JP2001041503A - Case cooling system for communication base station - Google Patents

Case cooling system for communication base station

Info

Publication number
JP2001041503A
JP2001041503A JP11219661A JP21966199A JP2001041503A JP 2001041503 A JP2001041503 A JP 2001041503A JP 11219661 A JP11219661 A JP 11219661A JP 21966199 A JP21966199 A JP 21966199A JP 2001041503 A JP2001041503 A JP 2001041503A
Authority
JP
Japan
Prior art keywords
evaporator
air
refrigerant circuit
cooling system
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11219661A
Other languages
Japanese (ja)
Inventor
Kenji Sunasawa
健司 砂澤
Takashi Nonaka
孝 野中
Yutaka Seshimo
裕 瀬下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11219661A priority Critical patent/JP2001041503A/en
Priority to US09/594,508 priority patent/US6539736B1/en
Priority to ES00305090T priority patent/ES2246812T3/en
Priority to DE60031799T priority patent/DE60031799T2/en
Priority to EP03254488A priority patent/EP1357778B1/en
Priority to ES03254488T priority patent/ES2275067T3/en
Priority to DE60021966T priority patent/DE60021966T2/en
Priority to EP00305090A priority patent/EP1074796B1/en
Priority to TW089112831A priority patent/TW476842B/en
Priority to KR10-2000-0037897A priority patent/KR100367349B1/en
Priority to CNB001204696A priority patent/CN1134188C/en
Publication of JP2001041503A publication Critical patent/JP2001041503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a case cooling system for a communication base station which can optimize equipment capacity for saving energy and improve reliability of the equipment, by suitably combining a boiling type cooler of a natural circulation refrigerant circuit and an evaporator of a forced circulation refrigerant circuit. SOLUTION: A case cooling system 1 provides a system in which the inside of a case 3 of a communication base station 2 accommodating a communication apparatus 4 including a heat generating part 5 is cooled by a boiling type cooler 21 of a natural circulation refrigerant circuit 20, and by an evaporator 13 of a forced circulation refrigerant circuit 9 by a compressor 10. The system comprises a common airflow path 30 having a heat suction port 32 for taking in heat from the case 3, and a cooling air diffuser for blowing cooling air into the case 3. The common airflow path 30 is incorporated with the boiling type cooler 2, the evaporator 13 and a common fan 31 for blowing air to the boiling type cooler 21 and the evaporator 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然循環冷媒回路
の沸騰型冷却器と、圧縮機による強制循環冷媒回路の蒸
発器とにより、発熱部品を含む通信機器を収納した通信
基地局の筐体内を冷却する通信基地局の筐体冷却システ
ムの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boil-type cooler for a natural circulation refrigerant circuit and an evaporator for a forced circulation refrigerant circuit using a compressor. The present invention relates to an improvement of a casing cooling system for a communication base station that cools a communication base station.

【0002】[0002]

【従来の技術】携帯電話などの通信基地局は、都市部の
街中、マンションやオフィスビルの屋上はもとより、郊
外の山頂や原野に至るまで多数基が設置されている。こ
の通信基地局は一般には密閉された筐体内に通信機器が
収納されている。但し、筐体は人が入れない程に狭いス
ペースのものもあり、通信機器が発熱部品を有している
ため適度に冷却されるようになっている。このような筐
体内を冷却する筐体冷却システムとしては、特開平11
−135972号公報に開示されたものが知られてい
る。前記公報開示の筐体冷却システムを図4に示す。図
示した通信基地局52の筐体冷却システム51は、自然
循環冷媒回路20の沸騰型冷却器21と強制循環冷媒回
路9の蒸発器13とによって、密閉空間である筐体3内
を冷却するように構成されている。強制循環冷媒回路9
はエアコンなどに汎用されていて圧縮機10により冷媒
を強制循環させるようにしたものである。また、筐体3
内には発熱部品5を含む通信機器4が収納されている。
一般の通信機器4では発熱部品5を内蔵する機器ケース
6内にファン(図示省略)が配設されていて、ケース側
面またはケース底面の空気取入口7からケース内へ空気
を取り込み、ケース背部の排気口8から熱気を吹き出す
ようになっている。そして、エアコンの室内機ケーシン
グである蒸発器ケース53には、筐体3内の空気を吸い
込むための吸込口55と、筐体3内へ冷気を吹き出すた
めの冷気吹出口56が設けられていて、蒸発器13およ
びファン54が内蔵されている。一方、機器ケース6の
背面側には排気口8と連通する熱気案内路57が形成さ
れ、熱気案内路57は熱気吸込口58および吹出口64
を有する通風路67に連結されている。通風路67には
凝縮器22とファン63が内蔵されている。
2. Description of the Related Art A large number of communication base stations such as mobile phones are installed in urban areas, on the roofs of condominiums and office buildings, as well as on the summits and wilderness of suburbs. This communication base station generally has communication equipment housed in a sealed housing. However, there are cases where the space is too small to allow a person to enter, and the communication device is appropriately cooled since the communication device has a heat-generating component. As such a case cooling system for cooling the inside of the case, Japanese Patent Laid-Open No.
One disclosed in Japanese Patent Publication No. -135972 is known. FIG. 4 shows a housing cooling system disclosed in the above publication. The illustrated casing cooling system 51 of the communication base station 52 cools the inside of the casing 3, which is a closed space, by the boiling type cooler 21 of the natural circulation refrigerant circuit 20 and the evaporator 13 of the forced circulation refrigerant circuit 9. Is configured. Forced circulation refrigerant circuit 9
Is generally used in an air conditioner or the like, in which a refrigerant is forcibly circulated by a compressor 10. In addition, case 3
The communication device 4 including the heat-generating component 5 is housed therein.
In a general communication device 4, a fan (not shown) is provided in a device case 6 containing a heat-generating component 5, and air is taken into the case from an air inlet 7 on the side surface or the bottom surface of the case. Hot air is blown out from the exhaust port 8. An evaporator case 53, which is an indoor unit casing of an air conditioner, is provided with a suction port 55 for sucking air in the housing 3 and a cool air outlet 56 for blowing cool air into the housing 3. , An evaporator 13 and a fan 54. On the other hand, a hot air guide path 57 communicating with the exhaust port 8 is formed on the back side of the device case 6, and the hot air guide path 57 is formed with a hot air inlet 58 and an outlet 64.
Is connected to the ventilation passage 67 having The condenser 22 and the fan 63 are built in the ventilation path 67.

【0003】強制循環冷媒回路9の凝縮器11は、エア
コン室外機としての凝縮器ケース17内に配備されてい
る。凝縮器ケース17は外気吸込口18および排気口1
9を有する箱体状に形成されていて、前記の凝縮器1
1、圧縮機10、冷媒絞り弁12、およびファン16を
備えている。そして、凝縮器ケース17内の圧縮機1
0、凝縮器11、冷媒絞り弁12、筐体3内の蒸発器1
3が冷媒管14,15を介して順次環状に連結されるこ
とにより、強制循環冷媒回路9が構成される。また、自
然循環冷媒回路20の凝縮器22は、室外機としての凝
縮器ケース59内に配備されている。凝縮器ケース59
は外気吸込口60および排気口61を有する箱体状に形
成されていて、前記の凝縮器22とファン62を備えて
いる。そして、凝縮器ケース59内の凝縮器22と通風
路67内の沸騰型冷却器21とが冷媒蒸気管23および
液冷媒戻り管24を介して環状に連結されることによ
り、自然循環冷媒回路20が構成されている。尚、従来
の冷却システムでは、発熱部品5の最大負荷に合わせて
冷却容量が決定されている。筐体3は一般に熱貫流の極
めて少ない構造であるため、外気温の変化による筐体3
内部の冷却負荷の変動はほとんど無い。
[0003] The condenser 11 of the forced circulation refrigerant circuit 9 is provided in a condenser case 17 as an outdoor unit of an air conditioner. The condenser case 17 includes an outside air inlet 18 and an exhaust port 1.
9 and is formed in a box shape having the condenser 1
1, a compressor 10, a refrigerant throttle valve 12, and a fan 16. Then, the compressor 1 in the condenser case 17
0, condenser 11, refrigerant throttle valve 12, evaporator 1 in housing 3
The forcible circulation refrigerant circuit 9 is configured by the ring 3 being sequentially connected in a ring shape through the refrigerant pipes 14 and 15. Further, the condenser 22 of the natural circulation refrigerant circuit 20 is provided in a condenser case 59 as an outdoor unit. Condenser case 59
Is formed in a box shape having an outside air intake port 60 and an exhaust port 61, and includes the condenser 22 and the fan 62 described above. Then, the condenser 22 in the condenser case 59 and the boiling type cooler 21 in the ventilation path 67 are connected in a ring shape through the refrigerant vapor pipe 23 and the liquid refrigerant return pipe 24 so that the natural circulation refrigerant circuit 20 is formed. Is configured. In the conventional cooling system, the cooling capacity is determined according to the maximum load of the heat-generating component 5. Since the housing 3 generally has a structure in which heat flow is extremely small, the housing 3 due to a change in outside air temperature may be used.
There is almost no change in the internal cooling load.

