WO2002086131A1 - Unite de regulation de l'expression genetique et utilisation de cette unite - Google Patents

Unite de regulation de l'expression genetique et utilisation de cette unite Download PDF

Info

Publication number
WO2002086131A1
WO2002086131A1 PCT/JP2002/003537 JP0203537W WO02086131A1 WO 2002086131 A1 WO2002086131 A1 WO 2002086131A1 JP 0203537 W JP0203537 W JP 0203537W WO 02086131 A1 WO02086131 A1 WO 02086131A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dna
gene
expression
specific
Prior art date
Application number
PCT/JP2002/003537
Other languages
English (en)
French (fr)
Inventor
Mutsuya Yamamoto
Dai Watanabe
Yutaka Teranishi
Shigetada Nakanishi
Original Assignee
Gencom Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gencom Corporation filed Critical Gencom Corporation
Priority to US10/474,529 priority Critical patent/US20040234974A1/en
Priority to EP02713310A priority patent/EP1386968A4/en
Publication of WO2002086131A1 publication Critical patent/WO2002086131A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • C12N2830/003Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor tet inducible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/33Assays involving biological materials from specific organisms or of a specific nature from bacteria from Clostridium (G)

Definitions

  • the present invention relates to a method for analyzing the function of a specific nerve cell. More specifically, a DNA having a structure capable of reversibly controlling the expression of a protein having a neuronal transmission function controlling activity in a specific nerve cell, a host into which the DNA has been introduced, and a host into which the DNA has been introduced.
  • the present invention relates to a method for analyzing the function of a specific nerve cell by reversibly controlling the expression of a protein having a neuronal communication function controlling activity in the specific nerve cell.
  • mice and knockout mice have been produced by remarkable progress in molecular biology in recent years, and it has become possible to artificially change the expression level of genes in individuals.
  • this technique can be used to determine the phenotype of a gene when the expression of a gene increases or, conversely, when the expression of a gene is lost. It was limited to the functions of “molecules” such as what kind of work it did. In other words, there was no effective means to specifically analyze the functions of nerve cells, which are located at a higher level than molecules and are also basic units of neural networks.
  • IMCT Immunonotoxin—Mediated Ceil Targeting
  • Watanabe and Nakanishi who are also inventors of the present invention
  • the IMCT method uses molecular biology to create transgenic mice that express a fusion protein of human IL-2 receptor and a marker in a specific region of the brain. This is a revolutionary method that allows specific cells to be destroyed and deleted at any stage of growth by administering a recognizing antibody toxin.
  • the IMCT method has its limitations, and is not necessarily a sufficient method for analyzing neuronal function.
  • the cerebral nervous system is an extremely plastic organ, and when a certain neuron is deleted, compensation and adaptation by other cells occur in the course of long-term observation.
  • the IMCT method irreversibly causes nerve cells to be lost due to cell death. Therefore, it is possible to convert a mouse from a normal state to a defective state, but it is not possible to return the mouse from the defective state to a normal state again. Therefore, irreversible neuronal cell loss methods such as the IMCT method have a problem that they cannot accurately evaluate cell functions hidden by compensation and adaptation phenomena.
  • Toxin proteins produced by tetanus and botulinum bacteria when taken up into nerve cells, release proteins (SNARE: Soluble N-ethylmaleimide-sensitive fusion protein Attachment proteins REceptor) that release neurotransmitters. Acts as a specifically degrading protease. As a result, nerve cells affected by this neurotoxin protein are unable to release neurotransmitters, preventing the transmission of information to subsequent cells without relying on cell death.
  • SNARE Soluble N-ethylmaleimide-sensitive fusion protein Attachment proteins REceptor
  • this toxin protein derived from tetanus and botulinum is expected to be useful as a protein having a neuronal transmission function controlling activity.
  • spermatogenesis is abnormal (Eisel, U., et al., (1993) ⁇ J., 12, 3365-3372).
  • the present invention provides a method for controlling the cerebral nervous system by reversibly controlling the expression of a protein having a neuronal transmission function-regulating activity, rather than deleting specific neurons by irreversible cell death.
  • the task is to provide a very effective tool for analyzing networks.
  • the present inventors have, GABA A a 6 pro motor (Jones that are specifically activated in certain nerve cells, A., et al, (1996 ) J. Neurochem, 67, 907 - 916;.. Bahn, Natl. Acad. Sci. USA, 94, 9417-9421), using a tetracycline-dependent transcriptional regulatory system, to produce neurotoxin genes from botulinum and tetanus bacteria.
  • DNA having a structure capable of reversible regulation of expression was injected into mouse fertilized eggs by mouth, and genetically modified mice were produced.
  • GA- BA A c 6 promoter specifically neurotransmitter release in cells activated has found to be controlled.
  • the present invention has been accomplished based on such knowledge.
  • the present invention relates to (1) reversibly controlling the expression of a protein having a nerve cell transmission function regulating activity in a specific nerve cell, comprising DNA encoding a protein having a nerve cell transmission function regulating activity.
  • the host according to (5) which reversibly controls the expression of a protein having a neurotransmitter function controlling activity in a specific nerve cell, and the biological function in the nerve cell or a cell associated therewith.
  • a method for analyzing the functions of biological functions and molecules characterized by analyzing physical and chemical changes of molecules.
  • (9) (1) (a) activated by a specific stimulus, which is linked to a transcription control region DNA that is specifically activated in a specific nerve cell and is placed under the control of the transcription control region; And DN'A encoding a protein capable of activating a specific promoter, and (b) a promoter controlled by the protein and a neurotransmitter release controlling activity linked so as to be under the control thereof.
  • a DNA encoding a protein having the same is introduced into a host; Biofunction A method for analyzing biological function and molecular function, characterized by analyzing physical and chemical changes of offspring.
  • (11) (a) A transcriptional control region DNA specifically activated in a specific nerve cell and linked to be placed under the control of the transcriptional control region, activated by a specific stimulus, and DNA encoding a protein capable of activating a specific promoter, and (b) a promoter controlled by the protein and a protein having a neurotransmitter release controlling activity linked so as to be under the control of the promoter. Fertilized eggs, embryonic stem cells, and neural stem cells of non-human animals that carry the encoding DNA *
  • FIG. 1 is a diagram showing a DNA encoding a tetracycline-dependent transcriptional regulator constructed in an example of the present invention.
  • (1) shows the structure of the SphI / NotI9.3 Kbp fragment of the pVEC6 (ll) vector used for microinjection into mouse fertilized eggs.
  • (2) shows the structure of the endogenous GABA A a6 gene.
  • 1, wide frame gray both 2 is a Ipushironkaiomikuron'ita ⁇ area of GABA A alpha 6, the white width Hosowaku are IRES, wide frame diagonal line represents the rtTA gene.
  • the numbers indicate the size (kbp) of the DNA in each region as a bold line indicating the lower probe setting region.
  • FIG. 2 is a diagram showing a DNA encoding a neuronal transmission function control protein constructed in an example of the present invention.
  • the numbers indicate the size (kbp) of the DNA in each region.
  • the bold line shown as the Probe setting area at the bottom shows the area corresponding to the probe sequence used in Southern hybridization.
  • BoNT There is only one BoNT. A, BoNT. B, BoNT. E, and TeNT.
  • BoNT BoNT. CI is another area in other areas.
  • Xbal # There is only one location for BoNT. A, BoNT. B, and BoNT. E.
  • BoNT.E is another in other areas.
  • 3 is a diagram showing the results of Genomusazanha Eve lida I See Chillon analysis of genetically modified mice introduced with GABA A ct 6- rtTA.
  • (2) shows the results of genomic Southern hybridization analysis of genetically modified mice into which treTeNTdl has been introduced.
  • the upper numbers indicate the individual numbers of the genetically modified mice as samples, and the underline added to the individual numbers indicates that the mice are transgene-positive mice.
  • the size marker of DNA is shown on the left side of the figure.
  • the long arrow indicates the position of the signal derived from the endogenous gene, and the short arrow indicates the position of the signal derived from the transgene. Transgene positive lines are underlined below the number.
  • FIG. 4 is a diagram showing the correspondence between the structure of the neurotoxin substrate protein and the site of cleavage by the neurotoxin used in this example.
  • the letters A, B, Cl, and E indicate the serotype of the neurotoxin BoNT, and the added arrows indicate the sites where each neurotoxin cleaves the substrate.
  • the hatched area indicates the Four-helix bundle area (Fasshauer, D., et al., (1998) Proc. Natl. Acad. Sci. USA, 95, 15781-15786), and is blacked out.
  • the region indicates a transmembrane region.
  • the numbers at the bottom represent the sequence numbers of the amino acids on the N-terminal side at each boundary.
  • FIG. 4 is a diagram showing the results of Western blotting analysis of the substrate protein cleavage activity of the toxin for quality.
  • the molecular weight markers of the proteins are shown on the left side of the figure.
  • the long arrow indicates the position of the target protein that has not been cleaved, and the short arrow indicates the position of the target protein that has been cleaved.
  • Figure 6 is a graph showing the results of mRNA Northern blot analysis in GABA A a6- rtTA transgenic mice.
  • FIG. 7 is a diagram showing the results of in situ hybridization analysis in GABA A a6-tTA transgenic mice.
  • FIG. 8 shows the results of Western blotting for induction and elimination of neurotoxin protein expression in mice transgenic for the ABA A a6-rtTA gene and the treToxin gene.
  • Figure 9 shows wild-type mice treated with doxycycline for 1 week (6 weeks old)
  • Figure 9A Genotype:-/-, D0X: +
  • Figure 9B Genotype: + / +, D0X:-
  • Fig. 9C Genotype: + / +, D0X: +
  • FIG. 2 shows the results of the anti-EGFP antibody and the secondary antibody and subsequent antibodies performed by the ABC method.
  • FIG. 10 is a diagram showing the results of behavioral analysis by a rota-rod test using mice.
  • Fig. 11 is a diagram showing the results of behavior analysis by a balance beam test using mice. BEST MODE FOR CARRYING OUT THE INVENTION
  • a protein having an activity of controlling a neuronal transmission function and a DNA encoding the protein refers to a protein having an activity of controlling information transmission between a specific nerve cell and another cell in a living body. .
  • a protein capable of directly controlling the release of a neurotransmitter hereinafter referred to as a “neurotransmitter release control protein” is preferable. Any device that can control the cell transmission function may be used.
  • the neuronal transmission function control protein used in the present invention for example, a neurotransmitter release control protein, reversibly inhibits the release of a neurotransmitter when introduced into a living body or conversely when removed from the living body.
  • a neurotransmitter release control protein reversibly inhibits the release of a neurotransmitter when introduced into a living body or conversely when removed from the living body.
  • neurotoxin examples include tetanus toxin protease (TeNT) and botulinum toxin protease (BoNT). These may be derived from any species or type of tetanus or Clostridium botulinura, but are preferably tetanus (Clostridium tetani Harvard A-47; accession number: KZ1174, Japanese Society of Cytology, 1995, Vol. 50, No. 4, 1023) or from botulinum (BoNT. A (Binz, T., et al., (1990) J. Biol. Chem., 265, 9153-9158), ⁇ . ⁇ (Kurazono, ⁇ ., Et al., (1992) J.
  • TeNT tetanus toxin protease
  • BoNT botulinum toxin protease
  • neuronal transmission function control proteins for example, those described in the above-mentioned documents can be used, but one or several amino acid substitutions or deletions as long as the protein has the neuronal transmission function control activity Those having, or addition or inversion can also be used as neuronal transmission function control proteins.
  • a marker and a tag sequence can be added to the N-terminus or C-terminus of the protein, or can be inserted therein.
  • the marker for example, GFP (Green Fluorescent Protein) ⁇ -galactosidase, luciferase and the like can be used.
  • Any tag sequence may be used as long as it is commonly used as an epitope tag.
  • a Flag tag, an HA tag, an HIS tag, or the like can be used.
  • a sequence that affects the intracellular transport and localization of the protein, and a sequence that regulates the stability of the protein can be added to the N-terminal or C-terminal of the protein, or inserted into the protein. You can also.
  • Sequences that can regulate protein stability include PEST sequences such as Mouse Orni-thine Decarboxylase (Ghoda, Shi, et al., (1989) Science, 243, -1493-1495; Li, X., et. al., (1998) J. Biol. Chem., 273, 34970-34975).
  • the DNA encoding the neuronal transmission function controlling protein used in the present invention can be obtained, for example, from cells expressing the above-described neuronal transmission function controlling protein.
  • the type of DNA may be any as long as it encodes a protein having a neuronal transmission function controlling activity, and may be either genomic DNA or cDNA, but is preferably cDNA.
  • cDNA contains only coding region or non-coding region
  • mRNA in cells expressing a neuronal transmission function controlling protein such as RT-PCR (Reverse Transcription—Polymerase Chain Reaction), PCR, or hybridization, from a cDNA library. It can be obtained by a method known per se such as the zation method.
  • the DNA encoding the neuronal transmission function-controlling protein used in the present invention is not limited to the DNA obtained as described above, but also to the extent that the protein encoded by the DNA does not inhibit the neuronal transmission function-regulating activity. Transcription, translation, or intracellular localization of mRNA on the 'side or 5' side, or inside the DN.A ( Mayford, M., et al., (1996) Proc. Natl. Acad. Sci.
  • a polyA signal sequence linked to the 3 ′ side of the translation region DNA can be used.
  • the polyA signal sequence a sequence contained in the 3, untranslated region of the cDNA used may be used, or an exogenous sequence such as Rabbit / 3-globin ⁇ ⁇ olyA signal sequence may be used. Good.
  • BoNT.A BoNT, T., et al., (1990) J. Biol. Chem., 265, 9153-9158
  • BoNT.B Kurazono, H., et al., ( 1992) J. Biol. Chem., 267, 14721-1 ⁇ 4729
  • BoNT. CI Hauser, D., et al., (1990) Nucleic Acids Res., 18, 4924 ⁇
  • BoNT. D Boz , T et al., (1990) Nucleic Acid's Res., 18, 5566
  • BoN-TE BoN-TE
  • Neuronal transmission function control DNA DNA encoding the above-mentioned neuronal transmission function control protein
  • neuronal transmission function control DNA has an expression capable of reversibly controlling its expression in specific nerve cells.
  • the expression control unit of the neuronal transmission function control protein of the present invention hereinafter, this may be referred to as “gene expression control unit” or “expression control unit of neuronal transmission function protein”
  • gene expression control unit or “expression control unit of neuronal transmission function protein”
  • a gene expression control unit examples include (a) a DNA structure capable of reversibly controlling the expression of a protein having a neuronal transmission function controlling activity in a specific nerve cell; Those containing DNA encoding a protein having a neuronal transmission function controlling activity linked so as to be placed under the control of the DNA structure.
  • a specific nerve cell means a cell in which a network between the cell and a cell associated with the cell changes due to the expression of a neuronal transmission function control protein in the cell.
  • Specific examples include cerebellar granule cells and the like.
  • a system for reverse control is a system that can control gene expression irreversibly under specific conditions and that can reversibly control gene expression specifically in specific nerve cells. If it is, any thing may be used.
  • a system for reversibly controlling the expression of a gene can use the pedestrian method itself.
  • a tetracycline expression control system that controls gene expression by the presence or absence of tetracycline (Gossen, M., and Bujard, H., (1992) Proc. Natl. Acad. Sci. USA., 89, 5547- 5551; U.S. Patent No.
  • the system is controlled under the control of a motor that is activated only in a specific nerve cell.
  • a method is used in which a system is connected or a specific condition for reversibly controlling gene expression in the system can be selectively performed only in a specific nerve cell. Whether the expression control unit of the present invention is selectively activated only in a target neuron is determined by reversibly controlling gene expression after introducing the unit into a suitable host.
  • the above-described tetracycline expression control system is used. Things. Examples of specific configurations of the unit include: (a) a DNA in which a tetracytaline-responsive element and a promoter controlled by a tetracycline-responsive element are linked to the 5′-side upstream of the neuronal transfer function-control DNA of the present invention; *, And (b) DNA linked so that the DNA encoding the tetracycline expression regulator is under the control of a promoter sequence that is specifically activated in a specific nerve cell. These two DNA fragments are each constructed as independent DNA fragments, their ligations, or plasmids into which they have been inserted.
  • the ligation of these DNAs is preferably as described above, but by regulating the presence or absence or the amount of tetracytaline in cells into which the expression control unit of the present invention has been introduced, a protein for controlling a neuronal transmission function can be obtained. If the expression of can be controlled reversibly, it may be moved to another site or the sequence may be changed. Further, it is preferable that at least one appropriate intron is inserted in addition to the above-described configuration.
  • the above-mentioned tetracycline response element may be any DNA as long as it can bind to a tetracycline expression control factor and has a function of activating a downstream promoter by this binding. Linoperator (Gossen, M. and Bujard, H., (1992) Proc. Natl. Acad. Sci. USA, 89, 55-47-5551) and the like are used.
  • any promoter may be used as long as it has no activity by itself and is controlled by a tetracycline response element.
  • a CMV minimum promoter can be used.
  • tetracycline or a derivative thereof Factors that induce gene expression under the control of the tetracycline response element when administered or not administered are included.
  • rtTA Reverse tetracycli ne-controlled transactivator: Gossen, M., et al., (1995) Science, 268, 17-66-1769
  • a certain tTA Tetracycline-controlled transactivator: Gossen, ⁇ M., and Bujard, H., (1992) Proc. Natl. Acad. Sci. USA, 89, 5547-5551).
  • tetracycline expression regulatory DNA DNA encoding the above-mentioned tetracycline expression regulator (hereinafter sometimes referred to as “tetracycline expression regulatory DNA”) is ligated so as to be under the control of a promoter that is activated in a specific nerve cell.
  • a promoter sequence that is activated in a specific nerve cell is linked to the 5 ′ upstream of tetracycline expression regulatory DNA, or a cell that is introduced by homologous recombination.
  • DNA in which tetracycline expression regulatory DNA is located downstream of a promoter that is activated in specific endogenous neurons on the chromosome can also be used.
  • RNA Ribonucleic acid
  • DNA Ribonucleic acid
  • GABA A a 6 pro motor
  • the DNA sequence of the promoter may include a gene DNA controlled by the promoter downstream of the 3 ′ side.
  • the IRES Internal
  • the IRES is located between the gene and the tetracycline expression regulatory DNA of the present invention. ribosomal entry site).
