WO2002088402A1 - Procede pour ameliorer la qualite metallurgique de produits traites dans un four - Google Patents

Procede pour ameliorer la qualite metallurgique de produits traites dans un four Download PDF

Info

Publication number
WO2002088402A1
WO2002088402A1 PCT/FR2002/001361 FR0201361W WO02088402A1 WO 2002088402 A1 WO2002088402 A1 WO 2002088402A1 FR 0201361 W FR0201361 W FR 0201361W WO 02088402 A1 WO02088402 A1 WO 02088402A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
oven
temperature
treated
atmosphere
Prior art date
Application number
PCT/FR2002/001361
Other languages
English (en)
Inventor
Savine Bockel-Macal
Olivier Delabroy
Olivier Louedin
Christel Champinot
Original Assignee
L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0105634A external-priority patent/FR2824078B1/fr
Priority claimed from FR0105633A external-priority patent/FR2824077B1/fr
Application filed by L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US10/475,149 priority Critical patent/US6955730B2/en
Priority to CA2444399A priority patent/CA2444399C/fr
Priority to DE60203280T priority patent/DE60203280T2/de
Priority to AT02735468T priority patent/ATE291101T1/de
Priority to EP02735468A priority patent/EP1386012B1/fr
Publication of WO2002088402A1 publication Critical patent/WO2002088402A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets

Definitions

  • the invention relates to a method for improving the metallurgical quality of products treated in an oven and in particular a reheating oven.
  • This invention applies to any type of product but more particularly to products treated in a reheating oven such as, for example, billets, blanks or slabs or any other material used by steelmakers in their production line (such as sheets, tubes, etc.).
  • the invention relates more particularly to a method of treating a metallurgical product in an oven, in which the product to be treated is introduced into the oven, then subjected to the desired treatment, then removed from the oven, the oven comprising means for heating and in particular burners making it possible to bring the different zones of the oven to a variable temperature, the atmosphere in these different zones possibly having an identical or different composition depending on the zones considered of said oven.
  • the altered zone on the surface of these parts essentially consists of two parts (see Fig 1), one located on the side of the atmosphere (upper scale), and the other near the metal (mixed zone).
  • the upper part generally comprises three compact layers of oxides: a layer of Fe 2 ⁇ 3 oxides (hematite), very thin (a few microns thick), a layer of magnetite (Fe 3 0 4 ) (4% of the total scale approximately) and a thick oxide layer FeO (wustite) (95% of the total scale approximately) more or less porous depending on the duration and temperature of reheating.
  • a layer of Fe 2 ⁇ 3 oxides hematite
  • very thin a few microns thick
  • a layer of magnetite Fe 3 0 4
  • FeO wustite
  • This scale which takes on a parabolic shape, is controlled by the diffusion of Fe 2+ ions in wustite and magnetite, and by the diffusion of oxygen O 2 " in hematite.
  • the lower part, mixed zone, is more or less large depending on the nature of the steel. It is located at the metal / scale interface, consisting of a FeO mixture and reaction products of FeO with the oxides of certain alloying elements. This lower part also includes a metal zone altered by various phenomena such as decarburization or internal oxidation.
  • Decarburization is a solid state diffusion phenomenon of carbon which reacts with calamine FeO (and or H 2 0).
  • the permeability of industrial scale to gaseous products of carbon oxidation (especially CO) makes this oxidation practically immediate on the surface of the metal. Decarburization is therefore limited by the diffusion of carbon at the treatment temperature and is favored by the ability of the gases formed (CO) to escape from the scale-steel interface.
  • steel products can be oxidized (scale) and decarburized (all the more so for steels with high carbon).
  • the steelmaker must subject his parts to an additional operation aimed at overcoming these surface defects.
  • the oxide layer can be removed by different descaling techniques, the decarburization layer, which is an integral part of the part, cannot be easily “erased”: the product surface is stripped of part of its carbon atoms, which results in a loss of the mechanical properties on the surface of the product (longevity, hardness, etc.).
  • the oxidation or decarburization of steel in a reheating furnace thus leads to a loss of raw material which is called loss on ignition and deterioration of the surface properties of products which are harmful to the steelmaker.
  • Patent EP-A-0767353 also proposes to intervene on the atmosphere of the oven by practicing a zoning of the oven, that is to say by insulating the oven in several chambers within which a strongly oxidizing atmosphere is recommended in order to be able to control the formation and quality of the scale. In this case, the loss on ignition is not reduced but on the contrary increased, only a calamine quality control is ensured.
  • the various methods known from the prior art therefore suggest treating the products either in an oxidizing atmosphere or in a reducing atmosphere.
  • the operator follows an initial temperature profile of the given product for a given oven, depending on the type of load and production.
  • This profile is either known to the operator thanks to its know-how, or calculated from charts, or even calculated using suitable software.
  • the only information available to the operator and / or the oven control software is the measurements delivered by one or more thermocouples located in the roof of the oven. These thermocouples are arranged far from the load and are not representative of the heat flux received by the load, under the burners. It is therefore necessary to estimate the relationship between the vault temperature (measured) and the temperature of the load (useful information). This relationship is either empirical (based on operator know-how) or calculated by oven control software.
  • this measurement is a point measurement usually located on the axis of the oven and which does not account for any variations of said parameter over the entire width of the oven.
  • the aim of the present invention is to provide a process for operating an oven (temperature, composition of the atmosphere) and an associated control process, making it possible to optimize both the metallurgical quality of a product, the loss and the thermal efficiency of an oven
  • the method according to the invention makes it possible to avoid the abovementioned drawbacks and to fulfill the aim set out above.
  • the method according to the invention is characterized in that the product to be treated has a temperature which increases between the moment when it is introduced and the moment when it is removed from the oven, the temperature rise curve having a slope which increases in a first time interval between the instant t 0 of introduction of the product into the oven and the instant ti at which the product reaches a surface temperature of 650 ° C., a substantially constant slope between the instant tt and the instant t 2 at which the product reaches a temperature of about 15% lower than the final surface temperature desired for the product to be treated when it leaves the oven, then a slope which decreases between time t 2 and time t 3 in which the product to be treated leaves the oven, process in which the heating power of the oven is increased compared to its power when only air-fuel burners are used so as to increase the slope of the rise curve in temperature of the product to be treated, at least during certain periods of treatment of
  • the increase in the heating power of the furnace is obtained using oxy-fuel burners which constitute at least part of the furnace heating means, in particular part of the furnace heating means corresponding to the zone. reached by the product between times ti and t 2 . It is also possible to place this or these oxy-fuel burner (s) in a zone adjacent to the aforementioned zone, which would indirectly allow the same increase in power to be obtained (in said zone reached between times ti and t 2 , by product).
  • the oxidizer supplied to the oxy-fuel burners constituting at least part of the furnace heating means comprises at least 88% oxygen and preferably more than 90% oxygen, even more preferably more than 95% oxygen. It is generally observed that the treatment time of the product between the temperatures of 700 ° C and 800 ° C reached for the surface of the product, is reduced from 15% to 50% of its reference value, preferably from 20 to 35 % of its value, while the treatment time between the temperatures of 700 ° C. and the final temperature of the surface of the product is reduced between 3 and 25% of its reference value, preferably between 7 and 15% of its reference value.
  • the atmosphere of the oven varies along the oven as a function of the skin temperature of the metal product.
  • the atmosphere of the oven in contact with the product to be treated comprises approximately 0.5% vol to 5% oxygen and preferably between 1.5 vol at 4% vol of oxygen when the skin temperature T at the surface of the treated product is greater than or equal to the equalization temperature T ega i, which is equal to 85% of the temperature at the surface of the product (diversion temperature) at the outlet of the oven.
  • the equalization temperature T ega ⁇ is equal to 90% of the diversion temperature.
  • the atmosphere in contact with the product to be treated comprises an oxygen concentration of less than a few hundred ppm and a CO concentration of between 0.1% and 15%, preferably 0.5% to 5% vol when the skin temperature T at the surface of the product is above 700 ° C and below the product's equalization temperature, defined as being equal to 90% of the skin temperature of the product at the exit of the oven.
  • the atmosphere in contact with the product to treat has an oxygen concentration of between 0.5% and 4% vol and preferably between 2% and 3% vol when the skin temperature T at the surface of the product to be treated is less than 700 ° C
  • the invention allows an optimization of the metallurgical quality of the products thanks to the optimization of the heating profile in the oven and an improved control of the profile of the composition of the atmosphere of the oven.
  • This control continuously monitors the O 2 and / or H 2 0 and / or CO 2 contents of the atmosphere in the various zones of the furnace, and / or the temperature at the surface of the products to be treated, will preferably be carried out at using a laser diode.
  • This laser diode system called TDL (“Tunable Diode Laser” in English) makes it possible to measure the average of the concentrations of gaseous species over the length of the optical path of the laser beam.
  • TDL Tunable Diode Laser
  • these laser diodes are sources of laser radiation, some of which operate at room temperature while others must be cooled.
  • the emitted laser beam is generally adjustable in a wavelength range by varying the injection current in the laser source. It then suffices to choose adjustable laser beam sources in wavelength domains which correspond to at least one of the lines characteristic of the absorption spectrum of the species which it is desired to detect.
  • the laser diode will preferably be placed near the surface of the products, at a distance varying between 1mm and 15cm, preferably between 2cm and 6cm.
  • FIG. 2 describes a characteristic curve of evolution of the temperature of the product as a function of time, controlled according to the method of the invention.
  • FIG. 3 describes the application of the invention to the reheating oven.
  • FIG. 4 describes the control of the rise in temperature of the product, according to the invention.
  • FIG. 5 describes a temperature curve in a reheating oven as a function of time.
  • Figure 6 a curve of variation of the amount of scale as a function of time.
  • Figure 7 another example of a curve of variation of the quantity of calamine as a function of time.
  • the curve (21) represents the heating curve of the product, for example the skin temperature of a billet or a slab in a reheating oven.
  • this curve it is possible to define the times t 0 , ti, t 2 and t 3 corresponding respectively to the time t 0 of charging the product, to the time ti for which the skin temperature reaches 650 ° C., at time t 2 for which the skin temperature is equal to 85% of the final temperature (or clearance) T out of the skin of the product, and finally at time t 3 of diversion of the product to its final temperature T out .
  • This defines a time interval ⁇ i corresponding to the time spent by the surface of the product between ti and t 2 .
