WO2002081050A1 - Dispositif de traitement des eaux de pluie dans des eaux d'egout mixtes et procede de lavage a contre-courant associe - Google Patents

Dispositif de traitement des eaux de pluie dans des eaux d'egout mixtes et procede de lavage a contre-courant associe Download PDF

Info

Publication number
WO2002081050A1
WO2002081050A1 PCT/JP2002/003404 JP0203404W WO02081050A1 WO 2002081050 A1 WO2002081050 A1 WO 2002081050A1 JP 0203404 W JP0203404 W JP 0203404W WO 02081050 A1 WO02081050 A1 WO 02081050A1
Authority
WO
WIPO (PCT)
Prior art keywords
rainwater
tank
treatment
sewage
speed filtration
Prior art date
Application number
PCT/JP2002/003404
Other languages
English (en)
French (fr)
Inventor
Atsushi Miyata
Yoshihiko Nakayama
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to US10/343,179 priority Critical patent/US6821445B2/en
Priority to DE60226965T priority patent/DE60226965D1/de
Priority to EP02714472A priority patent/EP1380330B1/en
Priority to JP2002579087A priority patent/JP3824583B2/ja
Publication of WO2002081050A1 publication Critical patent/WO2002081050A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/002Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with multiple filtering elements in parallel connection
    • B01D24/005Filters being divided into a plurality of cells or compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/20Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being provided in an open container
    • B01D24/26Upward filtration
    • B01D24/263Upward filtration the filtering material being supported by pervious surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/919Miscellaneous specific techniques using combined systems by merging parallel diverse waste systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/92Miscellaneous specific techniques using combined systems of sequential local and regional or municipal sewage systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/921Flow equalization or time controlled stages or cycles