  • tetracytaline expression control unit of the present invention (a) a tetracytaline responsive element and a promoter sequence controlled by the tetracycline responsive element are linked to the 5 'upstream of the neuronal transfer function control DNA. And (b) transcription or translation of the DNA under specific conditions upstream of a non-specific or tetracycline expression regulatory DNA linked under the control of a promoter that is activated in specific neurons. (C) a DNA linked to a promoter that activates a specific neuron-inducing factor in a specific nerve cell. Be composed. These three DNAs are preferably constructed as independent separate DNA fragments or plasmids into which they have been inserted.However, three or two are arranged side by side to form one DNA fragment, or It can also be built as a plus.
  • the arrangement of these DNAs is preferably as described above. However, by regulating the presence or absence or the amount of tetracycline in the cells into which these DNAs have been introduced, the expression of the neuronal transmission function control protein can be reversibly controlled. If so, you can move it to another location or change the arrangement. Furthermore, it is preferable that at least one intron is included in these transcription units.
  • tetracycline responsive element and the promoter sequence controlled by the tetracycline responsive element those described in the above (i) can be used.
  • those described in the above (i) can be used.
  • the promoter that functions in specific nerve cells as the promoter that functions in all cells, for example, one actin promoter is preferably used. .
  • the mechanism for inhibiting or releasing the expression of the tetracytaline expression regulator induced by this promoter under specific conditions includes, for example, Cre-lox system (S-ternberg, N., and Hamilton, D. , (1981) J. Mol. Biol., 150, 467-486; Sauer, B., and Henderson, N., (1988) Proc. Natl. Acad. Sci. USA, 85, 5166-5170; Gu. , H., et al., (1994) Science, 265, 103-106) and the FLP-FRT system. (G-olic, KG, and Lindquist, SL, (1989) Cell, 44, 499-509) can be used.
  • Cre-lox system When the Cre-lox system is used, a DNA is used in which a stop codon having a ⁇ sequence linked to both ends is ligated between the non-specific promoter and the tetracycline expression control DNA. Furthermore, as a factor inducing a specific condition, Cre recombinase having an activity of deleting a region flanked by a sequence by DNA recombination is used. The DNA encoding the factor is ligated downstream of the promoter that is activated in the specific nerve cell described in (i) above.
  • gene expression control units include: (a) a promoter sequence for an appropriate stress protein, a neuronal transmission function control DN-A operably linked to the sequence, (B) a factor linked to a DNA upstream of which a DNA that inhibits the transcription or translation of the gene under specific conditions is activated; It is composed of DNA that is linked to be under control.
  • these two DNAs are constructed as independent and separate DNA fragments or as plasmids into which they are inserted, however, the two are arranged side by side as one DNA fragment or as a plasmid into which they are inserted. Can also be built.
  • these DNAs are preferably as described above, but the expression of the neuronal transmission function control protein is reversible by regulating the presence or absence or the degree of appropriate stress shock in the cells into which these DNAs have been introduced. If you can control it, you may move it to another location or change the arrangement. Furthermore, these expression control units preferably contain at least one intron.
  • any one can be used as long as it can be activated by applying an appropriate stress to cells into which the unit has been introduced.
  • heat Shock protein promoters any one can be used as long as it can be activated by applying an appropriate stress to cells into which the unit has been introduced.
  • the mechanism that inhibits or releases the expression of the neuronal transmission function control DNA induced by this promoter under specific conditions includes, for example, the Cre-lox system (Stern-berg, N., and Hamilton, D., (1981) J. Mol. Biol., 150, 467-486; Sauer, B., and Henderson, N., (1988) Proc. Natl. Acad. Sci. USA, 85, 5166-5170 Gu, ⁇ ⁇ , et al., (1994) Science, 265, 103-106) and FLP-FRT system (Golic-, KG, and Lindquist, S. Shishi, (1989) Cell, 44, 499-509) Can be used.
  • Cre-lox system Stern-berg, N., and Hamilton, D., (1981) J. Mol. Biol., 150, 467-486; Sauer, B., and Henderson, N., (1988) Proc. Natl. Acad. Sci. USA, 85, 5166-5170 Gu, ⁇ ⁇ , e
  • Cre-lox system When the Cre-lox system is used, a DNA in which a stop codon having both ends bound to each other between the stress protein promoter and the DNA for controlling a neuronal transmission function can be used. Further, as a factor for inducing a specific condition, Cre recombinase having an activity of deleting a region flanked by the ⁇ sequences by DNA recombination is used. The DNA encoding the factor is ligated downstream of the promoter that is activated in the specific nerve cell described in (i) above.
  • a method in which a DNA having a structure in which a nerve cell transmission function control DNA is linked is introduced into a host downstream of the stress protein promoter, and stress is directly applied only to specific nerve cells (Halfon, MS, Natl. Acad. Sci. USA, 94, 6255-6260; Halloran, MC, et al., (2000) Development, 127, 1953-1960), etc. Can also be used.
  • the gene expression control unit of the present invention is prepared by a method known per se, and a recombinant is obtained by introducing the same into an appropriate host. can do.
  • a host into which the gene expression control unit of the present invention can be introduced any host can be used as long as the unit can be introduced and the recombinant can reversibly control the expression of a neurotransmitter release control protein. It may be something. Specifically, for example, cultured cells such as PC12 (Green, Shi, et al., (1976) Proc. Natl. Acad. Sci. USA, 73, 2 ⁇ 424-2428), nervous system cultured cells, primary cells Nervous system tissue Examples include rice culture, fertilized eggs, embryonic stem cells, neural stem cells, and organisms other than humans.
  • Embryonic stem cells refer to all cells that can develop into an individual, and neural stem cells refer to all cells that can differentiate into nerve cells.
  • living organisms include nematodes, Drosophila, zebrafish, birds such as chickens, and mammals such as monkeys, rats, and mice. Of these, rodents are preferred, and mice are more preferred.
  • rodents are preferred, and mice are more preferred.
  • As a mouse strain it is preferable to use the C57BL / 6 strain in consideration of the phenotypic analysis of the above-described expression control unit-introduced transgenic cells, but it is difficult to breed and obtain fertilized eggs, Other strains can be used, taking into account other factors such as cell lineage.
  • a method for introducing the expression control unit of the neuronal transmission function controlling protein of the present invention into such a host a commonly used method known per se can be used.
  • the host is a cell such as a cultured cell, a nervous system cultured cell, a primary cell, a nervous tissue slice culture, a fertilized egg, an embryonic stem cell, or a neural stem cell, specifically, for example, a microinjection method, a calcium phosphate method, A lipofection method, an electoral poration method, a virus infection method, or the like can be used.
  • the gene expression control unit is composed of a plurality of DNA fragments
  • the whole expression control unit can be constructed in the host body by breeding the independently introduced animals.
  • a gene transfectant in each host such as a method of introducing DNA into the above-mentioned fertilized egg or embryonic stem cell and then generating the DNA, a homologous recombination method, or a transposon method.
  • the method usually used for the method can be used.
  • a commonly used method known per se can be used. You. Specifically, for example, a method of introducing a drug-resistant gene together with the above expression control unit, treating the host with the drug, and selecting a strain having resistance,
  • a method using the expression of the marker gene described in (2) as an index is exemplified.
  • it can be confirmed by Southern blotting, Northern blotting, Western blotting, or the like using DNA, RNA, or protein extract prepared from part or all of the introduced host.
  • the host into which each of the thus obtained DNA fragments of the expression control unit of the present invention has been introduced may be simply referred to as a “DNA transductant”.
  • a “DNA transductant” The host into which each of the thus obtained DNA fragments of the expression control unit of the present invention has been introduced.
  • the method for introducing the expression control unit of the neuronal transmission function control protein of the present invention (the method for producing a genetically modified animal) will be specifically described, taking as an example the case where the host is an animal individual such as a mouse.
  • animals into which the expression control unit of the neuronal transmission function controlling protein has been introduced are prepared by the above (2)
  • those that do not need to be position-specifically introduced are purified after removing unnecessary regions such as the vector sequence used for cloaking.
  • inject into the pronucleus of the fertilized egg of the target animal by the method described in (3) above, specifically, by microinjection.
  • the injected fertilized egg is preferably transplanted into the oviduct of a pseudopregnant animal.
  • the tail of a litter after weaning is cut, genomic DNA is purified, fragmented with an appropriate restriction enzyme, and then the nucleotide sequence of the introduced expression control unit of the present invention is identified.
  • a method for performing Southern hybridization using a probe capable of performing the hybridization is described. It can also be confirmed by amplifying the nucleotide sequence of the introduced expression control unit of the present invention by PCR.
  • mice into which each DNA fragment of the above has been introduced.
  • mice in which tetracycline expression regulatory DNA has been introduced so as to be controlled by a neuron-specific promoter hereinafter sometimes referred to as “Tet mouse”
  • Neuronal transfer function control Mice into which DNA encoding a protein in a state where expression of the protein can be regulated has been introduced (hereinafter sometimes referred to as “TransReg mouse”).
  • a DNA having homology with the DNA sequence at the target position of the host to be introduced is added before and after the DNA fragment of the expression control unit of the present invention. It can be performed by using the targeting vector thus prepared. Specifically, homologous recombination is induced in animal embryonic stem cells using the method described in Thomas, KR, et al., (1987) Cell, 51, 503-512. The method can be performed by obtaining a chimeric individual by the method.
  • the genetically modified animal obtained above can be used as F0 to obtain F1 by crossing with a wild-type animal of the same strain.
  • the method described in (4) can be used to determine whether the DNA introduced into the obtained F1 is transmitted.
  • breeding passages with F2 and F3 are performed, and the genomic DNA of the offspring obtained in the same manner is analyzed to confirm the presence or absence of the introduced ⁇ '.
  • an animal carrying a DNA having a specific nucleotide sequence can be made into a line, it can be subcultured in a normal breeding environment.
  • the gene expression control unit of the present invention is constructed in a recombinant host. can do.
  • whether the introduced gene is actually transcribed in the individual and translated into a protein, and whether the transcription and translation are performed in the target region. Whether it is performed or not is determined by the usual methods such as Northern blotting using RNA extracted from each tissue, in situ hybridization, Western blotting using proteins extracted from each tissue, or immunochemistry. It can be analyzed and confirmed by the methods that have been used.
  • the DNA transfectant of the present invention can be obtained by placing the transfectant under conditions suitable for the introduced gene expression control system. Can reversibly control the expression of the neuronal transmission function regulatory protein.
  • the conditions suitable for the gene expression control system are, for example, when the gene expression control system used is a tetracytaline gene expression control system, the transcription activity of a tetracycline expression regulator such as doxycycline is determined. It means to regulate the administration of the substance to be regulated and the like.
  • the expression of the protein can be reversibly controlled by adjusting the addition, non-addition, or addition concentration of the substance to the culture solution.
  • the expression of the protein can be reversibly regulated by administering or not administering the substance to the DNA transductant.
  • a method of administering the substance to an individual a method of administering the substance by mixing it with feed or water is preferable.
  • Direct injection into the digestive tract, intraperitoneal injection, direct administration to the brain, etc. can also be used.
  • a cell, a tissue, or a slice derived from the above-described DNA-introduced individual organism is used to control a neuronal transmission function control protein, it is preferable to control the concentration of the substance in a medium.
  • the analysis of the phenotype expressed in the DNA transductant by reversible expression control of the neuronal transmission function control protein was performed by adjusting the expression level of the neuronal transmission function control protein in the transductant by the method described in (6) above. This can be done by analyzing differences in biochemical, physiological, morphological, or behavioral changes that appear in cells, tissues, living organisms, etc., before, after, and after, or from the wild type. it can.
  • the phenotype to be analyzed and the method for analyzing the phenotype can be determined by appropriately combining known methods which are generally used.
  • the phenotypes to be analyzed in the present invention include those that can be observed with the eyes that appear in cells and living organisms, those that require physical and chemical analysis, and those that express the above-mentioned neuronal transmission function controlling proteins. Includes all phenotypes that differ by presence, absence, or degree. Among these, phenotypes that can be observed with the eye include the shape of the transductant, which is determined by morphological analysis, and, if the host is an animal, its behavior, motor ability, learning ability, habit, and the like.
  • the phenotype to be analyzed is the shape of the DNA transfectant described above
  • examples include an optical microscope, an electron microscope, and visual observation.
  • a maze, a rotarod, a conditioning preference test, and the like which are usually used as a means of analyzing the behavior of the animal, can be mentioned.
  • observing the potential inside the cell or outer membrane, the capacitance of the membrane, etc. include commonly used electrophysiological analysis methods.
  • the phenotype is a chemical change or a quantitative change of a biological function molecule such as nucleic acid, protein, lipid, sugar, etc.
  • Northern blotting, RT-PCR, in situ hybridization, DNA chip, Western blotting, 2D Analysis can be performed by electrophoresis, chromatography, immunochemistry, mass spectrometry, and the like.
  • the function of a specific nerve cell can be analyzed.
  • a neuronal transmission function control protein By analyzing the expression of a neuronal transmission function control protein, the above-mentioned phenotype that appears when reversibly changing information transmission between other cells to which a signal is transmitted from a specific nerve cell, The causal relationship between neuronal function and phenotype can be clarified.
  • biofunctional molecule means a substance having a function on a living body, such as a nucleic acid, a protein, a lipid, and a sugar.
  • a method for analyzing these functions for example, the expression of a neuronal transmission function control protein is controlled in a specific neuron by the method of the present invention, and information transmission between other cells to which a signal is transmitted from the neuron is reversibly performed.
  • a physical change such as a quantitative change of a biofunctional molecule, a change of a three-dimensional structure, or a change of intracellular localization in the nerve cell and other cells described above, a phosphorylation, etc.
  • a method of analyzing the degree of chemical modification of the compound or whether or not a chemical change such as a change in location occurs. By performing such an analysis method, it is possible to clarify the causal relationship between the phenotype appearing in the living body and the function of the biological functional molecule.
  • the DNA transfectant of the present invention can be used as various pathological model cells or pathological model animals based on the phenotype and the gene possessed.
  • Specific diseases showing the pathological conditions of these models include, for example, psychiatric diseases such as schizophrenia and depression, and neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease.
  • the genetically modified animal having the expression control unit of the neuronal transmission function controlling protein of the present invention can be crossed with another genetically modified animal or a host exhibiting a characteristic phenotype.
  • a pathological model of a disease involving a plurality of genes can be prepared, and identified using the model. It is possible to screen a substance having a physiological activity.
  • This PCR resulted in a specific amplified band of about 400 bp. This band was excised, purified, and subcloned into the pCR2.1 vector (Invitrogen). This plasmid was used as pCRExonl vector.
  • the pCRExonl prepared in (11) above was cut with the restriction enzyme EcoRI (manufactured by T0Y0B0), and the DNA fragment containing the insert was purified.
  • the purified DNA fragment of about 400 bp was converted into type I, and the hybridization probe ( ⁇ 3.2-dCTP (Amersham Pharmacia Biotech)) was labeled by the multiprime method using BcaBEST Labeling Kit (TAKARA). Exonl probe) was prepared.
  • genomic BAC library derived from 129SVJ mouse ES cells 92160 clones contained in Mouse BAC filter Release II (Genome Systems) were screened by hybridization, and 9 Positive clones (Grid7, field2, 21-f, 308; Grid7, field3, 6-j, 333; G-rid7, field3, 16-1, 315; Grid7, field5, 1g, 329; Grid8, fieldl, 15-0, Grid9, field4, 23-f, 400; Grid9, field4, 24-b, 388; Grid9, field. 5, 9-b, 425; Grid10, fieldl, 6-h, 451) were obtained.
  • the rtTA gene to which the IRES (Internal Ribosome Entry Site: GenBank Accession No .: 277 to 874 of X74312) derived from Encephalomyocarditis virus is added on the 5 'side is 5 of the ATg translation initiation sequence of the rtTA gene and the IRES sequence in the upstream region. It was obtained by repeating PCR in which partial regions were sequentially added as a fore-primer sequence. All primers used were prepared by requesting Hokkaido System Science.
  • the PCR primers used were the forward primers corresponding to the IRES sequence from 277 “C” to 874 "g” of GenBank Accession No .: X74312 (MYK151a to 1511 ⁇ : SEQ ID NOs: 3 to 11, Hokkaido System Science) And rtTA A reverse primer (MYK152: SEQ ID NO: 12, produced by request of Hokkaido-System Science) for the vicinity of the Sacl region in the gene was used.
  • Type ⁇ pTet-On vector (Clontech) was used for PCR using MYK151a (SEQ ID NO: 3) and MYK152, and the second PCR using MYK151b / MY-K152
  • the plasmid obtained by subcloning the DNA fragment amplified in the above was purified to form type I.
  • the forward primer ⁇ 1 ⁇ 51a
  • a base sequence of ggC is inserted immediately below the ATg translation start sequence so as to obtain a base sequence that does not shift the reading frame of the rtTA gene (glycine is inserted as the amino acid sequence). Designed to introduce the Ncol (CCATgg) restriction enzyme site.
  • ⁇ 151 ⁇ (SEQ ID NO: 11, produced by request of Hokkaido System Science) has a base sequence obtained by adding a linker sequence to the 5 'upstream of the above IRES sequence.
  • a DNA fragment of about 1470 bp was amplified by PCR using MYK151i / MY-K152 as a primer. The DNA fragment was subcloned into a pCR2.1 vector (manufactured by Invitrogen) to obtain a pSEQ2i vector.
  • the rtTA gene encoded in the pTet-On vector contains S A Sph-I restriction enzyme site (gCATg / C) is present (base position 1615 in the pTet-On vector). Substituting "C” for "T” in the Sphl restriction enzyme site can eliminate the Sphl restriction enzyme site while preserving the amino acid sequence to be encoded.
  • MY-K149 (SEQ ID NO: 14, produced by requesting Hokkaido System Science) is a forward primer for performing this base substitution.