  • the method according to the invention consists in reducing the time ⁇ i from approximately 8% to 40% of its reference value and preferably from approximately 10% to 30% of its reference value. This reduces the thickness of the decarburized layer of at least 20% depending on the content of alloying elements and specifically the carbon content, compared to the process of the prior art using either the empirical control of the furnace by an experienced skilled person either the operation of the oven by temperature charts or suitable software. It is in particular the reduction in the time ⁇ i, resulting in an increase in the slope of the curve 52 relative to the slope of the curve 51 between the instants ti and t 2 corresponding to the temperatures of 650 ° C. and 85% of the skin temperature at the outlet of the oven which is fundamental according to the method of the invention, because it has been demonstrated that it is in these temperature zones that the slope of the product heating curve should be increased if we wanted to obtain the expected gains.
  • the invention allows the reduction of the time ⁇ 2 between 5% and 30% of its reference value and preferably between 7 and 15% of its reference value. This allows the mass of the scale to be reduced between 5 and 30% depending on the nature of the steel.
  • This reduction in the times ⁇ i and ⁇ 2 is carried out, according to the invention, by increasing the energy transferred to the product throughout the duration of its stay in the oven. This can be achieved by increasing the available energy (adding an energy source, by open flame burners, radiant tubes or even electric resistances or induction heating) or by increasing the energy efficiency available (enrichment of combustion air with oxygen for example, up to 100% purity), preferably above 90% 0 2 vol.
  • the maximum reduction of ⁇ 2 is fixed by respecting the constraint of thermal uniformity of the product at the outlet of the oven, itself governed by the thermal conduction within the product.
  • the reduction of the times ⁇ i and ⁇ 2 corresponds either to a shortening of the oven, or to an acceleration of the speed of movement of the products.
  • a second aspect of the invention consists in controlling the composition profile of the species of the atmosphere in the oven and throughout the crossing of the oven by the product.
  • the composition of the atmosphere that is to say in particular the content of oxidizing elements in the atmosphere (0 2 , H 2 0, C0 2 ) is a parameter which intervenes in the metallurgical quality of the product.
  • the quality of the product can be optimized by maintaining a higher or lower oxygen content depending on the zone of the furnace in which it will be located.
  • Fig. 3 which represents a reheating oven
  • the curve (30) represents the temperature rise curve of the product.
  • the load (35) undergoes a first temperature rise in the zone (32).
  • T ec ar b This temperature is typically 700 ° C for steels and decarburization will be all the more sensitive to this temperature as the carbon content of the steel is high.
  • T d ec a r b the reactions of decarburization and scale formation accelerate: the temperature at which scale formation becomes effective is approximately 800 ° C for steels.
  • the product crosses the zone (33) then enters the equalization zone (34) when it is at the temperature Tégaiisa io ⁇ (typically 1100 ° C).
  • Tégaiisa io ⁇ typically 1100 ° C.
  • This very high temperature zone brings the product to its final temperature (T fina ⁇ , typically 1200 ° C) and is particularly critical for the formation of scale.
  • the access (36) is located in the equalization zone (34), the access (37) is located in the heating zone (33), the access (38) is located in the zone (32) which contains the so-called recovery zone while the access (39) is located in the chimney (31).
  • the measurement of the concentration of the oxidizing species is carried out by the ports (36), (37), (38), (39), each port receiving a laser beam (via an optical fiber) or a transmitter.
  • laser beam a receiver being provided on the opposite wall of the furnace (or a mirror which returns the beam parallel to the incident beam, the receiver being placed next to the transmitter).
  • the fuel and oxidant flow rates of the burners in the zone (32) is payable according to the invention, so as to generate an oxygen content in the atmosphere in this zone (32), measured by the corresponding laser diode, between 0.5% and 4% by volume and preferably between 2 and 3%.
  • this correction can be done by adding oxidizer by lances, for example oxygen lances, the quantity injected being controlled by the measurement oxygen content of the laser diode.
  • the measurement is preferably carried out either as close as possible to the product, in this zone (32) by the access (38), or by the access (39), that is to say in the smoke evacuation duct where the same oxygen content will be checked. If the measurement shows an oxygen fault, the burner regulation must correct this fault and increase the oxidant flow (oxygen) to the burners in zone (32) or the previous zone.
  • zone (32) a protective layer of Fe 2 0 3 and Fe 3 0 4 will be formed and reinforced by the presence of residual oxygen in the flue gases. These oxides will be formed to the detriment of more plastic oxides such as FeO or FeSi0 4 , which in this case lead to strong adhesion of the scale.
  • the protective regime (parabolic stage of oxidation) is established more quickly for the partial pressures of oxygen included in the abovementioned range (0.5% to 4% vol.).
  • zone (33) temperature above T carb and less than T e gaiisation
  • fuel flow and combustion of the burner zone (33) is payable according to the invention so as to generate an oxygen content in the near-zero atmosphere.
  • the atmosphere will be lacking in oxygen, therefore in excess of fuel and in particular of CO.
  • the burners will be adjusted so that the 0 2 concentration is close to zero and the CO concentration between 0.1% and 15% by volume and preferably between 1 and 10%.
  • it is sought to limit as much as possible the formation of scale and decarburization by reducing the concentration of oxidizing species (0 2 , CO 2 , H 2 O).
  • the fuel and oxidant flow rates of the burners of the zone (34) must be adjusted according to the invention so as to generate an oxygen content in the atmosphere of between 0.5% and 5% vol. and preferably between 1.5 and 4% vol.
  • the measurement of this concentration is carried out as close as possible to the product between 1 mm and 15 cm, by the access (36).
  • there is a consumption of the decarburized layer by oxidation which will be accompanied by an increase in porosity of the scale, which will facilitate its elimination out of the oven.
  • the access (39) makes it possible to check at any time the concentration of CO and of O 2 in the fumes before their evacuation.
  • the reduction in the mass of scale obtained is between 5 and 25%, depending on the nature of the steel.
  • the thickness of the decarburized layer is generally a reduction in the thickness of the decarburized layer of at least 10%, depending on the content of alloying elements and specifically the carbon content.
  • the gains obtained with the control of the atmosphere can be combined with the gains obtained by reducing the times ⁇ i and ⁇ 2 described above.
  • FIG. 4 illustrates the control of the rise in temperature of the product according to the invention.
  • the invention consists in allowing the control of the rise in temperature of the product and the adjustment of the burners by a local measurement, zone by zone and a few cm above the load, of the temperature of the atmosphere of the oven thanks to a laser diode system.
  • the oven (41) shows the location of the product (42) and the thermocouple (48) according to the technique of the prior art. Measuring the thermocouple (48) gives a temperature value in the axis of the oven and away from the product (42).
  • one or more laser diodes are installed to measure an average temperature value along the optical path across the width of the oven.
  • the number of measurement points has here been limited to three. Preferably, between 1 and 10 measurement points will be used in an oven.
  • the oven (41) is equipped with accesses (43, 44, 45) located above the product (42).
  • the oven operator must comply as much as possible with a product temperature rise profile (47). This profile is provided to the operator, either by experience or by a chart, or by oven control software.
  • FIG. 5 represents the heating curve (51) associated with an oven for reheating large billets.
  • the combustion is carried out with burners whose fuel is natural gas and the oxidizer of the preheated air, before implementation of the invention.
  • the parameters ti, ... and ⁇ -i, ... are put in parentheses when they relate to curve 51, according to the prior art and are noted without parentheses when they refer to curve 52).
  • the implementation of the invention is characterized by the replacement of existing burners whose oxidant is air, by burners whose oxidant has an oxygen concentration greater than 21% by volume, and preferably greater than 88% . More preferably, the oxidizer will be industrially pure oxygen.
  • the associated heating curve is the curve (52). It is noted that the times ⁇ i and ⁇ 2 are reduced respectively from 2100 to 1700 seconds and from 5300 to 4800 seconds.
  • the metallurgical quality of the process obtained according to curve (52) will be significantly improved, thanks to the monitoring of the heating curve of FIG. 5, with the installation of laser diodes at the locations explained with reference to FIG. 3 and fig. 4, or any other measurement means allowing suitable control of this heating profile.
  • FIG. 6 represents the quantity of scale produced with the method described above.
  • the amount of scale (61) is associated with the reference situation, the scale curve (62) is associated with the implementation of the invention.
  • the two curves were normalized by the maximum value of the calamine thickness obtained under conditions (61).
  • the example of embodiment below was implemented in a billet heating furnace, of 33 MW of power and approximately 30m long.
  • the burners initially present on the furnace are so-called air fuel burners, the combustion air being preheated to 300 ° C.
  • FIG. 7 compares, for an identical heating profile, the quantity of scale produced by (curve 71) by following a heating atmosphere whose oxygen concentration in the humid fumes is constant and equal to 3.5% by volume, and the quantity of scale produced (curve 72) by following a heating atmosphere, the oxygen concentration of the humid fumes of which varies as follows:
  • T d écarb being the temperature at the start of detarking (700 ° C)
  • the average 02 concentration in the fumes can be measured by a usual oxygen sensor, but it may be preferable to use a laser diode (of the so-called “TDL” type) whose radius passes at a distance of less than 6 cm. approximately of the product treated to control finely and in real time a variation in the concentration of the above species on the surface of the product in order to better respect the atmosphere profile imposed in adequacy with the heating profile.
  • a laser diode of the so-called “TDL” type
  • the implementation according to the invention makes it possible to reduce the thickness of the scale by 11% (Fig. 7). According to experiments, the thickness of the decarburized layer is reduced between 12 and 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