Definitions

  • the present invention relates to a rainwater treatment apparatus in a combined sewer system in which sewage and rainwater are combined as sewage, and a backwash method thereof. Furthermore, the present invention relates to a sewage treatment system using a sewage treatment apparatus for rainy weather (hereinafter referred to as a stormwater treatment apparatus).
  • a stormwater treatment apparatus a sewage treatment apparatus for rainy weather
  • the term rainwater is used to mean sewage, which is the confluence of rainwater and sewage during rainfall. I do.
  • the design maximum water flow rate is the maximum maximum inflow flow rate when there is no rainwater.
  • the present invention solves the conventional problems described above, and can remove most of the pollutants even when rainwater exceeding Q or even a large amount of rainwater exceeding 3 Q flows. This was made to provide a rainwater treatment system for a combined sewer system that can be used. Further, the present invention provides a rainwater treatment apparatus which can be installed at a low cost by simply modifying an existing first sedimentation basin when installing the rainwater treatment apparatus, and a backwash method thereof. Another object of the present invention is to provide a rainwater treatment apparatus for a combined sewer system and a method for backwashing the same, which can achieve the above object with almost no maintenance. Further, the present invention relates to a sewage treatment system using the rainwater treatment device.
  • a first aspect of the present invention is to provide a plurality of upward-flow type high-speed filtration tanks having a floating filter medium layer, and upper surfaces of the plurality of high-speed filtration tanks.
  • a common treatment tank for collecting treated water from the high-speed filtration tank, a washing drainage tank for collecting washing wastewater from each high-speed filtration tank, and a rainwater inflow channel for distributing rainwater flowing into the upper part of the plurality of high-speed filtration tanks.
  • a rainwater treatment device for a combined sewer system comprising: a rainwater inflow section for flowing rainwater distributed from a water inflow channel below the floating filter medium layer of each high-speed filtration tank. .
  • the rainwater treatment apparatus according to the present invention can form the rainwater treatment apparatus by partitioning the first sedimentation basin of the conventional combined sewage treatment plant.
  • a second viewpoint of the present invention is a first sewage treatment section including a sedimentation basin that receives sewage, a first sedimentation basin provided downstream of the sedimentation basin, and a reaction tank provided downstream of the sedimentation basin.
  • a sewage treatment system in a combined sewerage system comprising a second sewage treatment unit provided downstream of the sand basin, wherein the second sewage treatment unit is provided with a plurality of upward-flow high-speed type having a floating filter medium layer.
  • a filtration tank a common treatment water tank provided on an upper surface of the plurality of high-speed filtration tanks for collecting processing tanks from the high-speed filtration tank; a washing drainage tank for collecting washing wastewater from each high-speed filtration tank; A rainwater inflow channel for distributing inflow rainwater at the top of the tank, and a rainwater inflow portion for allowing rainwater distributed from the water inflow channel to flow below the floating filter medium layer of each high-speed filtration tank; If the amount of sewage is less than the specified design water volume, the sewage treatment is performed in the first sewage treatment unit.
  • the amount of sewage exceeding the specified design water volume For about sewage treatment system in the combined sewer system, characterized in can der Rukoto performing the sewage treatment in the second sewage treatment unit.
  • the rainwater treatment apparatus of the present invention can accommodate an existing, for example, a first sedimentation basin with a tank height of 2.5 to 4 m by being modified.
  • the thickness can be as thin as 0.5 to 1 m, less than 2 m, and a compact high-speed filtration equipment that does not require a lower screen and does not require equipment for adding a flocculant can be realized.
  • the reason for this is that a plurality of high-speed filtration tanks were provided to reduce the amount of water, and the layer thickness of the common treatment tank was reduced.
  • the rainwater treatment apparatus in the combined sewer system and the method for backwashing the sewage system according to the present invention are the above-described rainwater treatment apparatus in the combined sewer system, wherein the treated wastewater in the common treated water tank is removed from the high-speed filtration tank with increased pressure loss. It is characterized by performing backwash by flowing water downward.
  • the first sedimentation basin of the combined sewage treatment plant is divided into A high-speed filtration tank is installed to distribute a large amount of rainwater that flows in during rainfall to each tank through a rainwater inflow channel, and high-speed filtration can be performed with the filled floating filter medium. Therefore, most of the pollutants can be removed even when rainwater exceeding Q or even large amounts of rainwater exceeding 3 Q flows. Also, since a part of the existing first sedimentation basin is divided and high-speed filtration tanks are installed, it is not necessary to construct new civil engineering equipment and secure installation space. As will be described in further detail below, the present invention can be operated with little maintenance.
  • FIG. 1 is a plan view showing a rainwater treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a vertical sectional view of FIG.
  • Figure 3 is a vertical sectional view showing the rainwater inflow channel.
  • FIG. 4 is a plan view and a sectional view showing the flow of rainwater at the start of rainfall.
  • FIG. 5 is a plan view and a sectional view showing the flow of rainwater during the continuation of rainfall.
  • FIG. 6 is a plan view and a cross-sectional view showing the flow of rainwater during backwashing of one tank while rainfall continues.
  • FIG. 7 shows a filter medium having four arms that can be used in the present invention.
  • FIG. 8 shows a filter medium in which corrugated irregularities are formed on the outer peripheral surface of a plate-like body having a rectangular cross section which can be used in the present invention and which can be used in the present invention.
  • FIG. 9 shows a filter medium having a Z-shaped cross section that can be used in the present invention.
  • FIG. 10 shows a filter medium on a tube that can be used in the present invention.
  • FIG. 11 shows a windmill-type filter medium in which the blade portion of FIG. 7 can be used in the present invention.
  • FIG. 1 is a plan view showing a rainwater treatment apparatus of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the first sedimentation installed in the combined sewage treatment plant Of the ponds
  • the necessary amount of the ponds is left as it is in the conventional first sedimentation basin 1 (in the figure, the two rows of the first sedimentation basin).
  • two rows of high-speed filtration tank and washing drainage tank are used.
  • the water area of the first sedimentation basin 1 is smaller than before, but due to advances in sewage treatment technology, the water area of the first sedimentation basin 1 has recently become smaller and smaller than before.
  • the initial sedimentation basin 1 often has excess treatment capacity, so there is no effect on normal sewage treatment. Or, as a result, the first settling basin will only accept up to the maximum amount of sewage during clear weather hours, so there is no impact on normal sewage treatment.
  • the left part of Fig. 1 is provided with a sedimentation basin 5 for supplying sewage, a rainwater tank 6 for distributing sewage from the sedimentation basin based on the set water amount and rainfall, and a sewage tank 7. .
  • the rainwater tank 6 and the sewage tank 7 may be a common tank.
  • the entire amount of incoming sewage is received in the sedimentation basin 5, and up to the design water volume of 3Q is led to the conventional first sedimentation basin 1 by the sewage pump 8.
  • the water from which SS has been separated in the first settling tank 1 is sent to the subsequent reaction tank, where it is treated as usual. Since the amount of incoming sewage is less than Q in fine weather, it is the same as before that only this line is operated.
  • the entire amount exceeding Q is guided to the high-speed filtration tank 3 side. Therefore, if necessary, the water pipe from the sewage pump 8 will be remodeled to lead to the high-speed filtration tank 3.
  • the high-speed filtration tank 3 is a filtration tank in which a screen 10 is provided in the middle part and a floating filter medium 11 is filled below the screen.
  • a total of eight tanks are arranged in two rows, but the number is arbitrary as long as the number of tanks is plural.
  • These high-speed filtration tanks 3 are upward-flow-type filtration tanks, each of which is provided with a vertical rainwater inlet 12 as shown in FIG. Rainwater is supplied from these rainwater inlets 12 to the lower part of the tank, and impurities and SS are captured while passing upward through the packed bed of the floating filter medium 11, and the treated water flows upward.
  • each high-speed filtration tank 3 is a common treatment water tank 13, and the treated water flows from its end (the right end in the drawing) to the rainwater treatment water channel 14 and is discharged to rivers, etc. Is done.
  • four common treatment water tanks 13 are connected.
  • a simple treated water bypass discharge channel is installed at the outlet of the normal primary sedimentation basin, and if this channel is used, it can be converted to a rainwater treated channel.
  • a rainwater inflow channel 15 for distributing rainwater to the rainwater inflow section 12 of each of the above-described tanks is formed above the high-speed filtration tank 3.
  • the rainwater inflow channel 15 is installed at a high position so that the water level corresponding to the head loss can be secured.
  • the height of the weir of the water inflow channel 15 is 0.2 higher than the liquid level of the common treatment water tank 13. Keep at least 1 m higher.
  • Rainwater is pumped into the rainwater inflow channel 15 by the rainwater pump 9 or the sewage pump 8 as necessary, and the corresponding high-speed filtration is performed through a plurality of inflow weirs 16 provided in the rainwater inflow channel 15. Rainwater is distributed to the rainwater inlet 1 2 of tank 3 by gravity.
  • the total amount of inflow water exceeding Q during rainfall is pumped into the rainwater inflow channel 15 by the rainwater pump 9 or, if necessary, the pump 8.
  • the rainwater treatment apparatus of the present invention can handle an inflow water amount greatly exceeding 3 Q (for example, 5 Q to 7 Q), even in the case of abnormal heavy rain, there is a possibility that the treatment capacity may be exceeded. Therefore, a rainwater bypass gate 17 is installed at the end of the rainwater inflow channel 15, for example, to overflow excess rainwater, and the excess rainwater flows down to the rainwater treatment channel 14 and is directly discharged to rivers, etc. It is preferable to be able to do so.
  • the height of the rainwater bypass gate 17 can be arbitrarily determined in advance.
  • the floating filter medium 11 used in the present invention is preferably made of a foamed polymer having an apparent density of 0.1 to 0.4 and a 50% compression hardness of 0.1 MPa or more.
  • the foamed polymer having such physical properties include polypropylene, polystyrene, and polyethylene.
  • closed-cell foamed polyethylene having a controlled foaming degree has high heat resistance, chemical resistance, and weather resistance. Is also preferable. If the apparent density of the floating filter medium 11 is less than 0.1, the desired compression hardness cannot be obtained, and the packed layer of the floating filter medium does not easily expand during backwashing. Conversely, if it exceeds 0.4, it may flow downward during backwashing.
  • the 50% compression hardness is less than 0.1 MPa, the filter medium will be compacted during high-speed filtration, and it will not be possible to capture a large amount of SS.
  • the 50% compression hardness means the pressure required to crush the filter medium to half its height.
  • the floating filter medium 11 used in the present invention an irregular or cylindrical one having a size of 4 to 1 Omm is preferable.
  • the uneven shape does not mean a simple shape such as a cube or a sphere, but a different shape having some unevenness on the outer surface.
  • Such an uneven floating medium 11 has the advantage of forming a large non-linear gap between each other and capturing a large amount of SS.
  • the cylindrical and each cylindrical floating filter medium 11 has an advantage that a large amount of SS can be captured similarly.
  • FIGS. 7 to 11 show examples of filter media that can be used in the present invention.
  • Fig. 7 shows a filter medium with four arms 9
  • Fig. 8 shows a filter medium 2 with a wavy concave and convex formed on the outer peripheral surface of a rectangular plate-shaped body
  • Fig. 9 shows a cross section Z
  • FIG. 10 shows a filter medium on a tube
  • FIG. 11 shows a windmill type filter medium in which the blade portion of FIG. 7 is deformed. If the size of the floating filter medium 11 is smaller than 4 mm, it tends to be clogged, so it is not suitable for high-speed filtration. If it exceeds 10 mm, the capture rate of SS decreases.
  • the size of the floating filter medium 11 having a different shape means the maximum value of the outer diameter. Note that, in addition to the above-mentioned floating filter medium 11, a spherical filter medium having a smaller apparent density can be filled.
  • the high-speed filtration tank 3 filled with such a floating filter medium 11 can capture a large amount of SS without consolidation of the filter medium, and thus can process a large amount of rainwater at high speed.
  • a washing drain valve 18 is provided at the bottom of each high-speed filtration tank 3 so that water at the bottom of the tank can be discharged to the washing drain tank 4 via the washing drain pipe 19.
  • washing / drain valve 18 of one of the high-speed filtration tanks 3 is opened, the upper common processing The treated water in the 7j tank 13 flows back downward through the high-speed filtration tank 3 having the opened washing / draining valve 18 to backwash the packed bed of the floating filter medium 11. Washing wastewater is guided to a wastewater inflow channel 22 or a conventional first sedimentation basin 1 as shown in FIG. In the present embodiment, the cleaning drainage valve 18 is used. However, the cleaning drainage can be discharged through a siphon type drainage channel without using the cleaning drainage valve 18.
  • This equipment is capable of washing the high-speed filtration tank 3 with secondary effluent from the sewage treatment plant (secondary effluent after treatment in the reaction tank) in order to prevent bad smell during shutdown.
  • a secondary treated water supply pipe 21 for supplying the secondary treated water to the common treated water tank is provided.
  • the combined sewage flowing into the sand settling tank 5 is equal to or less than the design water quantity Q. Therefore, the entire quantity is guided to the conventional first sedimentation basin 1 by the sewage pump 8, and the conventional sewage treatment is performed.
  • the rainwater treatment apparatus of the present invention can rapidly filter a large amount of rainwater, and as long as the amount of inflow water does not abnormally increase, even if the amount of rainwater fluctuates, the design water amount Q is exceeded in response to the fluctuation. Every minute can be filtered. Since the SS removal rate of the high-speed filtration tank in the present invention is about 70%, most pollutants can be removed even when a large amount of rainwater exceeding 3 Q flows in, unlike the conventional case. When the rainfall continues, the pressure loss of each high-speed filtration tank 3 gradually increases, but the increase usually varies.
  • the pressure loss of each high-speed filtration tank 3 can be known from the difference between the water level of the common treatment water tank 13 and the water level of the rainwater inflow part.However, since the water level of the common treatment water tank 13 is common to each tank, it is the same. Yes, the rise in pressure drop in each tank can be grasped by the rise in water level at the rainwater inflow section.
  • Fig. 5 shows this state as an example, and shows that the pressure drop in the leftmost tank has increased and the water level in the rainwater inflow section 12 has risen significantly as compared to the other tanks. As a result, the rainwater inflow level rises to near the water level of the rainwater inflow channel 15, but washing starts automatically when the predetermined filter media pressure loss or the rainwater inflow water level is reached.
  • the backwashing is sequentially performed from the high-speed filtration tanks 3 that have reached the above-mentioned automatic cleaning timing pressure loss.
  • the backwashing is performed by opening the washing drainage valve 18 at the bottom and flowing the treated water in the common treated water tank 13 downward.
  • Figure 6 shows this situation, with the leftmost tank being backwashed.
  • the floating filter medium 11 having an apparent density of, for example, 0.1 to 0.4 is used, it is possible to effectively prevent the filter medium from flowing out together with the backwash water.
  • the backwash water enters the washing / drainage tank 4 and is guided to the conventional sewage inflow channel 2 or the first settling basin 1 by the drainage pump 20 for treatment. In this way, backwashing is performed naturally only by opening the washing drainage valve 18, and there is no need to operate a washing pump or the like.
  • the rainwater continuously flows in from the rainwater inflow section 12, and the high-speed filtration tanks other than the tank to be washed are continuously treated in the common treatment tank 13 because the high-speed filtration process continues. Water is supplied.
  • the time required for backwashing in one tank depends on the thickness of the filter media. However, when the thickness of the filter media is 0.5 to lm, it takes about 1 to 2 minutes.
  • the second tank from the left may reach the timing of backwashing. In this case, the washing of the leftmost tank is completed, and the second tank from the left is waiting for washing until the water level in the common treated water tank 13 reaches the predetermined level. Become. Even in this case, since the tank continues to be treated, the water level of the rainwater inflow channel 15 and the rainwater inflow section 12 may reach the same level at the highest due to the further increase in pressure loss. In this case, the amount of water treated in this tank is reduced to the amount corresponding to the pressure loss of the filter media in that tank, so the amount of water transferred from the rainwater inflow channel 15 to the rainwater inflow section is reduced compared to other tanks.
  • the reduced amount of water flows into the rainwater inflow section 12 of another tank and is treated. Therefore, even if the timing of backwashing happens to coincide, there is no maintenance operation related to rainwater inflow operation. Further, in the present invention, as described above, the cleaning time is about 2 minutes, and the cleaning standby time does not actually pose a problem. As described above, rainwater treatment is continued while performing the above-mentioned backwashing sequentially for the tanks whose pressure loss has risen to the predetermined level. The amount of inflow into the water is regulated naturally.
  • the rainwater treatment apparatus of the present invention As described above, according to the rainwater treatment apparatus in the combined sewer system of the present invention and the sewage treatment system using the same, the rainwater inflow exceeding Q that has been conventionally discharged with simple treatment or no treatment is provided. Most of them can be filtered and contribute to the purification of rivers and other environments. Further, the rainwater treatment apparatus of the present invention has an advantage that it is not necessary to construct a new civil engineering structure and secure an installation space since the first sedimentation basin of the combined sewage treatment plant can be sectioned and provided. Furthermore, the rainwater treatment apparatus of the present invention is almost maintenance-free. In particular, since there is no operation to be performed by humans in response to changes in rainfall during rainfall and the flow rate can be adjusted naturally, the management is easy and this is easy.
  • the backwashing of each high-speed filtration tank can be performed using the treated water in the common treated water tank without stopping the operation of the entire apparatus.
  • the present invention relates to a rainwater treatment apparatus used for sewage treatment of sewerage with sewage and rainwater, and a sewage treatment system using the rainwater treatment apparatus. It has great industrial applicability in that it can be treated and contributes to the purification of rivers and other environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Sewage (AREA)

Description

明 細 書 合流式下水道における雨水処理装置及びその逆洗方法 技術分野
本発明は、 汚水と降雨水が下水として合流する合流式下水道における雨水処理 装置及びその逆洗方法に関するものである。 さらに、 本発明は雨天時下水処理装 置 (以後、 雨水処理装置と称する) を用いる下水処理システムに関する。 なお、 本明細書では雨水の語を、 降雨時における降雨水と汚水との合流水である下水の 意味で使用しているため、 普通の意味の雨水を降雨水と記載して区別するものと する。
背景技術
汚水と降雨水との合流式下水道においては、 晴天時と降雨時との流量が大幅に 変化する。 一般に合流式下水処理場では、 降雨時における下水処理場への時間最 大流入水量を降雨水がなかったとした場合の時間最大流入水流量である設計水量
Qの 3倍の 3 Qに規制している。 Qを超えない場合については晴天時と同様の通 常処理を行なうことができるが、 Qを超え 3 Qまでの分については処理場反応槽 の通常の処理能力を超えるため、 最初沈殿池で沈殿をさせた後放流する簡易処理 を行なっている。 そしてさらに水量が増して 3 Qを超えた場合には、 全く処理す ることなくそのまま河川等に直接放流しているのが実情である。
従って、 水量が Qを超えて増加した場合には殆どの汚濁物質が、 そのまま河川 等に放流されることとなり、 環境を汚染する結果となる。 特に下水道の普及が早 かった大都市では合流式下水道が採用されていることが多いため、 ウォー夕一フ ロントの開発に伴いこの環境問題が顕在ィ匕しつつある。
このような問題に対処するため、 現在、 浮上ろ材層を備えた雨水の高速ろ過装 置が積極的に開発されつつある。 しかしながら、 現在研究段階で行われている雨 水高速ろ過装置はろ材厚さを 2 m以上で、 且つ下部にろ材流出防止スクリーンを 必要とするものであり、 あるいは処理効率を向上させるために凝集剤を投入する 機構を具備した装置となっており、 実用化に際しては、 水深 2 . 5〜4mの既設 最初沈殿池等の土木設備を利用することが不可能であるため、 土木構造物から新 規に構築する必要があり、 多大な費用を要する技術であった。
発明の開示
本発明は上記した従来の問題点を解決して、 Qを超える雨水が流入したり、 更 に 3 Qを超える大量の雨水が流入した場合にも、 大部分の汚濁物質を除去するこ とができる合流式下水道における雨水処理装置を提供するためになされたもので ある。 更に本発明は、 雨水処理装置を設置する場合に既存の最初沈殿池を簡易に 改造することにより安価に設置が可能となる雨水処理装置及びその逆洗方法を提 供するものである。 また本発明の他の目的は、 ほとんどメンテナンスの手数を要 することなく上記の目的を達成できる合流式下水道における雨水処理装置及びそ の逆洗方法を提供することである。 さらに、 本発明は該雨水処理装置を用いる下 水処理システムに関する。
本発明は、 上記の課題を解決するためになされたもので本発明の第 1の視点 は、 浮上ろ材層を有する複数の上向流式の高速ろ過槽と、 該複数の高速ろ過槽の 上面に設け該高速ろ過槽からの処理水を集合させる共通処理水槽と、 各高速ろ過 槽の洗浄排水を集合させる洗浄排水槽と、 該複数の高速ろ過槽の上部に流入雨水 を分配する雨水流入水路と, 及び 水流入水路から分配した雨水を各高速ろ過槽 の該浮式ろ材層の下方に流下させる雨水流入部とからなることを特徴とする合流 式下水道における雨水処理装置を提供するものである。
本発明に係る雨水処理装置は、 従来の合流式下水処理場の最初沈殿池を区画し て該雨水処理装置を形成することができる。
本発明の第 2の視点は、 下水を受け入れる沈砂池と、 該沈砂池の下流に設けた 最初沈殿池と、 該沈殿池の下流に設けた反応槽とからなる第 1の下水処理部と、 該沈砂池の下流に設けた第 2の下水処理部とからなる合流式下水道における下水 処理システムであって、 該第 2の下水処理部が、 浮上ろ材層を有する複数の上向 流式の高速ろ過槽と、 該複数の高速ろ過槽の上面に設け該高速ろ過槽からの処理 槽を集合させる共通処理水槽と、 各高速ろ過槽の洗浄排水を集合させる洗浄排水 槽と、 該複数の高速ろ過槽の上部に流入雨水を分配する雨水流入水路と, 及び 水流入水路から分配した雨水を各高速ろ過槽の該浮式ろ材層の下方に流下させる 雨水流入部とからなり、 下水の被処理水量が所定の設計水量以下の場合には第 1 の下水処理部において下水処理をし、 下水の被処理水量が所定の設計水量を超え る場合には第 1の下水処理部の該下水処理に加えて、 該所定の設計水量を超えた 水量の下水については第 2の下水処理部において下水処理を行うことが可能であ ることを特徴とする合流式下水道における下水処理システムに関する。
本発明の雨水処理装置は、 既存の、 例えば、 槽高 2. 5〜 4mの最初沈殿池を 改造して収めることができるが、 その理由として、 従来より細かいろ材を用いる ため、浮上ろ材層の厚みは 2 m未満の 0. 5〜 1 m程度と薄くすることが可能で、 かつ下部スクリーンを不要として、 更に凝集剤添加の設備を要しないコンパクト な高速ろ過設備を実現でき、 一回分の洗浄水量を減らすために高速ろ過槽を複数 設けて共通処理水槽の層厚を薄くできたためである。 更に雨水は、 水量変動に対 応させるため、 雨水流入水路の流入堰を介して各高速ろ過槽の雨水流入部に雨水 を自然流下により分配するものであることが好ましい。 また雨水流入水路の末端 に過剰の雨水をオーバーフローさせ高速ろ過槽をバイパスさせる雨水バイパスゲ ートを設けることにより、 予想以上の雨量にも対応させることができる。
また本発明の合流式下水道における雨水処理装置及び下水システムの逆洗方法 は、 上記の合流式下水道における雨水処理装置において、 圧損が高まった高速ろ 過槽に対して、 共通処理水槽内の処理水を下向きに流す逆洗を行なうことを特徴 とするものである。
上記のように、 本発明では合流式下水処理場の最初沈殿池を区画して上向流式 の高速ろ過槽などを設置し、 降雨時に流入する大量の雨水を雨水流入水路を介し て各槽に分配し、 充填された浮上ろ材により高速ろ過させることができる。 この ため Qを超える雨水が流入したり、 更に 3 Qを超える大量の雨水が流入した場合 にも、 大部分の汚濁物質を除去することができる。 また既設の最初沈殿池の一部 を区画して高速ろ過槽などを設置するので、 新たな土木設備の構築と設置スぺ一 スの確保を必要としない。 さらに以下に詳しく説明するように、 本発明ではほと んどメンテナンスの手数を要することなく運転することができる。
図面の簡単な説明
図 1は本発明の実施形態の雨水処理装置を示す平面図である。
図 2は図 1の垂直断面図である。
図 3は雨水流入水路を示す垂直断面図である。
図 4は降雨開始時における雨水の流れを示す平面図及び断面図である。
図 5は降雨継続中における雨水の流れを示す平面図及び断面図である。
図 6は降雨継続中、 1槽を逆洗中における雨水の流れを示す平面図及び断面図 . である。
図 7は本発明で用いることができる 4枚の腕を持つろ材を示す。
図 8は本発明で用いることができる本発明で用いることができる断面四角形状 の板状体の外周面に波上の凹凸を形成したろ材を示す。
図 9は本発明で用いることができる断面が Z状のろ材を示す。
図 1 0は本発明で用いることができるチューブ上のろ材を示す。
図 1 1は本発明で用いることができる図 7の羽根部分を変形した風車型のろ材 を示す。
発明を実施するための最良の形態
以下に本発明の好ましい実施形態を説明する。
図 1は本発明の雨水処理装置を示す平面図、図 2は図 1の I I— I I線に沿う 断面図である。 この実施形態では、 合流式下水処理場に設けられていた最初沈殿 池のうち、 その必要分を従来の最初沈殿池 1のまま残し (図では、 2列の最初沈 殿池とした)、余った最初沈殿池に複数の高速ろ過槽 3と、洗浄排水槽 4とを形成 してある (図では、 2列の高速ろ過槽と洗浄排水槽とした)。 この結果、最初沈殿 池 1の水面積が従来よりも減少するが、 下水処理技術の進歩により最近では最初 沈殿池 1の水面積が以前よりも小さく面積で足りるようになつており、 合流式下 水処理場では最初沈殿池 1の処理能力がが余っていることが多いため、 通常の下 水処理に影響はない。 あるいは、 結果として最初沈殿池は、 晴天時の時間最大下 水量までしか受け入れなくなるため、 通常の下水処理に影響がない。
図 1の左側の部分には、 下水が供給される沈砂池5と、 設定水量及び降雨量に 基づいて沈砂池からの下水が分配される雨水槽 6と、 汚水槽 7とが設けられてい る。 処理場によっては、 この雨水槽 6と、 汚水槽 7は共通槽となる場合もある。 従来、 流入下水は全量を沈砂池 5に受け入れたうえ、 設計水量である 3 Qまでを 汚水ポンプ 8により従来の最初沈殿池 1に導く。 そして最初沈殿池 1で S Sを分 離した水は後段の反応槽に送られ、 従来通りの処理が行われる。 晴天時には流入 下水の量は Q以下であるから、 このラインのみが運転されることは従来と同じで ある。本発明においては、降雨時には流入水量は Qを越えるため場合もあるため、 Qを越えた全量を高速ろ過槽 3側に導く。 従つて必要に応じて汚水ポンプ 8から の送水管を高速ろ過槽 3へ導く改造も行う。
高速ろ過槽 3は、 中段部分にスクリーン 1 0を張りその下部に浮上ろ材 1 1を 充填したろ過槽である。この実施形態では全部で 8槽が 2列に配置されているが、 槽数は複数であればその数は任意である。 これらの高速ろ過槽 3は上向流式のろ 過槽であり、 図 3に示されるように各槽ごとに垂直な雨水流入部 1 2を備えてい る。 雨水はこれらの雨水流入部 1 2から槽下部に供給され、 浮上ろ材 1 1の充填 層を上向きに通過する間に夾雑物, S Sが捕捉され、 処理水は上方に抜ける。 図 示のように各高速ろ過槽 3の上面は共通処理水槽 1 3となっており、 処理水はそ の端部 (図面上の右端部) から雨水処理水路 1 4に流れ、 河川等に放流される。 この実施形態では 4槽ずっ共通処理水槽 1 3で連結されている。 通常の最初沈殿 池流出部には、 簡易処理水バイパス放流水路が設置されており、 その水路を利用 すれば雨水処理水路に改造することは可能である。
また高速ろ過槽 3の上部には、 前記した各槽の雨水流入部 1 2に雨水を分配す る雨水流入水路 1 5が形成されている。 この雨水流入水路 1 5は損失水頭分の水 位を確保できるように高い位置に設置され、 例えば ¾1水流入水路 1 5の流入堰高 さは共通処理水槽 1 3の液面よりも 0 . 2〜 1 m程度以上高くしておく。そして、 雨水時のファーストフラッシュを処理する場合には、 ろ過損失水頭分をその範囲 内で高めにとり、 雨天後の例えば晴天時に長時間処理する場合には、 その範囲内 で低めにとることができる。 前記した雨水ポンプ 9、 あるいは必要に応じて汚水 ポンプ 8によって雨水はこの雨水流入水路 1 5に揚水され、 雨水流入水路 1 5に 設けられた複数の流入堰 1 6を介して対応する各高速ろ過槽 3の雨水流入部 1 2 に雨水を自然流下により分配する。
前記したように、 降雨時に Qを越えた流入水の全量が雨水ポンプ 9あるいは必 要に応じてポンプ 8によって雨水流入水路 1 5に揚水される。 本発明の雨水処理 装置は 3 Qを大きく超える流入水量 (例えば 5 Q〜7 Q) に対応できるものであ るが、 それでも異常な大雨の場合などには、 処理能力を超える可能性もある。 そ こで雨水流入水路 1 5の、 例えば、 末端に過剰の雨水をォ一バーフローさせる雨 水パイパスゲート 1 7を設け、 過剰の雨水を雨水処理水路 1 4に流下させ、 河川 等に直接放流できるようにしておくことが好ましい。 なおこの雨水パイパスゲー 卜 1 7の高さは予め任意に^定可能である。
本発明で用いられる浮上ろ材 1 1としては、 みかけ密度が 0 . 1〜0 . 4で、 5 0 %圧縮硬さが 0. I MP a以上の発泡高分子からなるものが好ましい。 この ような物性を持つ発泡高分子としては、 ポリプロピレン、 ポリスチレン、 ポリエ チレン等があり、 これらの中でも発泡度を制御された独立気泡型の発泡ポリェチ レンは耐熱性、 耐薬品性、 対候性にも優れ好ましいものである。 浮上ろ材 1 1のみかけ密度は、 0 . 1未満であると望ましい圧縮硬さを得るこ とができず、 また逆洗時に浮上ろ材の充填層を膨張させにくくなる。 逆に 0 . 4 を超えると逆洗時に下方に流出するおそれがある。 また 5 0 %圧縮硬さが 0 . 1 M P aよりも小さいと、 高速ろ過の際にろ材が圧密されてしまい、 多量の S Sを 捕捉できなくなる。 なお 5 0 %圧縮硬さとは、 ろ材を高さが半分になるまで押し 潰すに要する圧力を意味する。
また本発明で用いられる浮上ろ材 1 1としては、 サイズが 4〜1 O mmの凹凸 状または筒状のものが好ましい。 ここで凹凸状とは、 立方体や球体のような単純 形状ではなく、 外表面に何らかの凹凸を鏞えた異形状を意味するものである。 こ のような凹凸状の浮上ろ材 1 1は、 相互間に非直線的な大きい間隙を形成し、 多 量の S Sを捕捉できる利点がある。 また円筒状や各筒状の浮上ろ材 1 1も、 同様 に多量の S Sを捕捉できる利点がある。
図 7〜図 1 1に、 本発明で用いることができるろ材を例示する。 図 7には 4 枚の腕 9を持つろ材を示し、 図 8には断面四角形状の板状体の外周面に波上の凹 凸を形成したろ材 2を示し、 図 9には断面が Z状のろ材を示し、 図 1 0にはチュ ーブ上のろ材を示し、図 1 1には図 7の羽根部分を変形した風車型のろ材を示す。 浮上ろ材 1 1のサイズは 4mmよりも小さいと閉塞し易いために高速ろ過に適 さず、 1 0 mmを超えると S Sの捕捉率が低下する。 異形状の浮上ろ材 1 1のサ ィズとは、 外径寸法の最大値をいうものとする。 なお、 上記の浮上ろ材 1 1のほ かに、 さらにみかけ密度の小さい球状ろ材を充填することも可能である。
このような浮上ろ材 1 1が充填された高速ろ過槽 3は、 ろ材の圧密がなく多量 の S Sを捕捉できるため、 大量の雨水を高速処理することができる。 しかし S S の捕捉量が増加するにつれて圧損が増加してろ過能力が低下するため、 逆洗の必 要が生じる。 このため、 各高速ろ過槽 3の底部には洗浄排水弁 1 8を設け、 槽下 部の水を洗浄排水管 1 9を経由して洗浄排水槽 4に排出できるようにしてある。 すなわち、 いずれかの高速ろ過槽 3の洗浄排水弁 1 8を開くと、 上部の共通処理 7j槽 1 3内の処理水がその開けた洗浄排水弁 1 8を有する高速ろ過槽 3を通じて 下方に逆流し、 浮上ろ材 1 1の充填層の逆洗が行なわれる。 洗浄排水は洗浄排水 槽 4に設けられた排水ポンプ 2 0により、 図 1に示すように汚水流入水路 2 2あ るいは、 従来の最初沈殿池 1に導かれて処理される。 本実施態様では、 洗浄排水 弁 1 8を用いたが、 洗浄排水弁 1 8を用いずにサイフォン方式の排水路により洗 浄排水を排出することもできる。
本設備は、停止時の悪臭を防止するため下水処理場の二次処理水(二次処理水 とは反応槽で処理した後のもの) により高速ろ過槽 3の洗浄を行うことが可能で ある。 このため、 二次処理水を共通処理水槽に供給する二次処理水供給管 2 1が 具備されている。
以下に本発明の雨水処理装置による雨水処理方法を、 その逆洗方法とともに説 明する。
まず晴天時には、沈砂槽 5に流入する合流下水量は設計水量 Q以下であるから、 その全量が汚水ポンプ 8により従来の最初沈殿池 1に導かれ、 従来通りの下水処 理が行われる。
降雨開始により沈砂槽 5に流入する合流下水量が設計水量 Qを超えると、 超過 分は全て雨水ポンプ 9あるいは必要に応じて汚水ポンプ 8によって雨水流入水路 1 5に揚水され、 図 4のように各流入堰 1 6を介して各高速ろ過槽 3の雨水流入 部 1 2に自然流下により分配される。 分配された雨水は一旦ろ材層下部に流下し た後各高速ろ過槽 3のろ材層内部を上向きに流れてろ過され、 処理水は共通処理 水槽 1 3から雨水処理水路 1 4を経由して河川等に放流される。
前記したように本発明の雨水処理装置は大量の雨水を高速ろ過することができ、 流入水量が異常に増加しないかぎり、 雨水量が変動しても、 その変動に対応して 設計水量 Qの超過分を全てろ過することができる。 本発明における高速ろ過槽の S S除去率は 7 0 %程度であるから、 従来とは異なり 3 Qを超える大量の雨水が 流入した場合にも、 大部分の汚濁物質を除去することができる。 降雨が継続すると、 各高速ろ過槽 3の圧損が次第に増加してくるがその増加に はばらつきが生じるのが普通である。 各高速ろ過槽 3の圧損は、 共通処理水槽 1 3の水位と雨水流入部水位との差で知ることができるが、 共通処理水槽 1 3の水 位は各槽共通であるため同一 Τ位であり、 各槽の圧損上昇は雨水流入部水位の上 昇分で把握することができる。 図 5は例としてこの状態を示すものであり、 左端 の槽の圧損が高くなり、 雨水流入部 1 2の水位が他の槽に比べて著しく上昇して いる様子を示している。 その結果、 雨水流入水位が雨水流入水路 1 5の水位近く まで上昇するが、 事前に決めたろ材圧損あるいは、 雨水流入部水位に達した時点 で自動的に洗浄が開始される。
このように降雨の継続により、 遅かれ早かれ全ての高速ろ過槽 3の圧損が次第 に高まりろ過不能に至るが、 前述した自動洗浄のタイミングの圧損に至った高速 ろ過槽 3より順次逆洗を行なう。 前記したように逆洗は底部の洗浄排水弁 1 8を 開き、 共通処理水槽 1 3内の処理水を下向きに流すことにより行なわれる。 図 6 はこの状態を示すものであり、 左端の槽が逆洗中である。 前記したようにみかけ 密度が、 例えば 0. 1〜0. 4の浮上ろ材 1 1を使用すれば、 逆洗水とともにろ 材が流出することを効果的に防止することが可能となる。 逆洗水は洗浄排水槽4 に入り、 排水ポンプ 2 0により従来の汚水流入水路 2あるいは、 最初沈殿池 1に 導かれて処理される。 このように、 逆洗も洗浄排水弁 1 8を開くだけで自然に行 なわれ、 洗浄用ポンプを運転するなどの操作を要しない。 なお、 洗浄中において も雨水は雨水流入部 1 2より継続的に流入すると共に、 洗浄される槽以外の高速 ろ過槽は高速ろ過処理が継続的に進行するため共通処理槽 1 3へは常に処理水が 供給される。 一方、 1槽の逆洗に要する時間はろ材の厚さによるが、 ろ材厚さが 0 . 5〜l mの場合は 1〜2分程度である。
また、 図 6に示すようにまれに、 左端の槽の.洗浄中に左側から 2番目の槽が逆 洗のタイミングを迎えることがある。 この場合、 左端の槽の洗浄が終わり、 共通 処理水槽 1 3の水位が所定量に達するまで左側から 2番目の槽は、 洗浄待機中と なる。 この場合でもこの槽は処理を続けるため、 圧損のさらなる上昇により最高 で雨水流入水路 1 5と雨水流入部 1 2の水位が同レベルとなる場合がある。 この 場合この槽での処理量は、 その槽のろ材の圧損に見合う量しか処理されないため、 雨水流入水路 1 5から雨水流入部への水の移動量は他の槽と比べて減じることに なる。 この場合減じた水量分は他の槽の雨水流入部 1 2へ流入し処理されること になる。 従って、 このようにたまたま逆洗のタイミングが重なっても、 雨水流入 操作に関する一切の維持管理操作はない。 また、 本発明においては前述したよう に洗浄時間は 2分程度であり、 洗浄待機の時間は事実上問題にな,ることはない。 以上示したように圧損が所定レベルまで高まった槽に対して上記の逆洗を順次 行ないながら、 雨水の処理を継続するが、 このように特別な流量調整を行わなく ても各高速ろ過槽 3への流入量は自然に調整される。
さらに、 流入水量が異常に増加した場合には雨水流入水路 1 5の末端に設けた 雨水バイパスゲート 1 7から過剰の雨水を雨水処理水路 1 4に流下させ、 河川等 に直接放流する。 この雨水バイパスゲ一ト 1 7のゲート高さは事前に調整してお くため、 雨天時の特別な操作は不要である。
なお降雨が終了して流入水量が低下すると、 高速ろ過槽 3への雨水の流入量は 自然に減少していく。 しかしながら、 流入水量がなくなるタイミングの事前予測 は不可能であり、 高速ろ過槽 3は各槽の程度は異なるがろ材中に汚濁物質を抑留 した状態でろ過は自然終了することになる。 このように晴天時には高速ろ過槽 3 への流入がこのような状態で完全に停止することとなるが、 そのまま放置すると ろ材中の汚濁物質により悪臭が発生するおそれがある。 そこで、 各高速ろ過槽 3 を別途順次逆洗するため、 下水処理塲の二次処理水を二次処理水供給管 2 1によ り共通処理水槽 1 3に補給する。 そして、 共通処理水槽 1 3がその二次処理水で 所定量に達したら洗浄排水弁 1 8を開いて任意の一高速ろ過槽 3を完全に洗浄す る。 更に、 この繰り返しにより全ての高速ろ過槽 3を完全に洗浄する。 この洗浄 は前述の雨天時ろ過と違い二次処理水を用いてろ材を完全に洗浄するため、 悪臭 等の発生が防止された状態で次回の雨水流入を待つことになる。
以上に説明したように、 本発明の合流式下水道における雨水処理装置及び同雨 水処理装置を用いた下水処理システムによれば、 従来は簡易処理あるいは無処理 で放流されていた Qを超える流入雨水のほとんどをろ過処理することができ、 河 川等の環境浄化に寄与することができる。 また本発明の雨水処理装置は、 合流式 下水処理場の最初沈殿池を区画して設けることができるので、 新たな土木構造物 の構築, 設置スペースの確保を必要としない利点がある。 さらに本発明の雨水処 理装置はほとんどメンテナンスフリ一であり、 特に降雨中の雨量変ィ匕に応じて人 が対応すべき操作はなく自然に流量調整などが行なえるから、 管理が容易でこれ に伴う薬剤費, 電気代, 人件費等の増加はない利点がある。 さらに本発明の逆洗 方法によれば、 共通処理水槽の処理水を利用して、 装置全体の運転を停止するこ となく、 各高速ろ過槽の逆洗を行なうことができる。
産業上利用分野
本発明は、 下水と降雨水との合流式下水道の下水処理に用いられる雨水処理装 置および該雨水処理装置を用いる下水処理システムに関し、 近年増大の一途であ る合流式下水道の下水を確実に処理でき、 河川等の環境浄化に寄与する点で産業 上利用可能性が大である。

Claims

請 求 の 範 囲
1 . 浮上ろ材層を有する複数の上向流式の高速ろ過槽と、 該複数の高速ろ過槽の 上面に設け該高速ろ過槽からの処理槽を集合させる共通処理水槽と、各高速ろ 過槽の洗浄排水を集合させる洗浄排水槽と、該複数の高速ろ過槽の上部に流入 雨水を分配する雨水流入水路と,及び 水流入水路から分配した雨水を各高速 ろ過槽の該浮式ろ材層の下方に流下させる雨水流入部とからなることを特徴 とする合流式下水道における雨水処理装置。
2 . 合流式下水処理場の最初沈殿池を区画して形成される請求項 1記載の雨水処
3 . 雨水流入水路が流入堰を介して各高速ろ過槽の雨水流入部に雨水を自然流下 により分配するものである請求項 1または 2記載の合流式下水道における雨 水処理装置。
4. 雨水流入水路に、 過剰の雨水をォ一バ一フローさせ高速ろ過槽をバイパスさ せる雨水バイパスゲートを設けた請求項 1乃至 3のいずれかに記載の合流式 下水道における雨水処理装置。
5 . さらに、 雨水処理停止時に下水処理場の二次処理水を共通処理槽に供給する 二次処理水供給管を有する請求項 1乃至 4のいずれかに記載の合流式下水道に おける雨水処理装置。
6 . 下水を受け入れる沈砂池と、 該沈砂池の下流に設けた最初沈殿池と、 該沈殿 池の下流に設けた反応槽とからなる第 1の下水処理部と、 該沈砂池の下流に設 けた第 2の下水処理部とからなる合流式下水道における下水処理システムであ つて、 該第 2の下水処理部が、 浮上ろ材層を有する複数の上向流式の高速ろ過 槽と、 該複数の高速ろ過槽の上面に設け該高速ろ過槽からの処理槽を集合させ る共通処理水槽と、 各高速ろ過槽の洗浄排水を集合させる洗浄排水槽と、 該複 数の高速ろ過槽の上部に流入雨水を分配する雨水流入水路と, 及び雨水流入水 路から分配した雨水を各高速ろ過槽の該浮式ろ材層の下方に流下させる雨水流 入部とからなり、 下水の被処理水量が所定の設計水量以下の場合には第 1の下 水処理部において下水処理をし、 下水の被処理水量が所定の設計水量を超える 場合には第 1の下水処理部の該下水処理に加えて、 該所定の設計水量を超えた 水量の下水については第 2の下水処理部において下水処理を行うことが可能で あることを特徴とする合流式下水道における下水処理システム。
前記第 2の下水処理部が合流式下水処理場の最初沈殿池を区画して形成した 請求項 6記載の下水処理システム。
雨水流入水路が流入堰を介して各高速ろ過槽の雨水流入部に雨水を自然流下 により分配するものである請求項 6または 7記載の合流式下水道における下 τ処理システム。
雨水流入水路に、 過剰の雨水をオーバーフローさせ高速ろ過槽をバイパスさ せる雨水バイパスゲートを設けた請求項 6乃至 8のいずれかに記載の合流式 下水道における下水処理システム。
0 . さらに、 雨水処理停止時に下水処理場の二次処理水を共通処理槽に供給す る二次処理水供給管を有する請求項 6乃至 9のいずれかに記載の合流式下水道 における雨水処理装置。
1 . 前記最初沈殿池は前記沈砂池の下流に第 1の下水槽を介して設けられ、 前 記第 2の下水処理部が前記沈砂池の下流に第 2の下水槽を介して設けられた請 求項 6乃至 1 0のいずれかに記載の合流式下水道における雨水処理装置。 2 . 前記第 1の下水槽と前記第 2の下水槽とが共通の一つの下水槽である請求 項 1 1記載の合流式下水道における下水処理システム。
3 . 請求項 1乃至 5のいずれかに記載の合流式下水道における雨水処理装置に おいて、 圧力損失が所定のレベルを超えた高速ろ過槽に対して、 共通処理水槽 内の処理水を該高速ろ過槽に下向きに流して逆洗を行なうことを特徴とする合 流式下水道における雨水処理装置の逆洗方法。
4. さらに、 雨水処理停止時に下水処理場の二次処理水を共通処理槽に供糸合し て前記複数の高速ろ過槽を逆洗することを特徴とする請求項 1 3記載の合流式 下水道における雨水処理装置の逆洗方法。
5 . 請求項 6乃至 1 2いずれかに記載の合流式下水道における下水処理システ ムにおいて、 圧損が所定のレベルを超えた前記高速ろ過槽に対して、 共通処理 水槽内の処理水を該高速ろ過槽に下向きに流す逆洗を行なうことを特徴とする 合流式下水道における雨水処理装置の逆洗方法。
6 . さらに、 雨水処理停止時に下水処理場の二次処理水を共通処理槽に供給し て前記複数の高速ろ過槽を逆洗いすることを特徴とする請求項 1 5記載の合流 式下水道における雨水処理装置の逆洗方法。
PCT/JP2002/003404 2001-04-04 2002-04-04 Dispositif de traitement des eaux de pluie dans des eaux d'egout mixtes et procede de lavage a contre-courant associe WO2002081050A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/343,179 US6821445B2 (en) 2001-04-04 2002-04-04 Rainwater-treating apparatus in combined sewer system and backwashing method therefor
DE60226965T DE60226965D1 (de) 2001-04-04 2002-04-04 Vorrichtung zur regenwasserbehandlung in mischwasserkanälen und zugehöriges verfahren für die rückspülung
EP02714472A EP1380330B1 (en) 2001-04-04 2002-04-04 Rain water treating device in combined sewage, and backwashing method therefor
JP2002579087A JP3824583B2 (ja) 2001-04-04 2002-04-04 合流式下水道における雨水処理装置及びその逆洗方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001105637 2001-04-04
JP2001-105637 2001-04-04

Publications (1)

Publication Number Publication Date
WO2002081050A1 true WO2002081050A1 (fr) 2002-10-17

Family

ID=18958292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003404 WO2002081050A1 (fr) 2001-04-04 2002-04-04 Dispositif de traitement des eaux de pluie dans des eaux d'egout mixtes et procede de lavage a contre-courant associe

Country Status (5)

Country Link
US (1) US6821445B2 (ja)
EP (1) EP1380330B1 (ja)
JP (1) JP3824583B2 (ja)
DE (1) DE60226965D1 (ja)
WO (1) WO2002081050A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218991A (ja) * 2004-02-06 2005-08-18 Unitika Ltd 合流式下水道におけるろ過処理方法
JP2008000697A (ja) * 2006-06-23 2008-01-10 Ngk Insulators Ltd 合流式下水の一次処理方法
JP2009226332A (ja) * 2008-03-24 2009-10-08 Metawater Co Ltd ろ過設備の洗浄方法
WO2012105172A1 (ja) * 2011-02-02 2012-08-09 メタウォーター株式会社 ろ過システム
JP2017177028A (ja) * 2016-03-31 2017-10-05 株式会社システック ろ過材及びこれを用いたろ過装置及びろ過材の閉塞回避方法
CN108993022A (zh) * 2018-08-10 2018-12-14 浙江顺艺园林工程有限公司 一种市政雨水收集回收利用系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS253102A0 (en) * 2002-05-23 2002-06-13 Unisearch Limited Oil from water separation system
DE20103875U1 (de) * 2001-03-07 2001-08-16 Vollmar Gmbh Abwasseranlage mit Reinigungsvorrichtung
US7052206B1 (en) * 2003-04-30 2006-05-30 Mastromonaco Ralph G System and method for use of an extention basin as a storm water control device
FR2879943B1 (fr) * 2004-12-23 2007-07-13 Sources Sa Plancher-support destine a la filtration d'eaux usees et cellules de traitement comportant un tel plancher-support
FR2880549B1 (fr) * 2004-12-29 2007-03-16 Sources Sa Cellule de traitement destinee a la filtration d'eaux usees et comportant un deflecteur anti-perte de materiau
FR2880550B1 (fr) * 2004-12-29 2007-03-16 Sources Sa Cellule de traitement destinee a la filtration d'eaux usees, alimentee par une tulipe d'admission
US20060289358A1 (en) * 2005-06-22 2006-12-28 Geospec, Inc. Methods and apparatus for removing contaminants from storm water
JP5189968B2 (ja) * 2008-12-08 2013-04-24 メタウォーター株式会社 下水処理システム及びその運用方法並びに改善方法
KR100978071B1 (ko) * 2010-06-18 2010-08-26 미라클워터 주식회사 초고속 여과기능 및 역세기능을 구비한 여과장치
KR100978070B1 (ko) * 2010-06-18 2010-08-26 미라클워터 주식회사 초고속 여과기능 및 역세기능을 구비한 여과장치
US8882441B2 (en) * 2010-07-07 2014-11-11 ATOPIA Research Deployable wind power and battery unit
US9856161B2 (en) 2012-04-06 2018-01-02 Bookang Teck Co., Ltd. Wastewater treatment apparatus capable of performing both initial rainwater overflow treatment and primary treatment, and wastewater treatment method according to said apparatus
CN202822936U (zh) * 2012-05-23 2013-03-27 瑞典诺迪克有限公司 过滤设备及用于向过滤设备供应流体的装置
CA2903446C (en) 2013-03-12 2019-07-16 Derrick Corporation Apparatus, system and methods to divide flow
KR101682228B1 (ko) * 2014-09-01 2016-12-02 이주승 우수 여과장치
US10631525B1 (en) * 2015-05-11 2020-04-28 New PCA, LLC Multi-path aquarium filtration apparatus
US10029922B2 (en) * 2016-02-12 2018-07-24 Denny Hastings Flp 14 Transportable multi-chamber water filtration systems
US10730765B2 (en) * 2016-10-26 2020-08-04 Phillip Fuqua Smith Mobile reservoir system
CN108744709B (zh) * 2018-06-29 2020-12-29 吉林省拓维环保集团股份有限公司 一种新型工业废水处理池
US11980835B2 (en) * 2020-07-27 2024-05-14 Foley Products Company, Llc Double-filter basket for stormwater retention system drain
KR102327003B1 (ko) * 2021-01-15 2021-11-16 주식회사 부강테크 하·폐수의 1차 처리, 유량 조절 및 초기 우수 처리가 가능하며 고속여과를 포함하는 침전조

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224910U (ja) * 1985-07-29 1987-02-16
US5248415A (en) * 1991-10-18 1993-09-28 Mitsuimiikekakouki Kabushiki Kaisha High speed upward flow filtration apparatus
JPH05317841A (ja) * 1992-04-09 1993-12-03 Hitachi Plant Eng & Constr Co Ltd 下水処理施設

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US679107A (en) * 1900-12-28 1901-07-23 Henry Alonzo Buck Hot-water tank.
JPS6224910A (ja) 1985-07-19 1987-02-02 Sanwa Daiyamondo Kogyo Kk 硬質物切削用帯のこ
US5317841A (en) * 1992-08-28 1994-06-07 Whitemetal, Inc. Method for removal of surface contaminants from metal substrates
US5558763A (en) * 1993-06-24 1996-09-24 Hitachi Plant Engineering & Construction Co., Ltd. Sewage treatment system with air jetting means
DE19511008C2 (de) * 1995-03-25 2000-09-28 Vsb Vogelsberger Umwelttechnis Siebanordnung für kreisförmige Regenwasserentlastungsanlagen
DE19820259C2 (de) * 1998-05-06 2000-08-24 Dieter Kruse Vorrichtung zum Reinigen, Spülen und Waschen eines Abwasserstromes in einem Zulaufgerinne einer Kläranlage
UA69413C2 (uk) * 1998-05-22 2004-09-15 Брістол-Майерс Сквібб Компані Фармацевтична композиція, яка містить серцевину та ентеросолюбільну оболонку, фармацевтична композиція у вигляді сфероїдальних гранул, спосіб одержання сфероїдальних гранул та спосіб одержання фармацевтичної композиції

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224910U (ja) * 1985-07-29 1987-02-16
US5248415A (en) * 1991-10-18 1993-09-28 Mitsuimiikekakouki Kabushiki Kaisha High speed upward flow filtration apparatus
JPH05317841A (ja) * 1992-04-09 1993-12-03 Hitachi Plant Eng & Constr Co Ltd 下水処理施設

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1380330A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218991A (ja) * 2004-02-06 2005-08-18 Unitika Ltd 合流式下水道におけるろ過処理方法
JP2008000697A (ja) * 2006-06-23 2008-01-10 Ngk Insulators Ltd 合流式下水の一次処理方法
JP4674188B2 (ja) * 2006-06-23 2011-04-20 メタウォーター株式会社 合流式下水の一次処理方法
JP2009226332A (ja) * 2008-03-24 2009-10-08 Metawater Co Ltd ろ過設備の洗浄方法
WO2012105172A1 (ja) * 2011-02-02 2012-08-09 メタウォーター株式会社 ろ過システム
JP2012157842A (ja) * 2011-02-02 2012-08-23 Metawater Co Ltd ろ過システム
US10407317B2 (en) 2011-02-02 2019-09-10 Metawater Co., Ltd. Floating filter media filtration system with backwash
JP2017177028A (ja) * 2016-03-31 2017-10-05 株式会社システック ろ過材及びこれを用いたろ過装置及びろ過材の閉塞回避方法
CN108993022A (zh) * 2018-08-10 2018-12-14 浙江顺艺园林工程有限公司 一种市政雨水收集回收利用系统
CN108993022B (zh) * 2018-08-10 2021-08-10 浙江顺艺园林工程有限公司 一种市政雨水收集回收利用系统

Also Published As

Publication number Publication date
EP1380330A1 (en) 2004-01-14
JP3824583B2 (ja) 2006-09-20
US6821445B2 (en) 2004-11-23
US20030106859A1 (en) 2003-06-12
JPWO2002081050A1 (ja) 2004-07-29
EP1380330B1 (en) 2008-06-04
EP1380330A4 (en) 2004-12-08
DE60226965D1 (de) 2008-07-17

Similar Documents

Publication Publication Date Title
WO2002081050A1 (fr) Dispositif de traitement des eaux de pluie dans des eaux d'egout mixtes et procede de lavage a contre-courant associe
US6991734B1 (en) Solids retention in stormwater system
JP3865304B2 (ja) 雨水処理装置
JP7145544B2 (ja) 微小水量逆洗変速上向流式軽量濾材フィルタ及びその方法
KR101872911B1 (ko) 비점오염원 저감장치
JP5368142B2 (ja) 合流式下水道における越流水の処理システム
WO2002072227A1 (fr) Filtre a debit eleve et procede de filtration a debit eleve utilisant ledit filtre
KR101451348B1 (ko) 여과 시스템
KR100528633B1 (ko) 유동 활성탄을 이용한 오·폐수 정화용 활성탄조
CN2782187Y (zh) 上向流反粒度快滤池
JP3360225B2 (ja) 雨水浄化処理槽
JP2010247059A (ja) 重力式ろ過装置と水の浄化方法
Cleasby et al. Wastewater filtration: design considerations
CN213950659U (zh) 上向流颗粒活性炭吸附系统
JP2004290752A (ja) 合流下水の高速ろ過方法
KR200255003Y1 (ko) 자갈 및 세라믹을 채운 다층 구조의 상향류식 하천 정화장치 및 정화 방법
CN219527853U (zh) 一种初期雨水的处理系统
CN216863659U (zh) 一种河流面源污染削减与控制处理装置
JP5956267B2 (ja) ろ過システム
CN214115140U (zh) 一种分质分区cso调蓄净化系统
JP3391498B2 (ja) 重力式濾過装置
CN116139556A (zh) 一种雨水调蓄池前轻质滤料环形过滤装置
KR100546060B1 (ko) 초기강우 유출수 정화장치 및 그 방법
JP4475896B2 (ja) 合流式下水方法
JPH0947771A (ja) 直接型河川浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002714472

Country of ref document: EP

Ref document number: 10343179

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002579087

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002714472

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002714472

Country of ref document: EP