  • MYK150 (SEQ ID NO: 15, produced by Hokkaido System Science) introduces a restriction enzyme site in the order of NotI, BglII, and EcoRI from the 5 'side to the 3' downstream region of the SV40 polyA signal sequence. This is a reverse primer for performing
  • the obtained pSEQl vector was digested with Sacl and EciRI, a fragment of about 700 bp was purified, and then subcloned into the SacI / EcoRI region of a pUC18 vector (manufactured by T0Y0B0) to obtain a pVE-C1 vector.
  • the obtained PSEQ2 vector was cut with Sphl and Sacl, a fragment of about 1460 bp was purified, and then subcloned into the Sphl / Sacl region of the pVECl vector to obtain a pVEC2 vector.
  • the PVEC2 vector is a vector containing a sequence in which the IRES, rtTA, and SV40 late polyA signal sequences are functionally linked in order from the 5 'side in the pUC18 cloning site.
  • Reverse PCR: YK158 SEQ ID NO: 19, produced by request of Hokkaido System Science
  • PCR with PVEC2 as type III performed An approximately 700 bp fragment was amplified from the vicinity containing the second ATg-sequence (ATg translation initiation sequence) to the vicinity of the sequence containing the BsiWI (Spll) restriction enzyme site in the rtTA gene. This DNA fragment was designated as fragment B.
  • Fragment A and Fragment B contain a sequence overlapping near the 11th ATg sequence (ATg translation initiation sequence) in the IRES region. Using the overlapping sequences, fragment A and fragment B were ligated (PCR Ligation).
  • the prepared pAB vector was cut with PmaCI and BsiWI (SphI), a fragment of about 900 bp was purified, and ligated into a pVEC2 vector cut out with PmaCI / BaiWI (SphI).
  • the prepared vector was used as a pVEC2 (11) vector.
  • PVEC6 (11) is, GABA A a 6 expression regulatory region in order from the 5 'side during the cloning site of the P UO 18, IRES ,: rtTA, This is a vector containing a sequence in which the SV40 polyA signal sequence is functionally linked. This structure is shown in Figure 11.
  • Example 2 Construction of a transgene encoding a neuronal transmission function regulatory protein
  • the neurotoxin (TeNT) gene derived from tetanus was cultured from Clostridium tetani strain KZ1174 (transferred from Prof. Shinichi Nakamura, Department of Microbiology, School of Medicine, Kanazawa University) (Professor Mitsuaki Nishibuchi, Kyoto University Southeast Asian Studies Center) MYK121 (SEQ ID NO: 20, produced by Hokkaido System Science) and MYK126 (SEQ ID NO: 21, produced by Hokkaido System Science) after boiling the bacteria in the culture for 15 minutes. Prepared by request) Obtained by PCR using primers. By this PCR, a DNA fragment of about 1.4 kbp was amplified and purified, followed by subcloning into a pCR2.1 vector (manufactured by Invitrogen) to obtain a pCRTeNT vector.
  • MYK121 (SEQ ID NO: 20) is a forward primer for adding a Mlu I restriction enzyme site to the region upstream of the ATg translation initiation codon of the TeNT light chain gene.
  • MYK126 (SEQ ID NO: 21) is a reverse primer for adding a Not I restriction enzyme site to the 3, downstream region of the TeNT light chain gene.
  • MYK121, MYK126 primer arrangement In designing the column, the registered sequence of GenBank Accession No .: # 0443 was referred to.
  • MYK098 (SEQ ID NO: 22) adds an S-acll restriction enzyme site and Kozak sequence (Kozak,., (1986) Cell, 44, 283-292) to the 5 'upstream region of the ATg translation initiation codon of the EGFP gene.
  • MYK099 (SEQ ID NO: 23) is used to add a Mlul restriction enzyme site to the 3 'downstream region of the AAg sequence encoding lysine 239 of the dlEGFP gene in the pdlEGF-P-N1 vector (Clontech).
  • Reverse primer is used to add a Mlul restriction enzyme site to the 3 'downstream region of the AAg sequence encoding lysine 239 of the dlEGFP gene in the pdlEGF-P-N1 vector (Clontech).
  • telomere sequence When PCR was performed using the pdl EGFP-N1 vector as a type I, MYK098 and MYK099 as primers, a DNA fragment of about 750 bp was amplified. This fragment was digested with SacII and Mlul, and the purified fragment of about 740 bp was ligated to the SacII / Mul restriction site of the pTRE2 vector. The prepared vector was used as pTREEGFP vector.
  • YK119 (SEQ ID NO: 24, produced by request of Hokkaido System Science) is a Notl restriction enzyme in the 5 and upstream regions of the AgC sequence encoding the amino acid number 242 serine of the dlEGF. This is a forward primer for adding a site and one base of "T" (adjusting the reading frame to the protein).
  • MYK101 (SEQ ID NO: 25, produced by request of Hokkaido System Science) is a reverse primer for adding an Xbal restriction enzyme site to the downstream region of the dlEGFP gene at the TAg translation termination codon.
  • telomere sequence When PCR was performed using the pdlEGFP-N1 vector as a type I and MYK119 and MYK101 as primers, a DNA fragment of about 150 bp was amplified. This fragment was cut with Notl and Xbal, and the purified fragment of about 140 bp was ligated to the Notl / Xbal restriction enzyme site of pTREEGFP. The prepared vector was used as a pTREEGFPdl vector.
  • PCR was carried out to add Mlul for cloning to the 5 'end and Notl at the 3' end of each BoNT gene obtained in (1-1a) above.
  • Mlul restriction in 5 'upstream of ATg translation codon of each BoNT light chain gene A MYK102 (SEQ ID NO: 26) for BoNT.
  • A YK105 (SEQ ID NO: 27) for BoNT.
  • B MYK103 (SEQ ID NO: 28) for BoNT.
  • C1 oNT For E, thigh 091 (SEQ ID NO: 29) was produced by request of Hokkaido System Science.
  • a reverse primer a Notl restriction enzyme site was added to the 3 ′ downstream region of each BoNT light chain gene.
  • BoNT.A MYK107 (SEQ ID NO: 30), and for BoNT.B, MYK110 (SEQ ID NO: 31), MYK108 (SEQ ID NO: 32) for BoNT. C1, and YK096 (SEQ ID NO: 33) for BoNT. E were produced by requesting Hokkaido System Science. PCR was performed using the plasmid obtained in the above (l_a) for the type I DNA and the combination of the primers for each BoNT described above.
  • BoNT genes were amplified by this PCR. About 1.4 kbp- DNA fragment for BoNT. A, about 1.3 kbp DNA fragment for BoNT. B, about 1.4 kbp- DNA fragment for BoNT. C1, and about 1. A 3 kbp DNA fragment was amplified, purified, and subcloned into a pCR2.1 vector (manufactured by Invitorogen).
  • the plasmid obtained by subcloning each BoNT gene obtained above was cut with Mlul and Notl, respectively, to obtain a DNA fragment of about 1.3 to 1.4 Kbp.
  • the Mlul / Notl restriction enzyme site of the pTREEGFPdl vector obtained above was subjected to sparing.
  • the prepared vectors were referred to as pTREBoNT. Adl, ⁇ REBoNT. Bdl, pTREBoNT. Cldl, pTREBoNT. Edl, and pTRETeNTdl vectors, respectively.
  • These vectors contain a PhCMV promoter containing a tetracycline response element, a gene encoding a neurotoxin protein fused with EGFP on the N-terminal side, and a PEST sequence of Mouse Ornithine Decarboxylase on the C-terminal side.
  • a vector containing a functionally arranged region This structure is shown in FIG. Note that an intron is included near the Rabbit] 3-globin polyA signal sequence.
  • DNA sample preparation for injection into the pronucleus of mouse fertilized eggs The pVEC6 (11) prepared in Example 1 (3) above was cleaved with Sphl and Notl, and the cleavage reaction solution was 1% low melting point agarose (Life Technologies, Inc .: (Catalog 15517-014) /0.5 X TBE (0 The gel was electrophoresed on 045M Tris-borate, 0.001M EDTA) gel.Agarose gel around 9.3kbp was cut out, the agarose was melted with 70, and then ⁇ ⁇ with GELase (EPICENTR-E TECHNOLOGIES).
  • the DNA fragment of about 9.3 kbp was purified by phenolic mouth-mouth treatment and ethanol precipitation, and the DNA after ethanol precipitation was transferred to TE (10 mM Tris (pH 8.0), IraM EDTA). After dissolving, the concentration was estimated by measuring the absorbance at 260 nm, and adjusted to lOng / ⁇ ⁇ with calcium- and magnesium-free Dulbecco's PBS (Phosphate®-uffered Saline: manufactured by Life Technologies). It was used for gene transfer into mouse fertilized eggs.
  • pTREBoNT. Adl, pTREBoNT. Bdl, pTREBoNT. Edl, and pTRETeNTdl obtained in Example 2 (2) above were cut with Xhol and Sapl, and the obtained DNA fragment of about 4 kbp was prepared in the same manner as described above. This sample was used for gene transfer into mouse fertilized eggs.
  • Example 2 (2) the pTREBoNT.Cldl obtained in Example 2 (2) above was digested with Aatll and Sapl (the Xhol restriction enzyme site was present in the NT.CI gene, so the Aatll restriction enzyme site was used instead of Xhol. ) And the resulting DNA fragment of about 4 kbp was prepared in the same manner as described above. Each of these samples was used for gene transfer into mouse fertilized eggs.
  • Pronuclear stage fertilized eggs obtained by crossing C57BL / 6 mice were collected by fallopian tube perfusion and used as test eggs to be used for the injection operation.
  • each DNA solution adjusted to 10 ng // il was filled in a microinjection capillary and injected into the pronucleus of a pronuclear fertilized egg.
  • the eggs that survived after the injection were transferred to a fresh culture solution, washed, and cultured in a carbon dioxide incubator until they became 2-cell stage embryos.
  • the two-cell stage embryos were transferred into the oviduct of a foster female mouse that induced pseudopregnancy and obtained a litter.
  • the obtained offspring were confirmed for sex and weaned 3 weeks after delivery.
  • the resulting genetic modification Approximately 4 weeks after parturition, mice were individually identified, and the success or failure of gene transfer was analyzed by Southern hybridization.
  • a 6-rtTA is introduced genetically modified Mausu tail destination end about 1cm at the 3 (2), in a lysis buffer (manufactured by KURAB0 companies), 55 ° C, 6 Incubate for ⁇ 16 hours to dissolve most of the tail. Residues were removed from the lysate by centrifugation, and genomic DNA was purified through phenol / cloth form treatment and ethanol precipitation. In order to degrade the contaminating RNA, the genomic DNA was dissolved in TE containing lOOngZml RNaseA (manufactured by Na-kalai tesque).
  • the genomic DNA purified from the tail above was digested with restriction enzymes, BamHI, and Sphl, and electrophoresed with 0.9% agarose gel Z1X TAE (0.04M Tris-acetate, 0.001M EDTA). Blotting was carried out on a nylon membrane (GeneScreen Plus: NEN Lifescience) by the capillary method using 4N NaOH, 0.6M NaCl as a blocking solution.
  • the blotted membrane is dried in a hybridization buffer (1 M NaCl 50 mM Tris (pH 7.5) 10% Dextran Sulfate ⁇ 200ug / ml Sonicated Salmon Sperm DNA- (STRATAGENE: Catalog # 201190-81) in 1% SDS), o to prepare a pre-hybridization die internalization in row-,, at 60 ° C; the addition of P32- dCTP in ⁇ ⁇ onl probe GABA a a 6 labeled at 60, over ⁇ A hybridization reaction was performed.
  • a hybridization buffer 1 M NaCl 50 mM Tris (pH 7.5) 10% Dextran Sulfate ⁇ 200ug / ml Sonicated Salmon Sperm DNA- (STRATAGENE: Catalog # 201190-81) in 1% SDS
  • mice In wild type mice, about 14kbp only the sheet Gunaru of GABA A a 6 gene endogenous (arrow in FIG 31) is detected, in addition, signaling of about 8. Lkbp (arrowheads in Fig 31) The line in which the gene is detected is the transgene-positive mouse.
  • Mice The GABA A ct 6- rtTA. Was introduced could 10 lines obtained in total. These mice GABA A a 6 - - it was rtTA mice.
  • Genome was prepared in the same manner as in 1), and genomic DNA prepared from the genetically modified mouse in which treBoNT.Edl was introduced was Kpnl and Xbal, and treBoNT.Adl, treBoNT.Bd-1, treBoNT.Cldl, or treTeNTdl were introduced. Genomic DNA prepared from the genetically modified mouse was cut with Kpnl and EcoRI and blotted.
  • an EGFR gene DNA fragment was obtained by the following PCR.
  • Forward primer: MYK189 (SEQ ID NO: 34) has a sequence in which an EcoRI restriction enzyme site and a Kozak sequence are added from the 5 'side to the 5' upstream of the ATg translation initiation sequence of the EGFP gene.
  • MYK220 (SEQ ID NO: 35) an oligo DNA having a sequence in which a Hindlll restriction enzyme site was added to the 3 'downstream region of the EGFP gene was produced by requesting Hokkaido System Science.
  • a DNA fragment of about 750 bp was amplified, purified, and subcloned into a pCR2.1 vector (manufactured by Invitorogen) to prepare a pCREGFP vector.
  • This pCREGFP vector was cut with EcoRI and Hindlll to purify a DNA fragment of about 720 bp, and then subcloned into the EcoRI and Hindlll restriction sites of the pGEM-4Z (Promega) vector to produce pGEMEGFP.
  • This pCREGFP was cleaved with EcoRI and Hindlll, and a fragment of about 720 bp was used as type II. The fragment was labeled with a P32-dCTP (Araersham Pharmacia Biotech) by the multiprime method using the BcaBEST Labeling Kit (TAKARA). Preparation of hybridization probe (EGFP probe) did.
  • Example 3 Using this EGFP probe and performing hybridization in the same manner as in Example 3 (3-1) above, a representative treTeNTdl-modified mouse is shown in FIG. 32. No signal is detected in wild-type mice, but about 2.3 kbp
  • Adl, pTREBoNT. Bdl, pTREBoNT. Edl, or pTRETeNTdl were introduced were referred to as treBoNT.
  • the mouse into which the about 4 Kbp Aatll / Sapl fragment of pTREBoNT. Cldl was introduced was designated as treBoNT. Cldl mouse.
  • a vector that constantly expresses the neurotoxin protein contained in the vector DNA encoding a protein serving as a substrate for a neurotoxin was co-expressed in cultured cells, and the resulting cleavage of the substrate protein was analyzed.
  • Syntaxin 1A (288 amino acid residues, calculated molecular weight 33. lkD)
  • SNAP25A Synaptosomal Associated Ro ⁇ Rotein of 25KD (206 amino acid residues, calculated molecular weight 23.3 kD)
  • VAMP2 Vesicle Associated Membrane Protein (116 amino acid residues, calculated molecular weight 12.7 kD).
  • SNARE soluble N-ethylmaleimide-sensitive factor attachraen * t protein receptors proteins, which are known to play an important role in the process of synaptic vesicles containing neurotransmitters fusing to the presynaptic membrane.
  • BoNT. C1 requires about 1000 times more protein than BoNT.
  • BoNT. E and the main toxic activity is thought to be that Syntaxin 1A is used as a substrate. .
  • the pTREBoNT.Adl vector prepared in Example 2 (2) above was digested with SacII, and the resulting SacII-cut end was blunt-ended with K0D DM Polymerase (T0Y0B0). Next, the fragment was cut with Mlul, and a fragment of about 730 bp was purified. This fragment is the EGFP gene DNA. This fragment was cut with Xhol, blunt-ended in the same manner as described above, and inserted into a pCI vector (Promega) cut with Mlul.
  • the plasmid into which EGFP was inserted was cut with Mlul / Xbal, and pCIBoNT.Adl Neurotoxin gene DNA fragments obtained by cutting pCIBoNT.Bdl and pCIBoNT.Edl with Mlul / Xbal were introduced.
  • BoNT.Cl and TeNT were inserted into the vector twice, since there were two Xbal sites in the gene DNA.
  • the pTREBoNT. Cldl and pTRETeNTdl vectors were cut with Mlul / Xbal, and fragments of about 300 bp and about 90 bp were purified, respectively. This fragment was inserted into the Mlul / Xbal restriction enzyme site of the expression vector into which EGFP was inserted. The resulting plasmid was further cut with Xbal to purify a fragment of about 1200p. This fragment was inserted into the Xbal restriction enzyme site of the expression vector into which a part of the toxin gene prepared above was inserted. In this ligation, the Xbal fragment of about 1200 bp- can be ligated in each of two possible directions. Clones in the correct direction were selected by analyzing the nucleotide sequence.
  • Syntaxin 1A gene DNA was obtained from mouse brain RNA by RT-PCR. Based on the principle of the AGPC (Acid Guanidinium-Phenol-Chloroform) method from the brain tissue of C57BL6 mice (Chomczynski, P., and Sacchi, N., (1987) Anal.Biochem., 162, 162, 156-159), Total RNA was purified using RNAzol B (manufactured by TEL-TEST).
  • AGPC Acid Guanidinium-Phenol-Chloroform
  • CDNA was synthesized from the purified mouse brain total RNA using the Oligo dT—Adaptor Primer and AMV reverse transcriptase XL TM attached to RNA LA PCR Kit (AMV) Ver. 1.1 (TAKARA). Reverse transcription reaction).
  • MYK201 as a forward primer for adding a Mlul restriction enzyme site and a Kozak sequence from the 5 'side to the 5' upstream region of the ATg translation initiation sequence of the Syntaxin 1A gene
  • PCR was performed using MYK201 and MYK202 as primers, the amplified approximately 900 bp fragment was purified, subcloned into pCR2.1 vector (manufactured by Invitrogen), and did.
  • pCISYN An expression vector into which Syntaxin 1A gene DNA was inserted: pCISYN was prepared.
  • SNAP25A gene DNA was obtained from mouse brain RNA by RT-PCR as in (3-1) above.
  • the primers for PCR were a forward primer for adding a Mlul restriction enzyme site and a Kozak sequence from the 5 'side to the 5' upstream region of the ATg translation initiation sequence of the SNAP25A gene: MYK205 (SEQ ID NO: 38) and SNAP25A MYK208 (SEQ ID NO: 39), a reverse primer for adding a Sail restriction enzyme site to the 3 'downstream region of the TAA translation termination sequence of the gene, was produced by request of Hokkaido system Science.
  • the primer sequence the registered sequence of GenBank Accession No .: M22012 was referred to.
  • PCR was performed using the cDNA prepared in (3-1) above as type I, MYK205 and MYK208 as primers, and the amplified fragment of about 640 bp was purified and placed in the pCR2.1 vector (Invitrogen). Subcloning was performed to obtain a pCRSNAP25A vector.
  • the pCRSNAP25A vector is cleaved with Mlul / Sall, a DNA fragment of about 640 bp is purified, and ligated to the Mlul / Sall restriction enzyme site of a pCI vector (Promega), and the SNAP25A gene DNA is inserted into the expression vector.
  • PCISNAP25A was prepared.
  • VAMP2 gene DNA was obtained from mouse brain RNA by RT-PCR in the same manner as in (3-1) above.
  • PCR primers are used to add a Mlul restriction enzyme site and a Kozak sequence from the 5 'side to the 5, upstream region of the ATg translation initiation sequence of the VAMP2 gene.
  • the registered sequence of GenBank Accession No .: U60150 was referred to.
  • PCR was performed using the cDNA prepared in (3-1) above as type I, MYK212 and MYK213 as primers, and the amplified fragment of about 380 bp was purified and placed in the pCR2.1 vector (Invitrogen). It was subcloned into the pCRVAMP2 vector.
  • the pCRVAMP2 vector one cut with Mlul / Sall was purified a DNA fragment of about 380 bp, and Raigeshiyon the Mlul / Sall restriction sites of P CI vector (Promega Corp.), were inserted V ⁇ AMP2 gene DNA expression base Kuta one: to prepare a P CIVAMP2.
  • C0S7 cells Cultured cell line C0S7 cells (ATCC: CRL1651) derived from the kidney of African green monkeys were cultured in DMEM (Dulbecco's Modified Eagle Medium) medium (Life Technologies) containing 10% fetal calf serum (Clontech). in 10% C0 2, 37 ° C the cells were cultured. SuperFect reagent (QIAGEN) was used for gene transfer into cultured cells. For gene transfer, the C0S7 cells cultured as described above were plated on a 6-well culture plate at a cell density of 5 ⁇ 10 5 cells / well, and cultured for 24 hours under the same conditions.
  • DMEM Dynabecco's Modified Eagle Medium
  • fetal calf serum Clontech
  • Example 4 The toxin protein fusion protein expression vector prepared in (2) and (3) and the toxin substrate protein expression vector were mixed at an appropriate ratio.
  • the total amount of DNA used was 2.4 ug / well, and the volume was adjusted to 100 ⁇ l by adding serum-free DMEM.
  • 14.4 ⁇ l of SuperFect reagent was added, mixed well, and incubated at room temperature for 5 to 10 minutes.
  • 600 // I of DMEM containing 10% serum was added to prepare a transfection solution.
  • a total of 714.4 ⁇ l of the gene transfer solution was added per well, and the cells were cultured at 37 ° C. Three hours later, the medium was removed, and 2ral of DMEM containing 10% serum was added, and the culture was continued for 48 hours.
  • the following six combinations were used for the expression vectors used to co-express the toxin protein and the toxin action target protein.
  • lX Tris-Glycine sample buffer 100 mM Tris (pH 6.8), 2% SDS, 10% glycerol, 0.002% bromophenol blue, 1% beta menolecaptoethanol.
  • the blotted filter is immersed in 100% methanol and washed with PBS.
  • PBST containing 1% skim milk (Yukijirushi) (0.1% Tween-20) is used.
  • PBS containing PBS for 30 minutes at room temperature.
  • a chemiluminescence reaction was performed with ECL-plus (manufactured by Amersham Pharmacia Biotech), and exposure was performed on an X-ray film: Hyperfilm-MP (manufactured by Amersham Pharmacia Biotech).
  • the antibody used and its dilution ratio were as follows:
  • the primary antibody was an anti-human Syntaxin monoclonal antibody: Clone SP6 (Upstate Biotechnology: Catalog # 05-397), l / ig // x HRP-conjugated goat anti-mouse IgG antibody (manufactured by Santa Cruz Biotechnology: Catalog SC-2005) was diluted 5000 times and used as the secondary antibody.
  • SNAP25A For detection of SNAP25A, goat anti-human (rat) SNAP25A polyclonal antibody (Santa Cruz Biotechnology: Catalog SC-7'538, SC-7539) 4 ⁇ g / ⁇ 1 was used as the primary antibody at 8,000 HRP-conjugated camel anti-goat IgG antibody (manufactured by Santa Cruz Biotechnology: Catalog SC-2020) was diluted 5000-fold and used as a secondary antibody.