L'invention concerne la modification du profil thermique suivi par un produit lors de son traitement, notamment dans un four de réchauffage. Selon l'invention, on diminue le temps de traitement des produits, tout en augmentant la puissance de chauffe disponible, ce qui permet de réduire d'une part l'épaisseur de la couche décarburée et/ou d'autre part, l'épaisseur de la couche de calamine, diminuant ainsi les pertes au feu.

Description

« Procédé pour améliorer la qualité métallurgique de produits traités dans un four »
L'invention concerne un procédé pour améliorer la qualité métallurgique de produits traités dans un four et notamment un four de réchauffage. Cette invention s'applique à tout type de produit mais plus particulièrement aux produits traités dans un four de réchauffage tel que, par exemple, des billettes, des ébauches ou des brames ou tout autre matériau utilisé par les sidérurgistes dans leur ligne de production (telles que les tôles, les tubes, etc .). L'invention se rapporte plus particulièrement à un procédé de traitement d'un produit métallurgique dans un four, dans lequel le produit à traiter est introduit dans le four, puis soumis au traitement souhaité, puis retiré du four, le four comportant des moyens de chauffage et notamment des brûleurs permettant de porter à une température variable les différentes zones du four, l'atmosphère dans ces différentes zones pouvant avoir une composition identique ou différente selon les zones considérées dudit four.
L'environnement d'un acier (ou tout autre produit, notamment un produit métallique ou sidérurgique), lorsqu'il est porté à une température élevée lors d'un traitement thermique, est souvent une atmosphère oxydante vis-à-vis du métal. Cette situation peut conduire, d'une part, à l'oxydation du métal avec formation d'une couche superficielle de calamine et, d'autre part, à une décarburation de l'acier avec création d'un gradient de teneur en carbone au voisinage de la surface de la pièce.
La zone altérée à la surface de ces pièces se compose essentiellement de deux parties (voir Fig 1), l'une située du côté de l'atmosphère (calamine supérieure), et l'autre au voisinage du métal ( zone mixte).
La partie supérieure comporte généralement trois couches compactes d'oxydes : une couche d'oxydes Fe2θ3 (hématite), très mince (quelques microns d'épaisseur), une couche de magnétite (Fe304) (4% de la calamine totale environ) et une couche d'oxyde épaisse FeO (wustite) (95% de la calamine totale environ) plus ou moins poreuse selon la durée et la température du réchauffage.
La croissance de cette calamine, qui adopte une allure parabolique, est contrôlée par la diffusion des ions Fe2+ dans la wustite et la magnétite, et par la diffusion de l'oxygène O2 " dans l'hématite.
La partie inférieure, zone mixte, est plus ou moins grande selon la nature de l'acier. Elle est située à l'interface métal/calamine, constituée d'un mélange FeO et des produits de réaction de FeO avec les oxydes de certains éléments d'alliage. Cette partie inférieure comporte également une zone de métal altérée par divers phénomènes comme la décarburation ou l'oxydation interne. La décarburation est un phénomène de diffusion à l'état solide du carbone qui réagit avec la calamine FeO (et ou H20). La perméabilité de la calamine industrielle aux produits gazeux de l'oxydation du carbone (notamment le CO) rend cette oxydation pratiquement immédiate à la surface du métal. La décarburation est donc limitée par la diffusion du carbone à la température du traitement et est favorisée par l'aptitude des gaz formés (CO) à s'échapper de l'interface calamine-acier.
Selon le profil thermique imposé et la composition de l'atmosphère (notamment la teneur en O2, H2O, C02), les produits sidérurgiques peuvent être oxydés (calamine) et décarburés (et ce d'autant plus pour les aciers à haut carbone). Dans les deux cas, le sidérurgiste devra faire subir à ses pièces une opération supplémentaire visant à s'affranchir de ces défauts de surface. Alors que la couche d'oxyde peut être enlevée par différentes techniques de décalaminage, la couche de décarburation, qui fait partie intégrante de la pièce, ne peut pas être aisément « gommée » : la surface du produit est démunie d'une partie de ses atomes de carbone, ce qui engendre une perte des propriétés mécaniques en surface du produit (longévité, dureté ...).
L'oxydation ou la décarburation de l'acier en four de réchauffage entraîne ainsi une perte de matière première qu'on appelle perte au feu et une dégradation des propriétés de surface de produits qui sont préjudiciables au sidérurgiste.
Une contrainte importante qui va également influencer la qualité finale du produit à l'issue du procédé de réchauffage est la température finale du produit et de son homogénéité thermique, et ce quel que soit l'historique de la chauffe ayant eu lieu dans le four (temps passé à certains niveaux de température, ralentissement de la cadence suite à un incident laminoir etc...),. Tout défaut d'homogénéité thermique entraînera des défauts de structure et a posteriori des fragilités mécaniques des produits finis. Ces défauts peuvent également provoquer des arrêts voire des casses de certaines parties du laminoir (notamment des cages de laminoir).
Toute optimisation de la qualité métallurgique du produit devra respecter cette contrainte sur l'homogénéité thermique du produit. Lors de la conduite du four par l'opérateur, le contrôle et le respect de la montée en température du produit vont être déterminant pour assurer au final le respect de la contrainte sur l'homogénéité thermique.
Il est connu de l'homme de métier que pour éviter la décarburation et l'oxydation, il est recommandé de travailler sous atmosphère protectrice par combustion sous-stœchiométrique (mélange riche en combustible engendrant une atmosphère neutre, voire réductrice pour l'acier). Cette méthode est mise en œuvre dans les procédés de galvanisation ( voir par exemple Galvanisation et aluminiage en continu, E. Buscarlet, Technique de l'ingénieur, 1996).
Il est également connu de US-A-4,415,415 de traiter les produits dans une atmosphère contenant au moins 3% d'oxygène en volume, et ce sur toute la longueur du four, ce qui entraîne inexorablement la formation de calamine mais qui permet de contrôler la qualité de calamine qui devient dans ces conditions non adhérente et qui s' élimine facilement.
Le brevet EP-A-0767353 propose également d'intervenir sur l'atmosphère du four en pratiquant un zonage du four, c'est à dire en isolant le four en plusieurs enceintes au sein desquelles une atmosphère fortement oxydante est préconisée afin de pouvoir contrôler formation et qualité de la calamine. Dans ce cas, la perte au feu n'est pas diminuée mais au contraire augmentée, seul un contrôle de la qualité de calamine est assuré. Les différentes méthodes connues de l'art antérieur suggèrent donc de traiter les produits soit dans une atmosphère oxydante, soit dans une atmosphère réductrice.
La mise en œuvre de ces différentes méthodes présente en outre un inconvénient supplémentaire pour le traitement de produits sidérurgiques. En effet, il est important de pouvoir mesurer le caractère oxydant ou réducteur des atmosphères mises en jeu. La seule information disponible lors de la mise en œuvre de ces procédés est fournie par des sondes de mesure situées, soit dans la voûte c'est à dire loin de la surface des produits, soit dans la cheminée du four. Ces mesures ne sont donc pas représentatives de la composition de l'atmosphère qui interagit directement avec le produit. En général, le seul paramètre mesurable de l'atmosphère est la teneur en oxygène. Cette information est généralement insuffisante : en effet, ce n'est pas parce que la quantité d'oxygène dans les fumées qui sortent du four est nulle que l'atmosphère du four au contact des pièces métalliques est nécessairement réductrice pour l'acier (voir par exemple, Combustion Engineering and Gas Utilisation, Ed. British Gas, 1992, page 23). Les espèces H20 et C02 ont aussi selon la Demanderesse un rôle d'oxydant sur la charge et interviennent dans les réactions de formation de calamine et dans les mécanismes de décarburation. A l'heure actuelle, on ne sait pas mesurer ces espèces de façon simple et rapide.
Pour effectuer la conduite du four et respecter la contrainte finale de l'homogénéité thermique du produit, l'opérateur suit un profil initial de température du produit donné pour un four donné, en fonction du type de charge et de production. Ce profil est soit connu de l'opérateur grâce à son savoir faire, soit calculé à partir d'abaques, soit encore calculé à l'aide d'un logiciel adapté. Les seules informations disponibles pour l'opérateur et/ou les logiciels de conduite de four, sont les mesures délivrées par un ou plusieurs thermocouples situés dans la voûte du four. Ces thermocouples sont disposés loin de la charge et ne sont pas représentatifs du flux thermique reçu par la charge, sous les brûleurs. Une estimation de la relation reliant la température de voûte (mesurée) et la température de la charge (information utile) est donc nécessaire. Cette relation est soit empirique (basé sur le savoir faire des opérateurs) soit calculée par les logiciels de conduite de four.
Non seulement, cette mesure n'est qu'une mesure indirecte de l'information nécessaire, mais la relation estimée peut se révéler de plus en plus inexacte lors du vieillissement du four, des caractéristiques thermiques des différentes charges et de la variation du type de combustible utilisé.
Enfin, cette mesure est une mesure ponctuelle habituellement située sur l'axe du four et qui ne rend pas compte des éventuelles variations dudit paramètre sur toute la largeur du four.
Le fait de ne pas disposer de mesures au plus près du produit a pour conséquence une connaissance inexacte des temps caractéristiques du processus de chauffe de ces produits . Or on a constaté que ces caractéristiques avaient une forte influence sur les cinétiques d'oxydation et de décarburation de ceux-ci, une estimation incorrecte de ces temps pouvant avoir des conséquences graves sur la qualité finale métallurgique du produit.
Le but de la présente invention est de fournir un procédé de conduite d'un four (température, composition de l'atmosphère) et un procédé de contrôle associé, permettant d'optimiser à la fois la qualité métallurgique d'un produit, la perte au feu et le rendement thermique d'un four
Le procédé selon l'invention permet d'éviter les inconvénients précités et de remplir le but visé ci-dessus. Le procédé selon l'invention est caractérisé en ce que le produit à traiter a une température qui augmente entre le moment où il est introduit et le moment où il est retiré du four, la courbe de montée en température ayant une pente qui augmente dans un premier intervalle de temps compris entre l'instant t0 d'introduction du produit dans le four et l'instant t-i auquel le produit atteint une température de surface de 650°C, une pente sensiblement constante entre l'instant t-t et l'instant t2 auquel le produit atteint une température d'environ 15 % inférieure à la température de surface finale souhaitée pour le produit à traiter lorsqu'il sort du four, puis une pente qui diminue entre l'instant t2 et l'instant t3 auquel le produit à traiter sort du four, procédé dans lequel on augmente la puissance de chauffe du four par rapport à sa puissance lorsque seuls des brûleurs aéro-combustibles sont utilisés de manière à augmenter la pente de la courbe de montée en température du produit à traiter, au moins pendant certaines périodes de traitement du produit dans le four entre les instants ti et t2, ce qui engendre une diminution de la durée du traitement du produit à traiter et une diminution corrélative de l'épaisseur de la couche décarburée et/ou de la couche de calamine formée à la surface du produit.
