WO2002077535A1 - Air conditioner and method of installing the air conditioner - Google Patents

Air conditioner and method of installing the air conditioner Download PDF

Info

Publication number
WO2002077535A1
WO2002077535A1 PCT/JP2001/002352 JP0102352W WO02077535A1 WO 2002077535 A1 WO2002077535 A1 WO 2002077535A1 JP 0102352 W JP0102352 W JP 0102352W WO 02077535 A1 WO02077535 A1 WO 02077535A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
indoor
room
ventilation
heat exchanger
Prior art date
Application number
PCT/JP2001/002352
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Inoue
Norikazu Ishikawa
Akio Fukushima
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to AU2001239565A priority Critical patent/AU2001239565B2/en
Priority to GB0211234A priority patent/GB2376291A/en
Priority to PCT/JP2001/002352 priority patent/WO2002077535A1/en
Priority to US10/258,575 priority patent/US20040011072A1/en
Priority to CN01807014A priority patent/CN1419645A/en
Priority to JP2002575544A priority patent/JPWO2002077535A1/en
Publication of WO2002077535A1 publication Critical patent/WO2002077535A1/en
Priority to HK02109105.1A priority patent/HK1047616A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present invention relates to an air conditioner, particularly to an air conditioner suitable for air-conditioning an unmanned room accommodating heat-generating equipment, and a method of installing the same.
  • FIG. 9 is a cross-sectional view showing a mounting state during cooling
  • FIG. 10 is a cross-sectional view showing a mounting state during heating.
  • 1 is a housing
  • 2 is partitioned on the upper part of the housing 1, in the posture of FIG. 9, the first room where the side of the room A is open, 3 is partitioned in the center of the housing 1,
  • a second room 4 is open on the outside B side in the opposite direction to the first room 2
  • a third room 4 is defined at the bottom of the housing 1.
  • 5 is a compressor provided in the third room 4
  • 6 is a condenser provided in the second room 3
  • 7 is an evaporator provided in the first room 2
  • 8 is a blower for the condenser
  • 9 Is a blower for the evaporator.
  • Reference numeral 10 denotes an indoor louver
  • 11 denotes an outdoor louver.
  • louvers 10 and 11 are both detachable, can be turned upside down, and can adjust the blowing angle.
  • the compressor 5, the condenser 6, the expansion device, the evaporator 7, and the compressor 5, which are not illustrated, are arranged in this order. They are connected by refrigerant piping to form a refrigeration cycle.
  • Reference numerals 12 and 13 denote shafts provided coaxially on the upper and lower end surfaces of the housing 1 on the vertical axis, respectively, and the housing 1 is turned around the shafts 12 and 13. You can move.
  • 14 is a side wall facing the outdoor B, and 15 is an opening of the side wall 14.
  • the housing 1 is opened in the side wall 14 so that the posture shown in FIG. 9 and the posture shown in FIG. 10 can be arbitrarily selected by rotating about the shafts 12 and 13.
  • the same or corresponding parts are denoted by the same reference numerals throughout the drawings, and description thereof will be omitted.
  • the posture shown in Fig. 9 is adopted, so that the opening of the first room 2 containing the evaporator 7 faces the room side and the second room containing the condenser 6
  • the opening of room 3 faces outside.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 5 is cooled in the condenser 6 by exchanging heat with the outside air introduced by the blower 8, radiating heat to the outdoor B and condensing.
  • the condensed refrigerant enters the evaporator 7 through an expansion valve (not shown), and removes heat from the air in the room A, so that the room A is cooled.
  • the room air is sucked by the blower 9 for the evaporator 7 into the first room 2 located at the top of the housing 1 as shown by the arrow a in FIG. Cool air is blown from the lower part of the room A diagonally downward as indicated by the arrow b.
  • cabinet 1 is rotated halfway around shafts 12 and 13 to achieve the posture shown in Fig. 10.
  • both the indoor louver 10 and the outdoor louver 11 are temporarily removed before rotating them.c
  • the indoor louver 10 is mounted on the indoor side by changing the top and bottom. The indoor air is sucked into the condenser 6 in the direction of arrow c in FIG. 10, and the air warmed by the condenser 6 is directed downward from the second room 3 in the direction of arrow d. Change the angle of the louver so that it blows out.
  • FIG. 11 is a diagram showing the flow of air when the conventional air conditioner configured as described above is used for air conditioning in a room containing devices such as a communication device having a high heat generation density.
  • Fig. 1 (a) shows the case where the air conditioner is installed on the upper part of the side wall
  • Fig. 11 (b) shows the case where it is mounted on the lower part of the side wall.
  • 16 is a conventional air conditioner configured as shown in FIGS.
  • 17 is an air inlet of the air conditioner 16
  • 18 is an air conditioner 16 is an air outlet
  • 19 is a room to be air-conditioned to accommodate the equipment 20 to be cooled
  • 20a is provided at the top of the equipment 20 to be cooled, and generates heat generated inside the equipment 20
  • the air conditioner 16 was installed above the air conditioning room side wall 14 and was installed in the room 19 as shown in Fig. 11 (a).
  • a part of the cool air blown out from the outlet 18 is an updraft due to the heat generated by the device 20 to be cooled as shown by an arrow e, or the air generated by the cooling fan 20a.
  • a part of the high-temperature air discharged from the device 20 is blown up by the flow, so that it is directly inside the room 19 in the direction of the arrow f.
  • the temperature of the air that was drawn downward and was sucked from the lower part of the device 20 gradually increased, and the reliability of the device 20 deteriorated due to failure of the device.
  • the present invention has been made in order to solve such problems of the conventional technology, in which the cool air blown out from the outlet is directly sucked into the inlet, the cold air is trapped in the target room, or the hot air is discharged. It is an object of the present invention to provide an air conditioner capable of suppressing the occurrence of snow pools and efficiently cooling a heat generating device housed in a target room, and an installation method thereof.
  • An air conditioner according to the present invention is an air conditioner using a refrigeration cycle, wherein the indoor air passage formed to extend from one end to the other end.
  • a first ventilation port which is provided at one end of the housing so as to open in the indoor direction when in use and communicates with the indoor side ventilation path, and which is used at the other end of the housing.
  • a second ventilation port provided to open in the indoor direction and communicating with the indoor ventilation path; an indoor heat exchanger provided in the indoor ventilation path; and a second heat exchanger provided in the indoor ventilation path.
  • An indoor blower that allows air to flow in through one of the first and second ventilation openings and discharges air through the other ventilation opening, and allows outside air to flow outside the indoor ventilation passage in the housing.
  • An outdoor heat exchanger disposed at different positions in the direction connecting the first and second ventilation holes with respect to the indoor heat exchanger; and And an outdoor blower for ventilating outside air.
  • the casing and the indoor ventilation path are formed vertically long, so that air is sucked in from the upper ventilation port and cooling air is discharged from the lower ventilation port during cooling.
  • a separate member is provided to partition the inside of one end side of the housing into an indoor side and an outdoor side, and the indoor side of the separate member is provided with an indoor side ventilation path and one ventilation opening communicating with the indoor side ventilation path.
  • An outdoor heat exchanger is provided outside the separate member.
  • a first communication portion provided on the separate member and capable of communicating between the indoor side ventilation path and the outside.
  • the first communication portion is provided on the first communication portion.
  • the first communication portion In the first state, the first communication portion is shielded.
  • the indoor-side ventilation path In the second state, the indoor-side ventilation path is shielded and the first communication section is opened in the second state, and the room air sucked in from one of the ventilation ports passes through the first communication section.
  • a first damper that is exhausted to the outside by the outdoor blower, and is provided between the first communication portion and the indoor blower in the indoor ventilation passage, and is provided between the first ventilation passage and the indoor ventilation passage.
  • a second communication portion that can communicate outside air, and is provided so as to be able to open and close the second communication portion.
  • the second communication portion In the first state, the second communication portion is shielded.
  • a second damper is provided that opens the second communication portion and allows the outside air sucked from the second communication portion by the indoor side blower to be blown into
  • a temperature sensor that outputs a signal corresponding to a room temperature; temperature setting means that can set a first temperature level and a second temperature level lower than the first temperature level; and an output signal from the temperature sensor.
  • temperature setting means that can set a first temperature level and a second temperature level lower than the first temperature level
  • an output signal from the temperature sensor When the temperature exceeds the first temperature level set by the temperature setting means, the first damper and the second damper are set, and when the temperature falls below the second temperature level, the first damper and the second damper are set.
  • a control circuit for controlling to close the damper.
  • the housing is located outside the room rather than inside the room at the time of attachment.
  • the indoor heat exchanger is disposed above and the outdoor heat exchanger is disposed below, and drain water generated when the indoor heat exchanger is used as an evaporator is dropped on the outdoor heat exchanger. It is configured as follows.
  • an installation method of an air conditioner according to the present invention includes a housing having an indoor-side ventilation passage formed to extend from one end to the other end, and an indoor air passage at one end of the housing.
  • a first ventilation port provided to open in the direction and communicating with the indoor ventilation path; and a second ventilation port provided in the other end of the housing so as to open in the indoor direction when used.
  • An air conditioner using a refrigeration cycle that includes an outdoor heat exchanger disposed at different positions in the direction connecting the ventilation ports and an outdoor blower that ventilates outside air to the outdoor heat exchanger is used.
  • the air inlet and the cooling air outlet of the indoor air of the air conditioner are mounted in a room in which convection is promoted in a room in which convection is generated by the heat generating device.
  • the indoor air suction port is located above the room, and the cooling air outlet is oriented downward in the room.
  • FIG. 1 is a side view showing a main part of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view illustrating an installation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a side view showing a main part of an air conditioner according to Embodiment 2 of the present invention.
  • FIG. 4 is a side view illustrating a method of installing an air conditioner according to a third embodiment of the present invention.
  • FIG. 5 is a side view illustrating another method of installing the air conditioner according to the fourth embodiment of the present invention.
  • FIG. 6 is a side view showing a main part of an air conditioner according to Embodiment 5 of the present invention.
  • FIG. 7 is a side view showing a main part of an air conditioner according to Embodiment 6 of the present invention.
  • FIG. 8 is a configuration diagram showing control means of a damper used for an air conditioner according to Embodiment 6 of the present invention.
  • FIG. 9 is a cross-sectional view showing an example of a mounting state of a conventional air conditioner at the time of cooling.
  • FIG. 10 is a cross-sectional view showing an example of a mounting state of a conventional air conditioner at the time of heating.
  • FIG. 11 is an explanatory diagram showing the flow of air when performing air conditioning of a heat-generating equipment housing room using a conventional air-conditioning apparatus.
  • FIG. 1 is a cross-sectional configuration diagram illustrating a main part of an air conditioner according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram illustrating an installation example of the air conditioner illustrated in FIG.
  • 21 is a vertically long case, and the right side of the figure is a housing configured to be attached to the side wall of the room to be air-conditioned, and 22 is one end side in the case 21.
  • a separate member provided so as to partition the space between the indoor side and the outdoor side.
  • Reference numeral 23 denotes an indoor ventilation passage formed to extend from one end of the housing 21 toward the other end. One end of the ventilation path 23 is formed by a space on the indoor side of the housing 21 partitioned by the separation member 22.
  • Reference numeral 24 denotes a first ventilation port which is provided at one end of the housing 21 so as to open to the indoor side and communicates with the indoor ventilation path 23, and reference numeral 25 denotes a first ventilation port at the other end of the housing 21.
  • a second ventilation port which is provided to open to the indoor side and communicates with the indoor ventilation path 23, is provided in the indoor ventilation path 23 at the other end of the housing 21.
  • the indoor heat exchanger 27 is installed in the indoor ventilation passage 23.
  • a chamber through which air flows in from one of the first and second ventilation ports 24, 25 and air that flows through the indoor heat exchanger 26 is discharged from the other ventilation port
  • An inner blower 28 is an outdoor heat exchanger provided so as to allow outside air to flow into the outdoor space of the separate member 21 inside the housing 21.
  • the outdoor heat exchanger 28 is an indoor heat exchanger.
  • the heat exchanger 26 is arranged so as to be shifted from the heat exchanger 26 at a different position in a direction connecting the first and second ventilation holes 24 and 25.
  • 29 is an outdoor blower that ventilates outside air to the outdoor heat exchanger 28, 30 is a compressor provided at the other end of the housing 1, 31 is an outdoor heat exchanger 28 and indoor heat
  • a decompression device provided in the pipe connecting the heat exchanger 26 and 32 collects water droplets condensed on the surface of the indoor heat exchanger 26 and discharges it to the outside of the housing 21 Drain pan and drain Exit.
  • the compressor 30, the outdoor heat exchanger 28, the pressure reducing device 31, the indoor heat exchanger 26, and the compressor 30 are sequentially connected by a refrigerant pipe as shown in FIG.
  • the working fluid is sealed inside the piping to form a vapor compression refrigeration cycle.
  • the outdoor heat exchanger 28 functions as a condenser
  • the indoor heat exchanger 26 functions as an evaporator
  • the first ventilation port 24 functions as an indoor air suction port
  • the second The ventilation holes 25 are operated as cooling air outlets.
  • a fluorocarbon hydrogen (HFC) based refrigerants containing no chlorine for example R 4 0 7 C, R 4 1 0 A, R 3 2 etc.
  • HFC-based refrigerants such as polyol ester oil or polyvinyl ether oil or HFC-based refrigerant that are compatible with HFC-based refrigerants (not shown).
  • Soluble for example, hard alkylbenzene oil is used.
  • each component is integrally housed in the housing 21.
  • separate The member 22 houses the inside of the housing 21 at one end side where the outdoor heat exchanger 23 and the outdoor blower 29 are housed, and the indoor heat exchanger 26 and the indoor blower 27 are housed. It prevents the mixture of indoor air and outdoor air.
  • a third ventilation port which is an outlet of the outdoor blower 29, is opened in the upper front part of the housing 21 when viewed from the left side of the figure.
  • a fourth ventilation port which is a suction port for the outdoor heat exchanger 23, is opened in the upper surface portion and / or upper portion of the side surface, respectively, but none of them is shown.
  • the outdoor blower 29 When the outdoor blower 29 was operated, the outside air taken in from the fourth ventilation port provided on the upper surface and / or the side surface of the housing was provided outside the separate member 22 inside the housing 21. The heat is exchanged with the refrigerant in the outdoor heat exchanger 28 to become high temperature, and is blown out from the third ventilation port on the upper front surface of the housing 21 via the outdoor blower 29.
  • the compressor 30 and the pressure reducing device 31 may be housed at the other end of the housing 21 housing the indoor heat exchanger 26 as shown in FIG.
  • the heat exchanger 28 may be housed inside the room at one end of the housing 21.
  • reference numeral 19 denotes an air-conditioned room containing heat-generating equipment
  • 19a is a ventilation fan for introducing outside air into the room 19
  • 19b is air in the emergency room 19.
  • 20a is a device blower attached to the device 20 for forced exhaust.
  • the air conditioner 33 configured as shown in FIG. 1 is formed to be vertically long, with the suction port 24 facing the upper inside of the chamber 19 and the outlet 25 facing the lower inside of the chamber 19. As shown, it is installed from the outside of the side wall of the room 19.
  • Examples of the heat-generating device 20 to be cooled include devices having a large calorific value, such as a communication device, a wireless device, and a computer.However, the heat-generating device 20 is not particularly limited to these devices. Any device that requires air conditioning such as Such equipment 20 generally has a heating density Is very high and local high temperature is likely to occur inside the equipment, so the blower 20a draws relatively low-temperature air, which tends to accumulate below the interior of the chamber 19, into the interior of the equipment 20, and blows it upwards As a result, the air inside the room 19 is supplied to and exhausted from the device 20 to forcibly cool the device. In addition, such equipment is not susceptible to dust and dirt in the air, so that the room 19 is generally made with high hermeticity.
  • the device 20 inside the room 19 is assumed to be a device with a large amount of heat generation such as a communication device, a radio device, and a computer, a cooling operation for cooling the air inside the room 19 will be described as an example. I do.
  • the refrigerant compressed to a high temperature and a high pressure by the compressor 30 flows into the outdoor heat exchanger 28, where it radiates heat to outdoor air sent by the outdoor blower 29 to condense and liquefy.
  • This liquid refrigerant becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant in the pressure reducing device 31, flows into the indoor heat exchanger 26, where the air inside the chamber 19, which is sent by the indoor blower 27, After being absorbed, evaporated and gasified, it returns to the compressor 30.
  • the refrigerant in the vessel 26 is cooled by the latent heat of vaporization of the refrigerant, and is blown downward from the outlet 25 into the chamber 19.
  • the cooling air is blown upward from below by a device blower 20 a attached to the device 20 housed in the room 19 and cools the device 20. At this time, the cooling air is heated by the heat generated by the device 20, and the heated air is blown upward by the device blower 20a as shown by a solid line arrow in FIG.
  • Electronic devices such as communication devices, wireless devices, and computers that are mainly cooled by the present invention.
  • the equipment room 19 as shown in Fig. 2 is usually designed to be highly sealed, and outside air is It is operated so that it does not get mixed in and restricts human access.
  • the room 19 has ventilation fans 19a and 19b for exhaust and suction. Is installed. When the air temperature inside the room 19 exceeds the set value, these ventilation fans are operated synchronously to introduce outside air into the room 19, lower the room temperature, and malfunction of the equipment 20 due to abnormally high temperature. prevent.
  • the suction port 24 and the air outlet 25 are provided on the one end side and the other end side of the vertically formed casing 21 so as to be separated from each other.