  • a heron anti-rat (mouse) VAMP2 polyclonal antibody (provided by Dr. Masami Takahashi of Mitsubishi Chemical Life Science Laboratory, Inc.) diluted 250-fold as the primary antibody was used.
  • an HRP-conjugated goat IgG antibody (manufactured by Santa Cruz Biotechnology: Catalog SC-2004) was used after diluting 5000-fold.
  • Figure 5 shows the results of analysis of the proteins expressed in these DNA-transfected cells.
  • the GABA A a6-rtTA gene-transferred mouse is a genetically modified mouse intended to specifically express the rtTA gene in cerebellar granule cells. Expression analysis was performed to confirm whether the rtTA gene was indeed specifically expressed in cerebellar granule cells in the prepared GABA A a6-rtTA gene transfected mouse.
  • Example 3 8 lines (line numbers 612, 613, 615, 620, 621, 626, 628, 606) of the independent 10 lines identified as GABA A a6_rtTA transgenic mice and wild-type mice The expression analysis of the rtTA gene was performed by mRNA Northern blot analysis.
  • RNAzol TM B reagent TEL-TEST
  • Total RNA was purified by using it according to the procedure manual. Heart, liver, kidney, muscle, and small intestine tissues were also removed, and total RNA was purified as in brain tissue.
  • mRNA was purified from total RNA by using Oligotex TM -dT30 Super> reagent (JSR, Roche Diagnostics) according to the attached protocol. Purified raRNA is available at 260 nm, 230 nm, 280 nm, The concentration and purity were determined by measuring the absorbance at a wavelength of 320 nm.
  • a solution containing 20 mM (IX) MOPS buffer (pH 7.0) and 3.7% formaldehyde as the electrophoresis buffer was used, and a 1% agarose denaturing gel (final concentration 1% in electrophoresis buffer) was used.
  • 0.5 ⁇ g / well of the purified mRNA was loaded at 100 V for about 1 hour.
  • the gel was treated with 50 mM sodium hydroxide, 10 raM sodium chloride, neutralized with 0.1 M Tris buffer (pH 7.5), equilibrated with 20 X SSC, and then blocked with 20 X SSC.
  • Positively charged nylon film (Roche's Diagnostics Co., Ltd.) was used for plotting by the capillary method using a coating solution.
  • the membrane was air-dried, and the mRNA transferred to the membrane was fixed by ultraviolet irradiation (120 mj / cm 2 ) (UV Stratalinker TM: manufactured by Stratagene).
  • the molecular weight can be determined using 0.24-9.5 kb RNA Ladder (Life Technologies) or DIG-labeled (0.3-6.9 kb) RNA marker (Roche Diagnostics). I went using it.
  • a probe for detecting the expression of the rtTA gene was prepared as follows. EcoRI restriction site (g / AATTC) on the 5 'side of the 648b gene fragment from C at base 367 to g at 1014, where A is the ATg of the start codon of the rtTA gene.
  • the Hind III restriction enzyme site (A / AgCTT) sequence was added to the 3rd and 3rd sides by PCR, and subcloned into the EcoRI / HindIII region of the pGEM-4Z vector (Promega), and pGEMrtTA (367-1014) Vectors were prepared.
  • the pGEMrtTA (369-1014) vector is linearized with EcoRI, purified, and used with the T7 RNA polymerase included in the DIG RNA Labeling Kit (Roche Diagnostics) according to the attached protocol. Digoxigenin-labeled rtTA gene A chisense RNA probe was prepared.
  • a probe for detecting the expression of the ⁇ -actin gene was prepared as follows. Oligonucleotide DNA having an antisense sequence for the 70 nucleotide region from 438A to 507T of the nucleotide sequence registered in GenBank Accession No .: 03672 was synthesized. Using a DIG oligonucleotide tiling kit (manufactured by Roche Diagnostics), an antisense oligonucleotide DNA probe for the digoxigenin-labeled / 3-actin gene was prepared according to the attached protocol.
  • a probe for detecting the expression of the darichelaldehyde triphosphate dehydrogenase gene was prepared as follows. GenBank Accession No .: Oligonucleotide DNA having an antisense sequence for the 70 base region from 663 C to 732 T of the base sequence registered in M32599 was synthesized. Using the DIG Oligonucleotide Tiling Kit, an antisense oligonucleotide DNA probe of the digoxigenin-labeled dalycelaldehyde triphosphate dehydrogenase gene was prepared according to the attached protocol.
  • the blot membrane prepared in Example 5 (2) was prehybridized with a DIG easyhive solution (Roche Diagnostics), and then a digoxigenin-labeled probe for the gene whose expression was to be detected was added. Was carried out.
  • the hybridization temperature was 68 ° C when using an RNA probe, and 42 ° C when using an oligonucleotide DNA probe.
  • rtTA gene expression signal was approximately 3 Kb, which is the sum of the etason 1 to 8 of GABA A a6 gene, IRES, rtTA gene, and polyA sequence size. It is expected that it will be detected nearby.
  • the expression signal of the rtTA gene was detected in the cerebellum (arrow in FIG. 6), but not in other brain tissue regions other than the cerebellum.
  • the expression signal of the rtTA gene was not detected at all from the cerebellum and brain tissue regions other than the cerebellum.
  • the rtTA gene expression signal was the strongest at line 620.
  • mRNA blotting analysis of rtTA gene expression was also performed on organs other than the brain (heart, liver, kidney, muscle, and small intestine). I did it.
  • mRNA expression of the rtTA transgene was specific to the cerebellum, and was not detected at all in brain regions other than the cerebellum or in organs other than the brain. (Fig. 6)
  • Example 5 the GABA A a6- rtTA transgenic mice that rtTA gene was expressed specifically in the cerebellum was confirmed by m RA Northern blot analysis. Next, in order to examine in which cells of the cerebellum the rtTA gene was expressed, in situ hybridization was performed by angular analysis.
  • in situ hybridization analysis was performed on wild type mice and six lines of the GABA A o 6- rtTA transgenic mice generated (line number 612, 613, 620, 621, 626, 628) (negative control).
  • mice were anesthetized with getyl ether, and the brain was quickly removed and divided into appropriate sizes.
  • the brain tissues were embedded in Tissue-Tek R OCT- Compound (manufactured by Sakura Finetechnical Co.), the isopentane cooled with dry ice and rapidly frozen. Frozen tissue blocks are stored at 120 to 180 ° C. During sectioning, cryostats with a temperature of -20 to 114 ° C are used to cut sections of 10 ⁇ in thickness. It was prepared and affixed to MAS coated slide glass (Matsunami).
  • the sections affixed to the slide glass were fixed with a fixing solution (4% paraformaldehyde, 0.1 PBS), and acetylation was added to 0.25% acetic anhydride, 0.9% in order to suppress nonspecific reaction of the probe.
  • % Sodium chloride, 0.1 M triethanolamine [ PH 8.0] solution After rinsing with PBS, degreased and dehydrated with 70%, 80%, 90%, 100%, and 100% ethanol series, dried at 55 ° C for 15 to 60 minutes, and dried for one hour until hybridization. Stored at 80 ° C.
  • 0.5 ⁇ g of type I DNA was added to IX Transcription buffer (40 raM Tris [ ⁇ 8.0], 50 mM Sodium chloride, 8 mM magnesium chloride, 2 mM spermidine), 500 ⁇ ATP, 500 / iM GTP, 500 ⁇ TTP, 10 mM DTT, 11.5 U / ⁇ 1 RNase inhibitor (Takarasha), 20 ⁇ M S-CTP, 20 ⁇ [a- 35 S] CTP, ⁇ 7 polymerase (manufactured by Stratagene) at 37 ° C,!
  • the reaction was performed for about 2 hours to prepare an antisense RNA probe of the rtTA gene labeled with [a- 35 S] CTP.
  • an antisense RNA probe of the rtTA gene labeled with [a- 35 S] CTP.
  • DNase Promega
  • unreacted mononucleotides and DNA degradation products are removed by Sephadex G-50 (Amersham Pharmacia) and ethanol precipitation, and then 0.5 to 1.0%.
  • X 10 8 cpra / ml such that the hybridization buffer (50% Horumuami de, 2 X SSC, 100 mM tris [pH 7.4], 10% dextran sulfate sodium, 0.2% SDS, 1 X Denha belt solution) To prepare a hybridization probe solution.
  • a hybridization probe solution of an antisense RNA probe for the rtTA gene was added to the slice on the slide glass dried at 55 ° C, and a hybridization reaction was performed at 60 ° C. 1 After 2 to 24 hours, wash with 2 X SSC, 10 mM in 3 mM mercaptoethanol solution, wash with 60, 2 / ⁇ / 11111 ⁇ 356, 101113 ⁇ 41 Tris [pH 8.0], 1 raM EDTA, 500 mM chloride Unreacted RNA probe was degraded at 37: in the sodium solution. Furthermore, after washing at 60 ° C. in a ⁇ SSC, 10 mM / 3 mercaptoethanol solution, dehydration and drying were performed in an ethanol series.
  • the expression signal of the rtTA gene was detected by radioautography using BAS5000 (manufactured by Fuji Film Co., Ltd.), Hyperfilra-i3Max (manufactured by Amersham Pharmacia), and emulsion (NTB3: manufactured by Kodak Company).
  • GABA A a6-rtTA transgenic in situ hybridization analysis of results tested GABA A a6-rtTA transgenic mice 6 lines all at Mausu, only in cerebellar granule cells expression signals rtTA is detected, the cerebellum It was not detected in Purkinje cells, cells in the molecular layer (the layer where parallel fibers that are axons of granule cells are present), white matter, and cerebellar nuclei. In addition, it contains the lower olive nucleus, which is the origin of the climbing fiber. In other areas of the eye brain, expression signals rtTA were detected intensity of expression signals (Fig.
  • mice The treBoNT. Adl, treBoNT. Bdl, treBoNT. Cldl, treBoNT. Edl, and treTeNTdl mice obtained in Example 3 are collectively referred to as treToxin mice.
  • GABA A a6-rtTA transgenic mice and treToxin transgenic mice were weaned at about 4 weeks of age and genotyped by genomic Southern blot analysis. If you want to induce neurotoxin protein expression, drink doxycycline (Sigma) in drinking water (2 mg / ml doxycycline, 10% sucrose) and pellet diet
  • mice (6 mg / g doxycycline, manufactured by BIO-SERV) and given to mice. If you do not want to induce the expression of the neurotoxin protein, or if you want to stop the induction of the expression, the drinking water and food were changed to those that did not contain doxycycline.
  • Example 9 Detection of induction and extinction of neurotoxin protein expression in mice transfected with the GABA, a6-rtTA gene and treToxin gene double transfection gene:
  • BIO-RAD DC Protein Assay reagent
  • the brain tissue protein lysates subjected to 40 M g protein / lane load to SDS-PAGE, having conducted the blotted to PVDF membranes.
  • To detect the expression of neurotoxin protein tag the N-terminal end of neurotoxin protein Using a polyclonal antibody against EGFP (Molecular Probe: Catalog A6455) fused as a primary antibody, using an HRP-conjugated goat anti-Peagle IgG antibody (manufactured by Santa Cruz Biotechnology) as a secondary antibody, and using ECL-plus Was performed. It is expected from the calculated amino acid composition that the expression signal of the neurotoxin protein will be detected at around 84 KDa.
  • FIG. 8 shows the results of preparing a protein lysate from the cerebellum of a heavy transgenic mouse (Genotype: + / +, D0X: +), and examining the induction of neurotoxin protein expression. An expression signal was detected near 84 KDa only in the cerebellum of the double transgenic mouse (Genotype: + / +, D0X: +) to which doxycycline was administered for one week (arrow in FIG. 8).
  • Example 9 the induction of neurotoxin protein expression was analyzed by Western blotting.
  • a double transgenic mouse (Genotype: + / +, D0X: +) to which doxycycline was administered for one week, Toxin protein expression It was confirmed that it was induced.
  • Toxin protein expression It was confirmed that it was induced.
  • the mouse is anesthetized with getyl ether, thoracotomy, and from the left ventricle of the heart, using a peristaltic pump for 2 minutes with PBS and a fixative (phosphate buffer [pH 7.3] containing 4% paraformaldehyde) for 1 min. Perfused at a flow rate of 10 ml / miri for 0 to 15 minutes. After excision of the brain, it was divided into appropriate sizes, immersed in fixative, and permeabilized at 4 ° C for 12 to 48 hours. The fixed brain tissue was transferred to PBS containing 30% sucrose and 0.05% sodium azide, and cryoprotection was performed at 4 ° C to suppress tissue damage caused by ice crystallization that occurs during tissue freezing.
  • a fixative phosphate buffer [pH 7.3] containing 4% paraformaldehyde
  • Sections were washed with washing buffer (PBS containing 0. 1% Tri ton R X- 100), antibodies diluent for (0. 1% Triton R X- 100 , 2% normal turbocharger formic serum (Vector Lab Incubate for 1 hour at room temperature in PBS containing 0.05% sodium azide) to block nonspecific antigen-antibody reactions.
  • washing buffer PBS containing 0. 1% Tri ton R X- 100
  • antibodies diluent for (0. 1% Triton R X- 100
  • 2% normal turbocharger formic serum Vector Lab Incubate for 1 hour at room temperature in PBS containing 0.05% sodium azide
  • Primary antibodies include anti-EGFP ⁇ sagi polyclonal antibody (Molecular Probe: Catalog A6455), anti-CalbindinD-28K mouse monoclonal antibody (Sigma: Catalog C9848), anti-Parvalbumin mouse monoclonal antibody (Sigma: Catalog P3088) was diluted with an antibody diluent.
  • Alexa Fluor R 488 goat anti-money IgG (H + L) antibody and Alexa Fluor "594 goat anti-mouse IgG (H + L) antibody were used as secondary antibodies in the antibody diluent.
  • the sections were attached to slide glass, sealed with VectaShield (Vector Lab.), And observed with a laser scanning microscope system (LSM 510 ETA: Zeiss).
  • Fig. 9 A, B, C, and D are wild-type mice (6 weeks old) treated with doxycycline for 1 week
  • Fig. 9 A Genotype:-/-, D0X: +
  • Fig. 9B Genotype: + / +, D0X:-
  • double transgenic mice (6 weeks old) to which doxycycline was administered for 1 week
  • Fig. 9C Genotype: + / +, D0X: +)
  • doxycycline was administered for 2 weeks, and then doxycycline was removed for 3 weeks (10 weeks old).
  • Genotype: + / +, D0X This figure shows the results obtained by performing the primary antibody reaction using the anti-EGFP antibody and the secondary antibody and subsequent antibodies using the ABC method on the cerebellar slices (+ ⁇ -).
  • Fig. 9C Genotype: + / +, D0X: +
  • the molecular layer of the cerebellum parallel fibers that are axons of granule cells have high density
  • Signal in the granule cell layer layer in which the cell body of granule cells exists at high density
  • a reaction signal with the anti-EGFP antibody indicating the presence of neurotoxin protein was detected in the purkinje cell layer. There was no response signal, so it was white and it turned out that there was no neurotoxin protein.
  • FIGS. 9A, B, and D no reaction signal was detected.
  • the red fluorescence signal ( Figure 9F) indicating the presence of Calbindin D-28K is detected in Purkinje cells
  • the red fluorescence signal (Fig. 9I) indicating the presence of Parvalbumin is detected in Purkinje cells, sterate cells, and basket cells.
  • the respective fluorescent signals do not overlap. It was confirmed that they were completely separated. This indicates that the inducible expression of the neurotoxin protein is restricted to cerebellar granule cells and not in Purkinje cells, stellate cells, or basket cells.
  • the expression signal of the rtTA gene is restricted to the granule cells existing in the granule cell layer of the cerebellum, and is expressed in white matter, Purkinje cell layer, and molecular layer. was not detected.
  • the expression signal of the neurotoxin protein was detected in the granular cell layer (the layer where the cell bodies of the granular cells exist at a high density) and the molecular layer according to the results of Example 10.
  • the molecular layer is composed of parallel fibers, axons of granule cells that exist at an overwhelming density, dendrites of Purkinje cells, stellate cells, basket cells, and the like.
  • the expression of neurotoxin protein is not observed in dendritic protrusion of Purkinje cells, stellate cells, and basket cells (FIG. 9 E, F, G, H, I, J). Therefore, the expression signal of the neurotoxin protein detected in the molecular layer is transmitted to the parallel fibers that are the axons of the granule cells. It is considered to be derived.
  • mice transfected with the GABA A a6-rtTA gene and treToxin gene the rtTA gene is specifically expressed in cerebellar granule cells, and the expression of neurotoxin protein is reduced in cerebellar granule cell by administration of doxycycline.
  • the neurotoxin protein was transported from the cell body of cerebellar granule cells to the axon parallel fiber (the site of action of the neurotoxin protein), and was widely distributed.
  • the GABA A a6-rtTA gene and the treToxin gene double transgenic mice exhibited a locomotor behavior similar to that of wild-type mice during walking.
  • the wild-type mouse has a disorder of coordination, such as slowing down, wobbling, walking on the stomach, and walking. Phenotypes that are distinguished from.
  • wild-type mice mice having only the transgene GABA A a6-rtTA gene, the Dokishisaitarin in mice with only treToxin gene as a transgene throw Even when given, the above phenotype was not shown, and it was indistinguishable from wild-type mice not administered with doxycycline.
  • GABA A oc6- rtTA gene in treToxin gene double transgenic mice, by 1-2 weeks of doxycycline (neurotoxin protein derived specifically expressed in cerebellar granule cells), the incoordination After eliciting the phenotype of Drosophila, the patient was returned to the condition without doxycycline and observed 3 weeks later (the neurotoxin protein was no longer present in the cerebellar granule cells). It returned to a state indistinguishable from wild-type mice not treated with doxycitalin.
  • the phenotype of incoordination is the individual mouse, GABA A a6- rtTA gene, it two of TreToxin gene present simple or not for side effects of doxycycline, GABA A a6- rtTA gene, TreToxin It was concluded that the gene transfection mouse was caused by the expression and disappearance of neurotoxin protein induced in cerebellar granule cells by administration and non-administration of doxycitalin.
  • the mouse was mounted on a rod (UG0 BASILE) moving at a rotation speed of 15 r.p.m. (rotation / min) and 30 r.p.m.
  • the mouse performs a cooperative walking movement in accordance with the rotation of the mouth to prevent the mouse from falling from the mouth.
  • a mouse that cannot keep up with the rotation of the mouth (coordination is impaired)
  • the force that falls from the rod The clinging to the rotating rod, the mouse rotates together.
  • the maximum time for one test was 60 seconds. Even if the test rod could stay on the rotating rod for more than 60 seconds, the test was stopped and the score was set to 60 seconds.
  • mice wild-type mice (-/-), only the GABA A a6-rtTA gene Introduced mice (+ / _), transgenic mice with only treToxin gene (-/ +), GABA A a6-rtTA gene, treToxin gene Double transgenic mice (+ / +) were placed on a rotating rod ( ( Figure 10).
  • Figure 10 On the first day of the test, the mouse is unfamiliar with it, and cannot perform a cooperative walking movement on the rotating rod, and rotates together as if it were wound around the rotating mouth. Or fall and the residence time on the rods was short for all genotypes.
  • mice of all genotypes are good at performing cooperative walking on a rotating rod, and the residence time on the rod is long.
  • Natsuta when doxycycline was administered to mice transfected with the GABA A a6-rtTA gene and the treToxin gene, the dwelling time on rods decreased, indicating a phenotype that impaired coordinated walking. became.
  • mice transfected with only GABA A a6-rtTA gene (+/-) mice transfected with only treToxin gene (+/-), the same level as before administration was obtained. The results showed that the dwell time was shown and that the coordinated walking movement was not impaired.
  • mice were placed on wooden rods 30 mm wide, 15 mm, and 6 mm wide lying 40 cm above the floor.
  • the mouse dislikes high places, and is a safety cage 60 era away from the place where it was placed (a paper box with a floor width of 20 cm, a floor depth of 16.5 cm, and a height of 10.5 era.
  • the entrance is 8 cras wide and 10.5 cm high, and the floor of the safety cage is walked with a stick to escape into the wooden flooring chips normally used for breeding cages.
  • the mouse can cross the rod and escape to the safety cage if it can maintain a good balance of physical properties and perform a coordinated walking movement.
  • the graph in Fig. 11 shows the ratio of the number of “Fail” times to the number of times tested with the bar width changed to 30 ram, 15 mm, and 6 mm on the vertical axis.
  • a width of 30 mm crossing over this rod was not too difficult for any genotyped mouse and no "Fail” was seen.
  • 15 mm and 6 mm mice that failed were observed.
  • the width was 6 mm, doxycycline-administered GABA A a6-rtTA gene, treToxin
  • the transgenic mice have failed 80% or more in the test. This failure rate is a significant increase compared to around 10% for other genotypes treated with doxycycline.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細書
遺伝子発現制御ュニットおよびその利用 技術分野
本発明は、 特定の神経細胞の機能解析方法に関する。 さらに詳しくは、 特定の 神経細胞において神経細胞伝達機能制御活性を有するタンパク質の発現を可逆的 に制御し得る構造を有する DNA、 この DNAを導入した宿主、 並びにこの DNAが導 入されている宿主の特定の神経細胞において神経細胞伝達機能制御活性を有する タンパク質の発現を可逆的に制御することにより特定の神経細胞の機能を解析す る方法に関する。 発明の背景
従来、 脳機能の解明、 神経系の疾患モデル動物の作製を目的として、 多くの生 理学的、 薬理学的手法を用いた研究がなされてきた。 その例としては、 うつ病モ デル動物を作製するためにァドレナリン作用性神経遮断薬であるレセルピンを投 与したり、 パーキンソン病モデル動物を作製するためには MPTP ( 1—メチル一 4 —フエニル _ 1, 2, 5 , 6—テトラヒドロピリジン) という物質を黒質に局所 投与しドーパミン産生細胞を傷害させること等が挙げられる。しかし、脳の中は、 例えば 「A」 という性質を持った細胞、 「B」 という性質を持った細胞、 「C」 と いう性質を持った細胞、というように諸種の細胞が混在した環境である。従って、