De préférence, l'augmentation de la puissance de chauffe du four est obtenue à l'aide de brûleurs oxy-combustibles qui constituent au moins une partie des moyens de chauffe du four, notamment une partie des moyens de chauffe du four correspondant à la zone atteinte par le produit entre les instants t-i et t2. Il est possible également de placer ce ou ces brûleur(s) oxy- combustible(s) dans une zone adjacente à la zone susnommée, qui permettrait indirectement d'obtenir la même augmentation de puissance (dans ladite zone atteinte entre les instants ti et t2, par le produit).
D'une manière générale, le comburant fourni aux brûleurs oxy- combustibles constituant une partie au moins des moyens de chauffe du four, comporte au moins 88 % d'oxygène et de préférence plus de 90 % d'oxygène, encore plus préférentiellement plus de 95 % d'oxygène. On constate en général que le temps de traitement du produit entre les températures de 700°C et de 800°C atteintes pour la surface du produit, est diminué de 15% à 50% de sa valeur de référence, de préférence de 20 à 35% de sa valeur, tandis que le temps de traitement entre les températures de 700°C et la température finale de la surface du produit, est diminué entre 3 et 25% de sa valeur de référence, de préférence entre 7 et 15% de sa valeur de référence.
De manière préférentielle selon l'invention, utilisée seule ou en combinaison avec les autres variantes de l'invention, l'atmosphère du four varie le long du four en fonction de la température de peau du produit métallique.
Selon une première variante de l'invention, utilisée seule ou en combinaison avec les autres variantes de l'invention, l'atmosphère du four au contact du produit à traiter comporte environ 0,5 % vol à 5 % d'oxygène et de préférence entre 1 ,5 vol à 4 % vol d'oxygène quand la température de peau T à la surface du produit traité est supérieure ou égale à la température d'égalisation Tegai, qui est égale à 85 % de la température à la surface du produit (température de détournement) à la sortie du four. De préférence, la température d'égalisation Tegaι est égale à 90 % de la température de détournement.
Selon une autre variante de l'invention, utilisée seule ou en combinaison avec les précédentes, l'atmosphère au contact du produit à traiter comporte une concentration en oxygène inférieure à quelques centaines de ppm et une concentration en CO comprise entre 0,1 % et 15 %, de préférence 0,5 % à 5 % vol lorsque la température de peau T à la surface du produit est supérieure à 700°C et inférieure à la température d'égalisation du produit, définie comme étant égale à 90 % de la température de peau du produit à la sortie du four.
Selon encore une autre variante de l'invention utilisée seule ou en combinaison avec les précédentes, l'atmosphère au contact du produit à traiter comporte une concentration en oxygène comprise entre 0,5 % et 4 % vol et de préférence entre 2 % et 3 % vol lorsque la température de peau T à la surface du produit à traiter est inférieure à 700 ° C
L'invention permet une optimisation de la qualité métallurgique des produits grâce à l'optimisation du profil de chauffe dans le four et un contrôle amélioré du profil de la composition de l'atmosphère du four. Ce contrôle suit de manière continue les teneurs en O2 et/ou H20 et/ou CO2 de l'atmosphère dans les différentes zones du four, et/ou la température à la surface des produits à traiter, sera réalisé préférentiellement à l'aide d'une diode laser . Ce système de diode laser appelé TDL pour « Tunable Diode Laser » en anglais) permet en effet de mesurer la moyenne des concentrations d'espèces gazeuses sur la longueur du chemin optique du faisceau laser. Pour plus de détails sur les diode laser et en particulier les diode laser de type TDL, on pourra se reporter à l'article de Mark G. Allen intitulé « Diode Laser Absorption Sensors for Gas Dynamic and Combustion Flows », Mes. Sci. Technology, 9, 1998, pages 545 à 562, et incorporé dans le présent texte à titre de référence. D'une manière générale, ces diodes laser sont des sources de rayonnement laser dont certaines opèrent à température ambiante alors que d'autres doivent être refroidies. Le faisceau laser émis est en générale ajustable dans un domaine de longueur d'ondes en faisant varier le courant d'injection dans la source laser. Il suffit alors de choisir des sources de faisceau laser ajustables dans des domaines de longueurs d'ondes qui correspondent à l'une au moins des raies caractéristiques du spectre d'absorption de l'espèce que l'on veut détecter. La diode laser sera de préférence placée à proximité de la surface des produits, à une distance variant entre 1mm et 15cm, préférentiellement entre 2cm et 6cm. C'est aux environs de la surface du produit que les valeurs de pressions partielles en O2, H20 et CO2 ainsi de la température interviennent dans les mécanismes décrits plus haut : calamine et décarburation. Ce contrôle au plus près de la surface permet également le développement d'outils prédictifs et la bonne mise en œuvre de la méthode proposée. L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, donnés à titre non limitatifs, conjointement avec les figures, qui représentent :
La figure 2 décrit une courbe caractéristique d'évolution de la température du produit en fonction du temps, contrôlée selon le procédé de l'invention.
La figure 3, décrit l'application de l'invention au four de réchauffage.
La figure 4, décrit le contrôle de la montée en température du produit, selon l'invention. La figure 5, décrit une courbe de température dans un four de réchauffage en fonction du temps.
La figure 6, une courbe de variation de la quantité de calamine en fonction du temps.
La figure 7, un autre exemple d'une courbe de variation de la quantité de la calamine en fonction du temps.
Sur la Fig. 2, la courbe (21) représente la courbe de chauffe du produit, par exemple la température de peau d'une billette ou d'une brame en four de réchauffage. Selon cette courbe, on peut définir les temps t0, ti, t2 et t3 correspondant respectivement au temps t0 d'enfournement du produit, au temps ti pour lequel la température de peau atteint 650 °C, au temps t2 pour lequel la température de peau est égale à 85 % de la température finale (ou de défoumement) Tout de la peau du produit , et enfin au temps t3 de détournement du produit à sa température finale Tout. On définit ainsi un intervalle de temps Δi correspondant au temps que passe la surface du produit entre t-i et t2. On peut également définir un temps Δ2 correspondant au temps passé par le produit entre ti et t3.
Le procédé selon l'invention consiste à réduire le temps Δi de 8 % à 40% environ de sa valeur de référence et de manière préférentielle de 10 % à 30% environ de sa valeur de référence. Ceci permet de diminuer l'épaisseur de la couche décarburée d'au moins 20% selon la teneur en éléments d'alliage et spécifiquement la teneur en carbone, par rapport au procédé de l'art antérieur utilisant soit la conduite empirique du four par un homme de métier expérimenté soit la conduite du four par des abaques de température ou un logiciel adapté. C'est en particulier la réduction du temps Δi se traduisant par une augmentation de la pente de la courbe 52 par rapport à la pente de la courbe 51 entre les instants ti et t2 correspondant aux températures de 650° C et de 85 % de la température de peau à la sortie du four qui est fondamentale selon le procédé de l'invention, car on a mis en évidence que c'est dans ces zones de température qu'il fallait augmenter la pente de la courbe de chauffe du produit si l'on voulait obtenir les gains espérés.
De la même façon, l'invention permet la réduction du temps Δ2 entre 5 % et 30% de sa valeur de référence et de manière préférentielle entre 7 et 15% de sa valeur de référence. Ceci permet de diminuer la masse de la calamine entre 5 et 30% selon la nature de l'acier.
Cette réduction des temps Δi et Δ2 est réalisée, selon l'invention, en augmentant l'énergie transférée au produit pendant toute la durée de son séjour dans le four. Cela peut être réalisé en augmentant l'énergie disponible (ajout d'une source d'énergie, par des brûleurs à flamme nue, des tubes radiants ou encore des résistances électriques ou du chauffage par induction) ou en augmentant le rendement de l'énergie disponible (enrichissement de l'air de combustion par de l'oxygène par exemple, jusqu'à 100% de pureté), de préférence au-delà de 90% 02 vol. La réduction maximum de Δ2 est fixée par le respect de la contrainte d'homogénéité thermique du produit en sortie de four, elle-même gouvernée par la conduction thermique au sein du produit.
Par rapport à une situation de référence donnée (four donné, production horaire donc vitesse de défilement des produits donnés), la réduction des temps Δi et Δ2 correspond soit à un raccourcissement du four, soit à une accélération de la vitesse de défilement des produits.
Un deuxième aspect de l'invention consiste à contrôler le profil de compositions des espèces de l'atmosphère dans le four et tout au long de la traversée du four par le produit.
En effet, la composition de l'atmosphère, c'est à dire notamment la teneur en éléments oxydants dans l'atmosphère (02, H20, C02) est un paramètre qui intervient dans la qualité métallurgique du produit. Ainsi, pour un profil thermique donné, on peut optimiser la qualité du produit en maintenant une teneur en oxygène plus ou moins élevée selon la zone du four dans laquelle on se situera.
Sur la Fig. 3 qui représente un four de réchauffage, le sens de circulation des produits (35) ainsi que celui des fumées est indiqué. La courbe (30) représente la courbe de montée en température du produit. Lors de sa circulation dans le four de réchauffage, la charge (35) subit une première montée en température dans la zone (32) . Ensuite, les températures atteignent une température T écarb- Cette température est typiquement de 700°C pour les aciers et la décarburation sera d'autant plus sensible à cette température que la teneur de l'acier en carbone est élevée. Au-delà de Tdécarb, et en présence d'espèces oxydantes, les réactions de décarburation et de formation de calamine s'accélèrent : la température à laquelle la formation de calamine devient effective est d'environ 800°C pour les aciers. Le produit traverse la zone (33) puis entre dans la zone d'égalisation (34) quand il est à la température Tégaiisa ioπ (typiquement 1100°C). Cette zone à très haute température amène le produit à sa température finale (Tfinaι, typiquement 1200°C) et est particulièrement critique pour la formation de calamine.
