WO2002077515A1 - Electric power leveling method and methane hydrate cold-heat utilization power generating system in gas supply business - Google Patents

Electric power leveling method and methane hydrate cold-heat utilization power generating system in gas supply business Download PDF

Info

Publication number
WO2002077515A1
WO2002077515A1 PCT/JP2002/002071 JP0202071W WO02077515A1 WO 2002077515 A1 WO2002077515 A1 WO 2002077515A1 JP 0202071 W JP0202071 W JP 0202071W WO 02077515 A1 WO02077515 A1 WO 02077515A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrate
methane hydrate
power generation
facility
Prior art date
Application number
PCT/JP2002/002071
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Suzuki
Original Assignee
Mitsui Engineering & Shipbuilding Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co.,Ltd. filed Critical Mitsui Engineering & Shipbuilding Co.,Ltd.
Priority to JP2002575527A priority Critical patent/JPWO2002077515A1/en
Publication of WO2002077515A1 publication Critical patent/WO2002077515A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection

Definitions

  • the present invention relates to a power leveling method and a methane hydrate cold power generation system in a gas supply business.
  • Natural gas is usually imported as LNG (liquefied natural gas), but converting natural gas to LNG requires large-scale refrigeration equipment and a large amount of electricity (about 380 kWh / t). Therefore, it is limited to introduction from large-scale gas fields with large reserves and specialized areas that can supply large power.
  • Natural gas from such small and medium-sized gas fields may be imported in gaseous form, and it is necessary to consider how to deal with it.
  • the required power for producing a gas hydrate with a conduit pressure of 3 O ata and the required power for increasing the natural gas pressure from 30 ata to 150 ata (approximately 14.7 MPa).
  • the former is 280 kW and the latter is 120 kW, and the latter is more advantageous than the former.
  • the present invention is based on the above findings, and an object of the present invention is to provide a power leveling method in a gas supply business capable of measuring power level in a gas supply business. It is another object of the present invention to provide a main gas hydrate cold power generation system that can measure high efficiency power generation using gas hydrate cold throughout the year.
  • the method described above was used to operate the gas pumping compressor at the gas introduction terminal using nighttime electric power to transfer the natural gas from the gas introduction terminal to the gas consuming area. Feeding the gas hydrate to the gas hydrate generating and storing facility installed in the country, and operating the gas hydrate generating and storing facility using nighttime electric power to generate a gas hydrate that is a hydrate of natural gas and water. And storing the gas hydrate in the gas hydrate generation and storage facility.
  • the present invention operates the gas pumping compressor, gas hydrate generation and storage facility, etc. of the natural gas introduction terminal using night power, so that relatively inexpensive night power can be used at night.
  • Natural gas can be supplied from the natural gas introduction terminal to the gas hydrate generation and storage facility at the same time, and gas hydrate can be generated at night in the gas hydrate generation and storage facility.
  • power consumption during the day and night can be leveled, which is very useful in industry.
  • the methane hydrate cold-heat power generation system is a combined power generation system in which a generator is driven by a steam turbine and a gas turbine.
  • the cold water generated when the methane hydrate in the gas storage tank is decomposed is introduced into an intake air cooler attached to the gas turbine to cool the combustion intake air, and the gas turbine is used during periods other than summer. It is characterized in that a part of the exhaust gas discharged from the fuel is mixed with the intake air for combustion to maintain the intake air for combustion at a predetermined temperature throughout the year.
  • the present invention relates to a combined power generation system that cools intake air for combustion by introducing chilled water generated during main hydrate decomposition into an intake cooler associated with a gas turbine and cools the intake air during periods other than summer. Will mix a portion of the flue gas emitted from the bottle with the combustion air As a result, the intake air for combustion is maintained at a predetermined temperature, making it possible to effectively use the cold heat generated during the decomposition of methane hydrate throughout the year, and to operate the gas turbine at the highest efficiency throughout the year. As well as being able to solve the problem of hot drainage, there was no negative impact on the environment. Further, the methane hydrate cold-heat power generation system of the present invention is a gas-cooled power generation system.
  • a loop-shaped closed circuit including an intake air cooler and a methane hydrate storage tank attached to the bin, circulate the cold generated during the decomposition of methane hydrate through the closed circuit, and generate the methane hydrate during decomposition. Further, the method is characterized in that surplus chilled water is discharged out of the closed circuit system.
  • the power generation system utilizing cold heat of the present invention uses a methane hydrate storage tank, a steam turbine condenser, and a gas turbine bin intake cooler to form a closed loop circuit.
  • the circuit is characterized by circulating cold generated during the decomposition of methane hydrate.