  • the suction port is located above the target room to suck in the air above, and the outlet is located below the target room to blow cool air down.
  • the convection in the target room 19 is on the side wall of the target room 19
  • the air conditioner was installed in the direction that facilitates convection in the direction of The air blown into the chamber 19 and blown out from the outlet 25 opened below the side wall of the chamber 19 can disturb the air flow inside the chamber 19 created by the device blower 20a. Therefore, there is an effect that the device 20 such as a communication device having a high heat generation density can be efficiently cooled.
  • the intake air temperature of the air conditioner can be kept high, the air conditioner can be operated efficiently, and the power consumption of the air conditioner can be suppressed.
  • one end of the housing 21 is divided into an indoor side and an outdoor side.
  • a first ventilation port 24 is provided at the end of the indoor-side ventilation path 23, and an outdoor heat exchanger is disposed outside the room via a separating member 22.
  • the air conditioner of the above embodiment is integrally installed on the outside of the side wall of the room 19 containing the equipment to be cooled. Therefore, compared to installing a separate type air conditioner, which is the mainstream in current air conditioners, there is no need to secure an indoor unit installation space inside room 19, resulting in higher space efficiency.
  • the size of the room 19 can be reduced.
  • the labor and cost for construction work for installing the refrigerant pipe connecting the outdoor unit and the indoor unit can be reduced.
  • the causes of poor air-conditioning such as insufficient evacuation of the refrigeration cycle due to poor piping work, foreign matter in the cycle, excessive or insufficient refrigerant charge, refrigerant leakage, and forgetting to open the connection valve have been eliminated.
  • the operation reliability of the object to be cooled can be improved.
  • the air-conditioning apparatus according to Embodiment 1 can be installed with the indoor side surface of the housing 21 in close contact with the side wall surface of the equipment room 19 as shown in FIG. 1 and FIG. Therefore, it is possible to perform all maintenance of the housing 21 and its internal components from the outdoor side. Therefore, there is no need for humans to enter the room 19 during maintenance of the air conditioner. Therefore, it is possible to suppress dust and dust from entering the room 19, thereby improving the reliability of the device 20.
  • R 407 C, R 410 A, R 32, etc. which are HFC-based refrigerants containing no hydrogen fluoride and containing chlorine. or C 0 2, HC, etc. and material working fluid ozone destruction coefficient number 0, refrigerating machine oil miscible or polyol ester oil or polyvinyl ether oil to HFC-based refrigerant as, the HFC refrigerant incompatible hard Since alkylbenzene oil and the like are used, an air conditioner that considers the global environment can be obtained without destroying the ozone layer.
  • the air conditioner according to the present embodiment is intended to cool the equipment housed in the room 19 having a relatively high airtightness, the latent heat load (dehumidification load) during the cooling operation is reduced to the ordinary personal air conditioning. Small in comparison.
  • the sensible heat ratio (the ratio of the sensible heat load to the total air-conditioning load) becomes high sensible heat operation, for example, 0.9 or more.
  • the capacity of the indoor heat exchanger 26 and / or the capacity of the indoor blower 27 are larger than that of the humidifier. With this configuration, the heat generated by the equipment can be efficiently handled, and the temperature of the cooling air blown out becomes higher than that of a normal air conditioner. No problem occurs.
  • the outdoor heat exchanger 28 is disposed above the housing 21 and the indoor heat exchanger 26 is disposed below the housing 21.
  • a thin air conditioner can be obtained.
  • a specific description will be given.
  • FIG. 3 is a sectional configuration diagram showing an air conditioner according to Embodiment 2 of the present invention. is there.
  • an outdoor heat exchanger 28 and an outdoor blower 29 are disposed below the other end of the housing 21, and an indoor heat exchanger 26 and an indoor blower 27 are mounted on the housing 21.
  • This embodiment is significantly different from the first embodiment in that it is disposed above one end.
  • the indoor air suction port 24 is disposed above the air conditioner 33 so as to draw in high-temperature air above the room as in the first embodiment, and the air outlet 25 is also the same as in the first embodiment.
  • the equipment to be cooled is arranged below the air conditioner 33 so as to blow cool air to the suction side of the blower.
  • the inlet 24 is located on the indoor side (room 19 side) of the indoor heat exchanger 26, and the outlet 25 is located on the indoor side (room 19 side) of the outdoor heat exchanger 28. are doing.
  • a separate member 22 that partitions the inside of the housing 21 so that the outdoor air and the indoor air do not mix inside the air conditioner is provided on the other end side of the housing 1 (below the figure).
  • the other end of the indoor-side ventilation path 23 is formed, and further, an air outlet 25 communicating with the indoor-side ventilation path 23 is provided.
  • An outdoor heat exchanger 28, an outdoor blower 29, a compressor 30 and a decompression device 3 are located on the outdoor side of the separate member 22.
  • the condensed water (drain) resulting from cooling the indoor air with the indoor heat exchanger 26 installed above is distributed to the outdoor heat exchanger 28 via the drain pan and the drain outlet 32.
  • the drain outlet 32 is located above the outdoor heat exchanger 28.
  • Blow-off port (2) Blows out from the target room into the target room, effectively using the equipment in the target room Can be cooled.
  • the drain water condensed from the indoor air is dropped and sprayed from the drain outlet 32 to the outdoor heat exchanger 28, so that the drain water is particularly high when the outside air temperature is high in summer. Since the latent heat of evaporation can be used, the rise in condensation temperature can be suppressed, and there is also the effect that the operating efficiency of the refrigeration cycle improves.
  • the air conditioner 33 is installed on the side wall of the chamber 19, so that the room 1 9
  • Example 3 installation was performed when the equipment to be cooled had a horizontal blower. The method is explained.
  • FIG. 4 is a side view at the time of installation showing a method of installing an air conditioner according to Embodiment 3 of the present invention.
  • the equipment 20 to be cooled such as a communication device, a wireless device, and a computer, sucks air from the front part (the left side in FIG. 4) as indicated by the solid line arrow, and the back part (in FIG. It has a cooling blower 20a that blows out to the right side).
  • the air conditioner 33 is installed on the ceiling of the room 19 with the inlet 24 and the outlet 25 facing downward.
  • the suction port 24 is arranged on the right side of the room 19 (to the rear of the equipment) in accordance with the flow of air in the direction of the solid arrow by the device blower 20a. 5 is installed and installed so as to open to the left of the room 19 ceiling (the front side of the equipment).
  • the equipment 20 As described above, by adopting an installation method in which the direction of the inlet 24 and the outlet 25 of the air conditioner 33 is set in accordance with the direction of convection by the equipment 20 in the room 19, the equipment 20
  • the room air which has become high temperature by processing the heat generated inside the room, goes to the upper right of the figure by the equipment blower 20a, and the air conditioner 3 3
  • the air As shown by the dashed arrow from the inlet 24 provided at the right end of the air conditioner 33, the air is sucked in by the indoor blower 27 inside the air conditioner 27, cooled by the indoor heat exchanger 26, and then It is blown out from 25 toward the lower left side of the room. This cool air is sucked in from the front of the equipment (left side in Fig. 4) by the equipment blower 20a, and cools the equipment 20.
  • the air blower 20 a directs the suction port 24 of the air conditioner 33 toward the ceiling surface on the side from which the exhaust heat is blown out, and the equipment blower 20 a
  • the air conditioner 3 3 was installed with the outlet 25 facing the ceiling on the left side of the figure, which is the side that sucks air. It is possible to efficiently cool equipment with a high heat generation density without disturbing heat and improve the reliability of equipment. Furthermore, since the intake air temperature of the air conditioner 33 can be kept high, the air conditioner can be operated efficiently and the power consumption of the air conditioner can be suppressed.
  • the air conditioner 33 is installed laterally on the roof of the room 19 in order to cool the equipment 20 having the side-blower blower 20a. It is not limited to the section and the ceiling.
  • FIG. 5 is a side view showing an installation method of an air conditioner according to Embodiment 4 of the present invention at the time of installation.
  • the air conditioner shown in the figure the same configuration example as that shown in FIG. 1 of Embodiment 1 is used, and the side wall surface of the room 19 is located below the room 19 which is the suction side of the equipment blower 20.
  • the air outlet 25 of the air conditioner 33 is connected to the air conditioner 33, and the suction port 24 of the air conditioner 33 is installed above the same surface of the chamber 19.
  • Example 4 the air outlet 25 of the air conditioner 33 was It is arranged toward the suction side of the machine 20a, and is sucked into the position where the high-temperature air that has been discharged to the rear of the machine 20 (right side in the figure) by the machine blower 20a and moved above the chamber 19 is sucked.
  • the port 24 By arranging and installing the port 24, air flows through the inside of the air conditioner 33 as indicated by the dashed arrow, and cool air blown out from the air conditioner 33 is sucked into the device blower 20a.
  • air flows in the direction indicated by the solid arrow, and air flows in a direction that promotes convection by the device 20 as a whole, similarly to the third embodiment shown in FIG. 4, and the air blows into the chamber 19.
  • the occurrence of pooling can be prevented. Therefore, the device 20 can be efficiently cooled, so that the reliability of the device can be improved and the power consumption of the air conditioner can be suppressed.
  • FIG. 6 is a side view showing a main part of an air conditioner according to Embodiment 5 of the present invention.
  • 34 is a pipe connecting the discharge side of the compressor 30 and the condenser 28, 35 is a pipe connecting the compressor 30 suction side and the evaporator 26, and 36 is the above.
  • a bypass pipe 37 provided to bypass between the two pipes 3 4 and 3 5 is provided inside the bypass pipe 36, and is provided between the discharge side 34 and the suction side 35 of the compressor 30. This is a check valve that blocks the flow of the refrigerant.
  • the refrigerant liquid condensed by the low-temperature outside air in the condenser 28 almost opens. After passing through the decompression device 31 that is fully open, it flows into the evaporator 26 that is installed below by gravity, and the indoor air and heat Exchange and evaporate. At this time, since the pressure of the evaporator 26 is higher than the pressure of the condenser 28 by a pressure difference based on the height difference from the condenser 28, the evaporator 26 passes through the bypass pipe 36 and the check valve 37. To the condenser 28. Here, the heat is radiated again to the low-temperature outside air, condensed and liquefied, and the natural circulation refrigeration cycle operates.
  • the refrigerant will have a difference in height between the condenser 28 and the evaporator 26, as well as the Since the air is circulated by the pressure difference caused by the density difference, the inside of the room 19 can be cooled very efficiently with little power consumption without supplying power to the compressor 30. Power can be greatly reduced.
  • an indoor temperature sensor that detects the temperature of the air sucked from the target room 19
  • an outside air temperature sensor that detects the outside air temperature
  • a compressor based on the information of these two sensors
  • the compressor 30 is of a capacity control type with variable rotation speed, high / low pressure bypass, etc. It is possible to further reduce power consumption by reducing.
  • FIG. 7 and 8 show a main part of an air conditioner according to Embodiment 6 of the present invention.
  • FIG. 7 is a side view of the air conditioner
  • FIG. 8 shows a damper control means.
  • It is a block diagram.
  • reference numeral 38 denotes a first communication portion provided on the separate member 22 downward from the lower end of the first ventilation port 24 to allow communication between the indoor ventilation path 23 and the outside.
  • the first communication portion 38 is provided in the first communication portion 38. In the first state, which is a normal state, the first communication portion 38 is shielded.
  • the indoor side ventilation path 23 is opened, and the indoor side ventilation path 23 is shielded, and the first communication part 38 is opened to suck air from one of the ventilation ports 24.
  • a first damper 40 for allowing the indoor air that has flowed through the first communication section 38 to be exhausted to the outside by the outdoor blower 29, 40 is the first communication section in the indoor inside ventilation path 23.
  • a second communication portion which is provided so as to open the outer wall of the housing 21 located between the inside air passage 23 and the inside air blower 27, and can communicate outside air with the inside air passage 23, 4 1 Is provided so as to be able to open and close the second communication part 40, shields the second communication part 40 in the first state, and closes the second communication part 40 in the second state.
  • a second air outlet that opens to allow the outside air sucked from the second communication portion 40 by the indoor air blower 27 to be blown into the room through the other air vent 25. It is a damper.
  • Reference numeral 2 denotes a temperature sensor that outputs a signal corresponding to the room temperature, for example, a thermosensitive antibody is used, and the vicinity of the suction port 24 inside the indoor ventilation passage 23 or the remote controller attached to the air conditioner 33 is provided. Installed inside the controller (not shown).
  • Reference numeral 43 denotes opening / closing means for the dampers 39, 44 denotes opening / closing means for the dampers 41.
  • the damper opening / closing means 43, 44 have, for example, an electromagnetic actuator, and an electric signal from the control circuit 45.
  • the dampers 39, 41 can be kept in a closed state or an open state, respectively.
  • Reference numeral 46 denotes temperature setting means for setting the first temperature and the second temperature to the control circuit 45 in advance.
  • the first temperature is set to the maximum value of the allowable ambient temperature of the equipment to be air-conditioned.
  • the second set temperature is preset to a lower temperature.
  • the control circuit 45 sends a signal to the damper opening / closing means 43, 44 when the room temperature detected by the temperature sensor 42 exceeds the first set temperature set by the temperature setting means 46, and sends the signal to the damper.
  • the control is performed so that the dampers 39 and 41 are closed by sending signals to the damper opening / closing means 43 and 44 when the temperature falls below the second set temperature. Next, the operation will be described.
  • the temperature of the air inside the room 19 is detected by the temperature sensor 42 installed in the air conditioner 33. If the detected value does not exceed the first set temperature, which is a preset abnormal set value, the first and second dampers 39 and 41 are closed, which is completely different from the first embodiment. It works similarly.
  • the first and second dampers 39 and 41 are opened, and the outdoor blower 29 is used.
  • the room air that has become abnormally high temperature is discharged outside through the first damper 39 as shown by the arrow i, and the outside air is blown into the room through the second damper 41 by the indoor blower 27 to lower the room temperature.
  • the first and second dampers 39 and 4 Close 1 to return to normal cooling operation. If the air conditioner 33 is out of order, an alarm signal may be transmitted to a predetermined management site (not shown) while the dampers 39 and 41 are opened.
  • the first and second dampers 39, 41 are opened to make room air outside. Since the air can be discharged and the outdoor air can be introduced into the room, the reliability of operation can be secured without exposing the cooling object inside the room 19 to abnormally high temperatures even in the event of an air conditioner malfunction. .
  • the communication sections 38, 40 and the open / close dampers 39, 41 discharge indoor air. It can be located at either one of the suction side and the suction side. However, when it is installed in an airtight room, it is preferable to install it on both the discharge side and the suction side as in this embodiment.
  • the outdoor heat exchanger 28 is provided above the housing 21 and the indoor heat exchanger 26 is provided below the housing 21 with an open / close damper.
  • the outdoor heat exchanger 28 is disposed below the housing 21 and the indoor heat exchanger 26 is disposed above the housing 21. It is permissible to provide an open / close damper on the device.
  • the separate member 22 provided on one end side of the housing 21 is arranged so that the inside of the one end side of the housing 21 extends along a plane parallel to the surface of the outer wall to be attached. 1 is formed in the vertical direction at one end, but is not necessarily limited to this.
  • the same effect can be expected even if it is formed in the vertical direction of the part.
  • the positional relationship between the indoor heat exchanger 26 and the blower 27 is not limited to the embodiment.
  • each of the cooling target devices 20 has a blower 20 a for cooling the device itself has been described as an example, but the cooling device necessarily has a blower. Similar effects can be expected even for devices that do not have this.
  • the suction port 24 of the air conditioner 33 is designed so that the cool air is blown to the upstream side (suction side) of the natural convection inside the equipment and the high-temperature air is sucked downstream (outlet side).
  • 1 9 It is arranged so that it is located above the side wall surface. However, it may be arranged in a direction that helps convection.
  • the refrigeration cycle has been described as being exclusively used for cooling on the premise that the heat-generating equipment is cooled.
  • the connection between the outdoor heat exchanger and the indoor heat exchanger is performed using a four-way valve (not shown).
  • the heat pump may be configured to switch between cooling and heating as desired by switching.
  • the inside of the room 19 can be heated, for example, when a worker enters the room 19 due to maintenance of the equipment during a low outside air temperature, such as in a severe winter, so that the worker can be heated. This has the effect of improving workability.
  • the air blowing direction of the indoor blower 27 is reversed, and the air is blown through the lower second ventilation opening 25. It is also possible to add a function to suck indoor air and blow cool air into the room 19 from the first ventilation port 24 provided in the upper part, in which case the workability is improved. More preferred above.
  • the temperature may be too low during operation of the equipment in winter, when the outside air temperature is low. , The operation reliability of the device can be improved.
  • a housing having an indoor ventilation passage formed to extend from one end to the other end, and is opened at one end of the housing in a direction toward the inside of the use chamber.
  • a first ventilation port that communicates with the indoor-side ventilation path
  • a second ventilation port that is provided at the other end of the housing so as to open toward the room when in use and communicates with the indoor-side ventilation path.
  • An outdoor heat exchanger provided so as to allow air to flow therethrough and arranged at different positions in the direction connecting the first and second ventilation holes to the indoor heat exchanger; and
  • the air conditioner is equipped with an outdoor blower that ventilates outside air to the exchanger.
  • the air conditioner and the method for installing the same according to the present invention are particularly preferably used for air conditioning in a room accommodating a heating device which is operated unattended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