Trois accès pour l'installation d'une diode laser sont prévus sur ce four.
L'accès (36) est situé dans la zone d'égalisation (34), l'accès (37) est situé dans la zone de chauffe (33), l'accès (38) est situé dans la zone (32) qui contient la zone dite de récupération tandis que l'accès (39) est situé dans la cheminée (31).
Selon l'invention, la mesure de la concentration des espèces oxydantes est effectuée par les accès (36), (37), (38), (39), chaque accès recevant un faisceau laser (via une fibre optique) ou un émetteur de faisceau laser, un récepteur étant prévu sur la paroi opposé du four (ou bien un miroir qui renvoit le faisceau parallèlement au faisceau incident, le récepteur étant placé à côté de l'émetteur).
Dans la zone (32) (température inférieure à Tdécarb), les débits de combustible et comburant des brûleurs de la zone (32) devront être réglés, selon l'invention, de manière à engendrer une teneur en oxygène dans l'atmosphère dans cette zone (32), mesurée par la diode laser correspondante, entre 0.5% et 4% en volume et de manière préférentielle entre 2 et 3%. Dans le cas où la zone (32) d'égalisation n'est pas équipée de brûleurs, cette correction peut se faire par l'ajout de comburant par des lances, par exemple des lances à oxygène, la quantité injectée étant contrôlée par la mesure de teneur en oxygène de la diode laser.
La mesure est effectuée de préférence soit au plus près du produit, dans cette zone (32) par l'accès (38), soit par l'accès (39), c'est à dire dans le conduit d'évacuation des fumées où la même teneur en oxygène va être contrôlée. Si la mesure montre un défaut d'oxygène, la régulation des brûleurs devra corriger ce défaut et augmenter le débit de comburant (oxygène) aux brûleurs de la zone (32) ou de la zone précédente. Dans la zone (32), une couche protectrice de Fe203 et Fe304 sera formée et renforcée par la présence d'oxygène résiduel dans les fumées. Ces oxydes seront formés au détriment des oxydes plus plastiques comme FeO ou FeSi04, qui conduisent dans ce cas à une forte adhérence de la calamine. De plus, à faible température, le régime protecteur (stade parabolique de l'oxydation) s'établit plus rapidement pour les pressions partielles d'oxygène comprises dans l'intervalle pré-cité (0,5% à 4% vol.).
Dans la zone (33) (température supérieure à Tcarb et inférieure à Tégaiisation), les débits de combustible et comburant des brûleurs de la zone (33) devront être réglés selon l'invention de manière à engendrer une teneur en oxygène dans l'atmosphère voisine de zéro. L'atmosphère sera en défaut d'oxygène, donc en excès de combustible et en particulier de CO. Grâce à la mesure effectuée par l'accès (37), les brûleurs seront réglés de sorte que la concentration en 02 voisine de zéro et la concentration en CO comprise entre 0,1 % et 15% de volume et de manière préférentielle entre 1 et 10%. Dans cette zone à plus haute température, on cherche à limiter au maximum la formation de calamine et la décarburation en réduisant la concentration des espèces oxydantes (02, CO2, H2O).
Dans la zone (34) (température supérieure à Tégaiisation), les débits de combustible et comburant des brûleurs de la zone (34) devront être réglés selon l'invention de manière à engendrer une teneur en oxygène dans l'atmosphère comprise entre 0.5% et 5% vol. et de manière préférentielle entre 1.5 et 4% vol.. La mesure de cette concentration est effectuée au plus près du produit entre 1 mm et 15 cm, par l'accès (36). Dans cette zone et en présence d'oxygène, il y a une consommation de la couche décarburée par oxydation qui sera accompagnée d'une augmentation de porosité de la calamine, qui facilitera son élimination en sortie de four.
L'accès (39) permet de vérifier à tout moment la concentration en CO et en 02 dans les fumées avant leur évacuation. Lorsque l'on contrôle ainsi l'atmosphère, selon l'invention, la réduction de la masse de calamine obtenue est entre 5 et 25%, selon la nature de l'acier.
De la même façon, on note en règle générale, une réduction de l'épaisseur de la couche décarburée d'au moins 10%, selon la teneur en éléments d'alliage et spécifiquement la teneur en carbone. Les gains obtenus avec le contrôle de l'atmosphère sont cumulables avec les gains obtenus par réduction des temps Δi et Δ2 décrits ci-dessus.
La figure 4 illustre le contrôle de la montée en température du produit selon l'invention. L'invention consiste à permettre le contrôle de la montée en température du produit et le réglage des brûleurs par une mesure locale, zone par zone et à quelques cm au-dessus de la charge, de la température de l'atmosphère du four grâce à un système de diode laser.
Sur la figure 4, le four (41) montre l'emplacement du produit (42) et du thermocouple (48) selon la technique de l'art antérieur. La mesure du thermocouple (48) donne une valeur de température dans l'axe du four et loin du produit (42).
Selon l'invention on met en place une ou plusieurs diode laser pour mesurer une valeur de température moyenne le long du chemin optique dans la largeur du four. Une telle disposition permet :
- Une mesure moyenne le long du four, plus représentative du produit qu'une mesure ponctuelle en voûte.
- Une mesure proche du produit donc directement liée à la température de surface du produit qui est à l'équilibre avec la température du gaz en contact avec la dite surface.
- Une quantification de la relation entre température de voûte et température du produit qui était effectuée empiriquement dans l'état de l'art (en conservant le thermocouple de voûte).
Sur la figure 4, le nombre de points de mesures a ici été limité à trois. De préférence, on utilisera entre 1 et 10 points de mesure dans un four.
Le four (41) est équipé des accès (43, 44, 45) situés au dessus du produit (42). L'opérateur du four doit respecter au maximum un profil de montée en température du produit (47). Ce profil est fourni à l'opérateur, soit par son expérience soit par une abaque, soit par un logiciel de conduite de four.
Pour contrôler la montée en température du produit (47), l'homme de l'art ne disposait jusque là que de la courbe (46) décrivant la température de la voûte dans l'axe du four, dont, par exemple, le thermocouple (48) fournit un point de mesure, comme illustré sur la courbe. Selon l'invention, l'homme de l'art a maintenant accès aux mesures situées sur la courbe (47) qui sont directement liées à la température de surface du produit. L'opérateur peut donc agir sur la puissance des brûleurs pour retrouver le niveau souhaité de température sur la courbe (47). Si la température mesurée est trop basse, alors l'opérateur augmentera la puissance de chauffage dans la zone proche du point de mesure. A l'inverse, si la température mesurée est trop haute, alors l'opérateur réduira la puissance dans la zone proche du point de mesure.
L'invention présente également l'avantage suivant :
Certains fours utilisent un logiciel dit de « Niveau 2 » pour reproduire quelles que soient les conditions de chauffe une montée en température du produit, selon un profil initial donné. L'homme de métier ne disposait jusqu'à ce jour d'aucune mesure pour valider en continu l'effet du logiciel. C'est un autre aspect de l'invention que de coupler ce logiciel avec les mesures directes du produit selon l'invention, ce qui permet d'avoir une vérification systématique en temps réel de la température visée du produit.
Exemple 1 :
Un premier exemple de mise en œuvre est décrit à l'aide de la figure 5 qui représente la courbe de chauffe (51) associée à un four de réchauffage de billettes de grande longueur. La combustion est réalisée avec des brûleurs dont le combustible est du gaz naturel et le comburant de l'air préchauffé, avant mise en place de l'invention. (Sur cette figure 5, les paramètres t-i, ... et Δ-i, ... sont mis entre parenthèses lorsqu'ils concernent la courbe 51 , selon l'art antérieur et sont notés sans parenthèses lorsqu'ils se réfèrent à la courbe 52).
La mise en œuvre de l'invention se caractérise par le remplacement des brûleurs existants dont le comburant est de l'air, par des brûleurs dont le comburant a une concentration en oxygène supérieure à 21% en volume, et de préférence supérieure à 88%. Plus préférentiellement, le comburant sera de l'oxygène industriellement pur. La courbe de chauffe associée est la courbe (52). On remarque que les temps Δi et Δ2 sont réduits respectivement de 2100 à 1700 secondes et de 5300 à 4800 secondes. La qualité métallurgique du procédé obtenu selon la courbe (52) sera nettement améliorée, grâce au suivi de la courbe de chauffe de la fig. 5, avec l'installation de diodes laser aux emplacements explicités en regard de la fig. 3 et fig. 4, ou tout autre moyen de mesure permettant un contrôle convenable de ce profil de chauffe.
La figure 6 représente la quantité de calamine produite avec la méthode décrite ci-avant. La quantité de calamine (61) est associée à la situation de référence, la courbe de calamine (62) est associée à la mise en œuvre de l'invention. Les deux courbes ont été normalisées par la valeur maximum de l'épaisseur de calamine obtenue dans les conditions (61).
La mise en œuvre du procédé selon l'invention, réduisant i de 19 % et Δ2 de 9.5 % permet de réduire la quantité de la calamine en moyenne de 8% (Fig. 6). Selon les expériences, l'épaisseur de la couche décarburée est réduite entre 9 et 17%.
Exemple 2 :
L'exemple de réalisation ci-après a été mis en œuvre dans un four de réchauffage de billettes, de 33 MW de puissance et de 30m de long environ. Les brûleurs présents initialement sur le four sont des brûleurs dit aérocombustibles, l'air de combustion étant préchauffé à 300°C.
La figure 7 compare, pour un profil de chauffe identique, la quantité de calamine produite par (courbe 71) en suivant une atmosphère de chauffe dont la concentration d'oxygène dans les fumées humides est constante et égale à 3.5 % volumique, et la quantité de calamine produite (courbe 72) en suivant une atmosphère de chauffe dont la concentration d'oxygène dans les fumées humides varie de la manière suivante :
• environ 1.5% 02 (à 20 % près) quand la température de peau T est supérieure à la température d'égalisation Tégaiisation (définie comme étant comprise entre 85% et 90% de la température de défournement),
• environ 0% d'02 (jusqu'à quelques centaines de ppm) et une concentration de CO entre environ 0.5% et 3% (à 20 % près) pour Tdécarb < T < Tégaiisation , Tdécarb étant la température de début de la d écarbu ration (700°C)
• environ 2% d'0 (à 20 % près) quand la température de peau T est inférieure à Tdécarb
La concentration moyenne en 02 dans les fumées peut être mesurée par une sonde à oxygène usuelle, mais il peut être préférable de mettre en œuvre une diode laser (de type dit « TDL ») dont le rayon passe à une distance de moins de 6 cm environ du produit traité pour contrôler finement et en temps réel une variation de concentration des espèces ci-dessus à la surface du produit afin de mieux respecter le profil d'atmosphère imposé en adéquation avec le profil de chauffe.
La mise en œuvre selon l'invention, selon cet exemple 2, permet de réduire l'épaisseur de la calamine de 11% (Fig. 7). Selon les expériences, l'épaisseur de la couche décarburée est réduite entre 12 et 20%.