【0004】次に、従来システムの動作を説明する。ま
ず、通信機器4内のファン(図示省略)の駆動により、
筐体3内の空気が空気取入口7から機器ケース6内に取
り込まれる。取り込まれた冷気は発熱部品5を冷却して
熱気となり、ケース背部の排気口8から熱気案内路57
内へ吹き出される。このように吹き出された熱気はファ
ン63の送風により熱気吸込口58を経て通風路67内
に吸い込まれる。通風路67内で熱気は沸騰型冷却器2
1を通過し自然循環冷媒回路20の冷媒と熱交換される
ことにより1次冷却される。1次冷却後の空気はファン
63に吸引されたのち吹出口64から筐体3内へ吹き出
される。吹き出された1次冷却後の空気は少なくとも一
部が、吸込口55から蒸発器ケース53内へとファン5
4の送風により吸い込まれて蒸発器13を通過し、強制
循環冷媒回路9の冷媒と熱交換されて冷却される。この
ように冷却された空気は冷気として冷気吹出口56から
筐体3内へ吹き出される。
Next, the operation of the conventional system will be described. First, by driving a fan (not shown) in the communication device 4,
The air in the housing 3 is taken into the equipment case 6 from the air inlet 7. The taken-in cool air cools the heat-generating component 5 to become hot air, and the hot air guide path 57 extends from the exhaust port 8 at the back of the case.
It is blown out inside. The hot air blown out in this manner is sucked into the ventilation passage 67 through the hot air suction port 58 by the blowing of the fan 63. In the ventilation passage 67, the hot air is cooled by the boiling type cooler 2.
1 and is primarily cooled by heat exchange with the refrigerant in the natural circulation refrigerant circuit 20. The air after the primary cooling is sucked by the fan 63 and then blown out of the outlet 64 into the housing 3. At least a part of the blown air after the primary cooling is transferred from the suction port 55 into the evaporator case 53 by the fan 5.
The air is sucked by the air blow of No. 4, passes through the evaporator 13, and is cooled by heat exchange with the refrigerant in the forced circulation refrigerant circuit 9. The air thus cooled is blown out as cold air from the cool air outlet 56 into the housing 3.

【0005】ここで、自然循環冷媒回路20において
は、沸騰型冷却器21の冷媒が熱気との熱交換により沸
騰してガス冷媒となり冷媒蒸気管23を通して凝縮器2
2へ至る。凝縮器22におけるガス冷媒は、ファン62
により凝縮器ケース59内を外気吸込口60から排気口
61へと流通する外気との熱交換により冷やされて液冷
媒となる。この液冷媒はガス冷媒との比重差による自然
流下により液冷媒戻り管24を経て沸騰型冷却器21へ
戻る。他方、強制循環冷媒回路9においては、圧縮機1
0から強制的に吐出された高温・高圧のガス冷媒が凝縮
器11に流入し、ファン16により凝縮器ケース17内
を外気吸込口18から排気口19へと流通する外気との
熱交換により冷やされて液冷媒となる。液冷媒は冷媒絞
り弁12で減圧されて気液二相状態となり、冷媒管14
を通して蒸発器13に至る。この冷媒は蒸発器13で蒸
発器ケース53内を流通する空気と熱交換して自身は低
圧のガス冷媒となり、冷媒管15を経て圧縮機10の吸
込側へ戻るようになっている。
Here, in the natural circulation refrigerant circuit 20, the refrigerant of the boiling type cooler 21 boils due to heat exchange with hot air to become a gas refrigerant, and passes through the refrigerant vapor pipe 23 through the condenser 2
To 2. The gas refrigerant in the condenser 22 is supplied to the fan 62
As a result, the inside of the condenser case 59 is cooled by heat exchange with the outside air flowing from the outside air suction port 60 to the exhaust port 61 to become a liquid refrigerant. The liquid refrigerant returns to the boiling type cooler 21 via the liquid refrigerant return pipe 24 by natural flow due to a difference in specific gravity from the gas refrigerant. On the other hand, in the forced circulation refrigerant circuit 9, the compressor 1
The high-temperature and high-pressure gas refrigerant forcedly discharged from 0 flows into the condenser 11, and is cooled by heat exchange with the outside air flowing from the outside air suction port 18 to the exhaust port 19 through the inside of the condenser case 17 by the fan 16. It becomes a liquid refrigerant. The liquid refrigerant is decompressed by the refrigerant throttle valve 12 to be in a gas-liquid two-phase state, and the refrigerant pipe 14
Through the evaporator 13. The refrigerant exchanges heat with the air flowing through the evaporator case 53 in the evaporator 13 to become a low-pressure gas refrigerant, and returns to the suction side of the compressor 10 via the refrigerant pipe 15.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記従来の
冷却システムにおいては、沸騰型冷却器21と蒸発器1
3とが別々の通風路内に配備されているため、通風路毎
に個別にファン63,54を設ける必要であった。しか
も、コンパクト化の要請で筐体3内は部品実装密度が高
いので、ファンの設置台数が増えた場合でも設置スペー
スは増やせない。そのため、大型のファンを使用でき
ず、例えば筐体3内のスペースが同じ場合に大風量が得
られないという問題があった。一方、沸騰型冷却器21
で1次冷却された空気は吹出口64を出た後に筐体3内
で拡散するため、矢印Cのように蒸発器ケース53へ向
かう空気のみならず、矢印Bのようにそのままバイパス
して通信機器4の空気取入口7へ吸い込まれることもあ
る。他方、ファン54の風量が大きすぎる場合は、冷気
吹出口56から吹き出された冷気がショートサイクルを
生じて吸込口55に戻ることがあり、冷却効率が悪化す
る。更には、沸騰型冷却器21へ熱気を取り込むための
熱気案内路57や熱気吸込口58を設ける必要があり、
風路構成が複雑である。逆に、熱気案内路57が無けれ
ば、通信機器4の排気口8から吹き出された高温の熱気
が沸騰型冷却器21をバイパスして直に蒸発器13の吸
込口55に吸い込まれることがあり、強制循環冷媒回路
9の故障につながるおそれがあった。
By the way, in the conventional cooling system, the boiling type cooler 21 and the evaporator 1 are used.
3 are provided in separate ventilation paths, so that fans 63 and 54 need to be individually provided for each ventilation path. In addition, since the component mounting density inside the housing 3 is high due to the demand for compactness, the installation space cannot be increased even when the number of installed fans increases. Therefore, there is a problem that a large fan cannot be used, and a large air volume cannot be obtained when the space in the housing 3 is the same, for example. On the other hand, the boiling type cooler 21
Since the air primarily cooled by the air diffuses in the housing 3 after exiting the air outlet 64, not only the air going to the evaporator case 53 as shown by the arrow C, but also the communication by bypassing it as shown by the arrow B It may be sucked into the air intake 7 of the device 4. On the other hand, if the air volume of the fan 54 is too large, the cool air blown out from the cool air outlet 56 may cause a short cycle and return to the suction port 55, thereby deteriorating the cooling efficiency. Furthermore, it is necessary to provide a hot air guide path 57 and a hot air suction port 58 for taking in hot air into the boiling type cooler 21,
The air path configuration is complicated. Conversely, if the hot air guide path 57 is not provided, high-temperature hot air blown out from the exhaust port 8 of the communication device 4 may be sucked directly into the suction port 55 of the evaporator 13 bypassing the boiling cooler 21. This may lead to failure of the forced circulation refrigerant circuit 9.