An air conditioner, comprising a cabinet (21) having an indoor side ventilating path (23) formed by extending from one end part to the other end part thereof, first and second ventilating ports (24) and (25) disposed at one end part and the other end part of the cabinet (21) so as to open to the indoor side when used and communicating with the indoor side ventilating path (23), an indoor heat exchanger (26) and an indoor side blower (27) disposed in the indoor side ventilating path (23), an outdoor heat exchanger (28) installed so as to ventilate fresh air to the outside of the indoor side ventilating path (23) inside the cabinet (21) and disposed at a position different from that of the indoor heat exchanger (26) in the direction formed by connecting the first and second ventilating ports (24) and (25) to each other, and an outdoor side blower (29) ventilating fresh air to the outdoor heat exchanger, whereby a room having a heating equipment stored therein can be air-conditioned efficiently without causing the disturbance of air flow.

Description

明 細 書 空気調和装置及びその設置方法 技術分野  Description Air conditioner and its installation method
本発明は、 空気調和装置、 特に発熱機器類を収容した無人の室内を空 気調和するのに好適な空気調和装置及びその設置方法に関するものであ る o 背景技術  TECHNICAL FIELD The present invention relates to an air conditioner, particularly to an air conditioner suitable for air-conditioning an unmanned room accommodating heat-generating equipment, and a method of installing the same.
従来の技術として、 例えば実開昭 6 2 - 1 4 2 2 7号公報に記載され た冷 ·暖房装置を第 9図及び第 1 0図に示す。 なお、 第 9図は冷房時の 取付け状態を示す断面図、 第 1 0図は暖房時の取付け状態を示す断面図 である。  As a conventional technique, for example, a cooling / heating device described in Japanese Utility Model Laid-Open No. 62-142227 is shown in FIGS. 9 and 10. FIG. FIG. 9 is a cross-sectional view showing a mounting state during cooling, and FIG. 10 is a cross-sectional view showing a mounting state during heating.
図において、 1は筐体、 2は筐体 1の上部に区画され、 第 9図の姿勢 では室内 Aの側が開口している第 1の部屋、 3は筐体 1の中央部に区画 され、 上記第 1の部屋 2とは反対方向の室外 Bの側が開口している第 2 の部屋、 4は筐体 1の下部に区画された第 3の部屋である。 5は第 3の 部屋 4に設けられた圧縮機、 6は第 2の部屋 3に設けられた凝縮器、 7 は第 1の部屋 2に設けられた蒸発器、 8は凝縮器用の送風機、 9は蒸発 器用の送風機である。 1 0は室内側ルーバー、 1 1は室外側ルーバーで あり、 これらのルーバー 1 0、 1 1は何れも着脱可能、 上下方向に反転 可能、 かつ吹出し角度を調整可能になっている。 なお、 絞り装置、 冷媒 の配管等は図示を省略しているが、 良く知られているように圧縮機 5、 凝縮器 6、 図示を省略した絞り装置、 蒸発器 7、 及び圧縮機 5の順に冷 媒配管で接続され、 冷凍サイクルが構成されている。 また、 1 2及び 1 3は筐体 1の上端面及び下端面に垂直軸線上にそれ それ同軸に設けられたシャフ トであり、 筐体 1をこのシャフ 卜 1 2、 1 3のまわりに回動できるようになつている。 1 4は室外 Bに面した側壁、 1 5は側壁 1 4の開口部である。 かくして筐体 1は、 シャフ ト 1 2、 1 3のまわりに回動することにより第 9図の姿勢と第 1 0図の姿勢とを任 意に選択することができるように側壁 1 4の開口部 1 5に組み込まれる < なお、 各図を通して同一もしくは相当部分には同一符号を付し、 説明 を省略する。 In the figure, 1 is a housing, 2 is partitioned on the upper part of the housing 1, in the posture of FIG. 9, the first room where the side of the room A is open, 3 is partitioned in the center of the housing 1, A second room 4 is open on the outside B side in the opposite direction to the first room 2, and a third room 4 is defined at the bottom of the housing 1. 5 is a compressor provided in the third room 4, 6 is a condenser provided in the second room 3, 7 is an evaporator provided in the first room 2, 8 is a blower for the condenser, 9 Is a blower for the evaporator. Reference numeral 10 denotes an indoor louver, and 11 denotes an outdoor louver. These louvers 10 and 11 are both detachable, can be turned upside down, and can adjust the blowing angle. Although the illustration of the expansion device, refrigerant piping, and the like are omitted, as is well known, the compressor 5, the condenser 6, the expansion device, the evaporator 7, and the compressor 5, which are not illustrated, are arranged in this order. They are connected by refrigerant piping to form a refrigeration cycle. Reference numerals 12 and 13 denote shafts provided coaxially on the upper and lower end surfaces of the housing 1 on the vertical axis, respectively, and the housing 1 is turned around the shafts 12 and 13. You can move. 14 is a side wall facing the outdoor B, and 15 is an opening of the side wall 14. Thus, the housing 1 is opened in the side wall 14 so that the posture shown in FIG. 9 and the posture shown in FIG. 10 can be arbitrarily selected by rotating about the shafts 12 and 13. The same or corresponding parts are denoted by the same reference numerals throughout the drawings, and description thereof will be omitted.
まず、 室内 Aを冷房する場合には第 9図の姿勢とすることで、 蒸発器 7を収容した第 1の部屋 2の開口部が室内側に向き、 凝縮器 6を収容し た第 2の部屋 3の開口部が室外側に向く。 圧縮機 5によつて圧縮された 高温高圧の冷媒は凝縮器 6で送風機 8により取り入れられた外気と熱交 換して冷却され、 室外 Bへ放熱し凝縮される。 そして凝縮された冷媒は 膨張弁 (図示せず) を通って蒸発器 7に入り、 室内 Aの空気から熱を奪 う結果、 室内 Aは冷房される。  First, when the room A is cooled, the posture shown in Fig. 9 is adopted, so that the opening of the first room 2 containing the evaporator 7 faces the room side and the second room containing the condenser 6 The opening of room 3 faces outside. The high-temperature and high-pressure refrigerant compressed by the compressor 5 is cooled in the condenser 6 by exchanging heat with the outside air introduced by the blower 8, radiating heat to the outdoor B and condensing. Then, the condensed refrigerant enters the evaporator 7 through an expansion valve (not shown), and removes heat from the air in the room A, so that the room A is cooled.
この場合、 室内空気は蒸発器 7用の送風機 9により、 第 9図中の矢印 aで示すように筐体 1上部に位置する第 1の部屋 2において室内空気を 吸い込み、 第 1の部屋 2の下部から矢印 bに示すように室内 Aの斜め下 方へ向けて冷気が吹き出される。  In this case, the room air is sucked by the blower 9 for the evaporator 7 into the first room 2 located at the top of the housing 1 as shown by the arrow a in FIG. Cool air is blown from the lower part of the room A diagonally downward as indicated by the arrow b.
—方、 室内 Aを暖房する場合には筐体 1をシャフ ト 1 2、 1 3を軸に 半回転させることで第 1 0図の姿勢にする。 なお、 この例では室内ルー バー 1 0、 及び室外ルーバー 1 1は何れも回転させる前に一旦取り外す c 筐体 1を半回転させた後、 室内ルーバー 1 0は天地を変えて室内側に取 付け、 凝縮器 6に対し、 室内空気が第 1 0図の矢印 cの方向に吸込まれ、 凝縮器 6により暖められた空気が第 2の部屋 3の下方から下に向けて矢 印 dの向きに吹出されるようにルーバーの角度を変える。 また、 室外ル 一バー 1 1は室外側に取り付けて、 第 1の部屋 2に対向する部分のルー バーを蒸発器 7に対して室外 Bの空気が流通するように角度を変える。 第 1 1図は上記のように構成された従来の空気調和装置を、 発熱密度 の大きい通信機等の機器を収容した室内の空気調和に用いる場合の空気 の流れを示す図であり、 第 1 1図 (a ) は空気調和装置を側壁上部に取 り付けた場合、 第 1 1図 (b ) は側壁下部に取り付けた場合を示す。 図において、 1 6は上記第 9図、 第 1 0図に示すように構成された従 来の空気調和装置、 1 7は空気調和装置 1 6の室内空気の吸込口、 1 8 は空気調和装置 1 6の吹出口、 1 9は冷却対象機器 2 0を収容する空調 対象室、 2 0 aは冷却対象機器 2 0の頂部に設けられ、 機器 2 0の内部 で発生する熱を該機器 2 0の外部に強制的に排出する機器送風機である ( 第 1 1図 (a ) に示すように、 空気調和装置 1 6が空調室側壁 1 4の 上方に設置され、 室 1 9内に設置された冷却対象機器 2 0を冷却する場 合、 吹出口 1 8から吹出された冷気の一部が矢印 eに示すように冷却対 象機器 2 0の発熱による上昇気流、 もしくは冷却ファン 2 0 aによる気 流による影響を受けて吹き上げられてしまうため、 機器 2 0から排出さ れた高温空気の一部が矢印: f の方向にそのまま室 1 9内下方に流され、 機器 2 0の下部から吸い込まれる空気温度が次第に上昇して機器の故障 等、 信頼性を低下させるという問題点があった。 On the other hand, when heating room A, cabinet 1 is rotated halfway around shafts 12 and 13 to achieve the posture shown in Fig. 10. In this example, both the indoor louver 10 and the outdoor louver 11 are temporarily removed before rotating them.c After the housing 1 is turned half a turn, the indoor louver 10 is mounted on the indoor side by changing the top and bottom. The indoor air is sucked into the condenser 6 in the direction of arrow c in FIG. 10, and the air warmed by the condenser 6 is directed downward from the second room 3 in the direction of arrow d. Change the angle of the louver so that it blows out. In addition, outdoor le One bar 11 is attached to the outside of the room, and the angle of the louver in the portion facing the first room 2 is changed so that the air from outside B flows to the evaporator 7. FIG. 11 is a diagram showing the flow of air when the conventional air conditioner configured as described above is used for air conditioning in a room containing devices such as a communication device having a high heat generation density. Fig. 1 (a) shows the case where the air conditioner is installed on the upper part of the side wall, and Fig. 11 (b) shows the case where it is mounted on the lower part of the side wall. In the figure, 16 is a conventional air conditioner configured as shown in FIGS. 9 and 10 above, 17 is an air inlet of the air conditioner 16, and 18 is an air conditioner 16 is an air outlet, 19 is a room to be air-conditioned to accommodate the equipment 20 to be cooled, 20a is provided at the top of the equipment 20 to be cooled, and generates heat generated inside the equipment 20 ( The air conditioner 16 was installed above the air conditioning room side wall 14 and was installed in the room 19 as shown in Fig. 11 (a). When cooling the device 20 to be cooled, a part of the cool air blown out from the outlet 18 is an updraft due to the heat generated by the device 20 to be cooled as shown by an arrow e, or the air generated by the cooling fan 20a. A part of the high-temperature air discharged from the device 20 is blown up by the flow, so that it is directly inside the room 19 in the direction of the arrow f. There was a problem that the temperature of the air that was drawn downward and was sucked from the lower part of the device 20 gradually increased, and the reliability of the device 20 deteriorated due to failure of the device.
また、 吹出口 1 8から吹出された冷気の一部は矢印 gに示すようにそ のまま空気調和装置 1 6の吸込口 1 7に吸い込まれるので、 吸込み空気 は、 機器 2 0から排出された高温空気と空気調和装置が吹き出した冷気 との混合空気となり、 温度が比較的低くなるため、 冷凍サイクルの効率 が低下して消費電力の増大を招くという問題点があった。 また、 冷気の —部は室 1 9内の空気調和装置 1 6を設置した側の底部 C付近に留まり、 低温空気の溜まり込みが生じるという問題もあった。 一方、 第 1 1図 (b ) に示すように、 空気調和装置 1 6が空調室側壁 1 4の下方に設置された場合、 吹出口 1 8と吸込口 1 7が近接している ことから矢印 hに示すように吹出口 1 8から吹出された冷気の一部がそ のまま吸込口 1 7に吸い込まれてしまうので、 空気調和装置 1 6の能力 が低下して室内温度が上昇してしまい、 同様に機器 2 0の信頼性を低下 させるという問題点があった。 In addition, a part of the cool air blown out from the outlet 18 is sucked as it is into the inlet 17 of the air conditioner 16 as shown by an arrow g, so that the sucked air is discharged from the device 20. Since the air becomes a mixture of high-temperature air and cold air blown out by the air conditioner, and the temperature becomes relatively low, there is a problem that the efficiency of the refrigeration cycle is reduced and power consumption is increased. In addition, there was a problem that the cold air portion stayed near the bottom C on the side where the air conditioner 16 was installed in the room 19, and the low-temperature air was trapped. On the other hand, as shown in Fig. 11 (b), when the air conditioner 16 is installed below the side wall 14 of the air conditioning room, since the outlet 18 and the inlet 17 are close to each other, the arrow As shown in h, a part of the cool air blown out from the outlet 18 is sucked into the inlet 17 as it is, so the capacity of the air conditioner 16 decreases and the indoor temperature rises. However, there is also a problem that the reliability of the device 20 is reduced.
さらにまた、 室内上方の D部付近に機器 2 0の排熱に伴う高温空気が 溜まりこんでしまうため、 室内天井面に温度異常を検出する温度センサ が設置されている場合には、 異常高温を検出して室 1 9内に、 図示しな い換気扇により不必要に外気を導入して、 ちり、 ほこり等によって機器 2 0の信頼性を低下させるという問題点があつた。  Furthermore, since high-temperature air due to the exhaust heat of the device 20 accumulates near the upper part D in the room, if a temperature sensor that detects abnormal temperature is installed on the indoor ceiling surface, the abnormally high temperature There was a problem in that the external air was unnecessarily introduced into the room 19 upon detection by a ventilation fan (not shown), and the reliability of the device 20 was reduced due to dust and dust.
また、 従来の空気調和装置は対人空調を目的として、 室内空気をある 程度除湿して吹き出すため、 吹き出し空気温度が低く、 機器 2 0を効率 的に冷却しょうとして機器に直接冷気を吹きつけるように空気調和装置 1 6を設置すると、 機器の冷気が当たる部分に結露が発生し、 機器 2 0 の動作に不具合が生じる恐れがあるという問題点もあった。 発明の開示  In addition, conventional air conditioners dehumidify and blow out room air to some extent for personal air conditioning, so the blown air temperature is low, so that cold air is blown directly to the equipment in order to efficiently cool the equipment 20. When the air conditioner 16 was installed, there was a problem that dew condensation occurred in a portion of the device exposed to the cool air, which could cause a malfunction of the device 20. Disclosure of the invention
本発明は、 このような従来技術の問題点を解消するためになされたも のであり、 吹出口から吹出された冷気がそのまま吸込口に吸込まれたり、 対象室内に低温空気の吹き溜まりや高温空気の吹き溜まりが生じるのを 抑制し、 対象室内に収容された発熱機器を効率的に冷却することができ る空気調和装置、 及びその設置方法を提供することを目的とするもので ある。  The present invention has been made in order to solve such problems of the conventional technology, in which the cool air blown out from the outlet is directly sucked into the inlet, the cold air is trapped in the target room, or the hot air is discharged. It is an object of the present invention to provide an air conditioner capable of suppressing the occurrence of snow pools and efficiently cooling a heat generating device housed in a target room, and an installation method thereof.
この発明に係る空気調和装置は、 冷凍サイクルを用いる空気調和装置 において、 一端部から他端部方向に長く伸びて形成された室内側通風路 を有する筐体と、 この筐体の一端部に使用時室内の向きに開口するよう に設けられ上記室内側通風路に連通する第 1の通風口と、 上記筐体の他 端部に使用時室内の向きに開口するように設けられ上記室内側通風路に 連通する第 2の通風口と、 上記室内側通風路内に設けられた室内熱交換 器と、 上記室内側通風路内に設けられ、 上記第 1及び第 2の通風口の一 方の通風口から空気を流入させ、 他方の通風口から排出させる室内側送 風機と、 上記筐体内の室内側通風路の外側に外気を通流するように設け られ、 上記室内熱交換器に対し上記第 1及び第 2の 2つの通風口を結ぶ 方向に互いに異なる位置に配設された室外熱交換器と、 この室外熱交換 器に対して外気を通風させる室外側送風機とを備えたものである。 An air conditioner according to the present invention is an air conditioner using a refrigeration cycle, wherein the indoor air passage formed to extend from one end to the other end. A first ventilation port which is provided at one end of the housing so as to open in the indoor direction when in use and communicates with the indoor side ventilation path, and which is used at the other end of the housing. A second ventilation port provided to open in the indoor direction and communicating with the indoor ventilation path; an indoor heat exchanger provided in the indoor ventilation path; and a second heat exchanger provided in the indoor ventilation path. An indoor blower that allows air to flow in through one of the first and second ventilation openings and discharges air through the other ventilation opening, and allows outside air to flow outside the indoor ventilation passage in the housing. An outdoor heat exchanger disposed at different positions in the direction connecting the first and second ventilation holes with respect to the indoor heat exchanger; and And an outdoor blower for ventilating outside air.
また、 筐体と室内側通風路を縦長に形成し、 冷房時に上部の通風口か ら空気を吸込み、 下部の通風口から冷却風を排出するようにしたもので ある。  In addition, the casing and the indoor ventilation path are formed vertically long, so that air is sucked in from the upper ventilation port and cooling air is discharged from the lower ventilation port during cooling.
また、 筐体の一端部側内部を室内側と室外側に仕切るセパレート部材 を備え、 このセパレート部材の室内側に室内側通風路とこの室内側通風 路に連通する一方の通風口が配設され、 上記セパレート部材の室外側に 室外熱交換器が配設されてなるものである。  In addition, a separate member is provided to partition the inside of one end side of the housing into an indoor side and an outdoor side, and the indoor side of the separate member is provided with an indoor side ventilation path and one ventilation opening communicating with the indoor side ventilation path. An outdoor heat exchanger is provided outside the separate member.
さらに、 セパレート部材に設けられ、 室内側通風路と室外を連通し得 る第 1の連通部、 この第 1の連通部に設けられ、 第 1の状態では上記第 1の連通部を遮蔽すると共に上記室内側通風路を閧き、 第 2の状態では 上記室内側通風路を遮蔽すると共に上記第 1の連通部を開いて一方の通 風口から吸い込まれた室内空気が第 1の連通部を経て室外側送風機によ り室外に排気されるようにする第 1のダンバ、 上記室内側通風路におけ る上記第 1の連通部及び室内側送風機の間に設けられ、 上記室内側通風 路内と外気を連通し得る第 2の連通部、 この第 2の連通部を開閉し得る ように設けられ、 第 1の状態では上記第 2の連通部を遮蔽し、 第 2の状 態では上記第 2の連通部を開いて上記室内側送風機により上記第 2の連 通部から吸い込まれた外気を他方の通風口から室内に吹き出されるよう にする第 2のダンパを備えたものである。 Further, a first communication portion provided on the separate member and capable of communicating between the indoor side ventilation path and the outside. The first communication portion is provided on the first communication portion. In the first state, the first communication portion is shielded. In the second state, the indoor-side ventilation path is shielded and the first communication section is opened in the second state, and the room air sucked in from one of the ventilation ports passes through the first communication section. A first damper that is exhausted to the outside by the outdoor blower, and is provided between the first communication portion and the indoor blower in the indoor ventilation passage, and is provided between the first ventilation passage and the indoor ventilation passage. A second communication portion that can communicate outside air, and is provided so as to be able to open and close the second communication portion. In the first state, the second communication portion is shielded. In the state, a second damper is provided that opens the second communication portion and allows the outside air sucked from the second communication portion by the indoor side blower to be blown into the room through the other ventilation port. It is.