Claims

REVENDICATIONS
1. Procédé de traitement d'un produit métallurgique dans un four, dans lequel le produit à traiter est introduit dans le four, puis soumis au traitement souhaité, puis retiré du four, le four comportant des moyens de chauffage et notamment des brûleurs permettant de porter à une température variable les différentes zones du four, l'atmosphère dans ces différentes zones pouvant avoir une composition identique ou différente selon les zones considérées dudit four, procédé caractérisé en ce que le produit à traiter a une température qui augmente entre le moment où il est introduit et le moment où il est retiré du four, la courbe de montée en température ayant une pente qui augmente dans un premier intervalle de temps compris entre l'instant t0 d'introduction du produit dans le four et l'instant ti auquel le produit atteint une température de surface de 650°C, une pente sensiblement constante entre l'instant ti et l'instant t2 auquel le produit atteint une température d'environ 15 % inférieure à la température de surface finale souhaitée pour le produit à traiter lorsqu'il sort du four, puis une pente qui diminue entre l'instant t2 et l'instant t3 auquel le produit à traiter sort du four, procédé dans lequel on augmente la puissance de chauffe du four par rapport à sa puissance lorsque seuls des brûleurs aéro-combustibles sont utilisés de manière à augmenter la pente de la courbe de montée en température du produit à traiter, au moins pendant certaines périodes de traitement du produit dans le four entre les instants t-t et t2, ce qui engendre une diminution de la durée du traitement du produit à traiter et une diminution corrélative de l'épaisseur de la couche décarburée et/ou de la couche de calamine formée à la surface du produit.
2. Procédé selon la revendication 1 , caractérisé en ce que l'augmentation de la puissance de chauffe du four est obtenue à l'aide de brûleurs oxy-combustibles qui constituent au moins une partie des moyens de chauffe du four, notamment une partie des moyens de chauffe du four correspondant à la zone atteinte par le produit entre les instants t-i et t2.
3. Procédé selon la revendication 2, caractérisé en ce que le comburant fourni aux brûleurs oxy-combustibles constituant une partie au moins des moyens de chauffe du four, comporte au moins 88 % d'oxygène et de préférence plus de 90 % d'oxygène, encore plus préférentiellement plus de 95 % d'oxygène.
4 Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le temps de traitement du produit entre les températures de 700°C et de 800°C atteintes pour la surface du produit, est diminué de 15% à 50% de sa valeur de référence, de préférence de 20 à 35% de sa valeur.
5 Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le temps de traitement entre les températures de 700°C et la température finale de la surface du produit, est diminué entre 3 et 25% de sa valeur de référence, de préférence entre 7 et 15% de sa valeur de référence.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'atmosphère du four varie le l,ong du four, en fonction de la température de peau du produit métallurgique.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'atmosphère du four au contact du produit à traiter comporte environ 0,5 % vol à 5 % d'oxygène et de préférence entre 1 ,5 vol à 4 % vol d'oxygène quand la température de peau T à la surface du produit traité est supérieure ou égale à la température d'égalisation Tegai, qui est égale à 85 % de la température à la surface du produit (température de détournement) à la sortie du four.
8. Procédé selon la température7, caractérisé en ce que la température d'égalisation Tegas est égale à 90 % de la température de détournement.
9. Procédé selon l'une des revendications 1 à8, caractérisé en ce que l'atmosphère au contact du produit à traiter comporte une concentration en oxygène inférieure à quelques centaines de ppm et une concentration en CO comprise entre 0,1 % et 15 %, de préférence 0,5 % à 5 % vol lorsque la température de peau T à la surface du produit est supérieure à 700°C et inférieure à la température d'égalisation du produit, définie comme étant égale à 90 % de la température de peau du produit à la sortie du four.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'atmosphère au contact du produit à traiter comporte une concentration en oxygène comprise entre 0,5 % et 4 % vol et de préférence entre 2 % et 3 % vol lorsque la température de peau T à la surface du produit à traiter est inférieure à 700 ° C.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'on analyse au moins un des paramètres de l'atmosphère dans au moins une zone du four à l'aide d'une diode laser dont le faisceau est situé à une distance minimum de la surface du produit comprise entre 1 cm et 6 cm en au moins un point de la surface dudit produit.
PCT/FR2002/001361 2001-04-26 2002-04-19 Procede pour ameliorer la qualite metallurgique de produits traites dans un four WO2002088402A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/475,149 US6955730B2 (en) 2001-04-26 2002-04-19 Method for enhancing the metallurigcal quality of products treated in a furnace
CA2444399A CA2444399C (fr) 2001-04-26 2002-04-19 Procede pour ameliorer la qualite metallurgique de produits traites dans un four
DE60203280T DE60203280T2 (de) 2001-04-26 2002-04-19 Verfahren zum verbessern der metallurgischen eigenschaften von im ofen behandelten produkten
AT02735468T ATE291101T1 (de) 2001-04-26 2002-04-19 Verfahren zum verbessern der metallurgischen eigenschaften von im ofen behandelten produkten
EP02735468A EP1386012B1 (fr) 2001-04-26 2002-04-19 Procede pour ameliorer la qualite metallurgique de produits traites dans un four