【0007】本発明は、上記した従来の問題点に鑑みて
なされたものであって、自然循環冷媒回路の沸騰型冷却
器と、強制循環冷媒回路の蒸発器と、ファンとを適切に
組み合わせることにより、設備容量を最適化して省エネ
ルギー化を図り、かつ、設備の信頼性向上が図れる通信
基地局の筐体冷却システムの提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to appropriately combine a boiling type cooler of a natural circulation refrigerant circuit, an evaporator of a forced circulation refrigerant circuit, and a fan. Accordingly, it is an object of the present invention to provide a casing cooling system for a communication base station, which can optimize energy consumption by optimizing equipment capacity and improve equipment reliability.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る通信基地局の筐体冷却システムは、発
熱部品を含む通信機器を収納した通信基地局の筐体内
を、自然循環冷媒回路の沸騰型冷却器と、圧縮機による
強制循環冷媒回路の蒸発器とにより冷却するようにした
システムにおいて、筐体内の熱気を取り入れる熱気吸込
口と筐体内へ冷気を吹き出す冷気吹出口とを有する共用
通風路を備え、沸騰型冷却器、蒸発器、ならびに、沸騰
型冷却器および蒸発器に送風する共用ファンを共用通風
路に内蔵した構成にしてある。
In order to achieve the above-mentioned object, a communication base station casing cooling system according to the present invention comprises a communication base station housing a communication device including a heat-generating component. In a system designed to be cooled by a boiling type cooler of a refrigerant circuit and an evaporator of a forced circulation refrigerant circuit by a compressor, a hot air inlet for taking in hot air in a housing and a cool air outlet for blowing cool air into the housing. A common ventilation path is provided, and the common ventilation path includes a boiling cooler, an evaporator, and a common fan for sending air to the boiling cooler and the evaporator.

【0009】また、上記の構成における、共用通風路
が、沸騰型冷却器を内蔵した冷却器側風路と、蒸発器を
内蔵した蒸発器側風路と、冷却器側風路と蒸発器側風路
を連結する接続風路とから構成されているものである。
[0009] In the above structure, the common ventilation path includes a cooler-side air path with a built-in boiling cooler, an evaporator-side air path with a built-in evaporator, a cooler-side air path, and an evaporator-side air path. And a connecting air path connecting the air paths.

【0010】そして、上記の各構成に加えて、少なくと
も外気温度を検出する温度検出手段と、温度検出手段か
らの検出温度に基づいて強制循環冷媒回路の圧縮機の運
転を停止する圧縮機制御手段とを備えているものであ
る。
[0010] In addition to the above components, a temperature detecting means for detecting at least the outside air temperature, and a compressor controlling means for stopping the operation of the compressor of the forced circulation refrigerant circuit based on the temperature detected by the temperature detecting means. It is provided with.

【0011】更に、上記の各構成に加えて、強制循環冷
媒回路の異常を検知する異常検知手段と、異常検知手段
による強制循環冷媒回路の異常を検知したとき共用ファ
ンを運転状態に保持する運転保持手段とを備えているも
のである。
Further, in addition to the above-mentioned respective structures, an abnormality detecting means for detecting an abnormality in the forced circulation refrigerant circuit, and an operation for holding the common fan in an operating state when the abnormality detecting means detects an abnormality in the forced circulation refrigerant circuit. Holding means.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。 発明の実施の形態1.図1は本発明の実施形態1,3,
4に係る通信基地局の筐体冷却システムを示す概略構成
図である。但し、図4に示した従来の筐体冷却システム
51と概ね共通する構成要素には同一の符号を付して、
その詳説を省略することがある。図において、筐体冷却
システム1は、自然循環冷媒回路20の沸騰型冷却器2
1と、圧縮機10により冷媒を強制循環させる強制循環
冷媒回路9の蒸発器13とによって、密閉空間を形成す
る通信基地局2の筐体3内を冷却するように構成されて
いる。筐体3内には発熱部品を含む通信機器4が収納さ
れている。この筐体冷却システム1では筐体3内に共用
通風路30が設けられている。共用通風路30は、筐体
3内の熱気を取り入れる熱気吸込口32と筐体3内へ冷
気を吹き出す冷気吹出口33とを有する中空箱状の共用
ケース29により実現される。共用通風路30には、自
然循環冷媒回路20の沸騰型冷却器21、強制循環冷媒
回路9の蒸発器13、ならびに、前記の沸騰型冷却器2
1および蒸発器13に送風する共用ファン31が内蔵さ
れている。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 of the Invention FIG. 1 shows Embodiments 1 and 3 of the present invention.
FIG. 4 is a schematic configuration diagram illustrating a casing cooling system of a communication base station according to a fourth embodiment. However, the same reference numerals are given to the components substantially common to the conventional case cooling system 51 shown in FIG.
The detailed explanation may be omitted. In the figure, a casing cooling system 1 includes a boiling type cooler 2 of a natural circulation refrigerant circuit 20.
1 and the evaporator 13 of the forced circulation refrigerant circuit 9 for forcibly circulating the refrigerant by the compressor 10 so as to cool the inside of the housing 3 of the communication base station 2 forming a closed space. A communication device 4 including a heat-generating component is housed in the housing 3. In the case cooling system 1, a common ventilation path 30 is provided in the case 3. The common ventilation path 30 is realized by a hollow box-shaped common case 29 having a hot air inlet 32 for taking in hot air in the housing 3 and a cool air outlet 33 for blowing cool air into the housing 3. In the common ventilation passage 30, the boiling cooler 21 of the natural circulation refrigerant circuit 20, the evaporator 13 of the forced circulation refrigerant circuit 9, and the boiling cooler 2
1 and a common fan 31 for blowing air to the evaporator 13 are incorporated.

【0013】強制循環冷媒回路9の凝縮器11は、室外
機としての凝縮器ケース17内に配備されている。凝縮
器ケース17は外気吸込口18および排気口19を有す
る箱体状に形成されていて、前記の凝縮器11、圧縮機
10、冷媒絞り弁12、およびファン16を備えてい
る。すなわち、凝縮器ケース17内の圧縮機10、凝縮
器11、冷媒絞り弁12、共用通風路30内の蒸発器1
3が冷媒管14,15を介して順次環状に連結されるこ
とにより、強制循環冷媒回路9が構成される。自然循環
冷媒回路20の凝縮器22は、室外機としての凝縮器ケ
ース25内に配備されている。凝縮器ケース25は外気
吸込口27および排気口28を有する箱体状に形成され
ていて、前記の凝縮器22とファン26を備えている。
すなわち、凝縮器ケース25内の凝縮器22と共用通風
路30内の沸騰型冷却器21とが冷媒蒸気管23および
液冷媒戻り管24を介して環状に連結されることによ
り、自然循環冷媒回路20が構成される。
The condenser 11 of the forced circulation refrigerant circuit 9 is provided in a condenser case 17 as an outdoor unit. The condenser case 17 is formed in a box shape having an outside air intake port 18 and an exhaust port 19, and includes the condenser 11, the compressor 10, the refrigerant throttle valve 12, and the fan 16. That is, the compressor 10, the condenser 11, the refrigerant throttle valve 12, and the evaporator 1 in the common ventilation passage 30 in the condenser case 17
The forcible circulation refrigerant circuit 9 is configured by the ring 3 being sequentially connected in a ring shape through the refrigerant pipes 14 and 15. The condenser 22 of the natural circulation refrigerant circuit 20 is provided in a condenser case 25 as an outdoor unit. The condenser case 25 is formed in a box shape having an outside air suction port 27 and an exhaust port 28, and includes the condenser 22 and the fan 26.
That is, the condenser 22 in the condenser case 25 and the boiling-type cooler 21 in the common ventilation path 30 are connected in a ring shape through the refrigerant vapor pipe 23 and the liquid refrigerant return pipe 24, so that the natural circulation refrigerant circuit is provided. 20 are configured.

【0014】引続き、上記した構成による通信基地局2
の筐体冷却システム1の動作を説明する。まず、通信機
器4内のファン(図示省略)の駆動により、機器ケース
6の側方でイの位置にある冷気が空気取入口7からケー
ス内に取り込まれる。取り込まれた冷気は発熱部品5を
冷却して熱気となり、ケース上部の排気口8から筐体3
内のウの位置へ吹き出される。このように吹き出された
熱気は、共用ファン31の送風によりエの位置から熱気
吸込口32を経て共用通風路30内に吸い込まれる。共
用通風路30内で熱気は沸騰型冷却器21を通過して自
然循環冷媒回路20の冷媒と熱交換されることにより1
次冷却される。オの位置にある1次冷却後の空気は共用
ファン31に吸引されたのち全量が蒸発器13を通過し
強制循環冷媒回路9の冷媒と熱交換されて冷却される。
このように冷却された空気は冷気として冷気吹出口33
から筐体3内のアの位置へ吹き出される。すなわち、空
気はア→イ→ウ→エ→オの位置を順に循環して筐体3内
を冷却するのである。
Subsequently, the communication base station 2 having the above configuration
The operation of the case cooling system 1 will be described. First, by driving a fan (not shown) in the communication device 4, the cool air at the position A on the side of the device case 6 is taken into the case from the air inlet 7. The taken-in cool air cools the heat-generating component 5 and becomes hot air, and is discharged from the exhaust port 8 at the top of the case to the housing 3.
It is blown out to the position of c in. The hot air blown out in this way is sucked into the common ventilation passage 30 from the position of (d) through the hot air suction port 32 by the blowing of the common fan 31. The hot air passes through the evaporative cooler 21 in the common ventilation passage 30 and exchanges heat with the refrigerant in the natural circulation refrigerant circuit 20, thereby causing the hot air to flow out of the air.
Next, it is cooled. The air after the primary cooling at the position (e) is sucked by the shared fan 31 and then the whole amount passes through the evaporator 13 and is cooled by heat exchange with the refrigerant in the forced circulation refrigerant circuit 9.
The air cooled in this way is used as cold air,
Is blown out to the position A in the housing 3. That is, the air circulates in the order of A → A → U → D → O to cool the inside of the housing 3.

【0015】尚、自然循環冷媒回路20の冷媒系では、
沸騰型冷却器21の冷媒が熱気との熱交換により沸騰し
てガス冷媒となり冷媒蒸気管23を通して凝縮器22へ
至る。凝縮器22においてガス冷媒は、ファン26によ
り凝縮器ケース25内を外気吸込口27から排気口28
へと流通する外気との熱交換により凝縮して液冷媒とな
る。この液冷媒はガス冷媒との比重差による自然流下に
より液冷媒戻り管24を通して沸騰型冷却器21へ戻
る。一方、強制循環冷媒回路9の冷媒系においては、圧
縮機10から強制的に吐出された高温・高圧のガス冷媒
が凝縮器11に流入し、ファン16により凝縮器ケース
17内を外気吸込口18から排気口19へと流通する外
気との熱交換により冷やされて液冷媒となる。液冷媒は
冷媒絞り弁12で減圧されて気液二相状態となり、冷媒
管14を通して蒸発器13に至る。この冷媒は蒸発器1
3で1次冷却後の空気と熱交換して自身は低圧のガス冷
媒となり、冷媒管15を経て圧縮機10の吸込側へ戻
る。上記の圧縮機10は共用通風路30内のオの位置に
おける空気温度に基づいて容量制御されている。
Incidentally, in the refrigerant system of the natural circulation refrigerant circuit 20,
The refrigerant in the evaporative cooler 21 boils due to heat exchange with hot air to become a gas refrigerant and reaches the condenser 22 through the refrigerant vapor pipe 23. In the condenser 22, the gas refrigerant flows through the inside of the condenser case 25 from the outside air suction port 27 to the exhaust port 28 by the fan 26.
Is condensed by heat exchange with the outside air flowing to the liquid refrigerant, and becomes a liquid refrigerant. The liquid refrigerant returns to the boiling cooler 21 through the liquid refrigerant return pipe 24 by natural flow due to a difference in specific gravity from the gas refrigerant. On the other hand, in the refrigerant system of the forced circulation refrigerant circuit 9, high-temperature and high-pressure gas refrigerant forcibly discharged from the compressor 10 flows into the condenser 11, and the inside of the condenser case 17 is moved by the fan 16 into the outside air suction port 18. Is cooled by heat exchange with the outside air flowing from the air to the exhaust port 19 to become a liquid refrigerant. The liquid refrigerant is decompressed by the refrigerant throttle valve 12 to be in a gas-liquid two-phase state, and reaches the evaporator 13 through the refrigerant pipe 14. This refrigerant is the evaporator 1
In 3, heat exchange is performed with the air after the primary cooling, and the gas itself becomes a low-pressure gas refrigerant, and returns to the suction side of the compressor 10 via the refrigerant pipe 15. The capacity of the compressor 10 is controlled based on the air temperature at the position o in the common ventilation passage 30.

【0016】前記したように、この実施形態の筐体冷却
システム1によれば、沸騰型冷却器21と蒸発器13と
が単一の共用通風路30内に配備されているため、1台
の共用ファン31を共用通風路30内に設けるだけで済
む。そのうえ、従来は2台要していたファン設置スペー
スを1台分に使用できることから、共用ファン30とし
て大風量のファンを採用することができる。これによ
り、自然循環冷媒回路20の能力を大きく利用すること
ができる。一方、沸騰型冷却器21で1次冷却された空
気は必ず蒸発器13に導かれて確実に冷却されるため、
従来技術のような筐体3内での空気のバイパスやショー
トサイクルを生じることがなく、高い冷却効率を実現す
ることができ省エネルギーに寄与する。そのうえ、熱気
をそのまま蒸発器13に吸い込むことがないため、強制
循環冷媒回路9の故障を回避することができる。また、
従来システムのような熱気案内路57(図4参照)を絶
対的には必要としない。以上のことから、ファン設置数
の削減、ランニングコストの削減を実現することができ
る。これにより、省エネと同時に設備のトータル冷却容
量の軽減、および冷却システム全体の信頼性の向上を図
ることができ、また圧縮機10の運転容量削減により低
騒音化も実現する。
As described above, according to the casing cooling system 1 of this embodiment, since the boiling cooler 21 and the evaporator 13 are provided in the single common ventilation path 30, one unit is provided. It is only necessary to provide the common fan 31 in the common ventilation path 30. In addition, since a fan installation space, which conventionally required two fans, can be used for one fan, a large air volume fan can be adopted as the shared fan 30. Thereby, the capacity of the natural circulation refrigerant circuit 20 can be used to a large extent. On the other hand, the air primarily cooled by the boiling type cooler 21 is always guided to the evaporator 13 and is surely cooled.
High cooling efficiency can be realized without contributing to energy saving without causing air bypass or short cycle in the housing 3 unlike the related art. In addition, since the hot air is not directly sucked into the evaporator 13, the failure of the forced circulation refrigerant circuit 9 can be avoided. Also,
The hot air guide path 57 (see FIG. 4) unlike the conventional system is not absolutely required. From the above, it is possible to reduce the number of installed fans and the running cost. As a result, it is possible to reduce the total cooling capacity of the equipment and to improve the reliability of the entire cooling system at the same time as saving energy, and also to reduce noise due to the reduction in the operating capacity of the compressor 10.

【0017】ところで、本システムの効率を良くするた
めに、あるいは、筐体3内の結露を防止するためにも、
通信機器4などの要求使用環境温度が許す限り筐体内温
度を高くして運用することが効果的である。しかしなが
ら、筐体内温度を高くする(30℃程度)と機器ケース
6から吹き出されるウの位置の空気温度が高くなり(4
0℃)、その温度の空気を通常のエアコン室内機(例え
ば、図4の蒸発器ケース53)に直に吸い込ませると、
エアコン室内機の運転保証範囲(例えば35℃)を超え
てしまう。そこで、記述したように沸騰型冷却器21と
蒸発器13とを組み合わせ配置したことで、蒸発器13
への吸込温度を保証範囲内に納めることにも役立ち、ひ
いては冷却システムの信頼性向上につながったのであ
る。また、共用ケース29内の沸騰型冷却器21は、エ
の位置にある吸込空気の温度と、凝縮器22に吸い込ま
れるカの位置にある外気の温度との差が大きいほど高い
能力を発揮する機能を持つ(図3参照)ので、可能な限
り発熱部品5の近くの熱気と熱交換するのが効率的であ
る。そのためには、共用ケース29の熱気吸込口32を
発熱部品5の直上となる位置に配置するのが好ましい。
これにより、通信機器4の排気口8から吹き出されたウ
の位置の熱気の温度をほぼ維持したまま、共用通風路3
0へ吸い込まれるエの位置の空気とすることができる。
Incidentally, in order to improve the efficiency of the present system or to prevent dew condensation in the housing 3,
It is effective to increase the temperature inside the housing as long as the required use environment temperature of the communication device 4 and the like permits. However, if the temperature inside the housing is increased (about 30 ° C.), the air temperature at the position of c which is blown out from the device case 6 increases (4).
0 ° C.), when air at that temperature is directly sucked into a normal air conditioner indoor unit (for example, the evaporator case 53 in FIG. 4),
The operation guarantee range (for example, 35 ° C.) of the air conditioner indoor unit will be exceeded. Therefore, as described above, the evaporator 13 and the evaporator 13 are arranged in combination with each other.
This helped to keep the intake temperature within the guaranteed range, which in turn led to improved reliability of the cooling system. In addition, the boiling type cooler 21 in the common case 29 exhibits higher performance as the difference between the temperature of the intake air at the position d and the temperature of the outside air at the position of the suctioned air into the condenser 22 is larger. Since it has a function (see FIG. 3), it is efficient to exchange heat with hot air near the heat-generating component 5 as much as possible. For this purpose, it is preferable to arrange the hot air inlet 32 of the common case 29 at a position directly above the heat generating component 5.
As a result, the temperature of the hot air blown out from the exhaust port 8 of the communication device 4 at the position of c is substantially maintained while the common ventilation path 3 is maintained.
It can be the air at the position of d that is sucked into zero.

【0018】発明の実施の形態2.図2は本発明の実施
形態2に係る通信基地局の筐体冷却システムを示す概略
構成図である。図に示した通信基地局2aの筐体冷却シ
ステム1aが先述の筐体冷却システム1と異なる点は、
共用通風路30aが、沸騰型冷却器21を内蔵した冷却
器側風路48と、蒸発器13を内蔵した蒸発器側風路5
0と、冷却器側風路48と蒸発器側風路50を連結する
接続風路49とから構成されたことである。具体的に
は、沸騰型冷却器21を収容した冷却器ケース43の吹
出口46と、蒸発器13を収容した蒸発器ケース45の
吸込口47とが接続用ダクト44で連結されることによ
り、これらの内部に共用通風路30aが形成される。筐
体冷却システム1aの動作は実施形態1とほとんど同じ
であるため、説明は省略する。
Embodiment 2 of the Invention FIG. 2 is a schematic configuration diagram illustrating a casing cooling system of a communication base station according to Embodiment 2 of the present invention. The difference between the case cooling system 1a of the communication base station 2a shown in FIG.
The common ventilation passage 30a is composed of a cooler-side air passage 48 containing the boiling cooler 21 and an evaporator-side air passage 5 containing the evaporator 13.
0, and a connecting air path 49 connecting the cooler-side air path 48 and the evaporator-side air path 50. Specifically, the outlet 46 of the cooler case 43 containing the boiling cooler 21 and the suction port 47 of the evaporator case 45 containing the evaporator 13 are connected by a connection duct 44, Inside these, a common ventilation path 30a is formed. The operation of the case cooling system 1a is almost the same as that of the first embodiment, and thus the description is omitted.

【0019】この筐体冷却システム1aのように構成す
ると、元々の強制循環冷媒回路9に配備されているエア
コン室内機(吸込口47および冷気吹出口33を有する
蒸発器ケース45と、蒸発器13と、共用ファン31と
からなる構成に相当する)をそのまま転用することがで
きる。
When configured as the casing cooling system 1a, the air conditioner indoor unit (the evaporator case 45 having the inlet 47 and the cool air outlet 33, the evaporator 13 And the shared fan 31) can be diverted as it is.

【0020】尚、機器ケース6と冷却器ケース43の
間、および、筐体3内面と冷却器ケース43との間に仕
切壁65を設けて、吸込側空間66を形成することも可
能である。因みに、前記の仕切壁65を設けない場合
は、発熱部品5を内蔵した通信機器4を筐体3内に複数
台設置することが可能となる。
It is also possible to form a suction side space 66 by providing partition walls 65 between the equipment case 6 and the cooler case 43 and between the inner surface of the housing 3 and the cooler case 43. . Incidentally, when the partition wall 65 is not provided, it becomes possible to install a plurality of communication devices 4 having the heat-generating components 5 inside the housing 3.

【0021】発明の実施の形態3.この実施形態3に係
る筐体冷却システム1では、図1に示すように、例えば
マイクロコンピュータなどで構成される制御装置38が
配備されている。この例において、制御装置38は、後
述する圧縮機制御手段40の機能を有している。また、
筐体冷却システム1は、外気温度を検出する温度検出手
段34と、筐体内温度(好ましくは、機器ケース6の排
気口8ないしは共用ケース29の熱気吸込口32近傍の
温度)を検出する温度検出手段35とを備えている。
Embodiment 3 of the Invention In the case cooling system 1 according to the third embodiment, as shown in FIG. 1, a control device 38 including, for example, a microcomputer is provided. In this example, the control device 38 has a function of a compressor control means 40 described later. Also,
The casing cooling system 1 includes a temperature detecting means 34 for detecting an outside air temperature and a temperature detecting means for detecting a temperature in the casing (preferably, a temperature in the vicinity of the exhaust port 8 of the device case 6 or the hot air inlet 32 of the common case 29). Means 35.

【0022】そこで、温度検出手段34が外気温度を検
出し温度検出手段35が筐体内温度を検出すると、圧縮
機制御手段40は、それぞれ検出された筐体内温度と外
気温度の温度差を演算する。次いで、圧縮機制御手段4
0は、求めた温度差に基づいて強制循環冷媒回路9の圧
縮機10を運転停止する。具体的には、図3に示すよう
な自然循環冷媒回路20の能力(kW)と、筐体内温度
〜外気温度の温度差との関係データが制御装置38のメ
モリに予め設定され記憶されていて、各検出温度から演
算された温度差により自然循環冷媒回路20の要求能力
が求められる。そこで、圧縮機制御手段40は、求めた
自然循環冷媒回路20の要求能力が同一条件下における
関係データの設定能力値を下回った場合に、強制循環冷
媒回路9の圧縮機10を強制的に運転停止させ、自然循
環冷媒回路20のみの作動を続行させる。
Therefore, when the temperature detecting means 34 detects the outside air temperature and the temperature detecting means 35 detects the inside temperature of the casing, the compressor control means 40 calculates the temperature difference between the detected inside temperature and the outside air temperature. . Next, the compressor control means 4
0 stops the operation of the compressor 10 of the forced circulation refrigerant circuit 9 based on the obtained temperature difference. Specifically, the relationship data between the capacity (kW) of the natural circulation refrigerant circuit 20 as shown in FIG. 3 and the temperature difference between the inside temperature and the outside air temperature is set and stored in advance in the memory of the control device 38. The required capacity of the natural circulation refrigerant circuit 20 is determined from the temperature difference calculated from each detected temperature. Therefore, the compressor control means 40 forcibly operates the compressor 10 of the forced circulation refrigerant circuit 9 when the calculated required capacity of the natural circulation refrigerant circuit 20 falls below the set capacity value of the related data under the same condition. The operation is stopped, and the operation of only the natural circulation refrigerant circuit 20 is continued.

【0023】すなわち、この実施形態システムでは、自
然循環冷媒回路20の能力のみで筐体3内の冷却をまか
なえるときは、オの位置の空気温度に拘らず圧縮機10
を運転させないので、強制循環冷媒回路9の運転コスト
の無用な支出を回避することができる。因みに、外気温
度が低いほど自然循環冷媒回路20の能力は大きくな
り、強制循環冷媒回路9の負荷を低減することができ
る。例えば、図3のような特性を持つ自然循環冷媒回路
20を設計した場合、温度差Δt=25℃(例えば、室
外気温=15℃、筐体内温度=40℃のとき)のときの
冷却能力は4.0kWとなる。言い換えると、外気温度
を過酷な真夏条件に設定して自然循環冷媒回路20の能
力を設計すれば、冬および中間期は強制循環冷媒回路9
側の運転容量を大幅に削減することができ、ランニング
コストの低減を図ることができる。あるいは、自然循環
冷媒回路20における沸騰冷却分を強制循環冷媒回路9
側の容量削減分に引当することができる。
That is, in the system of this embodiment, when the inside of the housing 3 can be cooled only by the capacity of the natural circulation refrigerant circuit 20, the compressor 10 can be operated regardless of the air temperature at the position o.
Is not operated, it is possible to avoid unnecessary expenditure of the operation cost of the forced circulation refrigerant circuit 9. Incidentally, the lower the outside air temperature is, the greater the capacity of the natural circulation refrigerant circuit 20 is, and the load on the forced circulation refrigerant circuit 9 can be reduced. For example, when the natural circulation refrigerant circuit 20 having the characteristics as shown in FIG. 3 is designed, the cooling capacity when the temperature difference Δt = 25 ° C. (for example, when the outdoor temperature is 15 ° C. and the temperature inside the housing is 40 ° C.) It becomes 4.0 kW. In other words, if the outside air temperature is set to severe midsummer conditions and the capacity of the natural circulation refrigerant circuit 20 is designed, the forced circulation refrigerant circuit 9 is used in winter and the middle period.
The operating capacity on the side can be greatly reduced, and the running cost can be reduced. Alternatively, the amount of boiling cooling in the natural circulation refrigerant circuit 20 is
Can be allocated to the side's capacity reduction.

【0024】尚、この実施形態の制御態様は、図1の筐
体冷却システム1のみならず、図2の筐体冷却システム
1aに適用できるのは言うまでもない。また、筐体内の
発熱負荷が一年を通してほとんど変化しない場合は、温
度検出手段34で検出した外気温度のみに基づいて圧縮
機10を運転停止させることも可能であり、その場合は
筐体内用の温度検出手段35を省けるため、制御構成が
簡素ですみ低コストで実現できる。
It is needless to say that the control mode of this embodiment can be applied to not only the case cooling system 1 of FIG. 1 but also the case cooling system 1a of FIG. Further, when the heat generation load in the housing hardly changes throughout the year, the operation of the compressor 10 can be stopped based only on the outside air temperature detected by the temperature detecting means 34. Since the temperature detecting means 35 can be omitted, the control configuration can be simplified and the cost can be reduced.

【0025】発明の実施の形態4.実施形態4に係る筐
体冷却システム1では、図1に示すように、圧縮機10
の吸込側における低圧冷媒圧力を検出する圧力検出手段
36と、圧縮機10の吐出側における高圧冷媒圧力を検
出する圧力検出手段37とが設けられている。また、制
御装置38は、圧力検出手段36,37によるそれぞれ
の検出圧力に基づいて強制循環冷媒回路9の異常を検知
する異常検知手段41の機能と、異常検知手段41が強
制循環冷媒回路9の異常を検知したとき共用ファン31
を運転状態に保持する運転保持手段42の機能とを有し
ている。
Embodiment 4 of the Invention In the case cooling system 1 according to the fourth embodiment, as shown in FIG.
A pressure detecting means 36 for detecting the low-pressure refrigerant pressure on the suction side of the compressor 10 and a pressure detecting means 37 for detecting the high-pressure refrigerant pressure on the discharge side of the compressor 10 are provided. Further, the control device 38 has a function of an abnormality detection unit 41 for detecting an abnormality of the forced circulation refrigerant circuit 9 based on the detected pressures of the pressure detection units 36 and 37, and a function of the abnormality detection unit 41 of the forced circulation refrigerant circuit 9. When an abnormality is detected, the shared fan 31
In the operation state.

【0026】従って、この実施形態システムによれば、
圧力検出手段36,37でそれぞれ検出した圧力の差が
所定値よりも大きい場合、異常検知手段41が強制循環
冷媒回路9の異常を検知する。そして、異常検知手段4
1は圧縮機10を緊急停止させる。同時に、異常検知手
段41は共用ファン31を運転状態に保持して送風を続
行させる。斯かる場合でも自然循環冷媒回路20は常時
作動しているので、共用ファン31の運転保持により沸
騰型冷却器21に送風される。すなわち、異常により強
制循環冷媒回路9が緊急停止された場合でも、沸騰型冷
却器21で冷却された空気が筐体3内へ吹き出されるの
で、筐体3内の温度は沸騰することがない。但し、圧力
検出手段36,37に代えて圧縮機10吐出側の冷媒温
度を検出し、これに基づいて強制循環冷媒回路9の異常
を検知するように構成しても構わない。また、圧力検出
以外の異常検出手段に関しても同様に構成できる。この
実施形態の制御態様は図1の筐体冷却システム1だけで
なく、無論、図2の筐体冷却システム1aにも適用可能
である。
Therefore, according to this embodiment system,
When the difference between the pressures detected by the pressure detecting means 36 and 37 is larger than a predetermined value, the abnormality detecting means 41 detects an abnormality in the forced circulation refrigerant circuit 9. And abnormality detection means 4
1 stops the compressor 10 urgently. At the same time, the abnormality detecting means 41 keeps the common fan 31 in the operating state and continues the air blowing. Even in such a case, since the natural circulation refrigerant circuit 20 is always operating, the air is sent to the boiling type cooler 21 by the operation holding of the common fan 31. That is, even when the forced circulation refrigerant circuit 9 is stopped due to an abnormality, the air cooled by the boiling cooler 21 is blown into the housing 3, so that the temperature inside the housing 3 does not boil. . However, instead of the pressure detecting means 36 and 37, the refrigerant temperature on the discharge side of the compressor 10 may be detected, and the abnormality of the forced circulation refrigerant circuit 9 may be detected based on the detected temperature. Further, an abnormality detecting means other than pressure detection can be similarly configured. The control mode of this embodiment is applicable not only to the casing cooling system 1 of FIG. 1 but also to the casing cooling system 1a of FIG.

【0027】尚、上記した各々の実施形態では、共用通
風路30,30aを筐体3内に内設した例を示したが、
本発明はそれに限るものでなく、例えば、共用通風路3
0,30aの共用ケース29、冷却器ケース43、接続
用ダクト44、蒸発器ケース45を筐体3に外付けし、
熱気吸込口32および冷気吹出口33を筐体3内に貫通
させて接続することも可能である。また、共用ファン3
1を沸騰型冷却器21と蒸発器13の間に配設したが、
それに限らず、共用通風路30,30a内における沸騰
型冷却器21の通気方向上流側または蒸発器13の通気
方向下流側に共用ファン31を配置しても構わない。
In each of the embodiments described above, an example is shown in which the common ventilation passages 30 and 30a are provided inside the housing 3.
The present invention is not limited to this.
The common case 29, the cooler case 43, the connection duct 44, and the evaporator case 45 of 0, 30a are externally attached to the housing 3,
It is also possible to connect the hot air inlet 32 and the cool air outlet 33 by penetrating into the housing 3. In addition, shared fan 3
1 was disposed between the boiling cooler 21 and the evaporator 13,
The present invention is not limited to this, and the common fan 31 may be disposed in the common ventilation passages 30 and 30 a on the upstream side in the ventilation direction of the boiling cooler 21 or on the downstream side in the ventilation direction of the evaporator 13.

【0028】[0028]

【発明の効果】以上詳述したように、本発明に係る通信
基地局の筐体冷却システムによれば、沸騰型冷却器と蒸
発器とが単一の共用通風路内に配備されているため、1
台の共用ファンを設けるだけですむ。従って、ファン設
置数の削減、ランニングコストの削減を実現することが
できる。そのうえ、従来は2台要していたファン設置ス
ペースを1台分に使用できることから、共用ファンとし
て大風量のファンを採用することができる。これによ
り、自然循環冷媒回路の能力を大きく利用することがで
きる。一方、沸騰型冷却器で1次冷却された空気は必ず
蒸発器に導かれて確実に冷却されるため、従来技術のよ
うな筐体内でのバイパスやショートサイクルを生じるこ
とがなく、高い冷却効率を実現することができて省エネ
ルギーに寄与する。そのうえ、蒸発器に吸い込まれるの
は1次冷却された空気であることから、熱気をそのまま
吸い込んだ場合に生じる強制循環冷媒回路の故障を回避
することができる。
As described above in detail, according to the casing cooling system for a communication base station according to the present invention, the boiling cooler and the evaporator are provided in a single common ventilation path. , 1
It is only necessary to provide two shared fans. Therefore, it is possible to reduce the number of installed fans and the running cost. In addition, since a fan installation space, which conventionally required two units, can be used for one unit, a large air volume fan can be adopted as a shared fan. Thereby, the capacity of the natural circulation refrigerant circuit can be utilized to a large extent. On the other hand, the air that has been primarily cooled by the boiling type cooler is always guided to the evaporator and is surely cooled, so that there is no occurrence of a bypass or a short cycle in the housing unlike the prior art, and high cooling efficiency is achieved. And contribute to energy saving. Moreover, since the primary cooled air is sucked into the evaporator, a failure of the forced circulation refrigerant circuit that occurs when hot air is sucked as it is can be avoided.

【0029】また、冷却器側風路と、蒸発器側風路と、
これらを連結する接続風路とから、共用通風路が構成さ
れている場合に、蒸発器側風路内に共用ファンを配備し
た構成であると、強制循環冷媒回路のエアコン室内機を
そのまま転用することができる。逆に、冷却器側風路内
に共用ファンを配備した場合は、自然循環冷媒回路の利
用側冷却機をそのまま転用することができる。
Further, a cooler side air path, an evaporator side air path,
When a common ventilation path is configured from the connecting air path connecting these, if the common fan is provided in the evaporator side air path, the air conditioner indoor unit of the forced circulation refrigerant circuit is diverted as it is. be able to. Conversely, when a common fan is provided in the cooler side air passage, the use side cooler of the natural circulation refrigerant circuit can be diverted as it is.

【0030】そして、少なくとも外気の検出温度に基づ
いて圧縮機制御手段が自然循環冷媒回路の能力のみで筐
体内の冷却をまかなえると判断したときは、圧縮機を運
転させないので、強制循環冷媒回路の無用な運転コスト
の支出を回避できる。
When the compressor control means determines that the inside of the housing can be cooled only by the capacity of the natural circulation refrigerant circuit based on at least the detected temperature of the outside air, the compressor is not operated. Avoid unnecessary operating cost expenditures.

【0031】更に、強制循環冷媒回路の異常を検知した
ときに共用ファンを運転状態に保持するような制御構成
にした場合、自然循環冷媒回路は常に作動しているの
で、強制循環冷媒回路の異常検知により圧縮機が自動的
に運転停止されても、共用ファンを運転することにより
自然循環冷媒回路の沸騰型冷却器で共用通風路内の空気
が冷却されて筐体内へ吹き出される。これにより、筐体
内の温度が急騰することがなく応急的に対処することが
できる。
Further, when the control structure is such that the shared fan is maintained in the operating state when the abnormality of the forced circulation refrigerant circuit is detected, the natural circulation refrigerant circuit is always operating, so that the abnormality of the forced circulation refrigerant circuit is caused. Even if the compressor is automatically shut down by the detection, by operating the common fan, the air in the common ventilation passage is cooled by the boiling type cooler of the natural circulation refrigerant circuit and blown out into the housing. Thereby, it is possible to cope with the situation without the temperature in the housing rising rapidly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1,3,4に係る通信基地
局の筐体冷却システムを示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a casing cooling system of a communication base station according to Embodiments 1, 3, and 4 of the present invention.

【図2】 本発明の実施形態2に係る通信基地局の筐体
冷却システムを示す概略構成図である。
FIG. 2 is a schematic configuration diagram illustrating a casing cooling system of a communication base station according to a second embodiment of the present invention.

【図3】 本発明の実施形態3に係る通信基地局の筐体
冷却システムに用いられる自然循環冷媒回路能力と外気
温度などとの関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a capacity of a natural circulation refrigerant circuit used in a casing cooling system of a communication base station according to a third embodiment of the present invention, an outside air temperature, and the like.

【図4】 従来技術の通信基地局の筐体冷却システムを
示す概略構成図である。
FIG. 4 is a schematic configuration diagram illustrating a housing cooling system of a communication base station according to the related art.

【符号の説明】[Explanation of symbols]

1 筐体冷却システム、1a 筐体冷却システム、2
通信基地局、2a 通信基地局、3 筐体、4 通信機
器、5 発熱部品、9 強制循環冷媒回路、10 圧縮
機、13 蒸発器、20 自然循環冷媒回路、21 沸
騰型冷却器、30 共用通風路、30a 共用通風路、
31 共用ファン、32 熱気吸込口、33 冷気吹出
口、34 温度検出手段、36 圧力検出手段、37
圧力検出手段、38 制御装置、40 圧縮機制御手
段、41 異常検知手段、42 運転保持手段、48
冷却器側風路、49 接続風路、50 蒸発器側風路。
1 enclosure cooling system, 1a enclosure cooling system, 2
Communication base station, 2a Communication base station, 3 chassis, 4 communication equipment, 5 heating components, 9 forced circulation refrigerant circuit, 10 compressor, 13 evaporator, 20 natural circulation refrigerant circuit, 21 boiling cooler, 30 common ventilation Road, 30a shared ventilation path,
31 common fan, 32 hot air inlet, 33 cool air outlet, 34 temperature detecting means, 36 pressure detecting means, 37
Pressure detection means, 38 control device, 40 compressor control means, 41 abnormality detection means, 42 operation holding means, 48
Cooler side air path, 49 Connecting air path, 50 Evaporator side air path.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬下 裕 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L054 BG04 BG08 BH01  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Seshita 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation (reference) 3L054 BG04 BG08 BH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発熱部品を含む通信機器を収納した通信
基地局の筐体内を、自然循環冷媒回路の沸騰型冷却器
と、圧縮機による強制循環冷媒回路の蒸発器とにより冷
却するようにしたシステムにおいて、前記筐体内の熱気
を取り入れる熱気吸込口と前記筐体内へ冷気を吹き出す
冷気吹出口とを有する共用通風路を備え、前記沸騰型冷
却器、前記蒸発器、ならびに、前記沸騰型冷却器および
前記蒸発器に送風する共用ファンを前記共用通風路に内
蔵したことを特徴とする通信基地局の筐体冷却システ
ム。
1. The inside of a communication base station housing communication equipment including heat-generating components is cooled by a boiling type cooler of a natural circulation refrigerant circuit and an evaporator of a forced circulation refrigerant circuit by a compressor. In the system, a common air passage having a hot air inlet for taking in hot air in the housing and a cool air outlet for blowing cool air into the housing is provided, and the boiling cooler, the evaporator, and the boiling cooler are provided. A case cooling system for a communication base station, wherein a common fan for sending air to the evaporator is built in the common ventilation path.
【請求項2】 共用通風路は、沸騰型冷却器を内蔵した
冷却器側風路と、蒸発器を内蔵した蒸発器側風路と、前
記冷却器側風路と前記蒸発器側風路を連結する接続風路
とから構成されていることを特徴とする請求項第1項に
記載の通信基地局の筐体冷却システム。
2. The common ventilation path includes a cooler-side air path including a boiling-type cooler, an evaporator-side air path including an evaporator, the cooler-side air path, and the evaporator-side air path. 2. The case cooling system for a communication base station according to claim 1, wherein the case cooling system comprises a connecting air path to be connected.
【請求項3】 少なくとも外気温度を検出する温度検出
手段と、前記温度検出手段からの検出温度に基づいて強
制循環冷媒回路の圧縮機の運転を停止する圧縮機制御手
段とを備えていることを特徴とする請求項第1項または
請求項第2項に記載の通信基地局の筐体冷却システム。
3. A system comprising: a temperature detecting means for detecting at least an outside air temperature; and a compressor control means for stopping operation of a compressor of a forced circulation refrigerant circuit based on a temperature detected by the temperature detecting means. The case cooling system for a communication base station according to claim 1 or 2, wherein
【請求項4】 強制循環冷媒回路の異常を検知する異常
検知手段と、前記異常検知手段による強制循環冷媒回路
の異常を検知したとき共用ファンを運転状態に保持する
運転保持手段とを備えていることを特徴とする請求項第
1項ないし請求項第3項のいずれかに記載の通信基地局
の筐体冷却システム。
4. An abnormality detecting means for detecting an abnormality in the forced circulation refrigerant circuit, and an operation holding means for holding the common fan in an operating state when the abnormality detecting means detects an abnormality in the forced circulation refrigerant circuit. 4. The case cooling system for a communication base station according to claim 1, wherein the case cooling system comprises:
JP11219661A 1999-08-03 1999-08-03 Case cooling system for communication base station Pending JP2001041503A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP11219661A JP2001041503A (en) 1999-08-03 1999-08-03 Case cooling system for communication base station
US09/594,508 US6539736B1 (en) 1999-08-03 2000-06-15 Method for controlling to cool a communication station
ES00305090T ES2246812T3 (en) 1999-08-03 2000-06-16 COMMUNICATIONS STATION WITH CONTROLLED REFRIGERATION.
DE60031799T DE60031799T2 (en) 1999-08-03 2000-06-16 Cooling system for a communication station
EP03254488A EP1357778B1 (en) 1999-08-03 2000-06-16 Cooling system for communication station
ES03254488T ES2275067T3 (en) 1999-08-03 2000-06-16 COMMUNICATION STATION WITH REFRIGERATION SYSTEM.
DE60021966T DE60021966T2 (en) 1999-08-03 2000-06-16 Communication station with controlled cooling
EP00305090A EP1074796B1 (en) 1999-08-03 2000-06-16 Communication station with controlled cooling
TW089112831A TW476842B (en) 1999-08-03 2000-06-29 Cooling control system for communication relay base station
KR10-2000-0037897A KR100367349B1 (en) 1999-08-03 2000-07-04 A method for controlling to cool a communication station
CNB001204696A CN1134188C (en) 1999-08-03 2000-07-10 Cooling control style of communcation relay base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11219661A JP2001041503A (en) 1999-08-03 1999-08-03 Case cooling system for communication base station

Publications (1)

Publication Number Publication Date
JP2001041503A true JP2001041503A (en) 2001-02-16

Family

ID=16739006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11219661A Pending JP2001041503A (en) 1999-08-03 1999-08-03 Case cooling system for communication base station

Country Status (1)

Country Link
JP (1) JP2001041503A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148590A (en) * 1999-11-18 2001-05-29 Denso Corp Cooling system in housing
KR20020041734A (en) * 2000-11-28 2002-06-03 윤종용 System and method for temperature management in an electronic enclosure
WO2003084300A1 (en) * 2002-03-28 2003-10-09 Mitsubishi Denki Kabushiki Kaisha Cooling device
KR100642772B1 (en) * 2004-12-01 2006-11-08 한밭대학교 산학협력단 Cooling System for Telecommunication Chamber
JP2007129095A (en) * 2005-11-04 2007-05-24 Denso Corp Cooling device
WO2008026792A1 (en) * 2006-09-01 2008-03-06 Chang Jo 21 Co., Ltd. Air conditioning system for communication equipment and controlling method thereof
WO2008026791A1 (en) * 2006-09-01 2008-03-06 Chang Jo 21 Co., Ltd. Air conditioning system for communication equipment
KR100911218B1 (en) * 2007-05-31 2009-08-07 주식회사 창조이십일 Air conditioning system for communication equipment and controlling method thereof
JP2011247573A (en) * 2010-04-26 2011-12-08 Gac Corp Cooling system
JP2012059276A (en) * 2011-10-12 2012-03-22 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2012142026A (en) * 2012-04-10 2012-07-26 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2012146331A (en) * 2012-04-16 2012-08-02 Hitachi Plant Technologies Ltd Cooling system for electronic equipment
CN102777981A (en) * 2012-08-10 2012-11-14 广东吉荣空调有限公司 Energy-saving air-conditioning system used for communication base station and capable of supplying air in object-oriented mode and running method thereof
JP2018009715A (en) * 2016-07-11 2018-01-18 中部抵抗器株式会社 Heat pipe type heat exchange device and air conditioner for server system
CN115065877A (en) * 2022-05-09 2022-09-16 国动网络通信集团股份有限公司 Maintenance-free communication base station with self-detection function

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148590A (en) * 1999-11-18 2001-05-29 Denso Corp Cooling system in housing
KR20020041734A (en) * 2000-11-28 2002-06-03 윤종용 System and method for temperature management in an electronic enclosure
EP2203038A2 (en) 2002-03-28 2010-06-30 Mitsubishi Denki Kabushiki Kaisha Cooling system
WO2003084300A1 (en) * 2002-03-28 2003-10-09 Mitsubishi Denki Kabushiki Kaisha Cooling device
US6997006B2 (en) 2002-03-28 2006-02-14 Mitsubishi Denki Kabushiki Kaisha Cooling device
KR100642772B1 (en) * 2004-12-01 2006-11-08 한밭대학교 산학협력단 Cooling System for Telecommunication Chamber
JP4577188B2 (en) * 2005-11-04 2010-11-10 株式会社デンソー Cooling system
JP2007129095A (en) * 2005-11-04 2007-05-24 Denso Corp Cooling device
US8667805B2 (en) 2006-09-01 2014-03-11 Chang Jo 21 Co., Ltd. Air conditioning system for communication equipment and controlling method thereof
US8667810B2 (en) 2006-09-01 2014-03-11 Chang Jo 21 Co., Ltd. Air conditioning system for communication equipment
CN101223837B (en) * 2006-09-01 2011-03-30 玄雪花 Air conditioning system for communication equipment
WO2008026791A1 (en) * 2006-09-01 2008-03-06 Chang Jo 21 Co., Ltd. Air conditioning system for communication equipment
JP4839406B2 (en) * 2006-09-01 2011-12-21 チャンジョ 21 シーオー.,エルティディ. Cooling device for communication equipment and control method thereof
WO2008026792A1 (en) * 2006-09-01 2008-03-06 Chang Jo 21 Co., Ltd. Air conditioning system for communication equipment and controlling method thereof
KR100911218B1 (en) * 2007-05-31 2009-08-07 주식회사 창조이십일 Air conditioning system for communication equipment and controlling method thereof
JP2011247573A (en) * 2010-04-26 2011-12-08 Gac Corp Cooling system
JP2012059276A (en) * 2011-10-12 2012-03-22 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2012142026A (en) * 2012-04-10 2012-07-26 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2012146331A (en) * 2012-04-16 2012-08-02 Hitachi Plant Technologies Ltd Cooling system for electronic equipment
CN102777981A (en) * 2012-08-10 2012-11-14 广东吉荣空调有限公司 Energy-saving air-conditioning system used for communication base station and capable of supplying air in object-oriented mode and running method thereof
JP2018009715A (en) * 2016-07-11 2018-01-18 中部抵抗器株式会社 Heat pipe type heat exchange device and air conditioner for server system
WO2018012428A1 (en) * 2016-07-11 2018-01-18 中部抵抗器株式会社 Heat pipe type heat exchange device and server-system air conditioning device
CN115065877A (en) * 2022-05-09 2022-09-16 国动网络通信集团股份有限公司 Maintenance-free communication base station with self-detection function

Similar Documents

Publication Publication Date Title
KR100367349B1 (en) A method for controlling to cool a communication station
US5533357A (en) Air conditioning apparatus
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
JP5041343B2 (en) Electronic equipment cooling system
JP2001041503A (en) Case cooling system for communication base station
JP2011247573A (en) Cooling system
WO2006003860A1 (en) Multi-type air conditioner
US11441809B2 (en) Auxiliary economizer for an HVAC system
JP5041342B2 (en) Electronic equipment cooling system
WO2002077535A1 (en) Air conditioner and method of installing the air conditioner
JP2013206264A (en) Air conditioning system
JPH06201220A (en) Cooling and heating hybrid engine driving heat pump system
KR20050077041A (en) Air flow switching type air conditioner
JP3956418B2 (en) Enclosure cooling device
JPH11316062A (en) Outdoor machine unit and air conditioner
WO2018179050A1 (en) Temperature control device, control method for temperature control device, and non-transitory storage medium storing control program for temperature control device
JP5386849B2 (en) Heat exchange device and heating element storage device using the same
KR100812779B1 (en) Air conditioning system using vantilation device and air conditioner
JP2012146331A (en) Cooling system for electronic equipment
US6931868B1 (en) Air conditioning system
JP2002277002A (en) Housing cooling system
JP2014163530A (en) Air conditioning apparatus
JP2001246925A (en) Air conditioner for vehicle
CN219961223U (en) Cooling device and data center
JP4169521B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916