また、 室温に応じた信号を出力する温度センサと、 第 1の温度レベル 及びこの第 1の温度レベルよりも低い第 2の温度レベルをそれぞれ設定 し得る温度設定手段と、 上記温度センサによる出力信号が上記温度設定 手段により設定された第 1の温度レベルを超えたときには第 1のダンパ 及び第 2のダンパを閧け、 第 2の温度レベルを下回ったときに第 1のダ ンパ及び第 2のダンバを閉じるように制御する制御回路とを備えたもの である。  A temperature sensor that outputs a signal corresponding to a room temperature; temperature setting means that can set a first temperature level and a second temperature level lower than the first temperature level; and an output signal from the temperature sensor. When the temperature exceeds the first temperature level set by the temperature setting means, the first damper and the second damper are set, and when the temperature falls below the second temperature level, the first damper and the second damper are set. And a control circuit for controlling to close the damper.
また、 取り付け時に筐体が室内面よりも室外側に位置するようにして なるものである。  In addition, the housing is located outside the room rather than inside the room at the time of attachment.
また、 室内熱交換器を上方に、 室外熱交換器を下方にそれぞれ配設す ると共に、 上記室内熱交換器を蒸発器として用いたときに生じるドレン 水が上記室外熱交換器に滴下されるように構成してなるものである。  In addition, the indoor heat exchanger is disposed above and the outdoor heat exchanger is disposed below, and drain water generated when the indoor heat exchanger is used as an evaporator is dropped on the outdoor heat exchanger. It is configured as follows.
また、 圧縮機の吐出側の冷媒配管と該圧縮機の吸入側の冷媒配管とを 接続するバイパス路と、 このバイパス路内に設けられ上記圧縮機の吐出 側から上記圧縮機の吸入側への冷媒の通流を阻止する逆止弁とを備えた ものである。  A bypass path connecting the refrigerant pipe on the discharge side of the compressor to the refrigerant pipe on the suction side of the compressor; and a bypass path provided in the bypass path from the discharge side of the compressor to the suction side of the compressor. And a check valve for preventing the flow of the refrigerant.
またこの発明のよる空気調和装置の設置方法は、 一端部から他端部方 向に長く伸びて形成された室内側通風路を有する筐体と、 この筐体の一 端部に使用時室内の向きに開口するように設けられ上記室内側通風路に 連通する第 1の通風口と、 上記筐体の他端部に使用時室内の向きに開口 するように設けられ上記室内側通風路に連通する第 2の通風口と、 上記 室内側通風路内に設けられた室内熱交換器と、 上記室内側通風路内に設 けられ、 上記第 1及び第 2の通風口の一方の通風口から空気を流入させ、 他方の通風口から排出させる室内側送風機と、 上記筐体内の室内側通風 路の外側に外気を通流するように設けられ、 上記室内熱交換器に対し上 記第 1及び第 2の 2つの通風口を結ぶ方向に互いに異なる位置に配設さ れた室外熱交換器と、 この室外熱交換器に対して外気を通風させる室外 側送風機とを備えた冷凍サイクルを利用した空気調和装置を用いて、 発 熱機器により対流を生じる室内に対し、 上記対流が助長される方向に該 空気調和装置の室内空気の吸込口及び冷却風の吹出口を配向して取り付 けるものである。 In addition, an installation method of an air conditioner according to the present invention includes a housing having an indoor-side ventilation passage formed to extend from one end to the other end, and an indoor air passage at one end of the housing. A first ventilation port provided to open in the direction and communicating with the indoor ventilation path; and a second ventilation port provided in the other end of the housing so as to open in the indoor direction when used. A second heat vent, an indoor heat exchanger provided in the indoor air passage, and one of the first and second air vents provided in the indoor heat passage. Let air in, An indoor blower that is discharged from the other ventilation opening, and a first and second indoor heat exchanger that is provided so as to allow outside air to flow outside the indoor ventilation passage in the housing. An air conditioner using a refrigeration cycle that includes an outdoor heat exchanger disposed at different positions in the direction connecting the ventilation ports and an outdoor blower that ventilates outside air to the outdoor heat exchanger is used. In addition, the air inlet and the cooling air outlet of the indoor air of the air conditioner are mounted in a room in which convection is promoted in a room in which convection is generated by the heat generating device.
また、 室内空気の吸込口を室内の上方に配設し、 冷却風の吹出口を室 内の下方に配向するようにした設置方法である。 図面の簡単な説明  In addition, the indoor air suction port is located above the room, and the cooling air outlet is oriented downward in the room. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施例 1による空気調和装置の要部を示す側面構 成図である。  FIG. 1 is a side view showing a main part of an air conditioner according to Embodiment 1 of the present invention.
第 2図は、 本発明の実施例 1による空気調和装置の設置形態を説明す る側面構成図である。  FIG. 2 is a side view illustrating an installation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
第 3図は、 本発明の実施例 2による空気調和装置の要部を示す側面構 成図である。  FIG. 3 is a side view showing a main part of an air conditioner according to Embodiment 2 of the present invention.
第 4図は、 本発明の実施例 3になる空気調和装置の設置方法を説明す る側面構成図である。  FIG. 4 is a side view illustrating a method of installing an air conditioner according to a third embodiment of the present invention.
第 5図は、 本発明の実施例 4になる空気調和装置の他の設置方法を説 明する側面構成図である。  FIG. 5 is a side view illustrating another method of installing the air conditioner according to the fourth embodiment of the present invention.
第 6図は、 本発明の実施例 5による空気調和装置の要部を示す側面構 成図である。  FIG. 6 is a side view showing a main part of an air conditioner according to Embodiment 5 of the present invention.
第 7図は、 本発明の実施例 6に係る空気調和装置の要部を示す側面構 成図である。 第 8図は、 本発明の実施例 6に係る空気調和装置に用いるダンパの制 御手段を示す構成図である。 FIG. 7 is a side view showing a main part of an air conditioner according to Embodiment 6 of the present invention. FIG. 8 is a configuration diagram showing control means of a damper used for an air conditioner according to Embodiment 6 of the present invention.
第 9図は、 従来の空気調和装置の冷房時の取付状態例を示す断面図で あ o o  FIG. 9 is a cross-sectional view showing an example of a mounting state of a conventional air conditioner at the time of cooling.
第 1 0図は、 従来の空気調和装置の暖房時の取付状態例を示す断面図 である。  FIG. 10 is a cross-sectional view showing an example of a mounting state of a conventional air conditioner at the time of heating.
第 1 1図は、 従来の空気調和装置を用いて発熱機器収容室の空気調和 を行う場合の空気の流れを示す説明図である。 発明を実施するための最良の形態  FIG. 11 is an explanatory diagram showing the flow of air when performing air conditioning of a heat-generating equipment housing room using a conventional air-conditioning apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施例について、 以下図を用いて説明する。  Next, embodiments of the present invention will be described with reference to the drawings.
実施例 1 . Example 1
第 1図は、 本発明の実施例 1による空気調和装置の要部を示す断面構 成図、 第 2図は、 第 1図に示す空気調和装置の設置例を説明する図であ る。  FIG. 1 is a cross-sectional configuration diagram illustrating a main part of an air conditioner according to Embodiment 1 of the present invention, and FIG. 2 is a diagram illustrating an installation example of the air conditioner illustrated in FIG.
図において、 2 1は縦長に形成され、 図の右方の面を空調対象室の側 壁に密着して取り付けられるように構成された筐体、 2 2は筐体 2 1内 の一端部側空間を室内側と室外側に仕切るように設けられたセパレート 部材、 2 3は筐体 2 1内の一端部から他端部方向に長く伸びて形成され た室内側通風路であり、 この室内側通風路 2 3の一端部側は上記セパレ 一ト部材 2 2によって仕切られた筐体 2 1の室内側の空間によって形成 されている。 2 4は筐体 2 1の一端部に室内側に開口するように設けら れ上記室内側通風路 2 3に連通する第 1の通風口、 2 5は上記筐体 2 1 の他端部に室内側に開口するように設けられ上記室内側通風路 2 3に連 通する第 2の通風口、 2 6は筐体 2 1の他端部側における室内側通風路 2 3内に設けられた室内熱交換器、 2 7は室内側通風路 2 3内に設けら れ、 上記第 1及び第 2の通風口 2 4、 2 5の一方の通風口から空気を流 入させ、 室内熱交換器 2 6を通流させた空気を他方の通風口から排出さ せる室内側送風機、 2 8は上記筐体 2 1内部におけるセパレート部材 2 1の室外側の空間に外気を通流するように設けられた室外熱交換器であ り、 この室外熱交換器 2 8は室内熱交換器 2 6に対し上記第 1及び第 2 の 2つの通風口 2 4、 2 5を結ぶ方向に互いに異なる位置にずらして配 設されている。 2 9は室外熱交換器 2 8に対して外気を通風させる室外 側送風機、 3 0は筐体 1の他端部側に設けられた圧縮機、 3 1は室外熱 交換器 2 8と室内熱交換器 2 6とを接続する配管中に設けられた減圧装 置、 3 2は室内熱交換器 2 6の表面に結露した水滴を溜め、 筐体 2 1の 外部へ排出する ドレンパンおよびドレンの排出口である。 In the figure, 21 is a vertically long case, and the right side of the figure is a housing configured to be attached to the side wall of the room to be air-conditioned, and 22 is one end side in the case 21. A separate member provided so as to partition the space between the indoor side and the outdoor side. Reference numeral 23 denotes an indoor ventilation passage formed to extend from one end of the housing 21 toward the other end. One end of the ventilation path 23 is formed by a space on the indoor side of the housing 21 partitioned by the separation member 22. Reference numeral 24 denotes a first ventilation port which is provided at one end of the housing 21 so as to open to the indoor side and communicates with the indoor ventilation path 23, and reference numeral 25 denotes a first ventilation port at the other end of the housing 21. A second ventilation port, which is provided to open to the indoor side and communicates with the indoor ventilation path 23, is provided in the indoor ventilation path 23 at the other end of the housing 21. The indoor heat exchanger 27 is installed in the indoor ventilation passage 23. A chamber through which air flows in from one of the first and second ventilation ports 24, 25 and air that flows through the indoor heat exchanger 26 is discharged from the other ventilation port An inner blower 28 is an outdoor heat exchanger provided so as to allow outside air to flow into the outdoor space of the separate member 21 inside the housing 21. The outdoor heat exchanger 28 is an indoor heat exchanger. The heat exchanger 26 is arranged so as to be shifted from the heat exchanger 26 at a different position in a direction connecting the first and second ventilation holes 24 and 25. 29 is an outdoor blower that ventilates outside air to the outdoor heat exchanger 28, 30 is a compressor provided at the other end of the housing 1, 31 is an outdoor heat exchanger 28 and indoor heat A decompression device provided in the pipe connecting the heat exchanger 26 and 32 collects water droplets condensed on the surface of the indoor heat exchanger 26 and discharges it to the outside of the housing 21 Drain pan and drain Exit.
上記圧縮機 3 0、 室外熱交換器 2 8、 減圧装置 3 1、 室内熱交換器 2 6、 及び圧縮機 3 0は第 1図に示すように冷媒配管で順次接続されてお り、 該冷媒配管内部には作動流体を密閉して蒸気圧縮式冷凍サイクルを 構成している。 第 1図の例では、 室外熱交換器 2 8は凝縮器として、 ま た室内熱交換器 2 6は蒸発器として機能させ、 第 1の通風口 2 4は室内 空気の吸込口、 第 2の通風口 2 5は冷却風の吹出口として動作させてい る。 また上記蒸気圧縮式冷凍サイクルにおいては、 塩素を含まない弗化 炭素水素 (H F C ) 系冷媒である例えば R 4 0 7 C、 R 4 1 0 A、 R 3 2等、 あるいは C 0 2、 炭化水素 (H C ) 等オゾン破壊係数 0の物質を 作動流体としており、 さらに、 図示しない冷凍機油として H F C系冷媒 に相溶性のある例えばポリオールエステル油、 あるいはポリビニルエー テル油や、 H F C系冷媒とは非相溶性の例えばハードアルキルベンゼン 油などを使用している。 The compressor 30, the outdoor heat exchanger 28, the pressure reducing device 31, the indoor heat exchanger 26, and the compressor 30 are sequentially connected by a refrigerant pipe as shown in FIG. The working fluid is sealed inside the piping to form a vapor compression refrigeration cycle. In the example of FIG. 1, the outdoor heat exchanger 28 functions as a condenser, the indoor heat exchanger 26 functions as an evaporator, the first ventilation port 24 functions as an indoor air suction port, and the second The ventilation holes 25 are operated as cooling air outlets. In the above vapor compression refrigeration cycle, a fluorocarbon hydrogen (HFC) based refrigerants containing no chlorine for example R 4 0 7 C, R 4 1 0 A, R 3 2 etc. or C 0 2,, hydrocarbon (HC) and other substances with an ozone depletion potential of 0 as the working fluid, and are not compatible with HFC-based refrigerants such as polyol ester oil or polyvinyl ether oil or HFC-based refrigerant that are compatible with HFC-based refrigerants (not shown). Soluble, for example, hard alkylbenzene oil is used.
上記のように構成されたこの発明の実施例 1による空気調和装置 3 3 は各構成部材が筐体 2 1内に一体に収納されている。 また、 セパレ一卜 部材 2 2は、 筐体 2 1の一端部側内部を室外熱交換器 2 3および室外側 送風機 2 9が収容されている部分と、 室内熱交換器 2 6および室内側送 風機 2 7が収容されている部分とに分けており、 室内空気と室外空気と の混合を防いでいる。 なお、 第 1図において、 筐体 2 1を図の左側から 見たときの前面上部には室外側送風機 2 9の吹出し口である第 3の通風 口が開口し、 また同様に筐体 2 1の上面部及び/又は側面上部には、 室 外熱交換器 2 3に対する吸込み口である第 4の通風口がそれぞれ開口し ているが何れも図示を省略している。 室外側送風機 2 9を運転すると、 筐体の上面及び/又は側面に設けられた第 4の通風口から取り込まれた 外気は、 筐体 2 1内部のセパレート部材 2 2の室外側に設けられた室外 熱交換器 2 8で冷媒と熱交換して高温となり、 室外側送風機 2 9を経由 して筐体 2 1上部前面の第 3の通風口から吹出される。 In the air conditioner 33 according to Embodiment 1 of the present invention configured as described above, each component is integrally housed in the housing 21. Also, separate The member 22 houses the inside of the housing 21 at one end side where the outdoor heat exchanger 23 and the outdoor blower 29 are housed, and the indoor heat exchanger 26 and the indoor blower 27 are housed. It prevents the mixture of indoor air and outdoor air. In FIG. 1, a third ventilation port, which is an outlet of the outdoor blower 29, is opened in the upper front part of the housing 21 when viewed from the left side of the figure. A fourth ventilation port, which is a suction port for the outdoor heat exchanger 23, is opened in the upper surface portion and / or upper portion of the side surface, respectively, but none of them is shown. When the outdoor blower 29 was operated, the outside air taken in from the fourth ventilation port provided on the upper surface and / or the side surface of the housing was provided outside the separate member 22 inside the housing 21. The heat is exchanged with the refrigerant in the outdoor heat exchanger 28 to become high temperature, and is blown out from the third ventilation port on the upper front surface of the housing 21 via the outdoor blower 29.
なお、 圧縮機 3 0および減圧装置 3 1は、 第 1図に示すように室内熱 交換器 2 6が収容されている筐体 2 1の他端部側に収容されていても良 いし、 室外熱交換器 2 8が収容されている筐体 2 1の一端部側の室内側 に収容されていても良い。  The compressor 30 and the pressure reducing device 31 may be housed at the other end of the housing 21 housing the indoor heat exchanger 26 as shown in FIG. The heat exchanger 28 may be housed inside the room at one end of the housing 21.
一方、 第 2図において、 1 9は発熱機器 2 0を収納した空調対象室、 1 9 aは室 1 9内に緊急時外気を導入する換気扇、 1 9 bは緊急時室 1 9内の空気を排出する換気扇、 2 0 aは機器 2 0に付属している強制排 気用の機器送風機である。 第 1図に示すように構成された空気調和装置 3 3は縦長に形成されており、 吸込口 2 4が室 1 9の内部上方を臨み、 吹出口 2 5が室 1 9内部の下方を臨むように、 室 1 9の側壁外部から取 り付けられている。 なお、 冷却対象の発熱機器 2 0としては、 例えば通 信機、 無線機、 計算機等の発熱量の大きな機器が挙げられるが、 特にこ れらのみに限定されるものではなく、 要するに冷却、 加熱等、 空気調和 の必要な機器類であればよい。 このような機器 2 0は、 一般に発熱密度 が極めて高く、 機器内部に局部的な高温を生じやすいため、 送風機 2 0 aは室 1 9内部下方に溜まりやすい比較的低温の空気を機器 2 0の内部 に吸い込み、 機器 2 0の上方へ吹き出すことによって、 機器 2 0に室 1 9内部の空気を供給、 排出して機器を強制的に冷却している。 さらに、 このような機器は空気中のちりやほこりを嫌うため、 室 1 9は一般に密 閉性を高めて作られている場合が多い。 On the other hand, in Fig. 2, reference numeral 19 denotes an air-conditioned room containing heat-generating equipment 20, 19a is a ventilation fan for introducing outside air into the room 19, and 19b is air in the emergency room 19. Is a ventilation fan for exhausting air, and 20a is a device blower attached to the device 20 for forced exhaust. The air conditioner 33 configured as shown in FIG. 1 is formed to be vertically long, with the suction port 24 facing the upper inside of the chamber 19 and the outlet 25 facing the lower inside of the chamber 19. As shown, it is installed from the outside of the side wall of the room 19. Examples of the heat-generating device 20 to be cooled include devices having a large calorific value, such as a communication device, a wireless device, and a computer.However, the heat-generating device 20 is not particularly limited to these devices. Any device that requires air conditioning such as Such equipment 20 generally has a heating density Is very high and local high temperature is likely to occur inside the equipment, so the blower 20a draws relatively low-temperature air, which tends to accumulate below the interior of the chamber 19, into the interior of the equipment 20, and blows it upwards As a result, the air inside the room 19 is supplied to and exhausted from the device 20 to forcibly cool the device. In addition, such equipment is not susceptible to dust and dirt in the air, so that the room 19 is generally made with high hermeticity.
以上のように構成された実施例 1に係る空気調和装置について、 次に、 動作を説明する。  Next, the operation of the air-conditioning apparatus according to Embodiment 1 configured as described above will be described.
本発明では、 室 1 9内部の機器 2 0は通信機、 無線機、 計算機等の発 熱量が大きな機器を想定しているため、 室 1 9内部の空気を冷却する冷 房運転を例に説明する。  In the present invention, since the device 20 inside the room 19 is assumed to be a device with a large amount of heat generation such as a communication device, a radio device, and a computer, a cooling operation for cooling the air inside the room 19 will be described as an example. I do.
圧縮機 3 0で高温高圧に圧縮された冷媒は、 室外熱交換器 2 8へ流入 し、 ここで、 室外側送風機 2 9によって送り込まれる室外空気へ放熱し て凝縮、 液化する。 この液冷媒は、 減圧装置 3 1で低温、 低圧の気液二 相冷媒となって室内熱交換器 2 6へ流入し、 ここで、 室内側送風機 2 7 によって送り込まれる室 1 9内部の空気から吸熱して蒸発、 ガス化した 後、 圧縮機 3 0に戻る。  The refrigerant compressed to a high temperature and a high pressure by the compressor 30 flows into the outdoor heat exchanger 28, where it radiates heat to outdoor air sent by the outdoor blower 29 to condense and liquefy. This liquid refrigerant becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant in the pressure reducing device 31, flows into the indoor heat exchanger 26, where the air inside the chamber 19, which is sent by the indoor blower 27, After being absorbed, evaporated and gasified, it returns to the compressor 30.