「A」細胞だけを狙って操作し、 「B」、 「C」 といった他の細胞は元のままの状態 にしておきたいという意図で、 薬剤を投与したり物理的操作を加えたとしても、 現実には、 「AJ細胞だけでなく他の細胞にも大きく影響が及ぶことは避けられな い。 このように、 古典的な機能タンパク質のァゴニスト、 アンタゴニストの投与 実験や部位破壊実験では、 実験操作の影響が組織の広範囲に非特異的に及んでし まうという重大な欠点が常につきまとうため、 in vivo において特定の細胞に絞 つた機能解析や、 特定の細胞の機能障害に起因する病態解析を行うことは不可能 であった。
一方、 近年目覚ましい発展を遂げた分子生物学的手法によって、 遺伝子改変マ ウス、 ノックアウトマウスが作製され、 個体中の遺伝子の発現量を人為的に変化 させることが可能となった。 しかし、 この手法を使って調べられるのは、 ある遣 伝子の発現が増えた時、 あるいは逆にある遺伝子の発現が無くなった時にどのよ うな表現型を示すか、 即ち、 その遺伝子が生体内でどのような働きをしているか といった、 「分子」 の機能に限定されていた。つまり、分子より高次のレベルに位 置し、 神経ネットワークの基本単位でもある神経細胞の機能を特異的に解析する 有効な手段は存在しなかった。
かくなる状況下で、 本発明の発明者でもある渡辺、 中西らにより IMCT (Iramunotoxin— Mediated Ceil Targeting) 開発された (Watanabe, D., et al. , (1998) Cell, 95, 17-27)。 IMCT法は、 分子生物学的手法により、 脳の特定領域 にヒト IL- 2受容体とマーカーの融合タンパク質を発現する遺伝子導入マウスを 作製し、このマウスにヒト IL- 2受容体を特異的に認識する抗体毒素を投与するこ とで、 任意の成長ステージにおいて、 特定の細胞を破壊欠損させることを可能に した画期的な方法である。
し力 し、 IMCT法にも限界があり、神経細胞機能を解析する方法として必ずしも 充分とは言えない。 脳神経系は極めて可塑性に富む臓器であり、 ある神経細胞を 欠失させると、 長期観察の過程で、 他の細胞による補償 (Compensation) や適応 (Adaptation) が起こる。 一方、 IMCT法は、 神経細胞を細胞死によつて不可逆的 に欠損させるため、 マウスを正常状態から欠損状態に変換することは可能でも、 欠損状態から再び正常状態に戻すことは不可能である。 従って、 IMCT法のような 不可逆的な神経細胞欠損法には、 補償や適応現象によって隠れてしまう細胞機能 を正確に評価できないという問題点が残されている。
より正確に脳神経系ネットワークを解析したり、 脳神経疾患の病態、 診断、 及 ぴ治療法を研究したりするには、 神経細胞の機能を可逆的に制御する方法を開発 することが不可欠である。 破傷風菌、 ボツリヌス菌が産生する毒素タンパク質は、 神経細胞の中に取り込 まれる と、 神経伝達物質の放出を担 う タ ンパク質 (SNARE: Soluble N - ethylmaleimide - sensitive fusion protein Attachment proteins REceptor) を特異的に分解するプロテアーゼとして働く。 その結果、 この神経毒素タンパク 質の影響を受けた神経細胞は、 神経伝達物質を放出することができなくなり、 細 胞死に依ることなく、 情報を後ろの細胞に伝達することが阻害される。 従って、 この破傷風菌、 ボツリヌス菌由来の毒素タンパク質は神経細胞伝達機能制御活性 を有するタンパク質として有用と期待される。しかし、このうち破傷風菌毒素を、 マウス個体において恒常的に発現させようとすると、 精子形成に異常が表れ (Eisel, U. , et al. , (1993) ΕΜΒΟ J. , 12, 3365-3372)、 神経系で発現する遺伝 子導入マウスの作製には至らず、 単純な適用は困難と考えられている。
分子生物学進展の中で、 特定の条件下におくことにより遺伝子発現を可逆的 に操作制御する方法が開発されてきている。 例えば、 テトラサイクリン発現調節 システム (Gossen, M. , and Bu jard, H. , (1992) Proc. Natl. Acad. Sci. USA, 8· 9, 5547- 5551 ;米国特許第 5, 464, 758号公報)、重金属(Mayo, K. E. , et al. , (· 1982) Cell, 29, 99-108; Brinster, R. L. , et al. , (1982) Nature, 296, 39 - 42 ; Searle, P. F. , et al. , (1985) ol. Cell. Biol. , 5, 1480 - 1489)、 熱ショック (Nouer et al. (1991) Heat Shock Response, Nouer, L. , Florida, Boca - Raton, CRC, 167-220)、 ホルモン (Lee, F. , et al. , (1981) Nature, 294, 228· —232 ; Hynes, N. E. , et al. , (1981) Proc. Natl. Acad. Sci. USA, 78, 2038-2042 ; Klock, G., et al. (1987) Nature, 329, 734-736; Israel, D. I. , and · Kaufman, R. J. , (1989) Nucleic Acid Res. , 17, 4589-4604) に対して応答性のあるプロモータを使う方 法、 大腸菌の lacオペレーター · レプレッサー系を使う方法 (Hu, M. C. -T. , and Davidson, N. , (1987) Cell, 48, 555-566) といったものを挙げることができる。 しかし、 これらの遺伝子発現制御法を使って、 神経細胞の機能を可逆的に制御す る方法の開発は未だなされていない。 発明の開示
本発明は、特定の神経細胞において、その細胞を不可逆的な細胞死によつて欠失 させるのではなく、 神経細胞伝達機能制御活性を有するタンパク質の発現を可逆 的に制御することによる、 脳神経系のネットワークを解析するために非常に有効 なツールを提供することを課題とする。
本発明者らは、 特定の神経細胞において特異的に活性化される GABAA a 6 プロ モータ(Jones, A. , et al. , (1996) J. Neurochem. , 67, 907 - 916 ; Bahn, S. , et al. , (1997) Proc. Natl. Acad. Sci. USA, 94, 9417- 9421)を用いたテトラサイク リン依存性転写調節システムにより、 ボツリヌス菌、 及び破傷風菌由来の神経毒 素遺伝子発現の可逆的調節が可能である構造を有する DNAを、 マウス受精卵へマ イク口インジェクションし、 遺伝子改変マウスを作製した。 このマウスにテトラ サイタリン類似体であるドキシサイクリンを投与 ·非投与することにより、 GA- BAA c 6プロモータが特異的に活性化される細胞において神経伝達物質の放出 が制御されることを見出した。 本発明はこのような知見に基づいて成し遂げられ たものである。
すなわち、本発明は、 (1 )神経細胞伝達機能制御活性を有するタンパク質をコ 一ドする DNAを含み、 特定の神経細胞において神経細胞伝達機能制御活性を有す るタンパク質の発現を可逆的に制御し得る構造を有する DNA、
( 2 ) ( a )特定の神経細胞において神経細胞伝達機能制御活性を有するタンパク 質の発現を可逆的に制御し得る DNA構造、 及ぴ (b ) 該 DNA構造の制御下におか れるように連結された神経細胞伝達機能制御活性を有するタンパク質をコードす る DNAを含む遺伝子発現制御ュニット、
( 3 ) ( 1 ) ( a ) 特定の神経細胞特異的に活性化される転写制御領域 DNAと該転 写制御領域の制御下におかれるように連結された、特定の刺激により活性化され、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする DNA、 及ぴ (b ) 該タンパク質により制御されるプロモータとその制御下におかれるよ うに連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA を含む遺伝子発現制御ュニット、
(4)神経伝達物質放出制御活性を有するタンパク質が神経毒素である上記(3) に記載の遺伝子発現制御ュニット、
(5) 上記 (1) 〜 (4) のいずれかに記載の DNA、若しくは遺伝子発現制御ュニ ットを保有する宿主、
(6)上記(5) に記載の宿主が保有する、特定の神経細胞において神経伝達機能 制御活性を有するタンパク質の発現を可逆的に制御し、 該宿主に表れる表現型の 変化を解析することを特徴とする特定神経細胞の機能解析方法、
(7)上記(5)に記載の宿主が保有する、特定の神経細胞において神経伝達機能 制御活性を有するタンパク質の発現を可逆的に制御し、 該神経細胞、 又はそれに 連関する細胞中の生体機能分子の物理的、 化学的変化を解析することを特徴とす る生体機能分子機能解析方法、
(8) (1) (a) 特定の神経細胞特異的に活性化される転写制御領域 DNAと該転 写制御領域の制御下におかれるように連結された、特定の刺激により活性化され、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする DN' A、 及び (b) 該タンパク質により制御されるプロモータとその制御下におかれるよ うに連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA を、宿主に導入し、 (2) 該宿主、又は該神経細胞に対し特定の刺激の有無、 又は その強度を調節し、 宿主に表れる表現型の変化を解析することを特徴とする特定 神経細胞の機能解析方法、
(9) (1) (a) 特定の神経細胞特異的に活性化される転写制御領域 DNAと該転 写制御領域の制御下におかれるように連結された、特定の刺激により活性化され、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする DN' A、 及ぴ (b) 該タンパク質により制御されるプロモータとその制御下におかれるよ うに連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA を、宿主に導入し、 (2)該宿主、又は該神経細胞に対し特定の刺激の有無、 又は その強度を調節し、 特定の神経細胞、 またはそれに連関する細胞中の生体機能分 子の物理的、化学的変化を解析することを特徴とする生体機能分子機能解析方法、
(1 0) 神経伝達物質 ¾i出制御活性を有するタンパク質が、 神経毒素である上 記 (8) 又は (9) に記載の方法、
(1 1) (a)特定の神経細胞特異的に活性化される転写制御領域 DNAと該転写制 御領域の制御下におかれるように連結された、 特定の刺激により活性化され、 か つ特定のプロモータを活性化する能力を有するタンパク質をコードする DNA、 及 び (b) 該タンパク質により制御されるプロモータとその制御下におかれるよう に連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA* を保有するヒ ト以外の動物の受精卵、 胚性幹細胞、 及び神経幹細胞、
(1 2)ヒト以外の動物が齧歯類である上記(1 1)に記載の受精卵、胚性幹細胞、 及び神経幹細胞、
(13)齧歯類がマウスである上記(1 1) または(12) のいずれかに記載の受 精卵、 胚性幹細胞、 及び神経幹細胞、
(14)上記(1 1) 〜(1 3) のいずれかに記載の受精卵、又は胚性幹細胞を発 生させたヒト以外の遺伝子改変動物、 及びその子孫、
(15)上記(14)に記載の遺伝子改変動物から得られる遺伝子改変動物細胞、
(16) 上記(1 1) 〜(1 3) のいずれかに記載の神経幹細胞を分化させた神経 細胞、
が提供される。 図面の簡単な説明
図 1は、 本発明の実施例で構築したテトラサイクリン依存転写調節因子をコー ドする DNAを示す図である。 ①はマウス受精卵へのマイクロインジェクションに 用いた pVEC6(ll)ベクターの SphI/NotI9.3Kbp断片の構造を示す。 ②は、 内在性 の GABAAa6遺伝子の構造を示す。①、②とも灰色の幅広枠は、 GABAA α 6の Εχοη· 領域を、 白色の幅細枠は IRESを、 斜線の幅広枠は、 rtTA遺伝子を表す。 又、 数 字は、各領域の DNAのサイズ(kbp) を、 下段の probe設定領域として示した太線 は、サザンハイブリダィゼーシヨンで用いたプローブ配列に対応する領域を示す。 図 2は、 本発明の実施例で構築した神経細胞伝達機能制御タンパク質をコード する DNAを示す図である。 数字は、 各領域の DNAのサイズ (kbp) を表す。 又、 下 段の Probe設定領域として示した太線は、 サザンハイブリダィゼーションで用い たプロ一ブ配列に対応する領域を示す。
Xhol: BoNT. A、 BoNT. B、 BoNT. E、 TeNTは 1箇所のみある。
BoNT. CIは、 他の領域にももう 1箇所ある。
Xbal#: BoNT. A、 BoNT. B、 BoNT. Eは 1箇所のみある。
BoNT. C TeNTは、 他の領域にももう 1箇所ある。
EcoRI: BoNT. A、 BoNT. B、 BoNT. Cl、 TeNTは 1箇所のみある。
BoNT. Eは、 他の領域にももう 1箇所ある。
図 3は、 ①は、 GABAA ct 6- rtTA を導入した遺伝子改変マウスのゲノムサザンハ イブリダィゼーシヨン解析の結果を示す図である。 ②は、 treTeNTdl を導入した 遺伝子改変マウスのゲノムサザンハイブリダィゼーシヨン解析の結果を示す図で ある。①、②とも、上段の数字は検体である遺伝子改変マウスの個体番号を示し、 個体番号に付加した下線は、 導入遺伝子陽性マウスであることを示す。 図の左側 に DNAのサイズマーカ一を示した。 長い矢印は内在性遺伝子由来のシグナルの位 置を示し、 短い矢印は導入遺伝子由来のシグナルの位置を示す。 導入遺伝子陽性 のラインは、 番号の下に、 下線で示した。
図 4は、 神経毒素の基質タンパク質の構造と本実施例で用いた神経毒素による 切断部位の対応を示した図である。 図中、 A、 B、 Cl、 E の各文字は神経毒素であ る BoNTの serotypeを示し、付加された矢印は、各々の神経毒素が基質を切断する 部位を示す。又、斜線を付した領域は、 Four-helix bundle領域 (Fasshauer, · D. , et al., (1998) Proc. Natl. Acad. Sci. USA, 95, 15781-15786) を示し、 黒く 塗りつぶした領域は膜貫通領域を示す。 下段の数字は、 各境界における、 N末端 側のァミノ酸の配列番号を表す。
図 5は、 宿主細胞中に共発現させた神経毒素プロテアーゼとその基質タンパク 質について、 該毒素の基質タンパク質切断活性を解析したウェスタンプロッティ ングの結果を示した図である。図の左側にタンパク質の分子量マーカーを示した。 長い矢印は、 切断を受けていない標的タンパク質の位置を示し、 短い矢印は、 切 断を受けた標的タンパク質の位置を示す。
図 6は、 GABAAa6- rtTA遺伝子導入マウスでの mRNAノザンブロット解析の結果 を示した図である。
図 7は、 GABAAa6- tTA遺伝子導入マウスでの in situ hybridization解析の 結果を示した図である。
図 8は、 ABAAa6- rtTA 遺伝子、 treToxin 遺伝子 2重遺伝子導入マウスにおけ る神経毒素タンパク質の発現誘導と発現消去のウェスタンブロッテイング法で検 出した結果を示す。
図 9は、 ドキシサイクリンを 1週間投与した野生型マウス (6週令) (図 9 A : Genotype : - /-, D0X : +)、 ドキシサイクリンを投与していない 2重遺伝子導入 マウス (6週令) (図 9 B : Genotype : +/+ , D0X : -)、 ドキシサイクリンを 1 週間投与した 2重遺伝子導入マウス (6週令) (図 9 C: Genotype: +/+ , D0X: +) , ドキシサイクリンを 2週間投与し、 その後ドキシサイクリンを 3週間かけて 除去した 2重遺伝子導入マウス (1 0週令) (図 9 D : Genotype : +/+, D0X : + → -)の小脳切片で 1次抗体反応を抗 EGFP抗体、 2次抗体以降を ABC法で行った 結果を示した図である。
図 1 0は、 マウスを用いたロタロッド (Rota- Rod) 試験による行動解析の結果 を示す図である。
図 1 1は、 マウスを用いたバランスビーム(Balance Beam)試験による行動解析 の結果を示す図である。 発明を実施するための最良の形態
( 1 ) 神経細胞伝達機能制御活性を有するタンパク質及びそれをコードする DNA 本発明において、 その発現の制御を受ける神経細胞伝達機能制御活性を有す るタンパク質 (以下これを、 「神経細胞伝達機能制御タンパク質」 と称すること がある) とは、 生体内において特定の神経細胞と他の細胞間の情報伝達を制御す る活性を有するものを意味する。 具体的には例えば、 神経伝達物質の放出を直接 的に制御できるタンパク質 (以下これを 「神経伝達物質放出制御タンパク質」 と 称する) が好ましいが、 その発現の程度を調節することにより可逆的に神経細胞 伝達機能を制御でき得るものであれば如何なるものでもよい。
本発明で用いる神経細胞伝達機能制御タンパク質、 例えば神経伝達物質放出 制御タンパク質としては、 これを生体内に導入したり、 逆に生体内から除去した ときに、 可逆的に神経伝達物質の放出を抑制、 又は促進することができるもので あれば如何なるものであってもよいが、 例えば、 神経毒素、 神経毒素の感受性や 代謝、 あるいは局在に影響を及ぼす因子、 神経伝達物質を含む小胞のサイクルに 影響を及ぼす因子、 神経伝達物質の合成、 分解、 修飾、 又は局在に影響を及ぼす 因子、 神経伝達物質の放出に関わる細胞内の電位ゃィオン濃度に影響を及ぼす因 子、 神経伝達物質放出のシグナルに影響を及ぼす因子等を用いることができる。 これらのうち好ましくは神経毒素を用いることができる。神経毒素としては、破 傷風菌由来の毒素プロテア一ゼ(TeNT)、あるいはボツリヌス菌由来の毒素プロテ ァーゼ (BoNT) 等が挙げられる。 これらは、 如何なる種や型の破傷風菌、 あるい はボツリヌス菌 (Clostridium botulinura) 由来のものであってもよいが、 好まし くは、 破傷風菌 (Clostridium tetani Harvard A- 47;寄託番号: KZ1174、 日本細 菌学雑誌、 1995年、 50卷、 4号、 1023) 由来、 又は、 ボツリヌス菌由来 (BoNT. A (Binz, T. , et al. , (1990) J. Biol. Chem. , 265, 9153- 9158)、 ΒοΝ· Τ. Β (Kurazono, Η. , et al. , (1992) J. Biol. Chem. , 267, 14721—14729)、 Βο· NT. CI (Hauser, D. , et al., (1990) Nucleic Acids Res. , 18, 4924)、 BoNT. D (Binz, T. , et al. , (1990) Nucleic Acids Res. , 18, 5566)、 BoNT. E (Poule- t, S. , et al. , (1992) Biochem. Biophys. Res. Coramun. , 183, 107—113)、 Bo- NT. F (East, A. K. et al., (1992) FEMS Microbiol. Lett. , 96, 225-230)、 Β· oNT. G (Campbell, K. , et al. , (1993) Biochem. Biophys. Acta. , 1216, 487 - 4· 91)、 TeNT (Eisel, U. , et al. , (1986) EMBO J. , (1986) 5, 2495-2502) ) の毒素プロテアーゼ等が用いられる。 これらの 神経細胞伝達機能制御タンパク質のアミノ酸配列は、 例えば上記の文献に記載の ものを用いることができるが、 その神経細胞伝達機能制御活性を有する限り 1個 若しくは数個のアミノ酸の置換、 欠失、 付加、 あるいは逆位を有するものも神経 細胞伝達機能制御タンパク質として用いることができる。 又、 必要に応じて該タ ンパク質の N末、 又は C末等にマーカー、 及びタグ配列を付加することもできる し、 内部に挿入することもできる。 マーカーとしては、 例えば GFP (Green Fluorescent Protein) β ガラク トシダーゼ、 及ぴルシフェラーゼ等を用いるこ とができる。 タグ配列としては、 ェピトープタグとして通常用いられるものであ れば如何なるものであってもよいが、 例えば Flagタグ、 HAタグ、 HISタグ等を用 いることができる。 又、 必要に応じてタンパク質の細胞内輸送、 局在に影響を与 える配列、 タンパク質の安定性を調節する配列を該タンパク質の N末、 又は C末 に付加することもできるし、 内部に挿入することもできる。 細胞内輸送、 局在に 影響を与える配列としては、例えば、 tau* タンパク質中のアミノ酸配列を使って、 軸索へのターゲッティングを行っている、 Callahan, C. , and Thomas, J. B. , (1994) Proc. Natl. Acad. Sci. USA, - 91, - 5972-5976 に記載の方法や、 Growth-associated protein - 43 (GAP - 43)、 c-Ha-R- as中の 20ァミノ酸程度の断 片を使って細胞膜へのターゲッティングを行った、 Μο· riyoshi, K. , et al. , (1996) Neuron, 16, 255- 260に記載の方法を用いることができる。 タンパク質の 安定性を調節することが可能な配列としては Mouse Orni - thine Decarboxylase 等の PEST配列 (Ghoda, し, et al. , (1989) Science, 243, - 1493-1495 ; Li, X. , et al. , (1998) J. Biol. Chem. , 273, 34970-34975) 等を用いることができる。 本発明で用いる神経細胞伝達機能制御タンパク質をコードする DNA とは、 例 えば上記神経細胞伝達機能制御タンパク質を発現している細胞より取得すること ができる。 DNA の種類は神経細胞伝達機能制御活性を有するタンパク質をコード する限り如何なるものでもよく、 ゲノム DNA、 cDNAのいずれでもよいが、 cDNAカ 好ましい。 cDNAは、 コーディング領域のみでも、 非コーディング領域を含むもの でもよく、神経細胞伝達機能制御タンパク質、を発現している細胞内の mRNA、 ある レ、は cDNAラ ブラリ一等力 ら、 RT-PCR (Reversetranscription— polymerase chain reaction)や、 PCR、 あるいはハイブリダィゼーション法等それ自体既知の方法に よって取得することができる。
本発明で用いる神経細胞伝達機能制御タンパク質をコードする DNA は、 上記 のようにして取得された DNAのみでなく、 該 DNAがコードするタンパク質の神経 細胞伝達機能制御活性を阻害しない範囲で、 その 3 ' 側、 又は 5 ' 側、 あるいは 該 DN. Aの内部に転写、翻訳、あるいは mRNAの細胞内局在(Mayford, M. , et al. , (199· 6) Proc. Natl. Acad. Sci. USA, 93, 13250 - 13255 ; Mori, Y. , et al. , (2000) - Nature Neurosci. , 3, 1079 - 1084 ; Oleynikov, Y. , and Singer, R. H. , (1998· ) Trends Cell Biol. , 8, 381-383) や安定性 (Chen, C. - Y. A. , and Shyu, A. · - B. , (1995) Trends Biol. Sci. , 20, 465—470) 等を調節したり、 R A DNA を編集するための配列を連結してもよレ、。 転写制御活性を有する DNA配列として は、 ρ· olyA シグナル、 プロモータ、 ェンハンサー、 サイレンサーが挙げられ、 翻訳制御活性を有する DNA としては、 IRES (Jang, S. K. et al. (1989) J. Virol. · 63, 1651-1660) Kozak配列(Kozak, M. , (1986) Cell, 44, 283-292) 等が挙げられる。 RNA DNAを編集するための DM配列としてはスプライシンダサ イト、 1 · oxP配列 (Sternberg, N. , and Hamilton, D. , (1981) J. Mol. Biol. , 150, 46· 7-486 ; Sauer, B. , and Henderson, N. (1988) Proc. Natl. Acad. Sci. USA, · 85, 5166- 5170; Gu, H et al. (1994) Science, 265, 103—106)、 FRT 配列 · (Golic, K. G. , and Lindquist, S. L. , (1989) Cell , 44, 499-509) トランスポゾン、 染色体相同配列等が挙げられる。 さらには別の遺伝子 DNAを連 結してもよレ、。 このうち、好ましくは polyA signal配列を翻訳領域 DNAの 3 ' 側 に結合させたものを用いることができる。 この polyA signal配列としては、 用い た cDNA* の 3, 非翻訳領域に含まれるものを用いてもよいし、 例えば Rabbit /3 -globin ρ· olyA signal配列のような外来性のものを用いてもよい。
このような神経細胞伝達機能制御タンパク質をコードする DNA として、 好ま しくは、 例えば BoNT. A (Binz, T. , et al. , (1990) J. Biol. Chem. , 265, 9153-9· 158) 、 BoNT. B (Kurazono, H. , et al. , (1992) J. Biol. Chem. , 267, 14721—1 · 4729)、 BoNT. CI (Hauser, D. , et al. , (1990) Nucleic Acids Res. , 18, 4924· )、 BoNT. D (Binz, Tつ et al. , (1990) Nucleic Acid's Res. , 18, 5566)、 BoN- T. E (Poulet, S. , et al. , (1992) Biochem. Biophys. Res. Co匪 n. , 183, 107· - 113)、 BoNT. F (East, A. K. et al. , (1992) FEMS Microbiol. Lett. , 96, 22 · 5 - 230)、 BoNT. G (Campbell, K. , et al. , (1993) Biochem. Biophys.. Acta. , 1 · 216, 487-491) , TeNT(Eisel, U. , et al. , (1986) EMB0 J. , (1986) 5, 2495-2502 ; Genbank Acession No. X04436) の軽鎖遺伝子等が挙げられ、 さらに好ましくはこ れら DNAの 3 ' 末端に PEST配列、 並びに Rabbit - globin polyA signal配列を 付加したものが挙げられる。
( 2 ) 神経細胞伝達機能制御タンパク質の発現制御ュニット
上記した神経細胞伝達機能制御タンパク質をコードする DNA (以下これを「神経 細胞伝達機能制御 DNA」 と称することがある) に、 これを特定の神経細胞におい てその発現を可逆的に制御し得る発現制御領域を付加することにより、 本発明の 神経細胞伝達機能制御タンパク質の発現制御ユニット (以下これを 「遺伝子発現 制御ュニット」あるいは「神経細胞伝達機能制御タンパク質の発現制御ュニット」 と称することがある) を調製することができる。
このような遺伝子発現制御ュニットとして、具体的には( a )特定の神経細胞に おいて神経細胞伝達機能制御活性を有するタンパク質の発現を可逆的に制御し得 る DNA構造、及び(b )該 DNA構造の制御下におかれるように連結された神経細胞 伝達機能制御活性を有するタンパク質をコードする DNAを含むものが挙げられる。 ここで特定の神経細胞とは、 細胞内で神経細胞伝達機能制御タンパク質が発 現することにより、 該細胞とこれに連関する細胞とのネットワークが変化する細 胞を意味する。 具体的には例えば、 小脳の顆粒細胞等が挙げられる。
これら特定の神経細胞において神経細胞伝達機能制御タンパク質の発現を可 逆的に制御するためのシステムとしては、 遺伝子の発現を特定の条件によって可 逆的に制御できるものであって、 かつその可逆的な制御が特定の神経細胞におい て特異的に可能であるものであれば如何なるものであってもよい。 このうち、 遺 伝子の発現を可逆的に制御するシステムは、 それ自体趺知の方法を用いることが できる。 具体的には例えば、 遺伝子発現制御をテトラサイクリンの有無によって 制御するテトラサイクリン発現調節システム (Gossen, M., and Bujard, H. , (1992) Proc. Natl. Acad. Sci. USA. , 89, 5547 - 5551 ; 米国特許第 5, 464, 758 号公報)、 重金属 (Mayo, K. E. , et al. , (1982) Cell, 29, 99-108 ; Brinster, R. L- · , et al. , (1982) Nature, 296, 39—42 ; Searle, P. F., et al. , (1985) Mol. · Cell. Biol. , 5, 1480-1489)、 熱ショック (Nouer et al. (1991) Heat Shock- Response, Nouer, L , Florida, Boca Raton, CRC, 167-220)、 ホルモン (Lee, F- et al. , (1981) Nature, 294, 228—232 ; Hynes, N. E. , et al. , (1981) Pro- c. Natl. Acad. Sci. USA. , 78, 2038-2042 ; Klock, G., et al. (1987) Nature- , 329, 734-736; Israel, D. I. , and Kaufman, R. J. , (1989) Nucleic Acid R- es. , 17, 4589-4604)に対して応答性のあるプロモータを使う方法、大腸菌の la' cォペレ —ター' レプレッサ一系を使う方法 (Hu, M. C. -T. , and Davidson, Ν· , · (1987) Cell, 8, 555-566) といったものを挙げることができる。
これらの遺伝子の発現を可逆的に制御するシステムが目的の神経細胞内での み選択的に活性化するためには、 例えば特定の神経細胞のみで活性化を受けるプ 口モータの制御下に該システムを連結したり、 該システムにおいて遺伝子発現を 可逆的に制御するための特定の条件が、 特定の神経細胞においてのみ選択的に行 えるようにする方法等が用いられる。 又、 本発明の発現制御ユニットが目的の神 経細胞内でのみ選択的に活性化するか否かは、 該ュニットを適当な宿主に導入し た後、 遺伝子の発現を可逆的に制御するための特定の条件下での、 神経細胞伝達 機能制御タンパク質、あるいはこれをコードする mRNAの発現量の変化を、例えば ウェスタンブロッテイング、 免疫組織染色、 ノーザンブロッテイング、 in situ hy bridization等の方法で解析することにより確認することができる。 これら本発明の遺伝子発現制御ュニットによるタンパク質発現の可逆的制御 を特定の神経細胞において特異的に活性化する方法については、 以下の例を挙げ て具体的に説明する。
( i )テトラサイタリン発現制御システムを用いた特定の神経細胞における神経細 胞伝達機能制御タンパク質の発現制御ュニットの構築 1 本発明の遺伝子発現制 御ュニットとしては、 前述のテトラサイクリン発現制御システムを用いるものが 挙げられる。 該ュニットの具体的な構成の例としては、 (a ) 本発明の神経細胞伝 達機能制御 DNAの 5 ' 側上流にテトラサイタリン応答配列とテトラサイクリン応 答配列によって制御されるプロモータを連結した DNA* と、 さらには (b ) テト ラサイクリン発現調節因子をコードする DNAが特定の神経細胞特異的に活性化さ れるプロモータ配列の制御下におかれるように連結した DNA等が挙げられる。 こ れら 2つの DNA断片はそれぞれ独立した DNA断片か、 それらを連結したものか、 あるいはそれらが挿入されたプラスミ ドとして構築される。
又、これらの DNAの連結は上記したものが好ましいが、本発明の発現制御ュニッ トを導入した細胞内で、 テトラサイタリンの有無或いは量を調節することによつ て神経細胞伝達機能制御タンパク質の発現が可逆的に制御し得るものあであれば、 他の場所に移したり、 配列を変更してもよい。 さらには上記の構成の他に少なく とも 1つの適当なィントロンが挿入されていることが好ましい。
上記したテトラサイクリン応答配列とは、 テトラサイクリン発現制御因子が 結合でき、 この結合により下流のプロモータを活性化する機能を有する DNAであ れば如何なるものであってもよいが、 具体的には例えばテトラサイタリンォペレ ータ (Gossen, M. and Bujard, H. , (1992) Proc. Natl. Acad. Sci. USA, 89, 55· 47-5551) 等が用いられる。 又、該応答配列の下流に連結されるプロモータと しては、 それ自体では活性を有さず、 テトラサイクリン応答配列によって制御さ れるものであれば如何なるものであってもよいが、 具体的には例えば CMVミニマ ムプロモータ等が挙げられる。
テトラサイクリン発現調節因子としては、テトラサイクリン、又はその誘導体の 投与、 あるいは非投与によりテトラサイクリン応答配列の支配下にある遺伝子発 現を誘導する因子が挙げられる。 具体的には例えば rtTA ( Reverse tetracycli · ne-controlled transactivator: Gossen, M. , et al. , (1995) Science, 268, 17· 66 - 1769)、 あるレヽは tTA (Tetracycline - controlled transactivator: Gossen, · M. , and Bujard, H. , (1992) Proc. Natl. Acad. Sci. USA, 89, 5547-5551) が挙げられる。
上記テトラサイタリン発現調節因子をコードする DNA (以下、 「テトラサイクリ ン発現調節 DNA」 と称することがある) は、 特定の神経細胞において活性化を受 けるプロモータの制御下におかれるように連結されるが、 具体的には例えば、 テ トラサイクリン発現調節 DNAの 5 ' 側上流に特定の神経細胞において活性化を受 けるプロモータ配列を連結させたものか、 あるいは相同組換えにより導入される 細胞の染色体上の内在性の特定の神経細胞において活性化を受けるプロモータの 下流にテトラサイクリン発現調節 DNA が位置するような DNA も用いることがで きる。 又、 テトラサイクリン発現調節 DNA の 5, 側上流あるいは 3, 側下流に は、 該 DNAがコードするタンパク質の活性を阻害しない範囲で、 転写、 翻訳、 あ るいは mRNAの細胞内局在や安定性等を調節したり、 RNA、 DNAを編集するための 配列を連結してもよい。 これらの DNAは、 具体的には ( i ) に記載の本発明の神 経細胞伝達機能制御 DNAに付カ卩されるものと同様のものを用いることができる。 又、特定の神経細胞において活性化を受けるプロモータとしては、 GABAA a 6プロ モータ (Jones, A. , et al. , (1996) J. Neurochem. , 67, 907—916; Bahn, Sノ , et al. (1997) Proc. Natl. Acad. Sci. USA, 94, 9417-9421) 等が挙げられる。 プロモータの DNA配列としてはその 3 ' 側下流に該プロモータに制御される遺伝 子 DNAが含まれることがあるが、 その場合は上記遺伝子と本発明のテトラサイク リン発現調節 DNA との間に IRES (Internal ribosomal entry site) を挿入すれ ばよい。
( i i ) テトラサイクリン発現制御システムを用いた特定の神経細胞における 神経細胞伝達機能制御タンパク質の発現制御ュニットの構築 2
本発明のテトラサイタリン発現制御ュニットのさらなる 1例としては、 (a )神 経細胞伝達機能制御 DNAの 5 ' 側上流にテトラサイタリン応答配列とテトラサイ クリン応答配列によって制御されるプロモータ配列を連結した DNAと、 (b )非特 異的あるいは特定の神経細胞において活性化を受けるプロモータの制御下におか れるように連結したテトラサイクリン発現調節 DNA の上流に特定の条件下で該 DNAの転写、 又は翻訳を阻害する DNAが連結された DNA、 さらには、 (c ) 上記し た特定の条件を誘導する因子が特定の神経細胞において活性化を受けるプロモー タの制御下におかれるように連結した DNA によって構成される。 これら 3つの D- NAはそれぞれ独立した別々の DNA断片、 あるいはそれが挿入されたプラスミ ドとして構築されることが好ましいが、 3つ、 あるいは 2つを並べて 1つの DNA 断片、 あるいはそれが挿入されたプラスミ ドとして構築することもできる。
又、 これらの DNAの配置は上記したものが好ましいが、 これら DNAを導入した 細胞内で、 テトラサイクリンの有無、 或いは量を調節することによって神経細胞 伝達機能制御タンパク質の発現が可逆的に制御可能であれば、 他の場所に移した り、 配列を変更しても構わない。 さらには、 これらの転写ユニット中には、 少な くとも 1つのィントロンを含むことが好ましい。
テトラサイクリン応答配列、 及びテトラサイタリン応答配列によって制御さ れるプロモータ配列は、 上記 ( i ) に記載したものを用いることができる。 又、 テトラサイクリン発現調節 DNAの発現を制御する非特異的、 あるいは特定の神経 細胞において活性化されるプロモータのうち、 全ての細胞で機能するプロモータ としては、 例えば、 一ァクチンプロモータ等が好ましく用いられる。
又、このプロモータにより誘導されるテトラサイタリン発現調節因子の発現を、 特定の条件下で阻害、 又は解除する機構としては、 例えば Cre- lox システム (S- ternberg, N. , and Hamilton, D. , (1981) J. Mol. Biol. , 150, 467-486 ; Sau- er, B. , and Henderson, N. , (1988) Proc. Natl. Acad. Sci. USA, 85, 5166- 5170; Gu, H. , et al. , (1994) Science, 265, 103 - 106) や FLP- FRT システム (G- olic, K. G. , and Lindquist, S. L., (1989) Cell, 44, 499— 509)を用いる ことができる。 Cre- lox システムを用いる場合、 上記非特異的プロモータとテト ラサイクリン発現調節 DNAの間に、両端に ΙοχΡ配列を結合したストップコドンを 連結した DNAが用いられる。 さらに、 特定の条件を誘導する因子としては、 ΙοχΡ 配列に挟まれた領域を DNA組換えにより削除する活性を有する Creリコンビナー ゼが用いられる。 該因子をコードする DNAは、 上記 ( i ) に記載した特定の神経 細胞で活性化を受けるプロモータの下流に連結される。
( i i i )ス トレスタンパク質プロモータを用いた、特定の神経細胞における神経 細胞伝達機能制御タンパク質の発現制御ュニットの構築
遺伝子発現制御ュニットのさらなる 1例としては、 (a )適当なストレスタンパ ク質のプロモータ配列と、 該配列に機能的に連結させた神経細胞伝達機能制 DN- A、 さらに該 DMの 5, 側上流に特定の条件下で該遺伝子の転写、又は翻訳を 阻害する DNAが連結された DNAと、 (b ) 上記した特定の条件を誘導する因子が、 特定の神経細胞において活性化を受けるプロモータの制御下に置かれるように連 結された DNAによつて構成される。 これら 2つの DNAはそれぞれ独立した別々の DNA 断片、 あるいはそれが挿入されたプラスミ ドとして構築されることが好まし いが、 2つを並べて 1つの DNA断片、 あるいはそれが挿入されたプラスミ ドとし て構築することもできる。
又、 これらの DNAの配置は、 上記したものが好ましいが、 これら DNAを導入し た細胞内で、 適当なストレスショックの有無或いは程度を調節することによって 神経細胞伝達機能制御タンパク質の発現が可逆的に制御可能であれば、 他の場所 に移したり、 配列を変更してもよい。 さらには、 これらの発現制御ユニット中に は、 すくなくとも 1つのイントロンを含むことが好ましい。
本遺伝子発現制御ュニッ トに用いられるストレスタンパク質プロモータとし ては、 該ユニットを導入した細胞に適当なストレスを加えることによって、 活性 化を受けるものであれば如何なるものであってもよいが、 具体的には例えば、 熱 ショックタンパク質プロモータが挙げられる。
又、このプロモータにより誘導される神経細胞伝達機能制御 DNAの発現を、特定 の条件下で阻害、 又は解除する機構と しては、 例えば Cre-lox システム (Stern- berg, N. , and Hamilton, D. , (1981) J. Mol. Biol. , 150, 467-486 ; Sauer, · B. , and Henderson, N. , (1988) Proc. Natl. Acad. Sci. USA, 85, 5166 - 5170· ; Gu, Η·, et al., (1994) Science, 265, 103-106) や FLP- FRTシステム (Golic- , K. G. , and Lindquist, S. し, (1989) Cell , 44, 499-509) を用い ることができる。 Cre-lox システムを用いる場合、 上記ス トレスタンパク質プロ モータと神経細胞伝達機能制御 DNAの間に、両端に ΙοχΡ配列結合したス トップコ ドンを連結した DNAを用いることができる。 さらに、 特定の条件を誘導する因子 としては、 ΙοχΡ配列に挟まれた領域を DNA組換えにより削除する活性を有する Cre リコンビナーゼが用いられる。 該因子をコードする DNAは、 上記 (i ) に記載し た特定の神経細胞で活性化を受けるプロモータの下流に連結される。
さらには、上記ストレスタンパク質プロモータの下流に、神経細胞伝達機能制御 DNAを連結させた構造の DNAを宿主に導入し、特定の神経細胞のみに対し直接ス ト レスを加える方法 (Half on, M. S., et al. , (1997) Proc. Natl. Acad. Sci. · USA, 94, 6255-6260; Halloran, M. C. , et al. , (2000) Development, 127, 1 · 953—1960) 等により制御する方法も用いることができる。
( 3 ) 神経細胞伝達機能制御タンパク質の発現制御ュニットの宿主への導入 本発明の遺伝子発現制御ュニットを、それ自体既知の方法により調整し、これを 適当な宿主に導入することにより組み換え体を取得することができる。 本発明の 遺伝子発現制御ュニットを導入することができる宿主としては、 該ュニットが導 入可能であり、 組み換え体において、 神経伝達物質放出制御タンパク質の発現を 可逆的に制御し得るものであれば如何なるものであってもよい。 具体的には例え ば、 PC12 ( Greene, し, et al. , (1976) Proc. Natl. Acad. Sci. USA, 73, 2· 424-2428) 等の培養細胞、 神経系培養細胞、 プライマリー細胞、神経系組織ス ライスカルチャー、 受精卵、 胚性幹細胞、 神経幹細胞あるいはヒ ト以外の生物個 体等が挙げられる。
胚性幹細胞とは、個体まで発生することが可能な全ての細胞を指し、神経幹細胞 とは、 神経細胞に分化しうる全ての細胞を指す。 生物個体としては、 線虫、 ショ ウジヨウバエ、 ゼブラフィッシュ、 ニヮトリ等の鳥類、 サル、 ラット、 マウス等 の哺乳類等が挙げられる。 これらのなかで、 齧歯類が好ましく、 さらにはマウス が好ましく用いられる。 又、 マウスの系統としては、 作製した上記発現制御ュニ ット導入体の表現型解析を考慮して C57BL/6系統を用いることが好ましいが、 繁 殖や受精卵の取得のしゃすさ、 ES細胞の系統等他の要因を考慮して、 他の系統を 用いることも可能である。
このような宿主への本発明の神経細胞伝達機能制御タンパク質の発現制御ュ ニットの導入方法は、 それ自体既知の通常用いられる方法を用いることができ る。 宿主が培養細胞、 神経系培養細胞、 プライマリー細胞、 神経系組織スライス カルチャー、 受精卵、 胚性幹細胞、 あるいは神経幹細胞等の細胞である場合、 具 体的には、 例えばマイクロインジェクション法、 リン酸カルシウム法、 リポフエ クシヨン法、 エレク ト口ポレーシヨン法、 又はウィルス感染法等を用いることが できる。 又、 遺伝子発現制御ユニットが複数の DNA断片で構成される場合には、 それぞれ独立に上記の方法により宿主に導入することが好ましいが、 複数の DNA 断片の混合液を導入することも可能である。 特に宿主が交配可能な動物である場 合には独立に導入された動物同士を交配することにより全体の発現制御ュニット を宿主体内で構築することが可能である。
宿主が個体である場合には、 上記受精卵や胚性幹細胞に DNA を導入した後こ れを発生させる方法、 相同組換え法、 あるいはトランスポゾン法等、 それぞれの 宿主において遺伝子導入体を作製するのに通常用いられている方法を用いること ができる。
上記の DNA導入操作を行った宿主のうち、 実際に目的の DNAが導入されている かを確認する方法は、 それ自体既知の通常用いられる方法を用いることができ る。 具体的には例えば、 薬剤耐性の遺伝子を上記発現制御ユニットとともに導入 し、 宿主をその薬剤で処理した後、 耐性を有している株を選択する方法や、 上記
( 2 ) に記載したマーカー遺伝子の発現を指標とする方法等が挙げられる。 又、 導入宿主の一部、 又は全部から調製した DNA、 RNA、 あるいはタンパク質抽出液等 を用いて、 サザンブロッテイング、 ノザンブロッテイング、 あるいはウェスタン プロッティング等により確認することもできる。
このようにして得られた本発明の発現制御ュニットの各 DNA 断片が導入され た宿主を単に 「DNA導入体」 と称することがある。 以下、 宿主がマウス等の動 物個体である場合を例に本発明の神経細胞伝達機能制御タンパク質の発現制御ュ ニットの導入方法 (遺伝子改変動物の作製方法) を具体的に説明する。
( 4 ) 遺伝子改変動物の作製方法