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0105634A FR2824078B1 (fr) 2001-04-26 2001-04-26 Procede pour controler le profil d'un four et ameliorer les produits traites
FR01/05634 2001-04-26
FR01/05633 2001-04-26
FR0105633A FR2824077B1 (fr) 2001-04-26 2001-04-26 Procede pour ameliorer la qualite metallurgique de produits traites dans un four

Publications (1)

Publication Number Publication Date
WO2002088402A1 true WO2002088402A1 (fr) 2002-11-07

Family

ID=26212989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001361 WO2002088402A1 (fr) 2001-04-26 2002-04-19 Procede pour ameliorer la qualite metallurgique de produits traites dans un four

Country Status (8)

Country Link
US (1) US6955730B2 (fr)
EP (1) EP1386012B1 (fr)
CN (1) CN1505687A (fr)
AT (1) ATE291101T1 (fr)
CA (1) CA2444399C (fr)
DE (1) DE60203280T2 (fr)
ES (1) ES2240752T3 (fr)
WO (1) WO2002088402A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2324745C2 (ru) * 2006-02-26 2008-05-20 Игорь Михайлович Дистергефт Способ тепловой обработки металла в пламенной печи прямого или косвенного нагрева (варианты), способ сжигания смеси жидкого или газообразного топлива и нагретого воздуха в пламенной печи прямого или косвенного нагрева, устройство отопления (варианты) и регенеративная насадка (варианты) для осуществления способов
JP5059379B2 (ja) * 2006-11-16 2012-10-24 株式会社神戸製鋼所 高炉装入原料用ホットブリケットアイアンおよびその製造方法
SE531990C2 (sv) * 2007-01-29 2009-09-22 Aga Ab Förfarande för värmebehandling av långa stålprodukter
FR2920438B1 (fr) * 2007-08-31 2010-11-05 Siemens Vai Metals Tech Sas Procede de mise en oeuvre d'une ligne de recuit ou de galvanisation en continu d'une bande metallique
CN104865196A (zh) * 2014-09-09 2015-08-26 浙江迪特高强度螺栓有限公司 一种网带式热处理炉的炉内碳含量测定方法
US20170094730A1 (en) * 2015-09-25 2017-03-30 John Justin MORTIMER Large billet electric induction pre-heating for a hot working process
CN117212812B (zh) * 2023-11-09 2024-02-23 陕西宝昱科技工业股份有限公司 一种燃烧机切换机构和燃烧炉系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2174657A1 (en) * 1972-03-06 1973-10-19 Ferodo Sa Chlutchplate heat treatment - accelerated by heating to alpha iron to austenite change point
US4357135A (en) * 1981-06-05 1982-11-02 North American Mfg. Company Method and system for controlling multi-zone reheating furnaces
EP0630978A1 (fr) * 1993-06-23 1994-12-28 The Gas Research Institute Procédé de chauffage d'articles métalliques par impact de flammes provenant de brûleurs à oxygène-combustible
EP0767353A1 (fr) * 1995-09-13 1997-04-09 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Méthode pour égaliser la température d'un four à oxydation ambiante contrÔlée et four pour la réaliser
FR2794132A1 (fr) * 1999-05-27 2000-12-01 Stein Heurtey Perfectionnements apportes aux fours de rechauffage de produits siderurgiques

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415415A (en) 1982-11-24 1983-11-15 Allegheny Ludlum Steel Corporation Method of controlling oxide scale formation and descaling thereof from metal articles
US4606529A (en) * 1983-09-20 1986-08-19 Davy Mckee Equipment Corporation Furnace controls

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2174657A1 (en) * 1972-03-06 1973-10-19 Ferodo Sa Chlutchplate heat treatment - accelerated by heating to alpha iron to austenite change point
US4357135A (en) * 1981-06-05 1982-11-02 North American Mfg. Company Method and system for controlling multi-zone reheating furnaces
EP0630978A1 (fr) * 1993-06-23 1994-12-28 The Gas Research Institute Procédé de chauffage d'articles métalliques par impact de flammes provenant de brûleurs à oxygène-combustible
EP0767353A1 (fr) * 1995-09-13 1997-04-09 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Méthode pour égaliser la température d'un four à oxydation ambiante contrÔlée et four pour la réaliser
FR2794132A1 (fr) * 1999-05-27 2000-12-01 Stein Heurtey Perfectionnements apportes aux fours de rechauffage de produits siderurgiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UPSCHULTE B L ET AL: "MEASUREMENTS OF CO, CO2, OH, AND H2O IN ROOM-TEMPERATURE AND COMBUSTION GASES BY USE OF A BROADLY CURRENT-TUNED MULTISECTION INGAASP DIODE LASER", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA,WASHINGTON, US, vol. 38, no. 9, 20 March 1999 (1999-03-20), pages 1506 - 1512, XP000828580, ISSN: 0003-6935 *

Also Published As

Publication number Publication date
EP1386012B1 (fr) 2005-03-16
DE60203280T2 (de) 2006-03-30
US20040140024A1 (en) 2004-07-22
US6955730B2 (en) 2005-10-18
ATE291101T1 (de) 2005-04-15
ES2240752T3 (es) 2005-10-16
CA2444399C (fr) 2010-08-24
CN1505687A (zh) 2004-06-16
CA2444399A1 (fr) 2002-11-07
DE60203280D1 (de) 2005-04-21
EP1386012A1 (fr) 2004-02-04

Similar Documents

Publication Publication Date Title
EP1999287B1 (fr) Procede de recuit et de preparation en continu d&#39;une bande d&#39;acier a haute resistance en vue de sa galvanisation au trempe
WO2005102548A1 (fr) Procede de production de bandes en acier inoxydable austenititique d’aspect de surface mat
EP2188399A1 (fr) Procede et dispositif d&#39;oxydation/reduction controlee de la surface d&#39;une bande d&#39;acier en defilement continu dans un four a tubes radiants en vue de sa galvanisation
EP0971171B1 (fr) Procédé de combustion d&#39;un combustible avec un comburant riche en oxygène
CA2557288A1 (fr) Procede de traitement d&#39;aluminium dans un four rotatif ou reverbere
CA2444399C (fr) Procede pour ameliorer la qualite metallurgique de produits traites dans un four
EP2507551B1 (fr) Procede de correction des reglages de combustion d&#39;un ensemble de chambres de combustionde tubes radiants et installation mettant en oeuvre le procede
EP1322900B1 (fr) Procede de rechauffage de produits metallurgiques
EP1285972A1 (fr) Procédé de galvanisation à chaud de bandes métalliques d&#39;aciers à haute résistance
FR2681332A1 (fr) Procede et dispositif de cementation d&#39;un acier dans une atmosphere a basse pression.
BE1014997A3 (fr) Procede de recuit en continu de bandes en acier en vue de leur galvanisation au trempe et four pour sa mise en oeuvre.
EP1001237A1 (fr) Procédé de chauffage d&#39;un four à chargement continu notamment pour produits sidérurgiques, et four de chauffage à chargement continu
FR2824078A1 (fr) Procede pour controler le profil d&#39;un four et ameliorer les produits traites
EP2181198B1 (fr) Procede de mise en uvre d&#39;une ligne de recuit ou de galvanisation en continu d&#39;une bande metallique
FR2824077A1 (fr) Procede pour ameliorer la qualite metallurgique de produits traites dans un four
FR2711374A1 (fr) Procédé de décokage thermique d&#39;un four de craquage et du refroidisseur de gaz de craquage en aval.
WO2002088680A1 (fr) Procede de controle d&#39;un produit traite dans un four et four ainsi equipe de moyens de controle
EP3715717B9 (fr) Procédé de combustion et brûleur pour sa mise en oeuvre
EP3108021B1 (fr) Procédé de traitement thermique d&#39;un élément de renfort en acier pour pneumatique
JP4554596B2 (ja) 炉内アルミニウム処理方法
WO2015124652A1 (fr) Procédé de traitement thermique à refroidissement continu d&#39;un élément de renfort en acier pour pneumatique
JPH0629457B2 (ja) ステンレス冷延鋼帯の熱処理方法
WO2015124653A1 (fr) Installation et procédé de traitement thermique à haute vitesse d&#39;un élément de renfort en acier pour pneumatique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002735468

Country of ref document: EP

Ref document number: 2444399

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028089723

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002735468

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10475149

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002735468

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP