 0は現在の排気温度領域の基づき図 6に示す制御マップ に従って、 上記吸気シャ ッタ 9 と排気シャ ッタ 1 1 を制御する。
先ず、 排気温度領域が酸化触媒の活性温度領域 Xにある場合 (ステップ S 4 ) には、 制御手段 1 0は図 7の制御マップに従って吸気シャ ツタ 9、 排気シャ ツタ 1 1を全開に開く (ステップ S 5 ) 。 そして制御手段 1 0は排気温度低下制御を 実行する (ステップ S 6 ) 。 この排気温度低下制御は、 例えば冷却水による排気 ガスの冷却制御等でもよいし、 別途機械式過給機 (スパ一チヤ一ジャー) による 吸入空気量増量手段等を設けて実行してもよい。 なお、 排気温度低下制御は本発 明の主たる構成ではないので説明は省略する。
ステップ S で排気温度領域が X以外の場合は、 制御手段 1 0はステップ S 4 からステップ S 7 に進み排気温度領域が低温領域 Zか否かを判断する。 そして低 温領域ではない (排気温度領域 = Y ) と判断されたら、 制御手段 1 0はステップ S 8に進んで吸気シャ ツタ 9、 排気シャ ツタ 1 1を全開に開く。
ステップ S 7 にて排気温度領域が低温領域 (排気温度領域 = Ζ ) と判断された 場合は、 制御手段 1 0はステップ S 9に進んで吸気シャ ツタ 9を作動させて図 7 ( a ) の吸気シャ ツタ開度マップに基づいて絞り制御を行う。 そして、 制御手段 1 0はステップ S 1 0に進んで排気シャ ッタ 1 1 を作動させて図 7 ( b ) の排気 シャ ツタ開度マップに基づいて排気シャ ツ タの絞り制御を行う。 なお、 図 7の ( a ) および図 7の ( b ) に示すマップはいずれも図 5で示した排気温度領域検出 手段に用いたマツプの Z領域をさらに分割して吸気 ·排気シャ ッタの開作動を段 階的に設定したものである。 " 2 0 %開度" とは全開位置に対して 8 0 %閉じて いるということであり " 5 %開度" とは 9 5 %閉じているということである。 以上の制御を行い制御フ口一チャートはスタートに戻る。
そして、 図示の実施形態においては、 図 2に示す排気導入機構を構成する排気 カム 4 2の排気導入カムプロフィ 一ル 4 2 2の作用によって吸気行程中に排気パ ルブ 4 0が開弁されシリ ンダ一内に排気ガスが導入される。 また、 図 4に示す排 気導入機構 5 0を備えた場合には、 吸気行程中に電磁ソ レノィ ド 5 2が駆動され 排気導入バルブ 5 1が開弁されてシリ ンダー内に排気ガスが導入される。 このよ うに排気温度領域が低温領域 (排気温度領域 = Z ) の場合は、 排気通路中の高温 の排気ガスが吸気行程でシリ ンダ内に逆流させられるので結果的に排気温度が上 昇させられる。 更に上記のように排気シャ ッタを閉じるような制御を行っている 場合には、 排気通路中の排圧が高くなっているのでシリ ンダ内に逆流する排気ガ スが増加し排気温度をさらに上昇させることが可能になる。 従って、 排気温度領 域が低温領域 (排気温度領域 = Z ) の場合に、 吸気シャ ツタ 9を絞る制御、 排気 シャ ツク 1 1 を絞る制御および排気導入機構の作動は、 エンジンの排気温度を上 昇せしめるための排気温度上昇手段として機能する。
具体的な効果を図 9のダラフに基づき説明する。 実線で示した吸気シャ ッタの 作動のみによる従来の排気温度及び H Cの排出量に対して、 吸気シャ ッタと吸気 行程中に排気を導入する排気導入機構 (排気 2段カム機構) を作動させている場 合 (〇で連結する線により示す) は、 吸入空気量をおよそ 4 O k g / hまで絞つ ても H Cの排出量が殆ど悪化せず、 排気温度が 2 5 0 ° を超える。 そして吸入空 気量をさらに絞ると H Cは悪化するが、 ここで排気シャ ツタを作動させた場合 ( 開度が 2 0 %、 口で連結した線により示す) にはさらに温度を上昇させることが 出来るとともに、 H Cの排出濃度を低減することができた。 さらに吸入空気量を 3 0 k g / h以下に絞る場合は、 排気シャ ッタをさらに絞る (開度が 5 %、 △の 連結線で示す) と、 排気ガス温度は 3 0 0 ° を超えて且つ H Cをさらに低減でき た。
以上、 図示の本実施形態では、 排気温度領域をエンジン回転速度と負荷により 検出したがこれに限るものではなく、 エンジンの排気管 7に直接的に設けられる 排気温度センサ 8によって検出してもよい。 また、 連続再生式 D P Fについて酸 化触媒と D P Fを別体で記載しているが、 D P Fに酸化触媒となる材料を直接担 持させて一体的に構成された連続再生式 D P F、 さらには N 0 X吸蔵還元型触媒 を D P Fに担持させた連続再生式 D P Fや、 有効に機能する温度領域が限られた 触媒を利用した他の連続再生式 D P Fについても同様に本発明が適用可能である ことは言うまでもない。 産業上の利用可能性
本発明に基づくディーゼルエンジンの排気浄化装置によれば、 触媒の活性温度 領域よりも排気温度が低くなってしまう場合は、 吸気シャ ッタを作動させること により吸入空気量を減少させるとともに吸気行程中に排気通路をシリ ンダに開放 して排気ガスを逆流させるようにしたので燃焼を悪化させずに H Cの排出を抑え ながら排気ガス温度を昇温させることが可能となった。 また、 さらには排気シャ ッタも作動させることにより一層の効果を得ることも可能である。 従って、 特に 車両に搭載するディ一ゼルェンジンに適用して有効である。

Claims

請 求 の 範 囲
1 . エンジンの排気通路に配置された連続再生式ディ一ゼルパティキユレ一 トフ ィルタを備えたディ一ゼルェンジンの排気浄化装置において、
エンジンの吸気通路に配置された吸気シャ ッタと、
エンジンの排気温度領域を検出する排気温度領域検出手段と、
該排気温度領域検出手段により検出されたエンジンの排気温度領域が所定の温 度領域より低温領域となる場合には、 該吸気シャ ッタの開度を絞るように制御す る制御手段と、
吸気行程中に短期間エンジンの排気バルブを開弁する排気導入機構を備えた排 気バルブ作動機構と、 を有することを特徴とするディーゼルエンジンの排気浄化 装置。
2 . 該制御手段は、 該排気温度領域検出手段により検出されたエンジンの排気温 度領域が所定の温度領域より低い低温領域においては、 温度領域が低い程、 該吸 気シャッタの開度を小さくするように段階的に制御する、 請求項 1記載のディ一 ゼルェンジンの排気浄化装置。
3 . 該排気通路に配設され該排気通路を絞る排気シャ ツタを備え、 該制御手段は 該排気温度領域検出手段により検出される排気温度が低温領域である場合には該 排気シャ ッタの開度を絞るように制御する、 請求項 1記載のディ一ゼルエンジン の排気浄化装置。
4 . 該制御手段は、 該排気温度領域検出手段により検出されたエンジンの排気温 度領域が所定の温度領域より低い低温領域においては、 温度領域が低い程、 該排 気シャ ッタの開度を小さくするように段階的に制御する、 請求項 3記載のディ一 ゼルヱンジンの排気浄化装置。
5 . ヱンジンの排気通路に配置された連韓再生式ディーゼルパティキユレ一トフ ィルタを備えたディーゼルエンジンの排気浄化装置において、
エンジンの吸気通路に配置された吸気シャ ッタと、
吸気行程中に排気通路をシリ ンダ一に開放する排気導入機構と、
エンジンの排気温度領域を検出する排気温度領域検出手段と、 該排気温度領域検出手段により検出されたユンジンの排気温度領域が所定の温 度領域より低温領域となる場合には、 吸気シャ ッタの開度を絞るとともに該排気 導入機構を作動せしめる制御をする制御手段と、 を有していることを特徴とする ディーゼルェンジンの排気浄化装置。
6 . 該制御手段は、 該排気温度領域検出手段により検出されたエンジンの排気温 度領域が所定の温度領域より低い低温領域においては、 温度領域が低い程、 該吸 気シャ ッタの開度を小さくするように段階的に制御する、 請求項 5記載のディ一 ゼルエンジンの排気浄化装置。 ,
7 . 該排気通路に配設され該排気通路を絞る排気シャ ツタを備え、 該制御手段は 該排気温度領域検出手段により検出される排気温度が低温領域である場合には該 排気シャ ツタの開度を絞るように制御する、 請求項 5記載のディ一ゼルェンジン の排気浄化装置。
8 . 該制御手段は、 該排気温度領域検出手段により検出されたエンジンの排気温 度領域が所定の温度領域より低い低温領域においては、 温度領域が低い程、 該排 気シャ ツタの開度を小さくするように段階的に制御する、 請求項 7記載のディー ゼルェンジンの排気浄化装置。
PCT/JP2002/004974 2001-05-24 2002-05-23 Dispositif d'echappement comportant des moyens pour purifier les gaz d'echappement d'un moteur diesel WO2002095197A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02730692A EP1389674A4 (en) 2001-05-24 2002-05-23 EXHAUST GAS CLEANING FOR A DIESEL ENGINE
US10/333,634 US6823661B2 (en) 2001-05-24 2002-05-23 Diesel engine exhaust purifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-155895 2001-05-24
JP2001155895A JP2002349239A (ja) 2001-05-24 2001-05-24 ディーゼルエンジンの排気浄化装置

Publications (1)

Publication Number Publication Date
WO2002095197A1 true WO2002095197A1 (fr) 2002-11-28

Family

ID=18999998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004974 WO2002095197A1 (fr) 2001-05-24 2002-05-23 Dispositif d'echappement comportant des moyens pour purifier les gaz d'echappement d'un moteur diesel

Country Status (4)

Country Link
US (1) US6823661B2 (ja)
EP (1) EP1389674A4 (ja)
JP (1) JP2002349239A (ja)
WO (1) WO2002095197A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809048A (zh) * 2012-11-06 2014-05-21 上海航天设备制造总厂 电动气活门测试仪

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176663A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 内燃機関の排気浄化装置
DE10352498A1 (de) * 2003-11-11 2005-06-09 Daimlerchrysler Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP3992016B2 (ja) * 2004-05-17 2007-10-17 トヨタ自動車株式会社 予混合圧縮自着火式内燃機関の制御装置
DE102004031502B4 (de) 2004-06-30 2013-12-05 Daimler Ag Verfahren zum Betreiben einer Brennkraftmaschine
US7461504B2 (en) * 2004-12-21 2008-12-09 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter
CN101091038B (zh) * 2005-02-28 2011-09-14 洋马株式会社 排气气体净化装置和具有该排气气体净化装置的内燃机以及微粒过滤器再生方法
DE102005036440A1 (de) * 2005-08-03 2007-02-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005036438A1 (de) * 2005-08-03 2007-02-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4573303B2 (ja) * 2006-01-10 2010-11-04 Udトラックス株式会社 ポンピングロス低減装置及び低減方法
US8322129B2 (en) * 2006-02-16 2012-12-04 Cummins, Inc. Method for controlling turbine outlet temperatures in a diesel engine
FR2897654A1 (fr) * 2006-02-20 2007-08-24 Renault Sas Procede et dispositif de regeneration du filtre a particules d'un moteur a combustion interne.
JP4893553B2 (ja) * 2007-09-25 2012-03-07 トヨタ自動車株式会社 内燃機関の制御装置
US20090173062A1 (en) * 2008-01-04 2009-07-09 Caterpillar Inc. Engine system having valve actuated filter regeneration
US20100050874A1 (en) * 2008-08-29 2010-03-04 Walter Cullen Lucas Exhaust after treatment system and method
JP5464059B2 (ja) * 2010-06-04 2014-04-09 マツダ株式会社 エンジンの制御方法及び制御装置
JP5986736B2 (ja) * 2011-11-16 2016-09-06 三菱重工業株式会社 内燃機関の排気浄化システム
JP5862292B2 (ja) * 2011-12-28 2016-02-16 マツダ株式会社 ディーゼルエンジンの制御装置
JP6020690B2 (ja) * 2015-02-17 2016-11-02 トヨタ自動車株式会社 内燃機関の制御装置
CN104806365A (zh) * 2015-03-31 2015-07-29 凯龙高科技股份有限公司 Dpf柴油机颗粒过滤系统进气节流再生温度控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108812U (ja) * 1990-02-22 1991-11-08
JPH0481513A (ja) * 1990-07-25 1992-03-16 Nissan Diesel Motor Co Ltd ディーゼルエンジンの排気浄化装置
JPH06129231A (ja) * 1992-10-20 1994-05-10 Kanesaka Gijutsu Kenkyusho:Kk パティキュレート.トラップ内のパティキュレートの処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677954B2 (ja) * 1997-07-23 2005-08-03 日産自動車株式会社 内燃機関の制御装置
AT2410U1 (de) * 1997-09-16 1998-10-27 Avl List Gmbh Verfahren zur regeneration eines partikelfilters
JP3331935B2 (ja) * 1997-12-04 2002-10-07 トヨタ自動車株式会社 圧縮着火式内燃機関
DE19926138A1 (de) * 1999-06-09 2000-12-14 Volkswagen Ag Verfahren und Vorrichtung zum Reinigen des Abgases einer Brennkraftmaschine, insbesondere einer Diesel-Brennkraftmaschine
DE19948156A1 (de) * 1999-10-07 2001-04-12 Volkswagen Ag Verfahren und Vorrichtung zum Reinigen des Abgases einer Brennkraftmaschine
JP3562415B2 (ja) * 1999-12-24 2004-09-08 トヨタ自動車株式会社 可変動弁機構を有する内燃機関
US6519933B2 (en) * 2000-03-21 2003-02-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having variable valve control system and NOx catalyst
US6439210B1 (en) * 2000-07-12 2002-08-27 Caterpillar Inc. Exhaust gas reprocessing/recirculation with variable valve timing
US6394051B1 (en) * 2000-09-01 2002-05-28 Ford Global Technologies, Inc. Spark ignition engine with negative valve-overlap

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108812U (ja) * 1990-02-22 1991-11-08
JPH0481513A (ja) * 1990-07-25 1992-03-16 Nissan Diesel Motor Co Ltd ディーゼルエンジンの排気浄化装置
JPH06129231A (ja) * 1992-10-20 1994-05-10 Kanesaka Gijutsu Kenkyusho:Kk パティキュレート.トラップ内のパティキュレートの処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1389674A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809048A (zh) * 2012-11-06 2014-05-21 上海航天设备制造总厂 电动气活门测试仪

Also Published As

Publication number Publication date
EP1389674A1 (en) 2004-02-18
US20030172644A1 (en) 2003-09-18
US6823661B2 (en) 2004-11-30
JP2002349239A (ja) 2002-12-04
EP1389674A4 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP3840923B2 (ja) ディーゼルエンジンの排気浄化装置
JP3951899B2 (ja) ディーゼルエンジンの排気浄化装置
WO2002095197A1 (fr) Dispositif d'echappement comportant des moyens pour purifier les gaz d'echappement d'un moteur diesel
EP1260684B1 (en) Device for purifying exhaust gas of diesel engines
JP4042399B2 (ja) 排気浄化装置
US7086220B2 (en) Regeneration control method for continuously regenerating diesel particulate filter device
JP2002276405A (ja) ディーゼルエンジンの排気浄化装置
US6742329B2 (en) Exhaust emission control system of diesel engine
JP2004176571A (ja) 内燃機関の排気浄化装置
JP2005030231A (ja) 内燃機関の排気浄化装置
JP2004150416A (ja) パティキュレートフィルタの再生方法
JP2003307117A (ja) 内燃機関の排気浄化装置
JP3870673B2 (ja) 内燃機関の排気浄化装置
JP2006226190A (ja) リーンバーンエンジンの制御装置
JP5761517B2 (ja) エンジンの排気熱回収装置
JP2005299628A (ja) ディーゼル機関のフィルタ再生制御装置
JP5516888B2 (ja) 内燃機関の排気浄化装置
JP4412049B2 (ja) ディーゼルエンジンの排気ガス後処理装置
JP3888115B2 (ja) 内燃機関の制御装置
JP4400194B2 (ja) ディーゼルエンジンの排気浄化装置
JP2006274985A (ja) 排気後処理装置
JP2003286820A (ja) エンジンの排気浄化装置
JP2006214311A (ja) 排気浄化装置
JP6197663B2 (ja) Egr制御装置
JP2002004838A (ja) ディーゼルエンジンの排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002730692

Country of ref document: EP

Ref document number: 10333634

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002730692

Country of ref document: EP