本発明の DNA導入体のうち、 神経細胞伝達機能制御タンパク質の発現制御ュ ニットが導入されている動物 (以下、 これを 「遺伝子改変動物」 と称することが ある) の作製には、 上記 (2 ) で詳述した遺伝子発現制御ユニットのうち、 位置 特異的に導入を行う必要のないものは、 クローユングする際に用いたベクター配 列部分等不必要な領域をなるベく除いた後、 精製して目的の動物の受精卵の前核 に上記 (3 ) に記載した方法により、 具体的にはマイクロインジェクション法に より注入する。注入した受精卵は、擬妊娠動物の卵管に移植することが好ましい。 遺伝子改変動物においては、 移植した受精卵由来の産仔で上記遺伝子発現制 御ユニットの導入が成功しているか否かを判定する。 判定方法としては、 例え ば、 離乳後産仔の尻尾を切断し、 ゲノム DNAを精製し、 適当な制限酵素で断片化 した後、 導入した本発明の発現制御ュニットが有する塩基配列を識別することが 可能なプローブを用いてサザンハイブリダィゼーシヨンを行う方法が挙げられる。 又、 上記導入した本発明の発現制御ュニットが有する塩基配列を P C Rにより増 幅することにより確認することもできる。
このようにして作製した動物の 1例として、 本発明の遺伝子発現制御ュニッ トの各 DNA断片が導入されているマウスを挙げることができる。 具体的には、 テ トラサイクリン発現調節 DNAが神経細胞特異的プロモータに制御されるように導 入されているマウス (以下、 「Tetマウス」 と称することがある)、及び神経細胞伝 達機能制御タンパク質を発現調節可能な状態でコードする DNAが導入されている マウス (以下、 「TransRegマウス」 と称することがある) 等が挙げられる。
又、位置特異的に動物に遺伝子を導入したい場合には、本発明の発現制御ュニッ トの DNA 断片の前後に、 導入する宿主の目的の位置の DNA 配列と相同性を有す る DNA を付加したターゲテイングベクターを用いることにより行うことができ る。 具体的には、 Thomas, K. R. , et al. , (1987) Cell, 51, 503-512 に記載の 方法を用いて、 動物の胚性幹細胞に相同組換えを誘起し、 従来使用されている方 法によりキメラ個体を取得することにより行うことができる。
( 5 ) 遺伝子改変動物個体における遺伝子発現制御ュニットの構築
上記で得られた遺伝子改変動物は、 これを F0 として野生型の同系統の動物と 交配することにより F1を取得することができる。 得られた F1に導入された DNA が伝わっているか否かは、 (4 ) で記載した方法を用いることができる。 以下、 F2、 F3と繁殖継代し、 同様にして得られた産仔のゲノム DNAを解析して導入され た隐' の有無を確認する。 この継代において、 特定の塩基配列を有する DNAを 保持する動物をライン化することができれば、 通常の飼育環境下で繁殖継代して いくことができる。 このようにして取得された本発明の遺伝子発現制御ュニット の各 DNA* 断片が導入されている遺伝子改変動物同士を交配することによれば、 本発明の遺伝子発現制御ュニットを組換え宿主体内で構築することができる。 又、上記でライン化された遺伝子改変動物において、導入された遺伝子が、該個 体中で実際に転写され、 タンパク質に翻訳されているか否か、 又、 その転写、 翻 訳が目的の領域で行われているか否かは、 各組織等から抽出した RNAを用いたノ ザンブロッテイング、 In situ hybridization、 各組織から抽出したタンパク質を 用いたウェスタンブロッテイング、 あるいはィムノケミストリー等の通常用いら れている方法によって解析し、 確認することができる。
( 6 ) DNA導入体における神経細胞伝達機能制御タンパク質の発現制御方法 本発明の DNA 導入体は、 導入されている遺伝子発現制御システムに適した条 件下に該導入体を置くことにより、 導入体内の神経細胞伝達機能制御タンパク質 の発現を可逆的に制御することができる。 ここで、 遺伝子発現制御システムに適 した条件下とは、 例えば用いた遺伝子発現制御システムがテトラサイタリン遺伝 子発現制御システムを用いた場合には、 ドキシサイクリン等のテトラサイクリン 発現調節因子の転写活性能を調節する物質の投与を調節すること等を意味する。 具体的には、宿主が細胞の場合、その培養液への該物質の添加、非添加、あるい は添加濃度等を調節することにより該タンパク質の発現を可逆的に制御すること ができる。 又、 宿主が生物個体である場合には、 DNA 導入体への該物質の投与、 又は非投与という形で該タンパク質の発現を可逆的に調節することができる。 個 体への該物質の投与の方法としては、 餌や水に混入して投与する方法が好ましい
1 消化管内に直接注入したり、 腹腔内注射や脳に直接投与する方法等を用いる こともできる。 又、 上記した DNA導入生物個体に由来する細胞や組織、 スライス で神経細胞伝達機能制御タンパク質の制御を行う場合には、 上記物質の培地にお ける濃度を調節する形で行うことが好ましい。
又、用いた遺伝子発現制御システムが、重金属イオン遺伝子発現制御システムで ある場合は、 Mayo, K. E., et al. , (1982) Cell, 29, 99-108 ; Brinster, R. · し, et al. , (1982) Nature, 296, 39-42 ; Searle, P. F., et al. , (1985) Mol. Cell. Biol. , 5, 1480-1489 等に記載の条件を用いることができ、 熱ショック遺伝子発 現制御システムである場合は、 Nouer, et al. , (1991) Heat Shock Res - ponse, Nouer, L. , Florida, Boca Raton, CRC, 167-220; Halfon, M. S., et al. , (1997) Proc. Natl. Acad. Sci. USA, 94, 6255-6260 ; Halloran, M. C. , et al. , (2000) Development, 127, 1953- 1960 等に記載の条件を用いることができる。 また、 ホ ルモン遺伝子発現制御システムである場合は、 Lee, F. , et al. , (· 1981) Nature, 294, 228—232 ; Hynes, N. E. , et al. , (1981) Proc. Natl. Aca- d. Sci. USA. , 78, 2038-2042; Klock, G. , et al. (1987) Nature, 329, 734-736 ; Israel, D. I. , & Kaufman, R. J. , (1989) Nucleic Acid Res. , 17, 4589- 4604等に記載の条件 により遺伝子発現の可逆的な制御を行うことができる。
( 7 ) 神経細胞伝達機能制御タンパク質の発現制御により DNA 導入体に表れる 表現型の解析方法
神経細胞伝達機能制御タンパク質の可逆的な発現制御により DNA導入体に表 れる表現型の解析は、 該導入体において神経細胞伝達機能制御タンパク質の発現 レベルを上記 (6 ) に記載の方法により調節した時、 調節前後、 又はその野生型 との間で、 細胞、 組織、 生物個体等に表れる生化学的、 生理学的、 形態学的、 又 は行動等の変化の差異を解析することにより行うことができる。 解析対象となる 表現型、 及びその解析方法は、 それぞれ通常用いられる既知の方法を適宜組み合 わせて行うことができる。
本発明で解析すべき表現型としては、 細胞や生物個体に表れる目で観察でき るものと、 物理的、 化学的な解析が必要なもの等、 上記した神経細胞伝達機能制 御タンパク質の発現の有無、 又は程度により差異が生じる表現型全てを含む。 こ れらのうち、 目で観察できる表現型としては形態学的解析により判明する該導入 体の形状、 宿主が動物であればその行動、 運動能力、 学習能力、 習性等が挙げら れる。 又、 物理的、 化学的な解析により判明するものとしては、 細胞内、 外膜の 電位、 膜の容量、 放出された神経伝達物質量、 核酸、 タンパク質、 脂質、 糖等生 体機能分子の化学的変化、 発現量等が挙げられる。
解析の方法として具体的には、 解析するべき表現型が上記した DNA導入体の 形状である場合には、 光学顕微鏡や電子顕微鏡、 あるいは目視による観察等が挙 げられる。 又、 動物の行動を解析する場合には動物の行動の解析手段として通常 用いられる、 迷路やロタロッド、 あるいは条件付け嗜好性テス ト等が挙げられ る。 さらに細胞内や、 外膜の電位、 膜の電気容量等を表現型として観察する場合 には通常用いられる電気生理的解析法が挙げられる。表現型が核酸、タンパク質、 脂質、 糖等の生体機能分子の化学的変化、 あるいは量的変化の場合には、 ノザン ブロッテイング、 RT- PCR、 in situ hybridization, DNAチップ、 ウェスタンブロ ッティング、 2次元電気泳動、 クロマトグラフィー、 ィムノケミストリー、 質量 分析等により解析を行うことができる。
( 8 ) 神経細胞伝達機能制御タンパク質の発現制御ュニットを導入した宿主を 用いた解析方法
本発明の DNA導入体を用いれば、特定の神経細胞の機能を解析できる。例えば、 神経細胞伝達機能制御タンパク質の発現制御により、 特定の神経細胞から信号が 伝達される他の細胞間の情報伝達を可逆的に変化させた時に表れる上記した表現 型を解析すれば、 特定の神経細胞の機能と表現型の因果関係を明らかにすること ができる。
又、本発明の DNA導入体を用いれば、特定の生体機能分子の機能を解析できる。 ここで 「生体機能分子」 とは、 核酸、 蛋白質、 脂質、 糖等、 生体に機能を及ぼす 物質を意味する。 これらの機能解析方法として例えば、 本発明の方法により神経 細胞伝達機能制御タンパク質の発現制御を特定の神経細胞において行い、 該神経 細胞から信号が伝達される他の細胞間の情報伝達を可逆的に変化させた時に、 該 神経細胞、 及び上記した他の細胞中での生体機能分子の量的変化、 立体構造の変 化、 あるいは細胞内の局在の変化等の物理的変化や、 リン酸化等の化学修飾の程 度、 あるいは場所の変化等の化学的変化が生じるかどうかを解析する方法が挙げ られる。 このような解析方法を行うことにより、 生体に表れる表現型と生体機能 分子の機能の因果関係を明らかにすることができる。
さらには、本発明の DNA導入体に、外部から別の特定の遺伝子、特定の遺伝子の アンチセンスポリヌクレオチド、抗体、薬剤等を導入したり、投与したりした時、 該導入体の表現型にどのような影響を及ぼすかを解析することにより、 特定の生 理活性を有する物質をスクリーユングすることができる。 又、本発明の DNA導入体は、その表現型や有している遺伝子から様々な病態モデ ル細胞、 あるいは病態モデル動物となり得る。 これらのモデルが有する病態を示 す具体的な疾患としては、 例えば精神分裂病、 うつ病等の精神疾患、 パーキンソ ン病ゃアルツハイマー病等の神経変成疾患等が挙げられる。 この病態モデルにつ いて上記した表現型解析、 核酸やその他の生体機能分子の機能解析、 生理活性を 有する物質のスクリーニングを行えば、 該病態モデルの有する病態を示す疾患の 予防、 又は治療薬のスクリーニングを行うことができる。
又、 本発明の神経細胞伝達機能制御タンパク質の発現制御ュニットを保有す る遺伝子改変動物は、 これをその他の遺伝子改変動物や、 特徴ある表現型を示す 宿主と交配することができる。 この交配した子孫の表現型、 あるいは核酸等生体 機能分子の質的、 量的変化を解析することにより、 複数の遺伝子が関与する疾患 の病態モデルを作製することができ、 該モデルを用いて特定の生理活性を有する 物質のスクリ一二ングを行うことができる。 実施例
以下に実施例を挙げて、本発明をさらに具体的に説明する。但し、これらの実施 例は、 本発明の具体的説明を目的とするものであり、 本発明の技術的範囲を限定 するものではない。 又、 本実施例で用いた遺伝子工学的技術は、 特にことわりの レヽ限り Molecular Cloning Labolatory manual 2nd edition Cold Spring Ha* rbor Laboratory Press, Sambrook, J., Fritsch, E. F. , Maniatis, T.に 載の方 法を用いた。
例 1 テトラサイクリン依存転写調節因子をコードする DNAの構築
( 1 ) マウス GABAA ct 6遺伝子発現調節領域のクローユング
( 1 - 1 ) Exonlプローブの作製
マウス GABAA a 6 遺伝子の発現調節領域をクローユングする為に、 Gen Bank Acc . ession番号: AJ222970に登録されている同遺伝子 Exonlの 1240番目 「g」 から 126· 0番目の 「A」 までの配列に対するフォアワードプライマー (MYK141 : 配列番号 1 · 、Hokkaido System Science社に依頼して作製)、及び 1628番目の「 C」 から 164· 8番目の 「g」 までの配列に対するリバースプライマー (MYK142 :配列 番号 2、 Ho- kkaido System Science社に依頼して作製) を作製し、 C57BL/6マウ スのゲノムを铸型とした PCRを行った。 PCR反応液は、 LA PCR Kit Ver. 2. 1 (TAKARA 社製) に添付のものを用い、添付のマニュアルに沿った方法で行った。 ゲノム DNA は、 野生型の C57BL/6マウスの尻尾より、 以下に記述する例 3 ( 3 ) ( 3— 1 ) の 方法に従い調製した。
この PCRにより約 400bpの特異的増幅バンドが得られた。 このバンドを切り出 し、 精製した後、 pCR2. 1ベクター (Invitrogen社製) にサブクローユングした。 このプラスミ ドを pCRExonlベクターとした。
続いて、 pCRExonl のィンサート部分の配列解析を蛍光マルチキヤビラリーシ 一タエンサ一: CEQ2000 (Beckman Instruments社製) を用いて行ったところ、 こ のィンサートは、 GenBank Accession番号: AJ222970遺伝子の 1590番目の 「 C J が欠損している以外は、 AJ222970遺伝子の 1240番目から 1648番目の塩基配列を 含むことを確認した。
( 1— 2 ) Exonlプローブによるスクリーニング
上記( 1一 1 )で作製した pCRExonlを制限酵素 EcoRI (T0Y0B0社製)で切断し、 インサートを含む DNA断片を精製した。精製した約 400bpの DNA断片を铸型とし、 BcaBEST Labeling Kit (TAKARA 社製) を使ったマルチプライム法により、 α Ρ3 · 2-dCTP (Amersham Pharmacia Biotech社製) でラベルされたハイブリダィ ゼーシヨンプローブ (Exonlプローブ) を作製した。
この Exonlプローブを使って、 129SVJマウス ES細胞由来のゲノム BACライブ ラリー: Mouse BAC filter Release II (Genome Systems社製) に含まれる 92160 クローンについてハイブリダィゼーシヨンによるスクリーユングを行ったところ、 9個の陽性クローン (Grid7, field2, 21- f, 308; Grid7, field3, 6 - j, 333 ; G- rid7, field3, 16-1, 315 ; Grid7, field5, 1一 g, 329 ; Grid8, fieldl, 15-0,· 337; Grid9, field4, 23— f, 400; Grid9, field4, 24-b, 388; Grid9, field. 5, 9- b, 425; GridlO, fieldl, 6- h, 451) が取得された。
( 1 - 3 ) GABAA α 6発現調節領域の取得
上記 9個の陽性クローンから、 Grid7, field5, 1- g, 329を選び、 GABAA a 6遺伝 子の発現調節領域を含む、 5 ' 側 Sphl 制限酵素部位から、 3, 側 Exon8 内の Eco- RIまで (図 1②; GenBank Accession番号: AJ222970遺伝子の塩基番号 1 番から 73· 05番までに相当) の約 7. 3kbの DNA断片を pUC18 (T0Y0B0社製) にサ ブクローニングし、 このプラスミ ドを pGABAPrベクターとした。
サブクローンした領域の全塩基配列を蛍光マルチキヤビラリ一シークェンサ 一: CEQ2000 (Beckman Instruments社製) を用いて解析した結果、 目的の DNAが 取得できたことが確認された。この解析において AJ222970遺伝子の塩基配列と異 なる配列箇所が存在したが、 この相違は、 AJ222970の塩基配列を解析した時に使 用されたマウスと本実験で使用したゲノム BACライブラリーのマウスとの間の種 差あるいは、 他の要因に由来すると考えられる。
( 2 ) IRES (Internal Ribosome Entry Site)配列を 5 ' 側に付加した rtTA遺伝子の 取得
Encephalomyocarditis virus に由来する IRES ( Internal Ribosome Entry Site: GenBank Accession番号: X74312の 277〜874)配列が 5 ' 側に付加した rtTA 遺伝子は、 rtTA遺伝子の ATg翻訳開始配列の 5, 上流域に IRES配列の部分領域 をフォアヮードプライマ一配列として順に付加していく PCRを繰り返すことで取 得した。 用いたプライマーは全て Hokkaido System Science社に依頼して作製し たものである。
用いた PCRプライマーは、 GenBank Accession番号: X74312の 277番 「C」 か ら 874番 「g」 までの IRES配列を対応するフォアワードプライマー (MYK151a〜 1511 · :配列番号 3〜11、 Hokkaido System Science社に依頼して作製) 及び rtTA 遺伝子内の Sacl領域付近に対するリバースプライマー (MYK152:配列番号 12、 Hokkaido- System Science社に依頼して作製) を用いた。 铸型は、 MYK151a (配 列番号 3)と MYK152を用いた PCRでは pTet- Onベクター(Clontech社製)を用い、 MYK151b/MY- K152を用いた 2回目からの PCRはその 1回前の PCRで増幅された DNA 断片をサブクローユングしたプラスミ ドを精製して铸型とした。 フォアワードプ ライマー (ΜΥΚ1 · 51a) は、 GenBank Accession番号: X74312 に登録されている IRES塩基配列の 872-874の ATg配列 (IRES領域中の 12番目の ATg) と rtTA遺伝 子の ATg翻訳開始配列が一致するような塩基配列となるように、 又、 この ATg翻 訳開始配列の直下に ggCという塩基の配列が挿入され、 rtTA遺伝子の読み枠をず らさずに (アミノ酸配列としては、 グリシンが挿入される)、 Ncol (CCATgg) 制限 酵素部位が導入されるように設計した。
ΜΥΚ151Ϊ (配列番号 l l、Hokkaido System Science社に依頼して作製)は、上記 IRES 配列の 5 ' 側上流に リ ンカ一配列を付加 した塩基配列を有する。 MYK151i/MY- K152をプライマ一とした PCRにより約 1470bpの DNA断片が増幅さ れた。 該 DNA断片を pCR2. 1ベクター (Invitrogen社製) にサブクローニングし て pSEQ2iベクタ一とした。
次に該 IRES配列の 5, 側上流に 5 ' 側から、 Sphl、 EcoRI、 Aflll (Bst98I)の 3 種の制限酵素部位と 3つの翻訳読み枠に対しての Stop コドン配列を導入する ためのフォアワードプライマーである MYK151 (配列番号 13、 Hokkaido System Scie - nce社に依頼して作製) と MYK152をプライマーとして用レ、、 上記で得られ た pSEQ2, iベクターを铸型とした PCRを行った。 この PCRにより、 約 1470bpの DNA断片が増幅された。 この断片を pCR2. 1ベクター (Invitorogen社製) にサブ クローユングして PSEQ2ベクタ一とした。
( 3 ) GABAA a 6 プロモータにより制御されるテトラサイクリン依存転写誘導因 子を発現させるための DNAの構築
pTet- Onベクター (Clontech社製) にコードされている rtTA遺伝子には、 S Sph- I制限酵素部位 (gCATg/C) が存在する (pTet- Onベクター中の 1615番目の 塩基部位)。 この Sphl制限酵素部位の中の "T" を "C" に塩基置換すると、 コー ドするアミノ酸配列を保存したまま、 Sphl制限酵素部位を消滅'させることができ る。 MY- K149 (配列番号 14、 Hokkaido System Science社に依頼して作製) は、 この塩基置換を行うためのフォアヮードプライマ一である。
又、 MYK150 (配列番号 15、 Hokkaido System Science社に依頼して作製) は、 SV40 polyA signal 配列の 3 ' 側下流領域に 5 ' 側から、 NotI、 Bgl II、 EcoRI の順番に制限酵素部位を導入するためのリバースプライマーである。
pTet- Onベクター (Clontech社製) を铸型として、 上記 MYK149 (配列番号 14; Hokkaido System Science社に依頼して作製) 及ぴ MYK150 (配列番号 15) をプラ イマ一にして PCRを行うと、 rtTAの 3, 側部分と SV40 polyA signal配列を含む 約 700bpの DNA断片が増幅された。この DNA断片を pCR2. 1ベクター(Invitorogen 社製) にサブクローニングして pSEQlベクターとした。
取得した pSEQlベクターを Saclと EciRIで切断し、約 700bpの断片を、精製し た後、 pUC18ベクター (T0Y0B0社製) の SacI/EcoRI領域にサブクローニングして pVE- C1ベクターとした。
取得した PSEQ2ベクターを Sphlと Saclで切断し、約 1460bpの断片を、精製し た後、 pVEClベクターの Sphl/Sacl領域にサブクローニングして、 pVEC2ベクタ一 とした。 PVEC2 ベクターは、 pUC18 のクローニングサイ ト中に 5 ' 側から順番に IRES, rtTA, SV40 late polyA signal配列が機能的に連なる配列を含んでいるべ クタ一である。
引き続いて、 取得した PVEC2を铸型として、 IRES領域中の PmaCI制限酵素部位 付近に対するフォアワードプライマー: MYK154 (配列番号 16、 Hokkaido System Science社に依頼して作製) と、 IRES領域中の 11番目の ATg配列を rtTAの Atg 翻訳開始配列と一致させるためのリバースプライマー: MYK155 (配列番号 17、 Hokkaido System Science社に依頼して作製) を用いた PCRを行い、 IRES領域の PmaCI制限酵素部位付近から、 IRES領域中の 11番目の ATg配列 (ATg翻訳開始配 列) を含む約 300bpの DNA断片を増幅により得た。 この DNA断片を、 断片 Aとし た。
又、 IRES領域中の 11番目の ATg配列を rtTAの ATg翻訳開始配列と一致させる ためのフォアワードプライマー: MYK156 (配列番号 18、 Hokkaido System Science 社に依頼して作製) と、 rtTA遺伝子中の BsiWI (Spll) 制限酵素部位付近に対す る.リバースプライマー: YK158 (配列番号 19、 Hokkaido System Science社に依 頼して作製) を用い、 PVEC2を铸型とした PCRを行うと、 IRES領域中の 11番目の ATg- 配列 (ATg翻訳開始配列) を含む付近から、 rtTA遺伝子中の BsiWI (Spll) 制限酵素部位を含む配列付近までの約 700bpの断片が増幅された。 この DNA断片 を断片 Bとした。
上記断片 Aと断片 Bには、 IRES領域中の 11番目の ATg配列 (ATg翻訳開始配列) 付近で重なる配列が含まれている。 この重なる配列を利用して断片 Aと断片 Bの 連結 (PCR Ligation) を行った。
断片 Aと断片 Bの混合液を铸型とし、 MYK154 (配列番号 16、 Hokkaido System Sc. ience社に依頼して作製) と皿 158 (配列番号 19、 Hokkaido System Science 社に依頼して作製) をプライマーとして PCRを行うと、 約 900bpの断片が増幅さ れた。 この断片を、 精製した後、 pCR2. 1ベクター (Invitorogen社製) にサブク ローニングし、 pAB ベクターとし、 蛍光マルチキヤビラリ一シークェンサ一: CEQ2000 (Beckman Instruments社製) を用いて DNAシーケンスを行うことで、 断 片 Aと断片 Β· が正しく連結されていることを確認した。
作製した pABベクターを PmaCIと BsiWI (Sph I) で切断し、 約 900bpの断片を 精製し、 PmaCI/BaiWI (Sph I) で切り出した pVEC2ベクター中にライゲーシヨン を行った。 作製したベクターを pVEC2 (11) ベクターとした。
上記 (1 - 3 ) で取得した pGABAPrベクターを Sph Iと Bst98 I (Afl II) で切 断し、 約 7. 2Kbpの断片を得、 これを精製した後、 上記 pVEC2 (11) の Sphl/Af 1 II (Bst98 I)領域にライゲーシヨンして、 pVEC6 (ll)とした。 PVEC6 (11)は、 PUO 18 のクローニングサイ ト中に 5 ' 側から順番に GABAA a 6発現調節領域、 IRES、: rtTA、 SV40 polyA signal 配列が機能的に連なる配列を含んでいるベクターである。 こ の構造を図 1①に示した。 例 2 神経細胞伝達機能制御タンパク質をコードする導入遺伝子の構築
( 1 ) 神経毒素遺伝子の取得
( 1 - a ) ボツリヌス菌 (Clostridium botulinum) 由来の神経毒素 (BoNT) 遣伝 子の取得 ボツリヌス菌の神経毒素 (BoNT) 遺伝子は、 以下に示すプラスミ ドの 形で大阪府立大学の小崎俊司教授より譲渡していただいた。
pBN3 BoNT. A
pBN13 BoNT. B
PBN27 BoNT. CI
pBN17 BoNT. E
( 1一 b ) 破傷風菌 (Clostridium tetani) 由来の神経毒素 (TeNT) 遺伝子のク ローニング
破傷風菌由来の神経毒素 (TeNT) 遺伝子は、 Clostridium tetani KZ1174株 (金 沢大学医学部微生物学教室の中村信一教授から譲渡していただいた)を培養し (京 都大学東南アジア研究センター西渕光昭教授にご協力いただいた)、菌を培養液中 で 15分間煮沸後、この煮沸液から MYK121 (配列番号 20、 Hokkaido System Science 社に依頼して作製) と MYK126 (配列番号 21、 Hokkaido System Science社に依頼 して作製) プライマーを使って PCR法で取得した。 この PCRにより、 約 1. 4k. bp の DNA断片が増幅され、 精製した後、 pCR2. 1ベクター (Invitrogen社製) 中にサ ブクロ一ユングして、 pCRTeNTベクターとした。
なお、 MYK121 (配列番号 20)は、 TeNT軽鎖遺伝子の ATg翻訳開始コドンの 5, · 上流域に Mlu I制限酵素部位を付加させるためのフォアワードプライマーである。 MYK126 (配列番号 21) は、 TeNT軽鎖遺伝子の 3, 下流域に Not I制限酵素部位を 付加させるためのリバースプライマーである。 MYK121、 MYK126のプライマー配 列の設計に際し、 GenBankAccession番号: Χ044· 36の登録配列を参考にした。
( 2 ) テトラサイクリン依存的に神経細胞伝達機能制御タンパク質を発現させ るための DNAの構築
MYK098 (配列番号 22) は、 EGFP遺伝子の ATg翻訳開始コドンの 5 ' 上流域に、 S- acll制限酵素部位と Kozak配列 (Kozak, . , (1986) Cell, 44, 283-292) を 付加するためのフォアワードプライマーである。 MYK099 (配列番号 23) は、 pdlEGF- P-N1ベクター (Clontech社製) 内にある dlEGFP遺伝子のアミノ酸番号 239番リジンをコードする AAg配列の 3 ' 下流域に Mlul制限酵素部位を付加する ためのリバースプライマーである。
pdl EGFP-N 1ベクターを铸型、 MYK098、 MYK099をプライマーにして PCRを行うと、 約 750bpの DNA断片が増幅された。この断片を SacIIと Mlulで切断し、精製した約 740bpの断片を、 pTRE2ベクターの Sac I I/Mlul制限酵素部位にライゲーシヨンした。 作製されたベクターを pTREEGFPベクターとした。
YK119 (配列番号 24、 Hokkaido System Science社に依頼して作製)は、 dlEGF. P 遺伝子のァミノ酸番号 242番セリンをコードする AgC配列の 5, 上流領域に、 5, 側から順番に Notl制限酵素部位と "T" の 1塩基を付加する(タンパク質への読み 枠を調節する) 為のフォアワードプライマ一である。 MYK101 (配列番号 25、 Ho- kkaido System Science社に依頼して作製) は、 dlEGFP遺伝子の TAg翻訳終 止コドンの 3, 下流領域に Xbal 制限酵素部位を付加するためのリバースプライ マーである。 pdlEGFP- N1 ベクターを铸型、 MYK119、 MYK101 をプライマーにして PCRを行うと、 約 150bpの DNA断片が増幅された。 この断片を Notlと Xbalで切 断し、 精製した約 140bpの断片を、 pTREEGFPの Notl/Xbal制限酵素部位にライゲ ーションした。 作製されたベクターを pTREEGFPdlベクターとした。
上記 (1一 a ) で取得した各 BoNT遺伝子の 5, 末端にクローニング用に Mlul を、 3, 末端には Notlを付加するために以下の PCRを行った。 フォアワードプラ イマ一としては、 各 BoNT軽鎖遺伝子の ATg翻訳コドンの 5 ' 上流域に Mlul制限 酵素部位を付加したもので、 BoNT. Aについては、 MYK102 (配列番号 26)、 BoNT. B については、 YK105 (配列番号 27)、 BoNT. C1については、 MYK103 (配列番号 28)、 Β· oNT. Eについては、 腿 091 (配列番号 29) を、 Hokkaido System Science社に 依頼して作製した。又、 リバースプライマーとしては各 BoNT軽鎖遺伝子の 3 ' 下 流域に Notl制限酵素部位を付加したもので、 BoNT. Aについては、 MYK107 (配列 番号 30)、 BoNT. Bについては、 MYK110 (配列番号 31)、 BoNT. C1については、 MYK108 (配列番号 32)、 BoNT. Eについては、 YK096 (配列番号 33) を、 Hokkaido System Science社に依頼して作製した。 铸型 DNAは上記 (l _ a ) で得たプラスミ ドを 用い、 上記の各 BoNTに対するプライマーの組み合わせで PCRを行った。
この PCR により、 次の各 BoNT 遺伝子が増幅された。 BoNT. A については約 1. 4kbp- の DNA断片、 BoNT. Bについては約 1. 3kbpの DNA断片、 BoNT. C1について は約 1. 4kbp- の DNA断片、及び BoNT. Eについては約 1. 3kbpの DNA断片が増幅さ れ、 これらは精製した後、 pCR2. 1ベクター (Invitorogen社製) 中にサブクロー ユングした。
上記で取得された、 各 BoNT 遺伝子がサブクローニングされたプラスミ ドを、 それぞれ、 Mlul、 及び Notlで切断し、 約 1. 3〜1. 4Kbpの DNA断片を得た。 これを 精製した後、上記で取得した pTREEGFPdlベクターの Mlul/Notl制限酵素部位ヘラ ィゲーシヨンを行った。ここで、作製されたベクターをそれぞれ、 pTREBoNT. Adl、 ρΤ· REBoNT. Bdl、 pTREBoNT. Cldl、 pTREBoNT. Edl、 pTRETeNTdl ベクターとした。 これらのベクターは、 テトラサイクリン応答配列を含む PhCMVプロモータ、 N末 端側に EGFP、 C末端側に Mouse Ornithine Decarboxylaseの PEST配列が融合した 神経毒素タンパク質をコードする遺伝子、 Rabbit )3 - globin polyA signal 配列 が機能的に配列された領域を含むベクターである。 この構造を図 2に示した。 な お、 Rabbit ]3 - globin polyA signal配列の近傍にイントロンが含まれる。 例 3 遺伝子改変マウスの作製
( 1 ) マウス受精卵の前核に注入するための DNAサンプル調製 上記例 1 ( 3 ) で作製した pVEC6 (11) を Sphl と Notlで切断し、 切断反応液 を 1 %低融点ァガロース (Life Technologies 社製 : (Catalog 15517-014) /0. 5 X TBE (0. 045M Tris- borate、0. 001M EDTA)ゲルで電気泳動した。 約 9. 3kbp付 近のァガロースゲルを切り出し、 70ででァガロースを融解させた後、 GELase (EPICENTR- E TECHNOLOGIES社製) で Αδ^ ^Ο分間処理し、 フエノールク口口 ホルム処理、 エタノール沈殿で、約 9. 3kbpの DNA断片を精製した。 エタノール沈 殿後の DNAは、 一且 TE (lOmM Tris (pH8. 0) , IraM EDTA) に溶かした後、 260 n mの 吸光度を測定して濃度を見積もり、 カルシウム、 マグネシウム不含 Dulbecco' s PBS (Phosphate Β· uffered Saline : Life Technologies社製) で、 lOng/ μ Ιに 調節した。 このサンプルをマウス受精卵への遺伝子導入に用いた。
又、 上記例 2 ( 2 ) で取得 し た pTREBoNT. Adl、 pTREBoNT. Bdl、 pTREBoNT. Edl, pTRETeNTdlを Xhol と Saplで切断し、 得られる約 4kbpの DNA断 片を上記と同様にして調製した。 このサンプルをマウス受精卵への遺伝子導入に 用いた。
さらに、 上記例 2 ( 2 ) で取得した pTREBoNT. Cldlを Aatll と Saplで切断し (Βο· NT. CI遺伝子の中に Xhol制限酵素部位があるので、 Xholの変わりに Aatll 制限酵素部位を利用した)、得られる約 4kbpの DNA断片を上記と同様に調製した。 これらのサンプルを、 それぞれマウス受精卵への遺伝子導入に用いた。
( 2 ) マウス受精卵前核への遺伝子注入
C57BL/6 マウス同士を交配し得られた前核期受精卵を卵管灌流により採取 し、 インジェクション操作に用いる供試卵とした。 上記例 3 ( 1 ) で、 10ng/ /i l に調整した各 DNA溶液をマイクロインジェクション用キヤビラリ一に充填し前核 期受精卵の前核に注入した。 注入後生存した卵は、 新鮮な培養液に移し、 洗浄後 2細胞期胚になるまで炭酸ガスィンキュベータ一内で培養した。 発生した 2細胞 期胚は、 偽妊娠を誘起した仮親雌マウスの卵管内に移植し、 産仔を獲得した。 得 られた産仔は分娩後 3週間で雌雄を確認及び離乳を行った。 得られた遺伝子改変 マウスについて、 分娩後約 4週間で個体識別を行い、 遺伝子導入の成否をサザン ハイブリダイゼーションで解析した。
( 3 ) 遺伝子導入成否の検定:ゲノムサザンブロット解析
( 3 - 1 ) GABAA α 6- rtTA遺伝子改変マゥス
例 3の ( 2 )で得られた GABAA a 6-rtTAが導入された遺伝子改変マゥスの尻尾先 端部約 1cmを切断し、溶解緩衝液(KURAB0社製) 中で、 55°C、 6〜16時間インキュ ペートし、 尻尾の大部分の領域を溶解させた。 溶解液から残存物を遠心分離で除 去し、 フヱノール /クロ口ホルム処理、 エタノール沈殿を経てゲノム DNAを精製 した。 混入している RNA を分解するため、 ゲノム DNA は、 lOOngZml RNaseA (Na- kalai tesque社製) を含む TEに溶解した。
上記で尻尾から精製したゲノム DNA は、 制限酵素、 BamHI、 及び Sphl で切断 し、 0. 9%ァガロースゲル Z1 X TAE (0. 04M Tris-acetate, 0. 001M EDTA) で電気泳 動後、 0. 4N NaOH, 0. 6M NaCl をブロッテイング溶液としたキヤビラリ一法によ り、 ナイ口ン膜 (GeneScreen Plus: NEN Lifescience社製) へブロッティングし た。
ブロッテイングした膜は、 乾燥後、 ハイブリダィゼーシヨン緩衝液 (1M NaCl 50mM Tris (pH7. 5) 10% Dextran Sulfate^ 200ug/ml Sonicated Salmon Sperm DNA- (STRATAGENE社製: Catalog #201190- 81)、 1% SDS) 中、 60°Cでプレハイブリ ダイゼーションを行レ、、 で作製した o; P32- dCTPでラベルされた GABAA a 6 の Εχ· onlプローブを添加して、 60で、 ー晚ハイブリダィゼーシヨン反応を行つ た。 ハイブリダィゼーシヨン後、 膜は、 60°Cの 2 X SSC中、 60°Cの 0. 2 X SSC、0. 1% SDS中で振盪させながらそれぞれ 2回ずつ洗浄し、 BAS2000、又は、 BAS5000 (Fuji Pho- to Film社製) でオートラジオグラフィーを行った。 代表的な結果を図 3① に示した。
野生型のマウスでは、約 14kbp (図 3①の矢印)の内在性の GABAA a 6遺伝子のシ グナルのみが検出されるが、 これに加えて、 約 8. lkbp (図 3①の矢頭) のシグナ ルが検出されるラインが導入遺伝子陽性のマウスである。 この GABAA ct 6- rtTA. が導入されたマウスは、 合計で 10 ライン取得できた。 これらのマウスを GABAA a 6 - - rtTAマウスとした。
( 3 - 2 ) treBoNT. Adl, treBoNT. Bdl , treBoNT. Cldl、 treBoNT. Edl、 treTeNT- dl 遺伝子改変マウス
例 3 の ( 2 ) で得られた treBoNT. Adl、 treBoNT. Bdl、 treBoNT. Cldl、 treBoNT. - Edl、 又は treTeNTdl が導入された遺伝子改変マウスの尻尾先端部約 lcmを切断し、 上記 (3— 1 ) と同様にしてゲノムを調製し、 treBoNT. Edlが導入 された遺伝子改変マゥスから調製したゲノム DNAは Kpnlと Xbalで、 treBoNT. Adl、 treBoNT. Bd- 1、 treBoNT. Cldl ,又は treTeNTdlが導入された遺伝子改変マウスか ら調製したゲノム DNAは Kpnlと EcoRIで切断しブロッティングを行った。
上記サザンブロッテイングに用いるプローブとして、 下記の PCR により EGFR 遺伝子 DNA断片を取得した。 フォワードプライマー: MYK189 (配列番号 34) とし ては、 EGFP遺伝子の ATg翻訳開始配列の 5 ' 上流に、 5 ' 側から EcoRI制限酵素 部位、 及ぴ Kozak配列を付加した配列を有し、 リバースプライマー: MYK220 (配 列番号 35)は、 EGFP遺伝子の 3 ' 下流域に Hindlll制限酵素部位を付加した配列 を有するオリゴ DNAを Hokkaido System Science社に依頼して作製したものを用 いた。铸型 DNAは pdlEGFP - N1ベクターとして PCRを行うと、約 750bpの DNA断片 が増幅され、 これを精製し、 pCR2. 1ベクター (Invitorogen社製) にサブクロー ニングし、 pCREGFPベクターを作製した。
この pCREGFPベクターを EcoRIと Hindlllで切断し、 約 720bpの DNA断片を精 製した後、 pGEM-4Z (Promega社製) ベクターの EcoRIと Hindlll制限酵素部位に サブクローニングし、 pGEMEGFPを作製した。 この pCREGFPを EcoRIと Hindlllで 切断した時にできる約 720bpの断片を铸型として、 BcaBEST LabelingKit (TAKARA 社製)を使ったマルチプライム法により、 a P32-dCTP (Araersham Pharmacia Biotech 社製) でラベルされたハイブリダィゼーシヨンプローブ (EGFPプローブ) を作製 した。
この EGFPプローブを用レ、、上記例 3 ( 3— 1 )と同様にハイブリダィゼーシヨン を行った結果のうち、 treTeNTdl 遺伝子改変スマウスの代表的なものを図 3②に 示した。 野生型のマウスではシグナルは検出されないが、 約 2. 3kbp
(treBoNT. · Edl マウスの検定)、 又は、 約 3kbp (treBoNT. Adl, treBoNT. Bdl, treBoNT. Cldl, treTeNTdl マウスの検定) のシグナルが検出されるラインが導入 遺伝子陽性のマウスである。
pTREBoNT. Adl、 pTREBoNT. Bdl、 pTREBoNT. Edl、 又は pTRETeNTdl の約 4Kbp Xhol/Sapl 断片が導入されたマウスをそれぞれ treBoNT. Adl、 treBoNT. Bdl、 treBoNT. Edl、 treTeNTdlマウスとした。 又、 pTREBoNT. Cldlの約 4Kbp Aatll/Sapl 断片が導入されたマウスを treBoNT. Cldlマウスとした。
これらの結果、合計で treBoNT. Adlマウスを 5ライン、 treBoNT. Bdlマウスを 8 ライン、 treBoNT. Cldl マウスを 6 ライン、 treBoNT. Edl マウスを 1 ライン、 treTeNTdlマウスを 3ライン取得できた。 例 4 神経細胞伝達機能制御タンパク質の培養細胞系での評価
( 1 ) 神経毒素プロテアーゼの作用標的
上記例 2 ( 2 ) で作製した、 pTREBoNT. Adl、 pTREBoNT. Bd pTREBoNT. Cldl、 pTREBoNT. Edl, 又は pTRETeNTdlベクターに含まれる EGFP遺伝子 DNA、 神経毒素 遺伝子 DNA、及び PEST配列遺伝子 DNAがコードする融合タンパク質においても神 経細胞伝達機能を可能にする神経毒素のプロテアーゼ活性が保持されていること を確認するために、 上記ベクターに含まれる神経毒素タンパク質を恒常的に発現 させるベクターと、 該ベクターに含まれる神経毒素の基質となるタンパク質をコ 一ドする DNAを培養細胞中に共発現させ、 その結果生じる基質タンパク質の切断 を角?析した。
ボッリヌス菌毒素、破傷風毒素の基質タンパク質としては、 Syntaxin 1A (288· アミノ酸残基、 分子量の計算値 33. lkD)、 SNAP25A: Synaptosomal Associated Ρ· rotein of 25KD (206アミノ酸残基、 分子量の計算値 23. 3kD) VAMP2 Vesicle Associated Membrane Protein (116ァミノ酸残基、分子量の計算 ί直 12. 7kD)を用い こ。 しらは SNARE soluble N-ethylmaleimide - sensitive factor attachraen* t protein receptors) タンパク質と呼ばれ、 神経伝達物質を含むシナプス小胞がシ ナプス前膜に融合する過程において重要な働きをしていることが知られている (S&uuml ; dhof, T. C. , (1995) Nature, 375, 645-653)。
毒素プロテアーゼとその作用標的タンパク質との対応は下記表 1、 及び図 4 のとおりである。
Figure imgf000040_0001
但し、 BoNT. C1の SNAP25A切断活性は、 BoNT. A BoNT. Eよりも約 1000倍以上の タンパク質量を必要とし、 主要な毒性活性は、 Syntaxin 1A を基質とすることに あると考えられている。
( 2 ) 融合タンパク質発現ベクターの作製
上記例 2 ( 2 ) で作製した pTREBoNT. Adlベクターを SacIIで切断し、 生じた Sac II切断末端を K0D DM Polymerase (T0Y0B0社製) で平滑化させた。 次に Mlul で切断し、約 730bpの断片を精製した。 この断片は EGFP遺伝子 DNAである。 この 断片を Xholで切断後、 上記と同様に平滑化した後、 さらに Mlulで切断した pCI ベクター (Promega社製) に挿入した。
EGFPが挿入された上記プラスミ ドを Mlul/Xbalで切断し、これに、 pCIBoNT. Adl pCIBoNT. Bdl、 pCIBoNT. Edlを各々 Mlul/Xbalで切断した神経毒素遺伝子 DNA断片を 揷入した。
ここで、 BoNT. Cl、及び TeNTについては遺伝子 DNA中に 2力所 Xbalサイトがぁ るため、 2 回に分けてベクターへの挿入を行った。 pTREBoNT. Cldl、 pTRETeNTdl ベクターを Mlul/Xbalで切断し、 それぞれ約 300bpと約 90bpの断片を精製した。 この断片を上記した EGFPが挿入されている発現ベクターの Mlul/Xbal制限酵素部 位に挿入した。得られたプラスミドをさらに Xbalで切断し、約 1200pの断片を精 製した。 この断片をそれぞれ上記で作製した毒素遺伝子の一部が挿入されている 発現ベクターの Xbal制限酵素部位に挿入した。 このライゲーシヨンにおいて、約 1200bp- の Xbal断片がライゲーションされうる向きはそれぞれ 2通り考えられる が、 正しい方向のクローンを、 塩基配列の解析を行うことにより選抜した。
( 3 ) 毒素の基質タンパク質をコードする DNAの取得及ぴ発現ベクターの作製 ( 3 - 1 ) Syntaxin 1A遺伝子 DNA
Syntaxin 1A遺伝子 DNAは、 マウス脳 RNAから RT- PCRにより取得した。 C57BL6 マウスの脳組織から、 AGPC (Acid Guanidinium-Phenol- Chloroform) 法の原理に 基づき ( Chomczynski, P. , and Sacchi, N. , (1987) Anal. Biochem. , 162, 156-1 · 59)、 RNAzol B (TEL-TEST社製) を使用して total RNAを精製した。
精製したマウス脳 total RNA力 ら、 RNA LA PCR Kit (AMV) Ver. 1. 1 (TAKARA社製) に添付された Oligo dT— Adaptor Primerと AMV reverse transcriptase XL ¾ "使つ て cDNAを合成した (逆転写反応)。
Syntaxin 1A遺伝子の ATg翻訳開始配列の 5 ' 上流域に、 5 ' 側から、 Mlul制 限酵素部位、 Kozak配列を付加するためのフォアヮードプライマ一として、 MYK201
(配列番号 36) を、 又、 Syntaxin 1A遺伝子の TAg翻訳終止配列の 3 ' 下流域 に、 Sail制限酵素部位を付加するためのリバースプライマーとして MYK202 (配列 番号 37) を Hokkaido system Science社に依頼して作製した。 プライマー配列の 設計に際し、 GenBank Accession番号: D45208の登録配列を参考にした。
上記で作製した cDNAを铸型とし、 MYK201 と MYK202をプライマーとして、 PCR を行い、増幅された約 900bpの断片を精製し、 pCR2. 1ベクター(Invitrogen社製)中 にサブクローニングして、 pCRSYNベクターとした。
上記 pCRSYNベクターを Mlul/Sallで切断し、 約 890bpの断片を精製した後、 pCI - ベクター (Promega社製) の Mlul/Sall制限酵素部位にライゲ一シヨンし、