  • the methane hydrate cold energy power generation system of the present invention further comprises a methane hydrate generation storage tank facility and a combined power generation facility provided along a gas pipe extending from a gas introduction base to a gas consuming area;
  • the equipment includes a methane hydrate generation tank, a refrigerator, a heat exchanger, a makeup water tank, and a methane hydrate storage tank
  • the combined power generation equipment includes a steam turbine, a generator
  • a methane hydrate cold-heat power generation system comprising a gas turbine intake cooler, an intake compressor, a combustor, a gas turbine, a waste heat boiler, a steam turbine condenser and an expansion turbine.
  • the present invention uses the cooling heat stored in the main hydrate generation storage tank, that is, the methane hydrate slurry, with the intake cooler and the steam Since the water is supplied to the bin condenser, the output of the generator is greatly improved as compared with the case where the combustion air or the condensate is cooled with water.
  • the chilled heat stored in the methane hydrate generation storage tank that is, the methane hydrate slurry is fed to the steam evening bin condenser
  • the exhaust pressure of the steam evening bin is significantly larger than when cooling with water.
  • the output of the generator is greatly improved.
  • the present invention expands the high-pressure natural gas by the expansion turbine, thereby contributing to an improvement in the output of the generator.
  • the cold heat stored in the above-mentioned main hydrate generation storage tank facility is slurry-type main hydrate.
  • FIG. 1 is a schematic diagram of a methane hydrate cold heat power generation system according to the present invention.
  • FIG. 2 is a schematic view showing another embodiment of the methane hydrate cold heat power generation system according to the present invention.
  • FIG. 3 is a schematic diagram of a power leveling method in a gas supply business according to the present invention.
  • FIG. 1 is a schematic diagram of a methane hydrate cold heat power generation system according to the present invention.
  • reference numeral 1 denotes a combined power generation device, which is configured to generate power by driving a generator 4 by a steam turbine 2 and a gas bin 3.
  • This gas bin 3 is composed of an intake cooler 5, an intake compressor 6, a combustor 7, and an expansion turbine 8, and the exhaust gas a of the expansion turbine 8 is introduced into the waste heat boiler 9.
  • the steam turbine 2 introduces the post-work steam b into the condenser 10 to liquefy it, and then supplies the condensate c to the waste heat boiler 9 by the pump 11.
  • waste heat The steam d generated in the boiler 9 is introduced into the steam turbine 2 and is used for power generation.
  • the condenser 10, the intake air cooler 5, the methane hydrate storage tank 12, and the pump 13 are connected by a communication pipe 14 to form a closed loop circuit 15.
  • the closed circuit 15 is provided with a bypass 16 that bypasses the intake air cooler 5.
  • Reference numeral 17 denotes an air intake pipe, which introduces combustion air e into an intake compressor 6 via an intake cooler 5.
  • An exhaust introduction pipe 18 is connected to the intake introduction pipe 17 on the upstream side of the intake air cooler 5 so that a part of the exhaust gas a discharged from the gas turbine 3 is introduced. I have.
  • the exhaust introduction pipe 18 has a blower 19.
  • the main hydrate f is stored in the main hydrate storage tank 12, and a part of the methane g obtained by the decomposition of the methane hydrate f is passed through the pipe 20 to the gas hydrate.
  • the remaining methane g is introduced into the single-bin combustor 7 and supplied to a consumption zone (not shown) through a branch pipe 21 branched from a pipe 20.
  • the pipe 20 includes a booster 22.
  • the inside of the methane hydrate storage tank 12 is vertically divided by a perforated plate 23, and the main hydrate f is stored on the perforated plate 23, and cold water h is stored at the bottom of the storage tank 12. Have been.
  • the cold water h is sent into the closed circuit 15 by the pump 13, and first, the steam b discharged from the steam turbine 2 is condensed by the condenser 10. Next, the intake air cooler 5 cools the combustion air e introduced into the gas turbine compressor 6 to a design temperature (20 ° C.). Thereafter, the methane hydrate returns to the methane hydrate storage tank 12 and is jetted from a nozzle (not shown) onto the methane hydrate f in the storage tank 12 to decompose the methane hydrate f into methane g and water h.
  • methane hydrate storage tank 12 Part of the methane regenerated in the methane hydrate storage tank 12 is supplied as fuel to the gas bin combustor 7, and the remaining methane g passes through the branch pipe 21 to the consumption zone (not shown). ). Methane hydrate The excess cold water generated during the decomposition is discharged out of the system from the closed-loop branch pipe 24. The surplus chilled water h 'has a very low temperature (5 ° C) and is stored in a water storage tank (not shown) as methane hydrate generated water.
  • the cold water h in the methane hydrate storage tank 12 is first passed through the condenser 10 to increase the degree of vacuum in the condenser 10, so that the condenser is used for ordinary water such as seawater.
  • the adiabatic heat drop of the steam turbine 1 can be greatly increased as compared with the case of cooling with cooling water.
  • the cold water h after leaving the condenser 10 can cool the intake temperature of the gas turbine in summer to about 15-20 ° C, the average temperature, and the steam turbine 2 and This can contribute to an increase in the output of the gas turbine 3.