室内側送風機 2 7によつで吸込口 2 4から室内熱交換器 2 6に送り込 まれた室 1 9内上方の空気は、 第 2図の破線矢印で示す方向に進み、 室 内熱交換器 2 6内部の冷媒の蒸発潜熱によって冷却されて吹出口 2 5か ら室 1 9内の下方へ吹き出される。 この冷却空気は、 室 1 9内部に収納 された機器 2 0に付属の機器送風機 2 0 aによって、 下方から上方へ吹 き出されるとともに機器 2 0を冷却する。 このとき、 冷却空気は機器 2 0の発生する熱によって加熱され、 この加熱空気が機器送風機 2 0 aに よって第 2図中の実線矢印で示すように、 室 1 9上方へ吹き出される。 本発明が主に冷却対象としている通信機、 無線機、 計算機等の電子機 器は、 空気中のちりやほこりを嫌うので、 通常、 第 2図に示すような機 器室 1 9は密閉性が高くなるように設計されており、 室 1 9内には室外 の空気が混入しないようにし、 また、 人間の出入りを制限したりして運 用されている。 ただし、 万が一の空調機 3 3の故障により室 1 9内部の 空気温度が異常に上昇してしまった場合に備え、 室 1 9には排気用と吸 気用の換気扇 1 9 aおよび 1 9 bが設置されている。 室 1 9内部の空気 温度が設定値以上となった場合には、 これら換気扇を同期して運転する ことにより外気を室 1 9内に導入して室温を下げ、 異常高温による機器 2 0の不具合を防ぐ。 The air in the upper part of the chamber 19, which is sent from the inlet 24 to the indoor heat exchanger 26 by the indoor blower 27, travels in the direction shown by the dashed arrow in FIG. The refrigerant in the vessel 26 is cooled by the latent heat of vaporization of the refrigerant, and is blown downward from the outlet 25 into the chamber 19. The cooling air is blown upward from below by a device blower 20 a attached to the device 20 housed in the room 19 and cools the device 20. At this time, the cooling air is heated by the heat generated by the device 20, and the heated air is blown upward by the device blower 20a as shown by a solid line arrow in FIG. Electronic devices such as communication devices, wireless devices, and computers that are mainly cooled by the present invention. Since equipment does not like dust and dirt in the air, the equipment room 19 as shown in Fig. 2 is usually designed to be highly sealed, and outside air is It is operated so that it does not get mixed in and restricts human access. However, in the event that the air temperature inside the room 19 rises abnormally due to the failure of the air conditioner 33, the room 19 has ventilation fans 19a and 19b for exhaust and suction. Is installed. When the air temperature inside the room 19 exceeds the set value, these ventilation fans are operated synchronously to introduce outside air into the room 19, lower the room temperature, and malfunction of the equipment 20 due to abnormally high temperature. prevent.
以上のように、 この発明の実施例 1によれば、 吸込口 2 4と吹出口 2 5を縦長に形成した筐体 2 1の一端部側及び他端部側に互いに離間して 設けるとともに、 対象室内の上方の空気を吸込むように吸込口を上方に、 対象室内の下方に冷気を吹出すように吹出口を下方にそれぞれ配設し、 対象室 1 9の側壁に対象室 1 9内の対流の方向に順じて対流を助ける方 向に取り付けたので、 機器送風機 2 0 aによって上方に排出された排熱 を室 1 9の側壁面上方に開口した吸込口 2 4から空気調和装置 3 3に吸 い込み、 冷却された空気を室 1 9の側壁面下方に開口した吹出口 2 5か ら吹き出すことによって、 機器送風機 2 0 aが作り出す室 1 9内部の空 気の流れを乱すことがなく、 発熱密度の高い通信機等の機器 2 0を効率 的に冷却することができる効果がある。  As described above, according to the first embodiment of the present invention, the suction port 24 and the air outlet 25 are provided on the one end side and the other end side of the vertically formed casing 21 so as to be separated from each other. The suction port is located above the target room to suck in the air above, and the outlet is located below the target room to blow cool air down.The convection in the target room 19 is on the side wall of the target room 19 The air conditioner was installed in the direction that facilitates convection in the direction of The air blown into the chamber 19 and blown out from the outlet 25 opened below the side wall of the chamber 19 can disturb the air flow inside the chamber 19 created by the device blower 20a. Therefore, there is an effect that the device 20 such as a communication device having a high heat generation density can be efficiently cooled.
合わせて、 室 1 9内部の空気によどみが発生しにくくなるので、 室 1 9内部空気の局所的な温度上昇によって機器の動作に異常を来すことを 未然に防ぐことができる。  In addition, since stagnation is less likely to occur in the air inside the room 19, it is possible to prevent a malfunction in the operation of the device due to a local temperature rise of the air inside the room 19 beforehand.
さらに、 室内天井面近傍に室内の温度異常を検出する温度センサが設 置されている場合でも、 天井面近傍に高温の空気が溜まり込みにくいの で、 異常高温を検出して室内に不必要に外気を導入することなく、 ちり、 ほこり等による機器の信頼性低下を未然に防ぐこともできる。 Furthermore, even if a temperature sensor that detects abnormal indoor temperatures is installed near the indoor ceiling, it is difficult for hot air to accumulate near the ceiling. Without introducing outside air, It is also possible to prevent a decrease in the reliability of the device due to dust or the like.
さらにまた、 空気調和装置の吸い込み空気温度を高く維持できるので、 空気調和装置を効率的に運転することができ、 空気調和装置の消費電力 を抑制することができる。  Furthermore, since the intake air temperature of the air conditioner can be kept high, the air conditioner can be operated efficiently, and the power consumption of the air conditioner can be suppressed.
また、 室外空気と室内空気とが筐体 2 1内部で混合しないように仕切 るセパレート部材 2 2を用いて、 筐体 2 1の一端部側を室内側と室外側 に区分し、 その室内側に室内側通風路 2 3を形成すると共に、 該室内側 通風路 2 3端部に第 1の通風口 2 4を配設し、 セパレ一ト部材 2 2を介 した室外側に室外熱交換器 2 8を配設するように構成したことにより、 空気調和装置を薄型にし、 安価にすることができる。  In addition, using a separate member 22 that separates the outdoor air and the indoor air from mixing inside the housing 21, one end of the housing 21 is divided into an indoor side and an outdoor side. A first ventilation port 24 is provided at the end of the indoor-side ventilation path 23, and an outdoor heat exchanger is disposed outside the room via a separating member 22. By arranging 28, the air conditioner can be made thinner and cheaper.
また、 上記実施例の空気調和装置は、 第 2図に示すように、 冷却対象 の機器を収容した室 1 9の側壁面の室外側に一体型で設置される。 した がって、 現在の空気調和装置で主流となっているセパレート型空気調和 装置を設置する場合に比較して、 室 1 9内部に室内機の設置スペースを 確保する必要がなくスペース効率が上がると共に、 室 1 9を小型化する ことができる。 また、 室外機と室内機とを接続する冷媒配管の設置に伴 う工事の手間および費用を削減することができる。 さらに、 配管工事の 不良に伴う冷凍サイクルの真空引き不足、 サイクル中への異物混入、 冷 媒充填量の過不足、 冷媒漏れや接続バルブの開け忘れ等といった空調不 良を招く原因を未然に排除することができ、 冷却対象物の動作信頼性を 向上させることができる。  Further, as shown in FIG. 2, the air conditioner of the above embodiment is integrally installed on the outside of the side wall of the room 19 containing the equipment to be cooled. Therefore, compared to installing a separate type air conditioner, which is the mainstream in current air conditioners, there is no need to secure an indoor unit installation space inside room 19, resulting in higher space efficiency. In addition, the size of the room 19 can be reduced. In addition, the labor and cost for construction work for installing the refrigerant pipe connecting the outdoor unit and the indoor unit can be reduced. In addition, the causes of poor air-conditioning such as insufficient evacuation of the refrigeration cycle due to poor piping work, foreign matter in the cycle, excessive or insufficient refrigerant charge, refrigerant leakage, and forgetting to open the connection valve have been eliminated. The operation reliability of the object to be cooled can be improved.
さらにまた、 本実施例 1による空気調和装置は、 第 1図および第 2図 に示すように筐体 2 1の室内側の面を機器室 1 9の側壁面に密着させて 設置することができるので、 筐体 2 1およびその内部部品のメンテナン スは全て室外側から行うようにすることが可能となる。 したがって、 空 気調和装置のメンテナンス時に室 1 9内部に人間が立ち入る必要がない ので、 室 1 9への出入に伴うちりやほこりの進入を抑制することができ、 機器 2 0の信頼性を向上させることができる。 Furthermore, the air-conditioning apparatus according to Embodiment 1 can be installed with the indoor side surface of the housing 21 in close contact with the side wall surface of the equipment room 19 as shown in FIG. 1 and FIG. Therefore, it is possible to perform all maintenance of the housing 21 and its internal components from the outdoor side. Therefore, there is no need for humans to enter the room 19 during maintenance of the air conditioner. Therefore, it is possible to suppress dust and dust from entering the room 19, thereby improving the reliability of the device 20.
また上記本実施例による空気調和装置を構成する蒸気圧縮式冷凍サイ クルにおいては、 塩素を含まない弗化炭素水素 H F C系冷媒である R 4 0 7 C、 R 4 1 0 A、 R 3 2等、 あるいは C 0 2、 H C等オゾン破壊係 数 0の物質を作動流体とし、 冷凍機油として H F C系冷媒に相溶のポリ オールエステル油あるいはポリビニルエーテル油や、 H F C系冷媒とは 非相溶のハードアルキルベンゼン油などを使用しているので、 オゾン層 を破壊することなく地球環境に配慮した空気調和装置を得ることができ る。 Further, in the vapor compression refrigeration cycle constituting the air conditioner according to the present embodiment, R 407 C, R 410 A, R 32, etc., which are HFC-based refrigerants containing no hydrogen fluoride and containing chlorine. or C 0 2, HC, etc. and material working fluid ozone destruction coefficient number 0, refrigerating machine oil miscible or polyol ester oil or polyvinyl ether oil to HFC-based refrigerant as, the HFC refrigerant incompatible hard Since alkylbenzene oil and the like are used, an air conditioner that considers the global environment can be obtained without destroying the ozone layer.
また、 本実施例による空気調和装置は、 比較的密閉性の高い室 1 9に 収納された機器の冷却を目的としているため、冷房運転時の潜熱負荷(除 湿負荷) は通常の対人空調に比較して小さい。 そのため、 顕熱比 (全空 調負荷に占める顕熱負荷の割合) が、 例えば 0 . 9以上という高顕熱運 転となるので、 効率的に負荷を処理するために、 同容量の通常の空気調 和装置よりも室内熱交換器 2 6の容量、 または/ならびに室内側送風機 2 7の容量が大きくなつている。 このように構成することにより、 機器 発熱負荷を効率良く処理することができると共に、 冷却空気の吹き出し 温度が通常の空気調和装置よりも高くなるので、 直接機器に冷気が当た つても機器が結露して不具合を生じることはない。  Further, since the air conditioner according to the present embodiment is intended to cool the equipment housed in the room 19 having a relatively high airtightness, the latent heat load (dehumidification load) during the cooling operation is reduced to the ordinary personal air conditioning. Small in comparison. As a result, the sensible heat ratio (the ratio of the sensible heat load to the total air-conditioning load) becomes high sensible heat operation, for example, 0.9 or more. The capacity of the indoor heat exchanger 26 and / or the capacity of the indoor blower 27 are larger than that of the humidifier. With this configuration, the heat generated by the equipment can be efficiently handled, and the temperature of the cooling air blown out becomes higher than that of a normal air conditioner. No problem occurs.
実施例 2 . Example 2.
上記実施例 1では、 室外熱交換器 2 8を筐体 2 1の上方に配設し、 室 内熱交換器 2 6を筐体 2 1の下方に配設したが、 これを逆にしても実施 例 1 と同様に薄型の空気調和装置を得ることができる。 以下、 具体的に 説明する。  In the first embodiment, the outdoor heat exchanger 28 is disposed above the housing 21 and the indoor heat exchanger 26 is disposed below the housing 21. As in Embodiment 1, a thin air conditioner can be obtained. Hereinafter, a specific description will be given.
第 3図はこの発明の実施例 2による空気調和装置を示す断面構成図で ある。 図において、 室外熱交換器 2 8および室外側送風機 2 9が筐体 2 1の他端部側の下方に配設され、 室内熱交換器 2 6および室内側送風機 2 7が筐体 2 1の一端部側である上方に配設されていることが、 上記実 施例 1と大きく異なっている。 なお、 室内空気の吸込口 2 4は実施例 1 と同様、 室内上方の高温空気を吸い込むように空気調和装置 3 3の上方 に配設され、 吹出口 2 5はやはり実施例 1と同様、 室内の冷却対象機器 送風機の吸い込み側に冷気を吹き出すよう空気調和装置 3 3の下方に配 設されている。 また、 吸込口 2 4は、 室内熱交換器 2 6の室内側 (室 1 9側) に位置し、 吹出口 2 5は、 室外熱交換器 2 8の室内側(室 1 9側) に位置している。 FIG. 3 is a sectional configuration diagram showing an air conditioner according to Embodiment 2 of the present invention. is there. In the figure, an outdoor heat exchanger 28 and an outdoor blower 29 are disposed below the other end of the housing 21, and an indoor heat exchanger 26 and an indoor blower 27 are mounted on the housing 21. This embodiment is significantly different from the first embodiment in that it is disposed above one end. Note that the indoor air suction port 24 is disposed above the air conditioner 33 so as to draw in high-temperature air above the room as in the first embodiment, and the air outlet 25 is also the same as in the first embodiment. The equipment to be cooled is arranged below the air conditioner 33 so as to blow cool air to the suction side of the blower. The inlet 24 is located on the indoor side (room 19 side) of the indoor heat exchanger 26, and the outlet 25 is located on the indoor side (room 19 side) of the outdoor heat exchanger 28. are doing.
一方、 室外空気と室内空気とが空気調和装置内部で混合しないように 筐体 2 1内部を仕切るセパレート部材 2 2は、 筐体 1の他端部側 (図の 下方) に設けられている。 そして、 セパレ一ト部材 2 2の室内側には室 内側通風路 2 3の他端部側が形成され、 さらにこの室内側通風路 2 3に 連通する吹出口 2 5が配設されており、 またセパレート部材 2 2の室外 側には室外熱交換器 2 8、 室外送風機 2 9、 圧縮機 3 0及び減圧装置 3 On the other hand, a separate member 22 that partitions the inside of the housing 21 so that the outdoor air and the indoor air do not mix inside the air conditioner is provided on the other end side of the housing 1 (below the figure). On the indoor side of the separation member 22, the other end of the indoor-side ventilation path 23 is formed, and further, an air outlet 25 communicating with the indoor-side ventilation path 23 is provided. An outdoor heat exchanger 28, an outdoor blower 29, a compressor 30 and a decompression device 3 are located on the outdoor side of the separate member 22.
1が設置されている。 1 is installed.
さらに、 上方に設置されている室内熱交換器 2 6で室内空気を冷却し た結果生じる結露水 (ドレン) は、 ドレンパンおよびドレン排出口 3 2 を経て室外熱交換器 2 8に散布されるよう、 ドレン排出口 3 2が室外熱 交換器 2 8の上部に配置されている。  In addition, the condensed water (drain) resulting from cooling the indoor air with the indoor heat exchanger 26 installed above is distributed to the outdoor heat exchanger 28 via the drain pan and the drain outlet 32. The drain outlet 32 is located above the outdoor heat exchanger 28.
上記のように構成することにより、 実施例 1の場合と同様に図示を省 略する対象室に取り付けられたときに、 室内送風機 2 7によって筐体 2 With the above-described configuration, as in the case of the first embodiment, when it is mounted in a target room (not shown),
1上部の吸込口 2 4から吸込まれた対象室内の高温の空気は室内側通風 路 2 3内を破線矢印で示すように進み、 蒸発器 2 6で冷却されて筐体 2(1) The high-temperature air in the target room sucked from the upper intake port (2) (4) travels in the indoor ventilation path (23) as indicated by the dashed arrow, is cooled by the evaporator (26), and
1下方の吹出口 2 5から対象室内に吹出され、 対象室内の機器を効果的 に冷却することができる。 さらにこの発明の実施例 2では、 室内空気か ら凝縮したドレン水がドレン排出口 3 2から室外熱交換器 2 8に滴下、 散布されるので、 特に夏場で外気温度が高い場合にドレン水の蒸発潜熱 を利用することができるので、 凝縮温度の上昇を押さえることができ、 冷凍サイクルの運転効率が向上するという効果もある。 (1) Blow-off port (2) Blows out from the target room into the target room, effectively using the equipment in the target room Can be cooled. Further, in the second embodiment of the present invention, the drain water condensed from the indoor air is dropped and sprayed from the drain outlet 32 to the outdoor heat exchanger 28, so that the drain water is particularly high when the outside air temperature is high in summer. Since the latent heat of evaporation can be used, the rise in condensation temperature can be suppressed, and there is also the effect that the operating efficiency of the refrigeration cycle improves.
実施例 3 . Example 3.
実施例 1では、 冷却対象の機器が冷却風を上向きに排出する送風機を 有している場合に空気調和装置 3 3を室 1 9の側壁面に設置することに よって、 機器送風機が作り出す室 1 9内部の空気の流れを乱すことなく、 発熱密度の高い機器を効率的に冷却する例を示したが、 本実施例 3では、 冷却対象の機器が横向きの送風機を有している場合の設置方法について 説明する。  In the first embodiment, when the equipment to be cooled has a blower that discharges the cooling air upward, the air conditioner 33 is installed on the side wall of the chamber 19, so that the room 1 9 Although an example of efficiently cooling equipment with high heat generation density without disturbing the flow of air inside was shown, in Example 3, installation was performed when the equipment to be cooled had a horizontal blower. The method is explained.
第 4図はこの発明の実施例 3による空気調和装置の設置方法を示す取 付け時の側面構成図である。  FIG. 4 is a side view at the time of installation showing a method of installing an air conditioner according to Embodiment 3 of the present invention.
図に示すように、 通信機、 無線機、 計算機等の冷却対象機器 2 0は、 前面部 (第 4図では左側の面) から実線矢印のように空気を吸込み、 背 面部 (第 4図では右側の面) へ吹き出す冷却用送風機 2 0 aを有してい る。 また、 空気調和装置 3 3は、 室 1 9の天井部分に吸込口 2 4及び吹 出口 2 5を下方向に向けて設置されている。 この場合、 吸込口 2 4は機 器送風機 2 0 aによる実線矢印方向の空気の流れに見合って、 室 1 9天 井面の右方 (機器背面側) に配設し、 一方、 吹出口 2 5は室 1 9天井面 の左方 (機器前面側) に開口するように配設して取り付けられている。 上記のように空気調和装置 3 3の吸込口 2 4及び吹出口 2 5の向きを 室 1 9内の機器 2 0による対流の方向に合わせて設置する設置方法をと ることにより、 機器 2 0の内部で発生した熱を処理して高温になった室 内空気は機器送風機 2 0 aによって図の右上に進み、 空気調和装置 3 3 の右端部に設けられた吸込口 2 4から破線矢印で示すように空気調和装 置 3 3内部の室内側送風機 2 7によって吸込まれ、 室内熱交換器 2 6に よって冷却された後、 吹出口 2 5から室内左側下方へ向けて吹き出され る。 この冷気は機器送風機 2 0 aによって機器前面 (第 4図では左側の 面) から吸い込まれ、 機器 2 0を冷却する。 As shown in the figure, the equipment 20 to be cooled, such as a communication device, a wireless device, and a computer, sucks air from the front part (the left side in FIG. 4) as indicated by the solid line arrow, and the back part (in FIG. It has a cooling blower 20a that blows out to the right side). Further, the air conditioner 33 is installed on the ceiling of the room 19 with the inlet 24 and the outlet 25 facing downward. In this case, the suction port 24 is arranged on the right side of the room 19 (to the rear of the equipment) in accordance with the flow of air in the direction of the solid arrow by the device blower 20a. 5 is installed and installed so as to open to the left of the room 19 ceiling (the front side of the equipment). As described above, by adopting an installation method in which the direction of the inlet 24 and the outlet 25 of the air conditioner 33 is set in accordance with the direction of convection by the equipment 20 in the room 19, the equipment 20 The room air, which has become high temperature by processing the heat generated inside the room, goes to the upper right of the figure by the equipment blower 20a, and the air conditioner 3 3 As shown by the dashed arrow from the inlet 24 provided at the right end of the air conditioner 33, the air is sucked in by the indoor blower 27 inside the air conditioner 27, cooled by the indoor heat exchanger 26, and then It is blown out from 25 toward the lower left side of the room. This cool air is sucked in from the front of the equipment (left side in Fig. 4) by the equipment blower 20a, and cools the equipment 20.
以上のように、 この発明の実施例 3によれば、 機器送風機 2 0 aが排 熱を吹き出す側の天井面に空気調和装置 3 3の吸込口 2 4を向け、 機器 送風機 2 0 aが冷気を吸い込む側である図の左側の天井面に空気調和装 置 3 3の吹出口 2 5を向けて配設するように設置したので、 機器送風機 2 0 aが作り出す室 1 9内部の空気の流れを乱すことなく、 発熱密度の 高い機器を効率的に冷却することができるとともに、 機器の信頼性を向 上させることができる。 さらには、 空気調和装置 3 3の吸い込み空気温 度を高く維持できるので、 空気調和装置を効率的に運転することができ、 空気調和装置の消費電力を抑制することができる効果がある。  As described above, according to the third embodiment of the present invention, the air blower 20 a directs the suction port 24 of the air conditioner 33 toward the ceiling surface on the side from which the exhaust heat is blown out, and the equipment blower 20 a The air conditioner 3 3 was installed with the outlet 25 facing the ceiling on the left side of the figure, which is the side that sucks air. It is possible to efficiently cool equipment with a high heat generation density without disturbing heat and improve the reliability of equipment. Furthermore, since the intake air temperature of the air conditioner 33 can be kept high, the air conditioner can be operated efficiently and the power consumption of the air conditioner can be suppressed.
実施例 4 . Example 4.
実施例 3では、 横吹きの送風機 2 0 aを有する機器 2 0を冷却するた めに空気調和装置 3 3を室 1 9の屋根に横方向に設置する例を示したが、 設置位置は屋根部や天井部に限定されるものではい。  In the third embodiment, an example is shown in which the air conditioner 33 is installed laterally on the roof of the room 19 in order to cool the equipment 20 having the side-blower blower 20a. It is not limited to the section and the ceiling.
第 5図はこの発明の実施例 4に係る空気調和装置の設置方法を示す取 付け時の側面構成図である。  FIG. 5 is a side view showing an installation method of an air conditioner according to Embodiment 4 of the present invention at the time of installation.
図に示す空気調和装置としては、 実施例 1の第 1図に示すものと同様 の構成例が用いられ、 室 1 9の側壁面に、 機器送風機 2 0の吸い込み側 である室 1 9の下方に空気調和装置 3 3の吹出口 2 5が閧口し、 室 1 9 の同じ面上方に空気調和装置 3 3の吸込口 2 4が開口するように設置さ れている。  As the air conditioner shown in the figure, the same configuration example as that shown in FIG. 1 of Embodiment 1 is used, and the side wall surface of the room 19 is located below the room 19 which is the suction side of the equipment blower 20. The air outlet 25 of the air conditioner 33 is connected to the air conditioner 33, and the suction port 24 of the air conditioner 33 is installed above the same surface of the chamber 19.
この実施例 4においては、 空気調和装置 3 3の吹出口 2 5を機器送風 機 2 0 aの吸い込み側に向けて配置すると共に、 機器送風機 2 0 aによ り機器 2 0の後方 (図の右側) に排出され室 1 9の上方に移動した高温 空気を吸い込む位置に吸込口 2 4を配設して取り付けたことにより、 空 気調和装置 3 3内部を破線矢印で示すように空気が通流し、 機器送風機 2 0 aに空気調和装置 3 3から吹き出した冷気が吸い込まれて実線矢印 で示す方向に空気が流れ、 第 4図に示す実施例 3と同様に全体として機 器 2 0による対流を助長する方向に空気を流すことになり、 室 1 9内に 空気の吹溜りが発生するのを防ぐことができる。 従って、 機器 2 0を効 率的に冷却することができるので、 機器の信頼性を向上させることがで きるとともに、 空気調和装置の消費電力を抑制することもできる。 In Example 4, the air outlet 25 of the air conditioner 33 was It is arranged toward the suction side of the machine 20a, and is sucked into the position where the high-temperature air that has been discharged to the rear of the machine 20 (right side in the figure) by the machine blower 20a and moved above the chamber 19 is sucked. By arranging and installing the port 24, air flows through the inside of the air conditioner 33 as indicated by the dashed arrow, and cool air blown out from the air conditioner 33 is sucked into the device blower 20a. Thus, air flows in the direction indicated by the solid arrow, and air flows in a direction that promotes convection by the device 20 as a whole, similarly to the third embodiment shown in FIG. 4, and the air blows into the chamber 19. The occurrence of pooling can be prevented. Therefore, the device 20 can be efficiently cooled, so that the reliability of the device can be improved and the power consumption of the air conditioner can be suppressed.
実施例 5 . Embodiment 5.
第 6図はこの発明の実施例 5に係る空気調和装置の要部を示す側面構 成図である。  FIG. 6 is a side view showing a main part of an air conditioner according to Embodiment 5 of the present invention.
図において、 3 4は圧縮機 3 0の吐出側と凝縮器 2 8とを接続する配 管、 3 5は圧縮機 3 0吸入側と蒸発器 2 6とを接続する配管、 3 6は前 記 2つの配管 3 4、 3 5の間をバイパスするように設けられたバイパス 配管、 3 7はこのバイパス配管 3 6内に設けられ、 圧縮機 3 0の吐出側 3 4から吸入側 3 5への冷媒の流れを阻止する逆止弁である。  In the figure, 34 is a pipe connecting the discharge side of the compressor 30 and the condenser 28, 35 is a pipe connecting the compressor 30 suction side and the evaporator 26, and 36 is the above. A bypass pipe 37 provided to bypass between the two pipes 3 4 and 3 5 is provided inside the bypass pipe 36, and is provided between the discharge side 34 and the suction side 35 of the compressor 30. This is a check valve that blocks the flow of the refrigerant.
次に動作について説明する。 圧縮機 3 0を動作させる通常の冷房運転 では、 圧縮機吐出側配管 3 4と吸入側配管 3 5とをつなぐバイパス配管 3 6は逆止弁 3 7によって閉止されるので、 実施例 1と同様の動作とな るので説明は省略する。  Next, the operation will be described. In the normal cooling operation in which the compressor 30 is operated, the bypass pipe 36 connecting the compressor discharge pipe 34 and the suction pipe 35 is closed by the check valve 37 so that it is the same as in the first embodiment. Therefore, the description is omitted.
つぎに、 外気温度が室内吸い込み空気温度よりおおよそ 5 [°C ] 以上 低い場合、 圧縮機 3 3を停止した場合、 凝縮器 2 8で低温の外気によつ て凝縮した冷媒液は、 ほぼ開度が全開となっている減圧装置 3 1を経て、 重力によって下方に設置されている蒸発器 2 6に流入し、 室内空気と熱 交換して蒸発ガス化する。 このとき、 蒸発器 2 6の圧力は凝縮器 2 8と の高低差に基づく圧力差分だけ凝縮器 2 8の圧力よりも高くなつている ため、 バイパス配管 3 6および逆止弁 3 7を通過して凝縮器 2 8に流入 する。 ここで、 再び低温の外気に放熱して凝縮液化して自然循環冷凍サ ィクルが動作する。 Next, when the outside air temperature is lower than the indoor suction air temperature by about 5 [° C] or more, when the compressor 33 is stopped, the refrigerant liquid condensed by the low-temperature outside air in the condenser 28 almost opens. After passing through the decompression device 31 that is fully open, it flows into the evaporator 26 that is installed below by gravity, and the indoor air and heat Exchange and evaporate. At this time, since the pressure of the evaporator 26 is higher than the pressure of the condenser 28 by a pressure difference based on the height difference from the condenser 28, the evaporator 26 passes through the bypass pipe 36 and the check valve 37. To the condenser 28. Here, the heat is radiated again to the low-temperature outside air, condensed and liquefied, and the natural circulation refrigeration cycle operates.
上記自然循環運転時は、 室内側送風機 2 7および室外側送風機 2 9の み運転していれば、 冷媒は凝縮器 2 8と蒸発器 2 6の高低差、 および自 • 身の液とガスの密度差によって生じる圧力差で循環するため、 圧縮機 3 0に電力を供給することなくわずかな消費電力で極めて効率的に室 1 9 内を冷房することができるので、 空気調和装置 3 3の消費電力を大幅に 抑制することができる。 なお、 この場合、 図示を省略しているが、 対象 室 1 9内から吸い込む空気の温度を検知する室内温度センサ、 外気温度 を検知する外気温センサ、 これら 2つのセンサの情報に基づいて圧縮機 の運転を制御する制御装置など公知の制御技術が付加できることは言う までもない。  During the natural circulation operation described above, if only the indoor blower 27 and the outdoor blower 29 are operating, the refrigerant will have a difference in height between the condenser 28 and the evaporator 26, as well as the Since the air is circulated by the pressure difference caused by the density difference, the inside of the room 19 can be cooled very efficiently with little power consumption without supplying power to the compressor 30. Power can be greatly reduced. In this case, although not shown, an indoor temperature sensor that detects the temperature of the air sucked from the target room 19, an outside air temperature sensor that detects the outside air temperature, and a compressor based on the information of these two sensors It goes without saying that a known control technology such as a control device for controlling the operation of the vehicle can be added.
さらに、 圧縮機 3 0を回転数可変、 高低圧バイパス等による容量制御 型のものとすれば、 負荷が小さいが外気温度は室内温度よりも高く自然 循環運転が成立しない条件でも、 圧縮機の容量を小さくすることにより 消費電力をさらに抑制することが可能となる。  Furthermore, if the compressor 30 is of a capacity control type with variable rotation speed, high / low pressure bypass, etc. It is possible to further reduce power consumption by reducing.
実施例 6 .  Embodiment 6.
第 7図及び第 8図は本発明の実施例 6に係る空気調和装置の要部を示 すもので、 第 7図は空気調和装置の側面構成図、 第 8図はダンバ制御手 段を示す構成図である。 図において、 3 8は第 1の通風口 2 4の下端部 より図の下方向のセパレート部材 2 2に設けられ、 室内側通風路 2 3と 室外を連通し得る第 1の連通部、 3 9はこの第 1の連通部 3 8に設けら れ、 通常時である第 1の状態では上記第 1の連通部 3 8を遮蔽すると共 に上記室内側通風路 2 3を開き、 異常時など第 2の状態では上記室内側 通風路 2 3を遮蔽すると共に上記第 1の連通部 3 8を開いて一方の通風 口 2 4から吸い込まれた室内空気が第 1の連通部 3 8を経て室外側送風 機 2 9により室外に排気されるようにする第 1のダンパ、 4 0は上記室 内側通風路 2 3における上記第 1の連通部 3 8及び室内側送風機 2 7の 間に位置する筐体 2 1の外壁を開口するように設けられ、 上記室内側通 風路 2 3内と外気を連通し得る第 2の連通部、 4 1は、 この第 2の連通 部 4 0を開閉し得るように設けられ、 第 1の状態では上記第 2の連通部 4 0を遮蔽し、 第 2の状態では上記第 2の連通部 4 0を開いて上記室内 側送風機 2 7により上記第 2の連通部 4 0から吸い込まれた外気を他方 の通風口 2 5から室内に吹き出されるようにする第 2のダンパである。 7 and 8 show a main part of an air conditioner according to Embodiment 6 of the present invention. FIG. 7 is a side view of the air conditioner, and FIG. 8 shows a damper control means. It is a block diagram. In the figure, reference numeral 38 denotes a first communication portion provided on the separate member 22 downward from the lower end of the first ventilation port 24 to allow communication between the indoor ventilation path 23 and the outside. The first communication portion 38 is provided in the first communication portion 38. In the first state, which is a normal state, the first communication portion 38 is shielded. In the second state, such as when an abnormality occurs, the indoor side ventilation path 23 is opened, and the indoor side ventilation path 23 is shielded, and the first communication part 38 is opened to suck air from one of the ventilation ports 24. A first damper 40 for allowing the indoor air that has flowed through the first communication section 38 to be exhausted to the outside by the outdoor blower 29, 40 is the first communication section in the indoor inside ventilation path 23. A second communication portion, which is provided so as to open the outer wall of the housing 21 located between the inside air passage 23 and the inside air blower 27, and can communicate outside air with the inside air passage 23, 4 1 Is provided so as to be able to open and close the second communication part 40, shields the second communication part 40 in the first state, and closes the second communication part 40 in the second state. A second air outlet that opens to allow the outside air sucked from the second communication portion 40 by the indoor air blower 27 to be blown into the room through the other air vent 25. It is a damper.
4 2は室温に応じた信号を出力する温度センサであり、 例えば感熱抵 抗体などが用いられ、 室内側通風路 2 3内部の吸込口 2 4の近傍あるい は空気調和装置 3 3付属のリモートコントローラ (図示せず) の内部に 設置される。 4 3はダンバ 3 9の開閉手段、 4 4はダンバ 4 1の開閉手 段であり、 これらダンバ開閉手段 4 3、 4 4は例えば電磁ァクチユエ一 夕を有し、 制御回路 4 5からの電気信号に応じてダンバ 3 9、 4 1を閉 じた状態、 または開いた状態にそれぞれ保持することができる。 4 6は 制御回路 4 5に対し、 第 1の温度及び第 2の温度を予め設定し得る温度 設定手段であり、 例えば第 1の設定温度を空調対象機器の許容周囲温度 の最高値に設定し、 第 2の設定温度をそれよりも低い温度に予め設定さ れる。 上記制御回路 4 5は、 温度センサ 4 2によって検知された室温が 温度設定手段 4 6により設定された第 1の設定温度を超えたときにダン パ開閉手段 4 3、 4 4に信号を送りダンバ 3 9、 4 1を開き、 第 2の設 定温度を下回ったときにダンパ開閉手段 4 3、 4 4に信号を送りダンパ 3 9、 4 1を閉じるように制御する。 次に動作について説明する。 まず、 空気調和装置 3 3内に設置された 温度センサ 4 2によって室 1 9内部の空気温度を検出する。 この検出値 があらかじめ設定されている異常設定値である第 1の設定温度を越えて いない場合には、 第 1および第 2のダンバ 3 9および 4 1は閉じられて おり、 実施例 1と全く同様に動作する。 Reference numeral 2 denotes a temperature sensor that outputs a signal corresponding to the room temperature, for example, a thermosensitive antibody is used, and the vicinity of the suction port 24 inside the indoor ventilation passage 23 or the remote controller attached to the air conditioner 33 is provided. Installed inside the controller (not shown). Reference numeral 43 denotes opening / closing means for the dampers 39, 44 denotes opening / closing means for the dampers 41.The damper opening / closing means 43, 44 have, for example, an electromagnetic actuator, and an electric signal from the control circuit 45. The dampers 39, 41 can be kept in a closed state or an open state, respectively. Reference numeral 46 denotes temperature setting means for setting the first temperature and the second temperature to the control circuit 45 in advance.For example, the first temperature is set to the maximum value of the allowable ambient temperature of the equipment to be air-conditioned. However, the second set temperature is preset to a lower temperature. The control circuit 45 sends a signal to the damper opening / closing means 43, 44 when the room temperature detected by the temperature sensor 42 exceeds the first set temperature set by the temperature setting means 46, and sends the signal to the damper. The control is performed so that the dampers 39 and 41 are closed by sending signals to the damper opening / closing means 43 and 44 when the temperature falls below the second set temperature. Next, the operation will be described. First, the temperature of the air inside the room 19 is detected by the temperature sensor 42 installed in the air conditioner 33. If the detected value does not exceed the first set temperature, which is a preset abnormal set value, the first and second dampers 39 and 41 are closed, which is completely different from the first embodiment. It works similarly.
つぎに、 室 1 9内部の空気温度検出値があらかじめ設定されている異 常設定値を越えた場合には、 第 1および第 2のダンパ 3 9および 4 1を 開け、 室外側送風機 2 9によって異常高温となった室内空気を第 1のダ ンパ 3 9を通じて矢印 iに示すように室外に排出し、 室内側送風機 2 7 によって第 2のダンバ 4 1を通して外気を室内に送り込み、 室温を低下 させる。 その後, 室内空気温度があらかじめ設定されている通常設定値 である第 2の設定値 (第 1の設定値 >第 2の設定値) を下回った時点で 第 1および第 2のダンバ 3 9および 4 1を閉じ、 通常の冷房運転に復帰 する。 なお、 空気調和装置 3 3が万一故障している場合には、 ダンバ 3 9、 4 1を開けている間、 アラーム信号を図示しない所定の管理サイ ト に発信するようにしても良い。  Next, if the detected air temperature value inside the room 19 exceeds a preset abnormal value, the first and second dampers 39 and 41 are opened, and the outdoor blower 29 is used. The room air that has become abnormally high temperature is discharged outside through the first damper 39 as shown by the arrow i, and the outside air is blown into the room through the second damper 41 by the indoor blower 27 to lower the room temperature. . Then, when the room air temperature falls below the second set value (first set value> second set value), which is a preset normal set value, the first and second dampers 39 and 4 Close 1 to return to normal cooling operation. If the air conditioner 33 is out of order, an alarm signal may be transmitted to a predetermined management site (not shown) while the dampers 39 and 41 are opened.
以上のように、 本実施例 6によれば、 対象室 1 9内部の空気温度が異 常になつた場合には、 第 1および第 2のダンパ 3 9、 4 1を開けて室内 空気を室外に排出するとともに室外空気を室内に導入することができる ので、 万が一の空気調和装置の異常に対しても室 1 9内部の冷却対象を 異常高温にさらすことなく動作の信頼性を確保することができる。 また、 室 1 9には空気調和装置 3 3とは別に、 第 2図に示すような排気用、 吸 気用の換気扇 1 9 a、 1 9 bを別途設置する必要がなく、 その分、 室 1 9の構造が簡単で換気扇も不要となるので安価なものとすることができ る o  As described above, according to the sixth embodiment, when the air temperature inside the target room 19 becomes abnormal, the first and second dampers 39, 41 are opened to make room air outside. Since the air can be discharged and the outdoor air can be introduced into the room, the reliability of operation can be secured without exposing the cooling object inside the room 19 to abnormally high temperatures even in the event of an air conditioner malfunction. . In addition, it is not necessary to install separate ventilation fans 19a and 19b for exhaust and intake as shown in Fig. 2 separately from the air conditioner 33 in the room 19. Since the structure of 19 is simple and no ventilation fan is required, it can be inexpensive o
なお、 連通部 3 8、 4 0と、 開閉ダンバ 3 9、 4 1は室内空気の排出 側と吸込み側の何れか 1個所とすることもできるが、 気密性の良い室に 取り付ける場合には、 この実施例のように排出側と吸込み側の双方に設 けることが好ましい。 The communication sections 38, 40 and the open / close dampers 39, 41 discharge indoor air. It can be located at either one of the suction side and the suction side. However, when it is installed in an airtight room, it is preferable to install it on both the discharge side and the suction side as in this embodiment.
また、 室外熱交換器 2 8が筐体 2 1の上方に配設され、 室内熱交換器 2 6が筐体 2 1の下方に配設されたものに開閉ダンパを設けるようにし たが、 逆の構成のもの、 即ち第 3図の例のように、 室外熱交換器 2 8が 筐体 2 1の下方に配設され、 室内熱交換器 2 6が筐体 2 1の上方に配設 されたものに開閉ダンバを設ける様にすることも差し支えない。  Also, the outdoor heat exchanger 28 is provided above the housing 21 and the indoor heat exchanger 26 is provided below the housing 21 with an open / close damper. In other words, as shown in FIG. 3, the outdoor heat exchanger 28 is disposed below the housing 21 and the indoor heat exchanger 26 is disposed above the housing 21. It is permissible to provide an open / close damper on the device.