Syntaxin 1A遺伝子 DNAを挿入した発現ベクター: pCISYNを作製した。
( 3 - 2 ) SNAP25A遺伝子 DM
SNAP25A遺伝子 DNAは、 上記 ( 3— 1 ) と同様にマウス脳 RNAから RT- PCRによ り取得した。 PCRのプライマ一は、 SNAP25A遺伝子の ATg翻訳開始配列の 5 ' 上流 域に、 5 ' 側から、 Mlul制限酵素部位、 Kozak配列を付加するためのフォアヮー ドプライマ一: MYK205 (配列番号 38) と、 SNAP25A遺伝子の TAA翻訳終止配列の 3 ' 下流域に、 Sail制限酵素部位を付加するためのリバ一スプライマ一: MYK208 (配列番号 39) を、 Hokkaido system Science社に依頼して作製した。 プライマ 一配列の設計に際し、 GenBank Accession番号: M22012の登録配列を参考にした。 上記 ( 3— 1 ) で作製した cDNAを铸型とし、 MYK205と MYK208をプライマーと して、 PCR を行い、 増幅された約 640bp の断片を精製し、 pCR2. 1 ベクター (Invitrogen社製) 中にサブクローユングして、 pCRSNAP25Aベクターとした。 上記 pCRSNAP25Aベタターを Mlul/Sallで切断し、約 640bpの DNA断片を精製し た後、 pCIベクター (Promega社製) の Mlul/Sall制限酵素部位にライゲーシヨン し、 SNAP25A遺伝子 DNAを挿入した発現べクタ一: pCISNAP25Aを作製した。
( 3 - 3 ) VAMP2遺伝子 DNA
VAMP2遺伝子 DNAは、 上記 ( 3— 1 ) と同様にマゥス脳 RNAから RT- PCRにより 取得した。 PCRのプライマーは、 VAMP2遺伝子の ATg翻訳開始配列の 5, 上流域 に、 5 ' 側から、 Mlul制限酵素部位、 Kozak配列を付加するためのフォアワード プライマー: MYK212 (配列番号 40) と、 VAMP2遺伝子の TM翻訳終止配列の 3, 下流域に、 Sail制限酵素部位を付加するためのリバースプライマー: MYK213 (配 列番号 41) を、 Hokkaido system Science社に依頼して作製した。 プライマー配 列の設計に際し、 GenBank Accession番号.: U60150の登録配列を参考にした。 上記 ( 3— 1 ) で作製した cDNAを铸型とし、 MYK212と MYK213をプライマーと して、 PCR を行い、 増幅された約 380bp の断片を精製し、 pCR2. 1 ベクター (Invitrogen社製) 中にサブクローニングして、 pCRVAMP2ベクターとした。 上記 pCRVAMP2ベクタ一を Mlul/Sallで切断し、約 380bpの DNA断片を精製した 後、 PCIベクター(Promega社製)の Mlul/Sall制限酵素部位にライゲーシヨンし、 V· AMP2遺伝子 DNAを挿入した発現べクタ一: PCIVAMP2を作製した。
( 4 ) 培養細胞への遺伝子 DNA導入
アフリカミ ドリザルの腎由来である培養株細胞 C0S7 細胞 (ATCC : CRL1651) は、 10%の牛胎仔血清 (Clontech社製)を含む DMEM (Dulbecco' s Modified Eagle Medium) 培地 (Life Technologies社製) 中、 10% C02、 37°Cで培養を行った。 培養細胞への遺伝子導入には、 SuperFect試薬(QIAGEN社製)を使用した。遺伝 子導入を行うにあたり、 上記で培養した C0S7 細胞を 6 穴の培養プレートに、 5 X 105cells/wellの細胞密度になるよう蒔いて、 同様の条件下で 24時間培養を 行った。
例 4 ( 2 )及び(3 )で作製した毒素タンパク質融合タンパク質発現ベクターと 毒素の基質タンパク質発現ベクターとを適当比で混合した。 使用する DNAの総量 は 2. 4ug/wellであり、無血清の DMEMを加えることで体積を 100 μ 1に合わせた。こ の DNA希釈混合液に 14. 4 μ 1の SuperFect試薬を加えて、 よく混合し、 5〜10分 間、 室温でインキュベートした。 更に、 10%の血清を含む DMEMを 600 // I加えて 遺伝子導入液とした。 無血清培地で 1回洗浄した C0S7細胞に、 1穴あたり合計 714. 4 μ 1 · の遺伝子導入液を加え、 37°Cで培養を行った。 3時間後、培地を除き、 10%の血清を含む DMEMを 2ral加えて培養を 48時間継続した。 毒素タンパク質と毒素の作用標的タンパク質とを共発現させるために用いた 発現ベクターは、 以下の 6つの組み合わせについて行った。
毒素タンパク質発現ベクター Z毒素の作用標的タンパク質発現ベクター pCIBoNT. Adl/pCISNAP25A
pCIBoNT. Edl/pCISNAP25A
pCIBoNT. Bdl/pCIVAMP2
pCITeNTdl/pCIVAMP2
pCIBoNT. Cldl/pCISYN
pCIBoNT. Cldl/pCISNAP25A
( 5 ) 遺伝子 DNA導入細胞内で発現しているタンパク質の解析
上記の細胞を培養後、培養プレートを氷上に置き、培地を除いた後、 4°Cの PBS'
(Phosphate Buffered Saline : TAKARA社製) を加えて、 セルスクレーパーで、 細 胞を搔き集めた。 細胞の懸濁液を 1. 5mlのチューブに移し、 lOkrpmの遠心による 細胞の沈殿化と 4°Cの PBSへの懸濁を 3回繰り返すことで、細胞を洗浄した。最後 の遠心後、 沈殿した細胞を l X Tris- Glycine 系サンプル緩衝液 ( lOOmM Tris (pH6. 8)、 2%SDS、 10%グリセロール、 0. 002%ブロモフエノールブルー、 1% β メノレカプトエタノール、 又は l X Tris- Tricine 系サンプル緩衝液 ( l33mM Tris (pH6. 8)、 1. 3%SDS、26. 7%グリセ口ール、 0. 03%Coomassie Brilliant Blue- G250、 1% β メルカプトエタノール) で懸濁し、 100°Cで 3分間煮沸し、 タンパク質を可 溶ィ匕することで、 SDS-PAGE ( Sodium Dodecyl Su 1 f a t e-Po 1 y-Acr y 1 ami de Gel Electrophor- esis) 用のサンプルとした。
上記( 4 )で得られた Syntaxin 1A、 SNAP25A遺伝子 DNAを導入した細胞のタンパ ク質抽出液の SDS-PAGE 分離には、 12. 5 %のポリアク リルアミ ドゲルと Tris- Glycine緩衝液 (25mM Tris、 192raM Glycine、0. 1% SDS) を、 又、 VAMP2遺伝 子 DNAを導入した細胞のタンパク質抽出液の SDS- PAGE分離には、 17. 5%のポリァ クリルアミ ドと Tris - Tricine緩衝液 (lOmM Tris、 10mM Tricine、0. 01% SDS) を用 レ、、 20〜50mAで、 2〜6時間電気泳動を行った。
上記 SDS- PAGE 後のゲルを、 ブロッテイング緩衝液 (25mM Tris (pH9. 5)、 192mM Glycine, 20%メタノール、 0. 05%SDS) 中で平衡化し、 ブロッテイング緩衝液を 4°C に冷却しながら、 100V、 1時間で PVDF膜 (1咖0 100-?:1^111 0 社製) にブロ ッティングを行った。
ブロッテイング済みのフィルターを 100%メタノールに浸した後、 PBS で洗浄 を行い、 非特異的なタンパク質の吸着を防ぐために、 1 %スキムミルク (Yukijirushi社製) を含む PBST (0. 1% Tween-20を含む PBS) で、 30分間、 室 温でブロッキングを行った。 1%スキムミルクを含む PBSTで希釈した 1次抗体液 で、 室温、 1時間インキュベートし、 PBSTで 3回洗浄後、 1%スキムミルクを含む PBSTで希釈した 2次抗体液で、 室温、 45分間ィンキュベートした。 さらに PBST で 3回洗浄後、 ECL- plus (Amersham Pharmacia Biotech社製) で化学発光反応を 行い、 X線フィルム : Hyperfilm- MP (Amersham Pharmacia Biotech社製) に露光 した。
使用した抗体、及びその希釈率は、 Syntaxin 1Aの検出には、 1次抗体として、抗 ヒ ト Syntaxin モノクローナル抗体: Clone SP6 (Upstate Biotechnology 社 製: Catalog#05- 397)、l /i g/ /x 1を 100, 000倍希釈して使用し、 2次抗体としては、 HRP- 結合ャギ抗マウス IgG 抗体 (Santa Cruz Biotechnology 社製: Catalog SC-2005) を 5000倍希釈して使用した。 SNAP25Aの検出は、 1次抗体としてャギ抗 ヒ ト (ラッ ト) SNAP25A ポリ クローナル抗体 (Santa Cruz Biotechnology 社 製: Catalog SC-7' 538、 SC-7539) 4 μ g/ μ 1を 8, 000倍希釈して使用し、 2次抗体 としては HRP結合ラクダ抗ャギ IgG抗体(Santa Cruz Biotechnology社製: Catalog SC-2020) を 5000倍希釈して使用した。 VAMP2の検出には、 1次抗体としてゥサ ギ抗ラット (マウス) VAMP2 ポリクローナル抗体 (株式会社三菱化学生命科学研 究所の高橋正身博士より供与された) を 250倍希釈して使用し、 2次抗体として は HRP結合ャギ IgG抗体 (Santa Cruz Biotechnology社製: Catalog SC- 2004) を 5000倍希釈して使用した。 これらの DNA 導入細胞内で発現しているタンパク質の解析の結果を図 5に示 した。
上記で使用した 1次抗体は、 どれも毒素のプロテアーゼ活性による切断によ つて生じる基質タンパク質の N末端側を認識すると考えられる。 図 4は、 毒素タ ンパク質とその基質タンパク質を培養細胞内で共発現させると、 基質タンパク質 が切断される部位を示した。 図 5の結果より、 毒素タンパク質は、 N末端側に EGFP- 、 C末端側に PEST配列を融合させても、基質を切断するプロテアーゼ活性 が保持されていることが示された。 例 5 GABAaa6-rtTA 遺伝子導入マゥスでの導入遺伝子の発現解析: mRNA ノザン ブロット解析
GABAAa6-rtTA遺伝子導入マウスは、 rtTA遺伝子を小脳顆粒細胞で特異的に発 現させることを意図した遺伝子改変マウスである。 作製した GABAAa6- rtTA遺伝 子導入マウスで、 本当に rtTA 遺伝子が小脳顆粒細胞で特異的に発現しているか どうかを確認するために発現解析を行った。
( 1 ) mRNA の精製
例 3で、 GABAAa6_rtTA遺伝子導入マウスと同定された、 独立した 1 0ラインの 内、 8ライン (ライン番号 612 , 613 , 615 , 620 , 621 , 626 , 628 , 606) と野生型マウスについて、 rtTA遺伝子の発現解析を mRNAノザンブロット解析に よって行った。
Adult の各ラインの遺伝子導入マウス、 及ぴネガティブコントロールとしての 野生型マウスより脳組織を取り出し、 小脳とそれ以外の脳組織に 2分割し、 RNAzol™ B試薬 (TEL- TEST社製)を添付の手順書に従って使うことで total RNA を精製した。 心臓、 肝臓、 腎臓、 筋肉、 小腸の組織も併せて取り出し、 脳組織と 同じく total RNAを精製した。 次に、 total RNAより、 Oligotex™- dT30く Super〉 試薬 ( JSR社、 ロシュ ·ダイァグノスティックス社製) を添付の手順書に従って 使うことで mRNAを精製した。 精製した raRNAは、 260 nm及ぴ、 230 nm, 280 nm , 320 nm の波長の吸光度を測定することにより、 その濃度と精製度を測定した。
( 2 ) 電気泳動、 ブロッテイング
電気泳動は、泳動緩衝液として最終濃度 20 mM (IX) MOPS緩衝液 (pH7. 0)、 3. 7 % ホルムアルデヒ ドを含む溶液を用い、 1%ァガロース変性ゲル (泳動緩衝液に最終 濃度 1%のァガロースを含む) に、 0. 5 μ g/wellの精製 mRNAをロードして、 100 Vで約 1時間行った。 泳動後、 ゲルは、 50 mM水酸化ナトリウム , 10 raM塩化ナ トリゥムで処理し、 0. 1 M トリス緩衝液 (pH7. 5) で中和、 20 X SSCで平衡化後、 20 X SSCをブロッテイング溶液としたキヤビラリ一法により、 正電荷帯電ナイ口 ン膜 (ロシュ 'ダイァグノスティックス社製) ヘプロッテイングした。
1 2時間から 2 4時間のブロッテイング後、 膜を風乾し、 紫外線照射(120 mj/cm2) (UV Stratalinker™: Stratagene社製) によって膜に転写された mRNAを 固定した。
分子量の同定は、 0. 24-9. 5 kb RNA Ladder (Life Technologies社製)若しくは、 DIG- labeled (0. 3 - 6. 9 kb) RNA marker (ロシュ ·ダイァグノスティックス社 製) を使って行った。
( 3 ) ハイブリダィゼ一シヨンプローブの作製
rtTA遺伝子の発現を検出するためのプローブは以下のようにして作製した。 rtTA遺伝子の開始コドンの ATgの Aを 1番としたときの、 367番目の塩基の C から、 1014番目の g までの 648 b の遺伝子断片の 5' 側に EcoRI 制限酵素 部位 (g/AATTC) , 3, 側に Hind III制限酵素部位 (A/AgCTT) 配列を PCR法によ つて付加し、 pGEM- 4Z ベクター (プロメガ社製) の EcoRI/Hind III 領域にサブ ク ロ ーニ ング し、 pGEMrtTA (367- 1014) ベク タ ーを作製 した。 次に pGEMrtTA (369-1014) ベクターを EcoRI で線状化、 精製し、 DIG RNA ラベリング キット (ロシュ ·ダイァグノスティックス社製) に含まれる、 T7 RNAポリメラー ゼを使って、 添付手順書に従い、 ジゴキシゲニン標識された rtTA遺伝子のアン チセンス RNA プローブを作製した。
β—ァクチン遺伝子の発現を検出するためのプローブは以下のようにして作製 した。 GenBank Accession番号: Χ03672に登録されている塩基配列の 438番 Aか ら 507 番 T までの 70塩基領域に対するアンチセンス配列をもつオリゴヌタレ ォチド D N Aを合成した。 DIGオリゴヌクレオチド.ティリングキット (ロシュ · ダイァグノスティックス社製) を使って、 添付手順書に従い、 ジゴキシゲニン標 識された /3—ァクチン遺伝子のアンチセンスオリゴヌクレオチド DNA プロ一ブ を作製した。
ダリセルアルデヒ ド 3リン酸脱水素酵素遺伝子の発現を検出するためのプロ一 ブは以下のようにして作製した。 GenBank Accession番号: M32599に登録されて いる塩基配列の 663 番 C、から 732 番 T までの 70 塩基領域に対するアンチセ ンス配列をもつオリゴヌクレオチド D N Aを合成した。 DIG オリゴヌクレオチ ド ·ティリングキットを使って、 添付手順書に従い、 ジゴキシゲニン標識された ダリセルアルデヒ ド 3リン酸脱水素酵素遺伝子のアンチセンスオリゴヌクレオチ ド DNAプローブを作製した。
( 4 ) ハイブリダィゼーシヨン、 洗浄、 検出、 ス トリツビング
例 5 ( 2 ) で作製したブロット膜は、 DIG イージーハイブ溶液 (ロシュ ·ダイ ァグノスティックス社製) でプレハイブリダィーゼーシヨン後、 発現検出したい 遺伝子に対するジゴキシゲニン標識プローブを添加しハイブリダィゼーションを 行った。 ハイブリダィゼーシヨン温度は、 RNA プローブの使用時は、 6 8 °C、 ォ リゴヌクレオチド D N Aプローブの使用時は、 4 2 °Cで行った。 1 2〜2 4時間 後、 ハイブリダィゼーション温度に暖めた 2 X SSC 溶液、 次に 0. 1 X SSC溶液 でブロット膜を洗浄し、 DIGブロックバッファーセット、 DIG発光検出キット (口 シュ ·ダイァグノスティックス社製) を添付手順書に従って使用し、 CDP-Star試 薬 (ロシュ 'ダイァグノスティックス社製) で化学発光反応を行い、 X線フィル ム (Hyperfilm-ECL : アマシャム 'フアルマシア社製) に露光した。 一度、 ハイブリダィゼーシヨンを行ったブロット膜を別のプローブを使って再 ハイブリダィゼーシヨンを行う際には、ブロット膜を 50 %ホルムアミ ド、 1 % SDS、 50 mM トリス [pH 8. 0] 溶液中、 7 2 °Cで 3 0分間、 2回洗浄し、 ミリ Q水です すぎ、 2 X SSC溶液で平衡化した後、 新たに発現検出したい遺伝子に対するジゴ キシゲニン標識プローブを添加し再ハイブリダィゼーションを行った。
( 5 ) GABAAa6-rtTA 遺伝子導入マウスでの raRM ノザンブロット解析の結果 rtTA遺伝子の発現シグナルは、 GABAAa6遺伝子のエタソン 1から 8、 I R E S、 rtTA遺伝子、 polyAの配列サイズを合計した約 3 Kb付近に検出されることが期 待される。テストした GABAAa6-rtTA遺伝子導入マウス 8ラインすべてにおいて、 rtTA遺伝子の発現シグナルが小脳において検出され (図 6矢印)、 小脳以外の他 の脳組織領域では検出されなかった。なお、この rtTA遺伝子の発現シグナルは、 野生型マゥスでは、 小脳及び小脳以外の脳組織領域から全く検出されなかつた。 rtTA 遺伝子の発現シグナルが一番強かったのは 620 番のラインであり、 この 620番について、脳以外の臓器(心臓、 肝臓、 腎臓、 筋肉、 小腸) についても rtTA 遺伝子発現の mRNAブロッテイング解析をおこなった。 620番のラインでは、 rtTA 導入遺伝子の mRNA の発現は、 小脳に特異的で、 小脳以外の脳領域、 脳以外の臓 器では、 全く検出されなかった。 (図 6 )
なお、 rtTA遺伝子発現の mRNAブロッテイング解析に用いた、 mRNA量、 質 (分 解していないかどうか等)、ブロッテイング等の操作効率の等量性は、 β—ァクチ ン(図 6下段)、 ダリセルアルデヒ ド 3リン酸脱水素酵素遺伝子の発現量を内部コ ントロールとして mRNA ブロッテイング解析を行うことにより確認した。
以上の結果は、 作製した GABAAa6- rtTA遺伝子導入マウスでは、 rtTA遺伝子が 小脳で特異的に発現していることを示すものである。 例 6 GABAta6-rtTA 遺伝子導入マゥスでの導入遺伝子の発現解析:
in situ hybridization角军析 実施例 5において、 GABAAa6- rtTA遺伝子導入マウスでは、 rtTA遺伝子が小脳 で特異的に発現していることを mR A ノザンブロット解析によって確認した。 次 に、 この rtTA遺伝子が小脳のどの細胞で発現しているのかを調べるために、 in situ hybridization角军析を行った。
in situ hybridization解析は、 作製した GABAAo 6- rtTA 遺伝子導入マウスの 内の 6ライン (ライン番号 612 , 613 , 620 , 621 , 626 , 628) と野生型マウ ス (ネガティブコントロール) について行った。
( 1 ) 脳組織凍結切片の作製
マウスをジェチルエーテルで麻酔し、 素早く脳を摘出した後、 適切な大きさに 分割した。 この脳組織は、 Tissue-TekR OCT- Compound (Sakura Finetechnical社 製) 中に包埋し、 ドライアイスで冷却したイソペンタンにより、 急速に凍結させ た。凍結組織ブロックは、一 2 0〜一 8 0 °Cにて保管し、セクショニング時には、 - 2 0〜一 1 4 °Cに庫内温度を設定したクライオスタツトで、 厚さ 10 μπι の切 片を作製し、 MASコートスライ ドガラス (マツナミ社製) に貼り付けた。
( 2 ) プレハイブリダィゼーシヨン
スライ ドグラスに貼り付けた切片は、 固定液 (4 %パラホルムアルデヒ ド、 0. 1 PBS) で固定し、 プローブの非特異的反応を抑制するためにァセチレーシヨンを 0. 25 %無水酢酸、 0· 9 %塩化ナトリウム、 0. 1 M トリエタノールァミン [PH 8. 0] 液中で行った。 PBS ですすいだ後、 70 % , 80 % , 90 % , 100 %, 100 % のエタ ノール系列で脱脂、 脱水を行い、 5 5 °Cで 1 5〜6 0分乾燥させ、 ハイブリダィ ゼーシヨン時まで一 8 0 °Cで保管した。
( 3 ) ハイブリダィゼーシヨンプローブの作製
in situ hybridizationで用いたプローブを作製する際の铸型 DNAは、 実施例 5 ( 2 ) の制限酵素 EcoRIで線状化、精製した pGEMrtTA (369- 1014)を使用した。 0. 5 μ gの铸型 DNAを、 I X Transcription緩衝液 (40 raM トリス [ρΗ8. 0], 50 mM 塩化ナトリゥム、 8 mM塩化マグネシウム、 2 mM スペルミジン)、 500 μΜ ATP 、 500 /iM GTP 、 500 μΜ TTP 、 10mM DTT、 11.5 U/μ 1 RNase 阻害剤 (宝社製)、 20 μ M S-CTP, 20μΜ [a-35S]CTP, Τ7ポリメラ一ゼ (ス トラタジーン社製) 液中で、 3 7°C、 :!〜 2時間反応させ、 [a-35S]CTP で標識された rtTA 遺伝子のアンチセ ンス RNAプローブを作製した。 DNase (プロメガ社製)による铸型 DNAの分解後、 Sephadex G- 50 (アマシャムフアルマシア社製)、 エタノール沈殿で、 未反応のモ ノヌクレオチド、 DNA の分解産物を除去し、 およそ 0.5 〜1.0 X 108 cpra/ml に なるように、 ハイブリダイゼーション緩衝液 (50 %ホルムァミ ド、 2 X SSC、 100 mM トリス [pH7.4]、 10 % デキストラン硫酸ナトリウム、 0.2 % SDS、 1 X デンハ ルト液) で調整し、 ハイブリダィゼーシヨンプローブ液とした。
(4) ハイブリダィゼーシヨン、 洗浄、 検出
5 5°Cで乾燥させた、 スライ ドグラス上の切片に、 rtTA遺伝子のアンチセンス RNA プローブのハイブリダイゼーションプローブ液を加え、 6 0 °Cでハイブリダ ィゼーシヨン反応を行った。 1 2〜24時間後、 2 X SSC, 10 mM /3メルカプトェ タノール液中、6 0でで洗浄し、2/^/11111^356、10111¾1 トリス [pH8.0]、 1 raM EDTA、 500 mM塩化ナトリゥム液中、 3 7 :で、 未反応の RNA プローブを分解させた。 更に、 0.2 X SSC , 10 mM /3メルカプトエタノール液中、 6 0°Cで洗浄後、 エタ ノール系列で脱水、 乾燥させた。 rtTA遺伝子の発現シグナルの検出は、 BAS5000 (冨士フィルム社製)、 Hyperfilra-i3Max (アマシャムフアルマシア社製)、 乳剤 (NTB3 : コダック社製) によるラジオオートグラフィ一で行つた。
( 5 ) GABAAa6-rtTA遺伝子導入マゥスでの in situ hybridization解析の結果 テストした GABAAa6- rtTA遺伝子導入マウス 6ラインすべてにおいて、 小脳の 顆粒細胞のみにおいて rtTA の発現シグナルが検出され、 小脳のプルキンェ細胞 や、 分子層 (顆粒細胞の軸索である平行繊維が存在する層) の細胞、 白質、 小脳 核領域では検出されなかった。 更に、 登上繊維の由来元である下オリーブ核を含 め脳のその他の領域では、 rtTA の発現シグナルは検出されなかった (図 7 Transgenic, The granule ce丄丄 layer of transgenic mouse ) 0 in si tu hybridization解析による rtTA遣伝子の発現シグナルの強度は、例 5の mRNAブ ロット解析の結果に対応し、 620番のラインが最も強かった (図 7の" Transgenic " は、 620 番のラインである。)。 一方、 野生型マウスでは、 小脳の顆粒細胞も含 め全ての領域で rtTA の発現シグナルは検出されなかった (図 7 Wild type)。 以上より、 作製した GABAAa6-rtTA遺伝子導入マウスでは、 rtTA遺伝子が小脳 の顆粒細胞で特異的に発現していることが確認された。 例 7 GABAaq6-rtTA遺伝子と treToxin遺伝子の両方を導入遺伝子として持つ 2 重遺伝子導入マゥスの作製
実施例 3で得られた treBoNT. Adl, treBoNT. Bdl, treBoNT. Cldl, treBoNT. Edl, treTeNTdl マウスを総じて、 treToxin マウスと呼ぶことにする。
GABAAa6- rtTA遺伝子導入マウスと treToxin遺伝子導入マウスを交配させると、 その子供の中に、 両方の遺伝子を導入遺伝子として持つ 2重遺伝子導入マウスが 得られることが期待される。 交配によって得られた子供の遺伝子型の同定を例 3 の (3 ) で示したゲノムサザンプロット解析によって行ったところ、 ほぼメンデ ルの遺伝法則に従う割合 (即ち、 GABAAa6-rtTA遺伝子をへテロで持つ遺伝子導入 動物と treToxin 遺伝子をへテロで持つ遺伝子導入動物を交配した場合、 その子 供が 2重遺伝子導入マウスである確率は 2 5 %) で 2重遺伝子導入マウスが得ら れた。 この結果は、 我々が作製した 2重遺伝子導入マウスでは、 破傷風菌毒素や ボツリヌス毒素を、 恒常的或いは、 時間的、 空間的な特異性が低い状況下で発現 させようとしたときに現れた致死性という欠点 (Eisel, U. , et al. , (1993) ΕΜΒΟ J. , vol. 12, 3365-3372, Sweeney, S. T. , et al., (1995) Neuron, vol. 14, 341-351) を克服できていることを示しているものである。 例 8 _ GABAAa6-rtTA遺伝子、 _ treToxin遺伝子 2重遺伝子導入マウスにおける神 経毒素タンパク質の発現誘導と発現消去
GABAAa6-rtTA遺伝子導入マウスと treToxin遺伝子導入マゥスの子供は、 生後 約 4週令で、 離乳し、 ゲノムサザンプロット解析によって遺伝子型を同定した。 神経毒素タンパク質の発現を誘導させたい場合は、 ドキシサイクリン (シグマ 社製) を飲み水 (2 mg/ml ドキシサイク リ ン、 10%スクロース) とペレッ ト餌
(BIO- SERV 社製、 6 mg/g ドキシサイクリン) に配合し、 マウスに与えた。 神経 毒素タンパク質の発現を誘導させたくない場合、 及び発現誘導を停止させたい場 合は、 飲み水、 餌ともに、 ドキシサイクリンを含まないものに変えた。 例 9 GABA,a6-rtTA遺伝子、 treToxin 遺伝子 2重遺伝子導入マウスにおける神 経毒素タンパク質の発現誘導と発現消去の検出:
ウェスタンブロッティング法
( 1 ) 脳組織タンパク質可溶化液の調整
マウスより脳組織を摘出し、 小脳とそれ以外の脳組織に 2分割した。 分割した 脳組織は、 エツペンドルフチューブに移し、 4%SDS , 2πιΜ EDTA, プロテアーゼ阻 害剤カクテル錠(ロシュ 'ダイァグノスティックス社製) (1錠 /5 ral)を含む PBS 中で、プラスチック製のぺッスルを使って、ホモゲナイズした。ホモゲナイズ後、 1 0 0 °Cの水浴中で 5分インキュベートし、 15, 000 r. p. m. で遠心することによ り、 不溶性成分、 ゲノム D N Aを沈殿させ、 上清を脳組織タンパク質可溶化液と して回収した。 脳組織タンパク質可溶化液のタンパク質濃度は、 ローリー法に基 づいて構成された DC Protein Assay試薬 (BIO- RAD社製) を添付手順書に従つ て使用することにより測定した。
( 2 ) SDS-PAGE 、 ブロッテイング、 抗体反応、 検出
実施例 4 ( 5 ) の場合と同様にして、 脳組織タンパク質可溶化液を 40 M g タ ンパク質/ lane ロードして SDS- PAGE を行い、 PVDF膜にブロッテイングを行つ た。 神経毒素タンパク質の発現検出には、 神経毒素タンパク質の N末端側にタグ として融合した EGFP に対するポリクローナル抗体 (Molecular Probe 社製: Catalog A6455) を 1次抗体として使用し、 HRP結合ャギ抗ゥサギ IgG抗体(Santa Cruz Biotechnology 社製) を 2次抗体として使用し、 ECL- plus による化学発光 反応を行った。 神経毒素タンパク質の発現シグナルは、 84 KDa付近で検出される ことがアミノ酸組成の計算値から期待される。
( 3 ) GABAAa6-rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マウスにおける神 経毒素タンパク質の発現誘導と発現消去の検出:
ウェスタンブロッテイング法の結果
ドキシサイクリンを 1週間投与した野生型マウス (Genotype: -卜、 D0X:十)、 ドキシサイクリンを投与していない 2重遺伝子導入マウス (Genotype : +/+ , D0X: -)、 ドキシサイクリンを 1週間投与した 2重遺伝子導入マウス (Genotype: +/+ , D0X: +) の小脳から、 タンパク質可溶化液を調製し、 神経毒素タンパク質 の発現誘導を検討した結果を図 8に示す。 ドキシサイクリンを 1週間投与した 2 重遺伝子導入マウス (Genotype : +/+, D0X: +) の小脳においてのみ、 84 KDa付 近に発現シグナルが検出された (図 8矢印)。 このことにより、 GABAAa6- rtTA遺 伝子、 treToxin遺伝子 2重遺伝子導入マウスに、 実施例 8の様な方法でドキシサ イクリンを 1週間投与すると、 神経毒素タンパク質が小脳で発現誘導され、 野生 型マウスにドキシサイクリンを投与したり、 2重遺伝子導入マウスでもドキシサ イクリンを投与しないものでは発現が誘導されないことが示された。 例 1 0 GABA,a6- rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マウスにおける 神経毒素タンパク質の発現誘導と発現消去の検出:
免疫組織化学法
実施例 9で、 神経毒素タンパク質の発現誘導をウェスタンプロッティング法に よって解析したところ、 ドキシサイクリンを 1週間投与した 2重遺伝子導入マウ ス (Genotype : +/+ , D0X : +) で、 小脳において神経毒素タンパク質の発現が 誘導されることが確認された。 そこで、 次に、 小脳のどの細胞で神経毒素タンパ ク質の発現誘導がなされているのかを検討した。
( 1 ) 脳組織凍結切片の作製
マウスをジェチルエーテルで麻酔し、 開胸、 心臓左心室より、 ペリスタポンプ を使って、 P B Sを 2分間、 固定液 (4%パラホルムアルデヒ ドを含むリン酸緩衝 液 [pH 7. 3] ) を 1 0〜1 5分間、 10 ml/miri の流速で灌流させた。 脳を摘出し た後、 適切な大きさに分割し、 固定液に浸して、 4 °Cで 1 2時間から 4 8時間、 浸透固定を行った。 固定された脳組織は、 30 % スクロース、 0. 05 % アジ化ナト リゥムを含む P B Sに移し、 組織凍結時に生じる氷の結晶化によって受ける組織 ダメージを抑制するためのクライオプロテクション操作を 4 °Cで 1 2〜2 4時間、 液を変えて 2回行った。 クライオプロテクションされた脳組織を、 Tissue - TekR 0CT_Compound中に包埋し、 ドライアイスで冷却したイソペンタンにより、 急速に 凍結させた。 凍結組織ブロックは、 一2 0〜一 8 0でにて保管し、 セクショニン グ時には、一 2 0〜一 1 4 °Cに庫内温度を設定したクライオスタツトで、厚さ 40 μ η の切片を作製した。 切片は、 0. 05 % アジ化ナトリウムを含む PBS 中、 4 °C で保存した。
( 2 ) 抗体反応 (ABC 法、 蛍光 2重染色法)
切片は、 洗浄緩衝液 (0. 1 % Tri tonRX-100 を含む PBS ) にて洗浄し、 抗体希 釈液 (0. 1 % TritonRX- 100、 2 % 正常ャギ血清 (Vector Lab. 社製)、 0. 05 % ァ ジ化ナトリウムを含む PBS) 中、 室温、 1時間インキュベートすることで、 非特 異的な抗原抗体反応をプロックした。
1次抗体として、 抗 EGFPゥサギポリクローナル抗体 (Molecular Probe社製: Catalog A6455)、 抗 CalbindinD- 28K マウスモノクローナル抗体 (Sigma 社製: Catalog C9848)、抗 Parvalbuminマウスモノクローナル抗体(Sigma社製: Catalog P3088) を抗体希釈液にて希釈したものを使用した。
ABC (Avidin Biotin Complex) 法の際には、 2次抗体として、 ピオチン標識さ れたャギ抗ゥサギ IgG (H+L)抗体を抗体希釈液にて希釈したものを使用した。 更 に、 ァビジンとビォチン標識された西洋ヮサビペルォキシダーゼ複合体 (VECTASTAINR ABC Kit : Vector Lab. 社製) を洗浄緩衝液で希釈した液との反 応後、 0. 5 rag/ml 3, 3,一 Diaminobenzidine, tetrahydrochloride (同仁ィ匕学研 究所製)、 0. 006 %過酸化水素、 50 トリス [PH7. 5] 液にて発色反応を行った。 切片は、 スライドガラスに貼り付けた後、 マウントクイック (大道産業社製) に て封入した。
蛍光 2重染色の際には、 2次抗体として、 Alexa FluorR 488ャギ抗ゥサギ IgG (H+L) 抗体、 Alexa Fluor" 594 ャギ抗マウス IgG (H+L) 抗体を抗体希釈液にて 希釈したものを使用した。 切片は、 スライ ドガラスに貼り付けた後、 VectaShield (Vector Lab. 社製) にて封入し、 レーザスキャン顕微鏡システム (LSM 510 ETA : Zeiss 社製)で観察した。
( 3 ) GABAAa6_rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マウスにおける神 経毒素タンパク質の発現誘導と発現消去の検出:免疫組織化学法の結果
図 9 A , B , C , Dは、 ドキシサイクリンを 1週間投与した野生型マウス (6 週令) (図 9 A : Genotype : - /-, D0X : +) , ドキシサイクリンを投与していな い 2重遺伝子導入マウス (6週令) (図 9 B : Genotype : +/+ , D0X : -)、 ドキ シサイク リ ンを 1週間投与した 2重遺伝子導入マウス (6週令) (図 9 C : Genotype : +/+ , D0X : +) , ドキシサイクリンを 2週間投与し、 その後ドキシサ イクリンを 3週間かけて除去した 2重遺伝子導入マウス (1 0週令) (図 9 D : Genotype : +/+ , D0X : +→ -)の小脳切片で 1次抗体反応を抗 EGFP抗体、 2次 抗体以降を ABC法で行った結果を示したものである。 ドキシサイクリンを 1週間 投与した 2重遺伝子導入マウス (6週令) (図 9 C : Genotype : +/+ , D0X : +) において、小脳の分子層(顆粒細胞の軸索である平行繊維が高密度で存在する層)、 顆粒細胞層 (顆粒細胞の細胞体が高密度で存在する層) で神経毒素タンパク質の 存在を示す抗 EGFP 抗体との反応シグナルが検出され、 プルキンェ細胞層では反 応シグナルが無いために白く抜けていて、 神経毒素タンパク質が存在しないこと が分かった。 その他の 3種の条件 (図 9 A , B , D) では反応シグナルが全く検出 されなかった。
ドキシサイク リ ンを 1週間投与した 2重遺伝子導入マウス ( 6週令) (Genotype : +/+ , D0X : +)における神経毒素タンパク質の発現分布をさらに詳 細に同定するために、 蛍光 2重染色を行った (図 9 E , F , G , H , I , J)。 横 3列の写真は、 それぞれ同一視野である。 神経毒素タンパク質の存在を示す緑色 の蛍光シグナル (図 9 E , H) は、 分子層 (M L )、 顆粒細胞層 (G L ) に限局し、 プルキンェ細胞層 (P L ) では検出されず、 先の ABC法による検出結果と一致し た。 CalbindinD- 28K の存在を示す赤色の蛍光はシグナル (図 9 F) はプルキンェ 細胞に、 Parvalbuminの存在を示す赤色の蛍光シグナル (図 9 I) はプルキンェ細 胞、 ステレート細胞、 バスケッ ト細胞において検出された。 同一視野由来の緑色 の蛍光シグナル (図 9 E, H) と赤色の蛍光シグナル (図 9 F , I) を合成する (図 9 G , J) ことにより、 それぞれの蛍光シグナルは重なることはなく、 完全に分離 していることが確認された。 この事は、 神経毒素タンパク質の誘導発現は、 小脳 の顆粒細胞に限局していて、 プルキンェ細胞、 ステレート細胞、 バスケット細胞 では発現していないことを示している。
実施例 6の rtTA遺伝子発現の i/j hybridization解析の結果で、 rtTA遺 伝子の発現シグナルは、 小脳の顆粒細胞層に存在する顆粒細胞に限局していて、 白質、 プルキンェ細胞層、 分子層では検出されなかった。 一方、 神経毒素タンパ ク質の発現シグナルは、 実施例 1 0の結果より、 顆粒細胞層 (顆粒細胞の細胞体 が高密度で存在する層) と分子層で検出された。 分子層は、 圧倒的な密度で存在 する顆粒細胞の軸索である平行繊維とプルキンェ細胞の樹状突起、 ステレート細 胞、 バスケット細胞等で構成されている。 これらうち、 プルキンェ細胞の樹状突 起、 ステレート細胞、 バスケット細胞では、 神経毒素タンパク質の発現は見られ ない (蛍光 2重染色の結果、 図 9 E , F , G , H, I , J)。 従って、 分子層で検 出された神経毒素タンパク質の発現シグナルは顆粒細胞の軸索である平行繊維に 由来するものと考えられる。
まとめると、 GABAAa6- rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マウスで は、 rtTA 遺伝子が、 小脳顆粒細胞特異的に発現していて、 ドキシサイクリン投 与によって、 神経毒素タンパク質の発現が小脳顆粒細胞特異的に誘導され、 神経 毒素タンパク質は、 小脳顆粒細胞の細胞体から軸索の平行繊維 (神経毒素タンパ ク質の作用部位) まで輸送され広く分布していることが確認された。
また、 神経毒素タンパク質の誘導発現は可逆的であり、 一旦発現誘導をさせた 後でも。 飲み水とペレット餌からドキシサイクリンを除くことにより、 神経毒素 タンパク質の存在を消去することができることも確認された (図 9 D )。 例 1 1 GABA,a6- rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マゥスで、 ドキ シサイクリン投与によって引き起こされる行動変化の解析
小脳の顆粒細胞で神経毒素タンパク質が発現すると、 顆粒細胞からの神経伝達 物質の放出が抑制され、 顆粒細胞からプルキンェ細胞等ボストシナプスへの神経 情報が伝達されなくなる。 この現象がマウス個体に及ぼす影響について、 マウス の行動、 特に協調運動を行う能力の観点から解析を行った。 行動解析の実験は、 Kadotani, H. , et al. , (1996) J. Neurosci. vol. 16, 7859-7867, Carter, R. J. , et al., (1999) J. Neurosci. vol. 19, 3248 - 3257, Crawley, J. N. , "What's wrong with my mouse ?", A John Wiley & Sons, Inc. , を参考にして行った。
( 1 ) 目視観察による行動変化の解析
GABAAa6-rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マゥスは、 ドキシサイ クリンを投与する前は、歩行の際、野生型マウスと同じような運動様式を示した。 しかし、 ドキシサイクリンを投与して約 1週間後 (神経毒素タンパク質の発現時 期) では、 動きが鈍くなる、 ふらつく、 お腹を地面につけて歩行するようになる 等、 協調運動に障害という、 野生型マウスと区別される表現型を示すようになつ た。 一方、 野生型マウス、 GABAAa6-rtTA遺伝子のみを導入遺伝子として持つマウ ス、 treToxin遺伝子のみを導入遺伝子として持つマウスにドキシサイタリンを投 与しても、 上記表現型は示さず、 ドキシサイクリン非投与の野生型マウスと区別 できなかった。 更に、 GABAAoc6- rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マ ウスで、 1〜2週間のドキシサイクリン投与 (神経毒素タンパク質は小脳顆粒細 胞において特異的に発現誘導される) によって、 上記協調運動障害の表現型を誘 起した後、 ドキシサイクリン非投与条件に戻して 3週間後 (神経毒素タンパク質 は小脳顆粒細胞においてもはや存在しなくなる) の様子を観察すると、 上記協調 運動障害の表現型が消失し、 ドキシサイタリン非投与の野生型マウスと区別でき ない状態に戻った。
従って、 協調運動障害の表現型は、 マウス個体で、 GABAAa6- rtTA 遺伝子、 treToxin遺伝子の 2つが単純に存在すること、 或いは、 ドキシサイクリンの副作 用ではなく、 GABAAa6- rtTA 遺伝子、 treToxin 遺伝子 2重遺伝子導入マゥスで、 ドキシサイタリン投与 ·非投与によって小脳顆粒細胞で誘起される神経毒素タン パク質の発現 ·消失に因果づけられるものと結論された。
この変化をより定量化するために、 ロタロッド (Rota- Rod) 試験、 バランスビ ーム(Balance Beam)試験を行つた。
( 2 ) ロタロッド (Rota- Rod) 試験による行動解析
マウスを 15 r. p. m. (回転/分)、 30 r. p. m. の回転速度で動いているロッド (UG0 BASILE社製)に乗せた。マウスは、口ッドから落下することを避けるために、 口ッドの回転に合わせて協調的な歩行運動を行う。 口ッドの回転に合わせられな い (協調運動が障害されている) マウスは、 ロッドから落下してしまう力 回転 するロッドにしがみついて巻き込まれるようにして一緒に回転してしまう。 マウ スがロッドの上で協調的に歩行運動することができる時間 (滞留時間: Staying Time, 単位は秒) をスコアとすることで、 その能力を定量化した。 1回の試験時 間は、 最長 60秒として、 例え 60 秒を越えて回転するロッドに滞留することが できても、 試験をうち切り、 スコアを 60 秒とした。
ドキシサイクリン投与前の野生型マウス(-/-)、 GABAAa6-rtTA遺伝子のみの導 入マゥス (+/_)、 treToxin遺伝子のみの導入マゥス(- /+)、 GABAAa6-rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マウス(+/+)を、回転するロッドの上に乗せた(図 1 0 )。試験 1日目では、マウスにとって不慣れなことなので、 回転するロッドの 上で協調的な歩行運動を行うことができず、 回転する口ッドに卷き込まれるよう にして一緒に回転してしまう、或いは落下してしまい、ロッド上での滞留時間は、 全ての遺伝子型において短いものになった。 しかし、毎日、同じ試験を繰り返し、 試験 5日目になると、 どの遺伝子型のマウスも回転するロッドの上で協調的な歩 行運動を行うことが上手になり、 ロッド上での滞留時間も長くなつた。 しかし、 GABAAa6-rtTA遺伝子、 treToxin遺伝子 2重遺伝子導入マウスにドキシサイクリ ンを投与すると、 ロッド上での滞留時間が減少し、 協調的な歩行運動が障害され ているという表現型を示すようになった。 一方、 野生型マウス、 GABAAa6- rtTA遺 伝子のみの導入マウス (+/-)、 treToxin遺伝子のみの導入マウス(-/+)にドキシ サイクリンを投与しても、 投与前と同じレベルの滞留時間を示し、 協調的な歩行 運動は障害されていないという結果が得られた。
図 1 0の MIXというデータ系列は、 野生型マウス(-/_)、 GABAAa6- rtTA遺伝子 のみの導入マウス (+/_)、 treToxin遺伝子のみの導入マウス(-/+)のデータをプ ールしたものである。
( 3 ) バランスビーム(Balance Beam)試験による行動解析の結果
マウスを、 床から 40 cm上に水平にはった幅 30 mm、 15 mm, 6 mmの木製の棒 の上に置いた。 マウスは、 高い所を嫌がり、 置いた場所から 60 era離れた安全ケ ージ (床幅 20 cm、 床奥行き 16. 5 cm、 高さ 10. 5 eraの紙製箱であり、 その正面 中央に幅 8 cra、 高さ 10. 5 cm の入り口を設けた。 安全ケージの床は、 通常飼育 ケージに用いている木製床敷きチップを詰めた) に逃げ込むために棒を歩いて渡 る。 上手く体性のバランスを保ち、 協調的な歩行運動を行うことができれば、 マ ウスは、 棒を渡りきつて安全ケージに逃げ込むことができる。 しかし、 体性のバ ランスを保つことに失敗したり、 協調的な歩行運動ができなくなると、 マウスは 棒から落下する、 姿勢を崩して宙ずりになる、 棒にしがみついたまま動かないと いった表現型を示し、 安全ケージに逃げ込むことができない。 マウスが安全ケー ジに無事逃げ込めた場合は "成功 (Succeed) "、逃げ込むことができなかった場合 は "失敗 (Fail) " として、 バランスビームを渡る能力をスコア化した。 この試験 は、 通常のマウスならば、 1 0秒もあれば十分渡りきることができる難易度のも のであり、時間がかかる場合でもせいぜい 2 0秒以内には渡りきることができる。 従って、 1回の試験時間は、 最長 60秒とし、 60秒以内に安全ケージに逃げ込む ことができなかった場合 (この状況は、 マウスが棒にしがみついたまま動かない ことによる場合が圧倒的であった)、 そこで試験をうち切り、 "失敗 (Fail) " と スコア化した。
図 1 1のグラフは、 棒の幅を 30 ram, 15 mm , 6 mm と変えた場合、 試験した回 数における "失敗 (Fail) " した回数の割合を縦軸にして表現したものである。幅 を 30删とした場合、この棒の上を渡ることは、どの遺伝子型マウスにとっても、 それほど難しいことではなく、 "失敗 (Fail) "は見られなかった。 幅を 15議, 6 mmと次第に難しくしていくと、 "失敗 (Fail) "するマウスが見られるようになり、 特に、幅 6 mmの時、ドキシサイクリンを投与した GABAAa6- rtTA遺伝子、 treToxin 遺伝子 2重遺伝子導入マウスは、試験で 8 0 %以上 "失敗 (Fail) "するという結 果になった。この失敗率は、ドキシサイクリンを投与した他の遺伝子型では 1 0 % 程度であることと比較すると顕著な増加である。
図 1 1の MIXというデータ系列は、 野生型マウス(- /- )、 GABAAa6-rtTA遺伝子 のみの導入マウス (+/-)、 treToxin遺伝子のみの導入マウス(-/+)のデータをプ 一ノレしたものである。 産業上の利用の可能性
本発明の神経細胞伝達機能制御活性を有するタンパク質の発現を可逆的に制 御するシステムを導入した宿主が提供されることにより、 これまでその制御が非 可逆的であったために、 正確に解析できなかった神経細胞の機能や、 該細胞、 あ るいはそれと連関する細胞内で発現している遺伝子等の生体機能分子の機能解析 が行えるようになった。

Claims

請求の範囲
1 . 神経細胞伝達機能制御活性を有するタンパク質をコードする DNAを含み、 特定の神経細胞において神経細胞伝達機能制御活性を有するタンパク質の発現を 可逆的に制御し得る構造を有する DNA。
2 . ( a ) 特定の神経細胞において神経細胞伝達機能制御活性を有するタン パク質の発現を可逆的に制御し得る DNA構造、 及び (b ) 該 DNA構造の制御下に おかれるように連結された神経細胞伝達機能制御活性を有するタンパク質をコー ドする DNAを含む遺伝子発現制御ュニット。
3 . ( 1 ) ( a )特定の神経細胞特異的に活性化される転写制御領域 DNAと該 転写制御領域の制御下におかれるように連結された、 特定の刺激により活性化さ れ、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする DNA、及ぴ(b )該タンパク質により制御されるプロモータとその制御下におかれ るように連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNAを含む遺伝子発現制御ュニット。
4 . 神経伝達物質放出制御活性を有するタンパク質が神経毒素である請求項 3に記載の遺伝子発現制御ュニット。
5 . 請求項 1〜 4のいずれかに記載の DNA、 若しくは遺伝子発現制御ュニッ トを保有する宿主。
6 . 請求項 5に記載の宿主が保有する、 特定の神経細胞において神経伝達機 能制御活性を有するタンパク質の発現を可逆的に制御し、 該宿主に表れる表現型 の変化を解析することを特徴とする特定神経細胞の機能解析方法。
7 . 請求項 5に記載の宿主が保有する、 特定の神経細胞において神経伝達機 能制御活性を有するタンパク質の発現を可逆的に制御し、 該神経細胞、 又はそれ に連関する細胞中の生体機能分子の物理的、 化学的変化を解析することを特徴と する生体機能分子機能解析方法。
8 . ( 1 ) ( a )特定の神経細胞特異的に活性化される転写制御領域 DNAと該 転写制御領域の制御下におかれるように連結された、 特定の刺激により活性化さ れ、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする
DNA、及び(b )該タンパク質により制御されるプロモータとその制御下におかれ るように連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA を、 宿主に導入し、 (2 ) 該宿主、 又は該神経細胞に対し特定の刺激の有無、 又はその強度を調節し、 宿主に表れる表現型の変化を解析することを特徴とする 特定神経細胞の機能解析方法。
9 . ( 1 ) ( a ) 特定の神経細胞特異的に活性化される転写制御領域 DNAと該 転写制御領域の制御下におかれるように連結された、 特定の刺激により活性化さ れ、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする DNA、及び(b )該タンパク質により制御されるプロモータとその制御下におかれ るように連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA を、 宿主に導入し、 (2 ) 該宿主、 又は該神経細胞に対し特定の刺激の有無、 又はその強度を調節し、 特定の神経細胞、 またはそれに連関する細胞中の生体機 能分子の物理的、 化学的変化を解析することを特徴とする生体機能分子機能解析 方法。
1 0 . 神経伝達物質放出制御活性を有するタンパク質が、 神経毒素である請 求項 8又は 9に記載の方法。
1 1 . ( a ) 特定の神経細胞特異的に活性化される転写制御領域 DNAと該転 写制御領域の制御下におかれるように連結された、特定の刺激により活性化され、 かつ特定のプロモータを活性化する能力を有するタンパク質をコードする DNA、 及び (b ) 該タンパク質により制御されるプロモータとその制御下におかれるよ うに連結された神経伝達物質放出制御活性を有するタンパク質をコードする DNA を保有するヒト以外の動物の受精卵、 胚性幹細胞、 及び神経幹細胞。
1 2 . ヒト以外の動物が齧歯類である請求項 1 1に記載の受精卵、 胚性幹細 胞、 及び神経幹細胞。
1 3 . 齧歯類がマウスである請求項 1 1または 1 2のいずれかに記載の受精 卵、 胚性幹細胞、 及び神経幹細胞。
1 4 . 請求項 1 1〜1 3のいずれかに記載の受精卵、 又は胚性幹細胞を発生 させたヒ ト以外の遺伝子改変動物、 及びその子孫。
1 5 . 請求項 1 4に記載の遺伝子改変動物から得ちれる遺伝子改変動物細胞。
1 6 . 請求項 1 1〜 1 3のいずれかに記載の神経幹細胞を分化させた神経細 胞。
PCT/JP2002/003537 2001-04-09 2002-04-09 Unite de regulation de l'expression genetique et utilisation de cette unite WO2002086131A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/474,529 US20040234974A1 (en) 2001-04-09 2002-04-09 Gene expression controlling unit and utilization thereof
EP02713310A EP1386968A4 (en) 2001-04-09 2002-04-09 UNIT TO CONTROL AND USE GENE EXPRESSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001109445 2001-04-09
JP2001-109445 2002-04-09

Publications (1)

Publication Number Publication Date
WO2002086131A1 true WO2002086131A1 (fr) 2002-10-31

Family

ID=18961385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003537 WO2002086131A1 (fr) 2001-04-09 2002-04-09 Unite de regulation de l'expression genetique et utilisation de cette unite

Country Status (3)

Country Link
US (1) US20040234974A1 (ja)
EP (1) EP1386968A4 (ja)
WO (1) WO2002086131A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012203048A1 (en) * 2011-05-24 2012-12-13 Agency For Science, Technology And Research IRES mediated multicistronic vectors
DE202018006693U1 (de) * 2017-03-14 2022-03-08 Nanotag Biotechnologies Gmbh Target-Detektion mit einem monovalenten Antikörper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032738A1 (en) * 1994-05-31 1995-12-07 Allergan, Inc. Modification of clostridial toxins for use as transport proteins
WO1997017369A2 (en) * 1995-11-09 1997-05-15 Trustees Of Boston University Dna comprising a neuron-specific transcriptional promoter and its use in a gene therapy vector
JP2000316583A (ja) * 1999-05-14 2000-11-21 Eisai Co Ltd 脳で特異的に発現するベクター

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912411A (en) * 1993-06-14 1999-06-15 University Of Heidelberg Mice transgenic for a tetracycline-inducible transcriptional activator
GB2337519A (en) * 1998-05-19 1999-11-24 Univ Bristol Transgenic mammal comprising specific means for regulation of transgene expression
CN1352694A (zh) * 1998-11-09 2002-06-05 阿文蒂斯药物股份有限公司 转基因表达调控的新系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032738A1 (en) * 1994-05-31 1995-12-07 Allergan, Inc. Modification of clostridial toxins for use as transport proteins
WO1997017369A2 (en) * 1995-11-09 1997-05-15 Trustees Of Boston University Dna comprising a neuron-specific transcriptional promoter and its use in a gene therapy vector
JP2000316583A (ja) * 1999-05-14 2000-11-21 Eisai Co Ltd 脳で特異的に発現するベクター

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RIBAS A.V. ET AL.: "High-level expression of tetanus toxin fragment C-thioredoxin fusion protein in escherichia coli", BIOTECHNOL. APPL. BIOCHEM., vol. 260, no. PT. 2, 2000, pages 91 - 94, XP000978729 *
See also references of EP1386968A4 *
SOULIER S. ET AL.: "Use of doxycycline-controlled gene expression to reversibly alter milk-protein composition in transgenic mice", EUR. J. BIOCHEM., vol. 260, no. 2, 1999, pages 533 - 539, XP002952504 *
YAMAMOTO A. ET AL.: "Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease", CELL, vol. 101, no. 1, 31 March 2000 (2000-03-31), pages 57 - 66, XP002952503 *

Also Published As

Publication number Publication date
EP1386968A1 (en) 2004-02-04
EP1386968A4 (en) 2004-12-22
US20040234974A1 (en) 2004-11-25

Similar Documents

Publication Publication Date Title
Kuang et al. Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models.
Taniguchi et al. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection
JP6443811B2 (ja) Mrap2ノックアウト
US9161520B2 (en) Transgenic animal expressing Alzheimer's tau protein
Moeller et al. Evaluation of a New Tool for Exploring Podocyte Biology: Mouse: Nphs1: 5′ Flanking Region Drives LacZ Expression in Podocytes
JP2014507136A (ja) NaV1.7ノックアウトマウスとそれらの使用
JP6593595B2 (ja) Atp可視化動物およびその用途
US10765093B2 (en) Humanized transgenic animal
Eulenburg et al. GlyT1 determines the glycinergic phenotype of amacrine cells in the mouse retina
US10568974B2 (en) Animal models of atherosclerosis
US8487087B2 (en) Model animal in which state of disease condition is observable in real time, gene construct for achieving the same and use of the same
JP2003524420A (ja) 単一の性の子孫を生産する哺乳動物の生産
US8383880B2 (en) Infertility control of genetically modified fish
US6630612B2 (en) 5-HT3 receptor assay using transgenic mammal
WO2002086131A1 (fr) Unite de regulation de l'expression genetique et utilisation de cette unite
US20040177389A1 (en) Methods
Lahiri et al. Nephropathy and defective spermatogenesis in mice transgenic for a single isoform of the Wilms' tumour suppressor protein, WT1− KTS, together with one disrupted Wt1 Allele
JP2003009888A (ja) 遺伝子発現制御ユニットおよびその利用
JP2002058486A (ja) エストロゲン高感受性メダカ
JP2002142610A (ja) Alsモデルラット
US7445904B2 (en) Cysteine string protein and its role in neurodegenerative diseases
JP2002518056A (ja) アッセイにおけるPeg3遺伝子の使用、並びに肥満、体温調節および行動障害に関連する産物
Kim Improvement and establishment of the tTA-dependent inducible system in the mouse brain
JPWO2018012497A1 (ja) 疾患モデル動物および疾患治療剤
JPWO2008062904A1 (ja) トランスジーンの安定的発現を可能にする方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002713310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002713310

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10474529

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002713310

Country of ref document: EP