ところで、 上記実施例では筐体 2 1の一端部側に設けたセパレート部 材 2 2は、 筐体 2 1の一端部側内部を、 取り付ける外壁の面と平行な面 に沿うように筐体 2 1の一端部の上下方向に形成したが、 必ずしもこれ に限定されるものではない。 例えば、 取り付ける室内側から見て、 左右 方向の一方が室外側熱交換器 2 8、 他方が室内側通風路 2 3となるよう に、 外壁面に直交する面の方向に筐体 2 1の一端部の上下方向に形成し ても同様の効果が期待できる。 さらに、 室内側熱交換器 2 6と、 送風機 2 7の位置関係も実施例のものに限定されるものではない。  By the way, in the above embodiment, the separate member 22 provided on one end side of the housing 21 is arranged so that the inside of the one end side of the housing 21 extends along a plane parallel to the surface of the outer wall to be attached. 1 is formed in the vertical direction at one end, but is not necessarily limited to this. For example, one end of the housing 21 in a direction perpendicular to the outer wall surface so that one side in the left and right direction is the outdoor heat exchanger 28 and the other side is the indoor ventilation passage 23 when viewed from the indoor side to be installed. The same effect can be expected even if it is formed in the vertical direction of the part. Further, the positional relationship between the indoor heat exchanger 26 and the blower 27 is not limited to the embodiment.
また、 本発明の各実施例 1ないし実施例 6では、 冷却対象機器 2 0が 何れも機器自体の冷却を行うための送風機 2 0 aを有する場合を例に説 明したが、 必ずしも送風機を持つていない機器であっても同様の効果が 期待できる。 特に、 実施例 1, 2 , 5, 及び 6については、 冷却対象機 器が送風機を持っていなくても、 発熱密度の高さに応じた上方への自然 対流が発生し、 第 2図に示すような上吹き出しの送風機 2 0 aと同様な 室内気流が形成される。 したがって、 機器内部の上昇自然対流の上流側 (吸い込み側) に冷気を吹きつけ、 下流側 (噴出し側) の高温空気を吸 い込むように、 空気調和装置 3 3の吸込口 2 4が室 1 9側壁面上方に位 置するように配置し、 吹出口 2 5が室 1 9側壁面下方となるように、 自 然対流を助ける方向に配置すれば良い。 Further, in each of the first to sixth embodiments of the present invention, the case where each of the cooling target devices 20 has a blower 20 a for cooling the device itself has been described as an example, but the cooling device necessarily has a blower. Similar effects can be expected even for devices that do not have this. In particular, in Examples 1, 2, 5, and 6, even if the device to be cooled did not have a blower, upward natural convection occurred according to the heat generation density. An indoor airflow similar to that of the blower 20a having such a top blow is formed. Therefore, the suction port 24 of the air conditioner 33 is designed so that the cool air is blown to the upstream side (suction side) of the natural convection inside the equipment and the high-temperature air is sucked downstream (outlet side). 1 9 It is arranged so that it is located above the side wall surface. However, it may be arranged in a direction that helps convection.
また、 上記本発明の各実施例では、 発熱機器を冷却することを前提に 冷凍サイクルは冷房専用として説明したが、 図示しない四方弁を用いて 室外熱交換器と室内熱交換器との接続を切り替えることにより、 所望に より冷房及び暖房の何れかに切替えられるように構成したヒートポンプ でも良いことは言うまでもない。 このようにすれば、 例えば厳冬期など 外気温度が低い時期に機器のメンテナンス等で室 1 9内に作業者が入つ た場合などに室 1 9内部を暖房することができるので、 作業者の作業性 を向上できるという効果がある。 また、 夏季に機器のメンテナンス等で 室 1 9内に作業者が入る場合の作業環境を考慮して、 室内側送風機 2 7 の送風方向を逆転させて、 下部の第 2の通風口 2 5から室内空気を吸込 み、 上部に設けられた第 1の通風口 2 4から冷気を室 1 9内に吹出すよ うに機能を付加して構成することもでき、 その場合は作業性を向上させ る上でさらに好ましい。  In each embodiment of the present invention, the refrigeration cycle has been described as being exclusively used for cooling on the premise that the heat-generating equipment is cooled.However, the connection between the outdoor heat exchanger and the indoor heat exchanger is performed using a four-way valve (not shown). Needless to say, the heat pump may be configured to switch between cooling and heating as desired by switching. In this way, the inside of the room 19 can be heated, for example, when a worker enters the room 19 due to maintenance of the equipment during a low outside air temperature, such as in a severe winter, so that the worker can be heated. This has the effect of improving workability. In addition, in consideration of the working environment when a worker enters the room 19 due to maintenance of equipment in summer, etc., the air blowing direction of the indoor blower 27 is reversed, and the air is blown through the lower second ventilation opening 25. It is also possible to add a function to suck indoor air and blow cool air into the room 19 from the first ventilation port 24 provided in the upper part, in which case the workability is improved. More preferred above.
さらに、 断熱性能があまり良くない室 1 9であれば、 外気温度が低下 する冬季等において機器運転時に温度が低下しすぎることも考えられ、 このような場合に暖房して室温をある適当な範囲に一定に維持すること ができるので、 機器の動作信頼性を向上させることができる。  Furthermore, if the room 19 is not very well insulated, the temperature may be too low during operation of the equipment in winter, when the outside air temperature is low. , The operation reliability of the device can be improved.
以上のようにこの発明によれば、 一端部から他端部方向に長く伸びて 形成された室内側通風路を有する筐体と、 この筐体の一端部に使用時室 内の向きに開口するように設けられ上記室内側通風路に連通する第 1の 通風口と、 上記筐体の他端部に使用時室内の向きに開口するように設け られ上記室内側通風路に連通する第 2の通風口と、 上記室内側通風路内 に設けられた室内熱交換器と、 上記室内側通風路内に設けられ、 上記第 1及び第 2の通風口の一方の通風口から空気を流入させ、 他方の通風口 から排出させる室内側送風機と、 上記筐体内の室内側通風路の外側に外 気を通流するように設けられ、 上記室内熱交換器に対し上記第 1及び第 2の 2つの通風口を結ぶ方向に互いに異なる位置に配設された室外熱交 換器と、 この室外熱交換器に対して外気を通風させる室外側送風機とを 備えるように構成したので、 吹出口から吹出された冷気がそのまま吸込 口に吸込まれたり、 対象室内に低温空気の吹き溜まりや高温空気の吹き 溜まりが生じるのを抑制し、 対象室内に収容された発熱機器を効率的に 冷却することができる空気調和装置を提供できる効果がある。 As described above, according to the present invention, a housing having an indoor ventilation passage formed to extend from one end to the other end, and is opened at one end of the housing in a direction toward the inside of the use chamber. A first ventilation port that communicates with the indoor-side ventilation path, and a second ventilation port that is provided at the other end of the housing so as to open toward the room when in use and communicates with the indoor-side ventilation path. A ventilation opening, an indoor heat exchanger provided in the indoor ventilation passage, and an airflow provided from one of the first and second ventilation openings provided in the indoor ventilation passage, An indoor blower that is discharged from the other ventilation opening, and an outside blower that is outside the indoor ventilation passage in the housing. An outdoor heat exchanger provided so as to allow air to flow therethrough and arranged at different positions in the direction connecting the first and second ventilation holes to the indoor heat exchanger; and The air conditioner is equipped with an outdoor blower that ventilates outside air to the exchanger. Thus, there is an effect that an air conditioner that can suppress the occurrence of heat generation and efficiently cool the heat generating equipment housed in the target room can be provided.
また、 上記のように構成された空気調和装置を、 発熱機器を収容した 室内の対流による空気の流れを助ける方向に吸込口と吹出口の向きを合 わせて取り付けることにより、 対流を乱すことなく効率的に空気調和を 行うことができる効果がある。 産業上の利用可能性  In addition, by installing the air conditioner configured as described above with the inlet and outlet aligned in a direction that assists the flow of air due to convection in the room that houses the heating equipment, the convection is not disturbed. This has the effect that air conditioning can be performed efficiently. Industrial applicability
以上のように、 この発明にかかる空気調和装置及びその設置方法は、 特に無人で運転される発熱機器を収容した室内の空気調和を行うのに好 ましく用いられる。  As described above, the air conditioner and the method for installing the same according to the present invention are particularly preferably used for air conditioning in a room accommodating a heating device which is operated unattended.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷凍サイクルを用いる空気調和装置において、 1. In an air conditioner using a refrigeration cycle,
一端部から他端部方向に長く伸びて形成された室内側通風路を有する筐 体と、 この筐体の一端部に使用時室内の向きに開口するように設けられ 上記室内側通風路に連通する第 1の通風口と、 上記筐体の他端部に使用 時室内の向きに開口するように設けられ上記室内側通風路に連通する第A housing having an indoor ventilation path formed to extend from one end to the other end, and provided at one end of the housing so as to open toward the room when in use and communicating with the indoor ventilation path; A first ventilation port to be opened, and a second ventilation port provided at the other end of the housing so as to open in a direction toward the indoor when used, and communicating with the indoor ventilation path.
2の通風口と、 上記室内側通風路内に設けられた室内熱交換器と、 上記 室内側通風路内に設けられ、 上記第 1及び第 2の通風口の一方の通風口 から空気を流入させ、 他方の通風口から排出させる室内側送風機と、 上 記筐体内の室内側通風路の外側に外気を通流するように設けられ、 上記 室内熱交換器に対し上記第 1及び第 2の 2つの通風口を結ぶ方向に互い に異なる位置に配設された室外熱交換器と、 この室外熱交換器に対して 外気を通風させる室外側送風機とを備えたことを特徴とする空気調和装 (2) an indoor heat exchanger provided in the indoor ventilation path; and (3) an air flow through one of the first and second ventilation ports provided in the indoor ventilation path. An indoor air blower for discharging air from the other air vent, and an outside air outside the indoor air passage in the housing, and the first and second air blowers are provided to the indoor heat exchanger. An air conditioner comprising: an outdoor heat exchanger disposed at a position different from each other in a direction connecting two air vents; and an outdoor blower for ventilating outside air to the outdoor heat exchanger.
2 . 請求の範囲 1において、 筐体と室内側通風路を縦長に形成し、 冷房 時に上部の通風口から空気を吸込み、 下部の通風口から冷却風を排出す るようにしたことを特徴とする空気調和装置。 2. In Claim 1, the casing and the indoor ventilation passage are formed vertically long, and air is sucked in from an upper ventilation opening and cooling air is discharged from a lower ventilation opening during cooling. Air conditioner.
3 . 請求の範囲 1において、 筐体の一端部側内部を室内側と室外側に仕 切るセパレート部材を備え、 このセパレート部材の室内側に室内側通風 路とこの室内側通風路に連通する一方の通風口が配設され、 上記セパレ 一ト部材の室外側に室外熱交換器が配設されてなることを特徴とする空 気調和装置。 3. In Claim 1, a separate member is provided for partitioning the inside of the one end side of the housing into the indoor side and the outdoor side, and the indoor side of the separate member communicates with the indoor side ventilation path and the indoor side ventilation path. An air conditioner comprising: a ventilation port; and an outdoor heat exchanger disposed outside of the separating member.
4 . 請求の範囲 3において、 セパレート部材に設けられ、 室内側通風路 と室外を連通し得る第 1の連通部、 この第 1の連通部に設けられ、 第 1 の状態では上記第 1の連通部を遮蔽すると共に上記室内側通風路を開き、 第 2の状態では上記室内側通風路を遮蔽すると共に上記第 1の連通部を 開いて一方の通風口から吸い込まれた室内空気が第 1の連通部を経て室 外側送風機により室外に排気されるようにする第 1のダンパ、 上記室内 側通風路における上記第 1の連通部及び室内側送風機の間に設けられ、 上記室内側通風路内と外気を連通し得る第 2の連通部、 この第 2の連通 部を開閉し得るように設けられ、 第 1の状態では上記第 2の連通部を遮 蔽し、 第 2の状態では上記第 2の連通部を開いて上^室内側送風機によ り上記第 2の連通部から吸い込まれた外気を他方の通風口から室内に吹 き出されるようにする第 2のダンバを備えたことを特徴とする空気調和 4. The first communication part according to claim 3, wherein the first communication part is provided in the separate member and is capable of communicating between the indoor side ventilation path and the outside. The first communication part is provided in the first communication part. In the second state, the indoor air passage is opened and the first communication portion is opened, and the indoor air sucked from one of the air vents is opened in the second state. A first damper configured to be exhausted to the outside by the outdoor blower through the communication portion, provided between the first communication portion and the indoor blower in the indoor ventilation passage, and provided in the indoor ventilation passage; A second communication portion capable of communicating outside air, provided so as to be able to open and close the second communication portion, blocking the second communication portion in a first state, and blocking the second communication portion in a second state; Open the communication section of the upper side and draw air from the second communication section by the indoor blower. Air conditioner, wherein the or ambient air from the other ventilation hole, further comprising a second Danba to as out come blown into the room
5 . 請求の範囲 4において、 室温に応じた信号を出力する温度センサと、 第 1の温度レベル及びこの第 1の温度レベルよりも低い第 2の温度レべ ルをそれぞれ設定し得る温度設定手段と、 上記温度センサによる出力信 号が上記温度設定手段により設定された第 1の温度レベルを超えたとき には第 1のダンパ及び第 2のダンパを開け、 第 2の温度レベルを下回つ たときに第 1のダンバ及び第 2のダンパを閉じるように制御する制御回 路とを備えたことを特徴とする空気調和装置。 5. In Claim 4, a temperature sensor that outputs a signal corresponding to a room temperature, and a temperature setting unit that can set a first temperature level and a second temperature level lower than the first temperature level, respectively. When the output signal from the temperature sensor exceeds the first temperature level set by the temperature setting means, the first damper and the second damper are opened, and the temperature falls below the second temperature level. An air conditioner, comprising: a control circuit that controls the first damper and the second damper to close when the first damper is closed.
6 . 請求の範囲 1において、 取り付け時に筐体が室内面よりも室外側に 位置するようにしてなることを特徴とする空気調和装置。 6. The air-conditioning apparatus according to claim 1, wherein the housing is located outside the room rather than inside the room at the time of installation.
7 . 請求の範囲 1において、 室内熱交換器を上方に、 室外熱交換器を下 方にそれぞれ配設すると共に、 上記室内熱交換器を蒸発器として用いた ときに生じるドレン水が上記室外熱交換器に滴下されるように構成して なることを特徴とする空気調和装置。 7. In Claim 1, the indoor heat exchanger is disposed above and the outdoor heat exchanger is disposed below, and the drain water generated when the indoor heat exchanger is used as an evaporator generates the outdoor heat exchanger. An air conditioner characterized by being configured to be dropped on an exchanger.
8 . 請求の範囲 1において、 圧縮機の吐出側の冷媒配管と該圧縮機の吸 入側の冷媒配管とを接続するバイパス路と、 このバイパス路内に設けら れ上記圧縮機の吐出側から上記圧縮機の吸入側への冷媒の通流を阻止す る逆止弁とを備えたことを特徴とする空気調和装置。 8. In Claim 1, a bypass path connecting the refrigerant pipe on the discharge side of the compressor and the refrigerant pipe on the suction side of the compressor, and a bypass path provided in the bypass path from the discharge side of the compressor. An air conditioner, comprising: a check valve for preventing refrigerant from flowing to a suction side of the compressor.
9 . 一端部から他端部方向に長く伸びて形成された室内側通風路を有す る筐体と、 この筐体の一端部に使用時室内の向きに開口するように設け られ上記室内側通風路に連通する第 1の通風口と、 上記筐体の他端部に 使用時室内の向きに開口するように設けられ上記室内側通風路に連通す る第 2の通風口と、 上記室内側通風路内に設けられた室内熱交換器と、 上記室内側通風路内に設けられ、 上記第 1及び第 2の通風口の一方の通 風口から空気を流入させ、 他方の通風口から排出させる室内側送風機と、 上記筐体内の室内側通風路の外側に外気を通流するように設けられ、 上 記室内熱交換器に対し上記第 1及び第 2の 2つの通風口を結ぶ方向に互 いに異なる位置に配設された室外熱交換器と、 この室外熱交換器に対し て外気を通風させる室外側送風機とを備えた冷凍サイクルを利用した空 気調和装置を用いて、 発熱機器により対流を生じる室内に対し、 上記対 流が助長される方向に該空気調和装置の室内空気の吸込口及び冷却風の 吹出口を配向して取り付けることを特徴とする空気調和装置の設置方法 9. A housing having an indoor ventilation path formed to extend from one end to the other end, and provided at one end of the housing so as to open toward the interior of the room when used. A first ventilation port that communicates with the ventilation path, a second ventilation port that is provided at the other end of the housing so as to open toward a room when in use, and communicates with the room-side ventilation path; An indoor heat exchanger provided in the inside ventilation passage, and air provided in one of the first and second ventilation openings provided in the indoor ventilation passage, and discharged from the other ventilation opening. An indoor-side blower to be provided, and an outside air outside the indoor-side ventilation path in the housing, and a direction in which the first and second ventilation ports are connected to the indoor heat exchanger. An outdoor heat exchanger disposed at a different position from the other, and ventilating outside air to this outdoor heat exchanger Using an air conditioner that uses a refrigeration cycle equipped with an outer blower, a room in which convection is generated by a heat-generating device is introduced into the room where the convection is promoted, and the indoor air inlet and cooling of the air conditioner are increased. A method for installing an air conditioner, characterized in that the wind outlet is oriented and mounted.
1 0 . 請求範囲 9において、 室内空気の吸込口を室内の上方に配設し、 冷却風の吹出口を室内の下方に配向するようにしたことを特徴とする空 気調和装置の設置方法。 10. In claim 9, the indoor air suction port is disposed above the room, A method for installing an air conditioner, wherein a cooling air outlet is directed downward in a room.
PCT/JP2001/002352 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner WO2002077535A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2001239565A AU2001239565B2 (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner
GB0211234A GB2376291A (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner
PCT/JP2001/002352 WO2002077535A1 (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner
US10/258,575 US20040011072A1 (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner
CN01807014A CN1419645A (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner
JP2002575544A JPWO2002077535A1 (en) 2001-03-23 2001-03-23 Air conditioner and installation method thereof
HK02109105.1A HK1047616A1 (en) 2001-03-23 2002-12-16 Air conditioner and method of installing the air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002352 WO2002077535A1 (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner

Publications (1)

Publication Number Publication Date
WO2002077535A1 true WO2002077535A1 (en) 2002-10-03

Family

ID=11737155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002352 WO2002077535A1 (en) 2001-03-23 2001-03-23 Air conditioner and method of installing the air conditioner

Country Status (7)

Country Link
US (1) US20040011072A1 (en)
JP (1) JPWO2002077535A1 (en)
CN (1) CN1419645A (en)
AU (1) AU2001239565B2 (en)
GB (1) GB2376291A (en)
HK (1) HK1047616A1 (en)
WO (1) WO2002077535A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329601A (en) * 2005-05-30 2006-12-07 Mayekawa Mfg Co Ltd Cooler and operation method therefor
JP2008293779A (en) * 2007-05-24 2008-12-04 Fuji Electric Holdings Co Ltd Fuel cell power generation device
KR101351857B1 (en) 2011-09-09 2014-01-15 김홍운 a structure for arrangement of heat exchange on heater
KR101423137B1 (en) 2011-09-09 2014-07-29 김홍운 a heating apparatus without an outside-equipment
JP2017009149A (en) * 2015-06-18 2017-01-12 東芝キヤリア株式会社 Air conditioner
JP2017138069A (en) * 2016-02-05 2017-08-10 株式会社デンソー Integrated air conditioning device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610839B2 (en) * 2010-05-11 2014-10-22 株式会社日立製作所 Cooling system
US20140352923A1 (en) * 2013-05-30 2014-12-04 Chung-Chien Chang Cooling apparatus and method thereof for apparatus room
CN105874283A (en) * 2013-11-29 2016-08-17 东芝三菱电机产业系统株式会社 Electric equipment housing
CN104170688B (en) * 2014-09-01 2016-11-02 湖南省烟草公司衡阳市公司 Seedling cultivation greenhouse insulation dehumidifier
US10451295B2 (en) * 2014-12-22 2019-10-22 Diversified Control, Inc. Equipment enclosure with multi-mode temperature control system
JP6388734B2 (en) * 2015-12-18 2018-09-12 三菱電機株式会社 Outdoor unit of refrigeration cycle equipment
KR102517410B1 (en) * 2016-03-25 2023-04-03 엘지전자 주식회사 Refrigerator
JP6800649B2 (en) * 2016-08-03 2020-12-16 伸和コントロールズ株式会社 Air conditioner
DE102016117380B4 (en) * 2016-09-15 2018-04-12 Rittal Gmbh & Co. Kg Control cabinet cooling unit with a condensate separator
CN114719341A (en) * 2022-03-23 2022-07-08 青岛海尔空调器有限总公司 Fresh air conditioner and control method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912945U (en) * 1982-07-15 1984-01-26 サンデン株式会社 Heat pump type air conditioning/heating water heater
JPS5971935A (en) * 1982-10-19 1984-04-23 Sanden Corp Air conditioner
JPS63263334A (en) * 1987-04-21 1988-10-31 Matsushita Seiko Co Ltd Air conditioner
JPS63188728U (en) * 1987-05-25 1988-12-05
JPH02146436A (en) * 1988-11-28 1990-06-05 Matsushita Electric Ind Co Ltd Integral type air conditioner
JPH0383773U (en) * 1989-12-12 1991-08-26
JPH05272782A (en) * 1992-03-25 1993-10-19 Sharp Corp Air-conditioning machine
JPH07218007A (en) * 1994-01-31 1995-08-18 Nippondenso Co Ltd Protecting apparatus for compressor
JPH0933066A (en) * 1995-07-21 1997-02-07 Hitachi Ltd Air conditioner
JPH0960922A (en) * 1995-08-28 1997-03-04 Kazutaro Oyabu Air-conditioner in surrounded space
JPH09210406A (en) * 1996-01-31 1997-08-12 Matsushita Seiko Co Ltd Drain water dripping device for regional air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912945U (en) * 1982-07-15 1984-01-26 サンデン株式会社 Heat pump type air conditioning/heating water heater
JPS5971935A (en) * 1982-10-19 1984-04-23 Sanden Corp Air conditioner
JPS63263334A (en) * 1987-04-21 1988-10-31 Matsushita Seiko Co Ltd Air conditioner
JPS63188728U (en) * 1987-05-25 1988-12-05
JPH02146436A (en) * 1988-11-28 1990-06-05 Matsushita Electric Ind Co Ltd Integral type air conditioner
JPH0383773U (en) * 1989-12-12 1991-08-26
JPH05272782A (en) * 1992-03-25 1993-10-19 Sharp Corp Air-conditioning machine
JPH07218007A (en) * 1994-01-31 1995-08-18 Nippondenso Co Ltd Protecting apparatus for compressor
JPH0933066A (en) * 1995-07-21 1997-02-07 Hitachi Ltd Air conditioner
JPH0960922A (en) * 1995-08-28 1997-03-04 Kazutaro Oyabu Air-conditioner in surrounded space
JPH09210406A (en) * 1996-01-31 1997-08-12 Matsushita Seiko Co Ltd Drain water dripping device for regional air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329601A (en) * 2005-05-30 2006-12-07 Mayekawa Mfg Co Ltd Cooler and operation method therefor
JP2008293779A (en) * 2007-05-24 2008-12-04 Fuji Electric Holdings Co Ltd Fuel cell power generation device
KR101351857B1 (en) 2011-09-09 2014-01-15 김홍운 a structure for arrangement of heat exchange on heater
KR101423137B1 (en) 2011-09-09 2014-07-29 김홍운 a heating apparatus without an outside-equipment
JP2017009149A (en) * 2015-06-18 2017-01-12 東芝キヤリア株式会社 Air conditioner
JP2017138069A (en) * 2016-02-05 2017-08-10 株式会社デンソー Integrated air conditioning device

Also Published As

Publication number Publication date
CN1419645A (en) 2003-05-21
US20040011072A1 (en) 2004-01-22
JPWO2002077535A1 (en) 2004-07-15
GB2376291A (en) 2002-12-11
HK1047616A1 (en) 2003-02-28
GB0211234D0 (en) 2002-06-26
AU2001239565B2 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US8583289B2 (en) Climate control system for data centers
US7185510B2 (en) Air conditioning and ventilating system
US9500396B2 (en) Oil separator and air conditioner using the same
WO2002077535A1 (en) Air conditioner and method of installing the air conditioner
WO2013057844A1 (en) Air conditioning system of communication/information processing apparatus chamber, etc.
US11073301B2 (en) Heat pump with integrated energy recovery ventilator (ERV)
JP5041343B2 (en) Electronic equipment cooling system
JP2011081528A (en) Air conditioning system
JP5041342B2 (en) Electronic equipment cooling system
KR100728337B1 (en) Energy recovery ventilation using heat pump
KR20140107821A (en) An accumulator and an air conditioner using thereof
JP2013047588A (en) Air conditioning structure of building construction
JP2001041503A (en) Case cooling system for communication base station
JP4320501B2 (en) Air conditioner
KR101844581B1 (en) Heat source integrated air conditioner
KR101856743B1 (en) Air conditioner with evaporation cooler
KR100606733B1 (en) inner unit of multi-air-conditioner
JP2003097881A (en) Refrigeration unit for container
JPH1194286A (en) Air conditioner
CN111412541A (en) Multifunctional integrated air conditioner
WO2017138110A1 (en) Air conditioning device
JP4560967B2 (en) Air conditioner
CN219961223U (en) Cooling device and data center
JP2010261622A (en) Use-side unit of air conditioning device
KR200193266Y1 (en) Devices for constant temperature and constant humidi ty to builit-in type

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 575544

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001239565

Country of ref document: AU

ENP Entry into the national phase

Ref country code: GB

Ref document number: 200211234

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 200250058

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P200250058

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 018070140

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN ES GB JP US

ENP Entry into the national phase

Ref country code: GB

Ref document number: 0211234

Kind code of ref document: A

Free format text: PCT FILING DATE = 20010323

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10258575

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001239565

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 200250058

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 200250058

Country of ref document: ES

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 200250058

Country of ref document: ES

Kind code of ref document: A