  • the cold water h returns to the closed circuit 15 through the bypass 16 bypassing the intake air cooler 5 except in summer, but the regenerated gas volume in the methane hydrate storage tank 12 is the same. Assuming that there is, since the cold water h does not pass through the intake air cooler 5, the amount of decomposition heat to decompose methane hydrate is insufficient.
  • the cold water h is continuously supplied to the intake cooler 5 and the exhaust gas a discharged from the expansion bin 8 of the gas turbine a in winter and in the middle period other than summer. Is mixed with the combustion air e to keep the inlet temperature of the intake air cooler 5 constant. As a result, the gas turbine 3 is always operated at the design temperature (eg, 15 ° C) throughout the year.
  • the supply amount of the exhaust gas a is adjusted by a control valve 25 provided in the exhaust gas introduction pipe 18.
  • the oxygen concentration of the gas turbine combustion air is slightly lower than that of fresh air.
  • the oxygen concentration in the exhaust gas from the gas turbine is relatively high, so it is considered that there is no problem in terms of combustion.
  • the natural gas g collected in the gas field 31 is sent to the liquefaction plant 35 through the gas pumping station 32, the pipeline 33 and the gas pretreatment facility 34, and is liquefied. It is stored in LNG tank 36 as natural gas (hereinafter LNG).
  • LNG natural gas
  • the LNG in the LNG tank 36 is transported by the LNG tanker 37 and stored in the LNG tank 39 on the gas introduction terminal 38 side.
  • the LNG in the LNG tank 39 is supplied to the vaporizer 41 by the LNG pump 40 and is regenerated into high-pressure natural gas g.
  • This high-pressure natural gas g is sent via the main gas line 42 to the first plant 44a and the power plant 45a.
  • the medium-pressure natural gas g ′ which is depressurized by the first-stage governor valve 46 a provided on the gas main line 4, passes through the branch pipe 43 to the second plant 44 b and the power plant 45. Sent to b. Further, the low-pressure natural gas g ′′ depressurized by the governor valve 46 b of the stage provided on the gas main line 42 is sent to the general household 47 and the business facility 48 via the branch 43.
  • the suburbs of the consumption areas A, B, C, Gas hydrate generation and storage facility 1 and power plant 1 will be installed in
  • a part of the natural gas g is pressurized by the gas booster 49 and sent to the natural gas buffer tank 51 via the submarine pipeline 50.
  • the natural gas g from the natural gas buffer tank 51 is pumped by the gas pumping compressor 52 and passes through the gas main line 42 and the branch pipe 43 to produce power 44, power plants 45, and general households. 47, business facilities 48 and consumption areas A, B, C, ...
  • the gas pressure compressor 52 is operated using nighttime electric power, the electric power can be leveled.
  • the power generated by the power plant 1 is transmitted to the factory 44, general households 47, business facilities 48, and consumption areas A, B, C, and so on.
  • the gas hydrate generation and storage facility 12 and the power plant 1 described above are configured as shown in FIG.
  • the gas hydrate generation and storage facility 12 is composed of a methane hydrate generation tank 61, a refrigerator 62, a heat exchanger 63, a makeup water tank 64, and a methane hydroxide storage tank 65. It is operated using night power.
  • Natural gas g is supplied to the methane hydrate generation tank 61 from a branch pipe 66 branched from the gas main line 42 upstream of the governor valve 46, and make-up water is supplied.
  • the water h in the tank is supplied to the main hydrate generation tank 61 by the make-up water pump 67, the methane hydrate generation tank 61 generates natural gas mainly composed of methane and water hydrate. A certain methane hydrate f is generated.
  • the pressure and temperature in the methane hydrate production tank are preferably, for example, in the range of 1 to 4 ° C. and 30 to 100 atm.
  • the water h is preferably supplied to the main hydrate generation tank 61 in a spray state.
  • the water h and the methane hydrate f in the methane hydrate production tank 61 are stirred by the stirring means 68 to become slurry ⁇ , and It is derived by a lary circulation pump 69.
  • the methane hydrate is stored in the methane hydrate storage tank 65, and a part thereof is returned to the methane hydrate generation tank 61 via the slurry circulation line 70.
  • the slurry circulation line 70 includes a heat exchanger 63 and a refrigerator 62 in the middle thereof, and cools the methane hydrate slurry circulating in the slurry circulation line 70 to a predetermined temperature.
  • the water is returned to the make-up water tank 6 4 by the water circulation line 7 2.
  • the combined power generation facility 1 which is a power plant, has a steam bin 1, a generator 4, a gas turbine intake cooler 5, an intake compressor 6, a combustor 7, a gas turbine 8, and waste heat.
  • the generator 4 includes a boiler 9, a steam turbine condenser 10 and an expansion bin 25, and the generator 4 is driven by the steam turbine 2, the gas turbine 8, and the expansion turbine 15.
  • the combined cycle power plant 1 is connected to the methane hydrate decomposition line 73 connecting the water circulation line 72 and the downstream gas main line 42 b by the governor valve 46 to the slurry transfer pump 73.
  • the gas turbine inlet cooler 5, gas separator 74, dehumidifier 75, heater 76 and expansion bin 25 are arranged in this order from 1 to the main gas line 4 2b side. .
  • the methane hydrate slurry f ′ in the methane hydrate storage tank 65 is supplied to the methane hydrate decomposition line 73, the methane hydrate slurry ⁇ is supplied to the gas turbine intake cooler 5 for combustion air. While cooling e, it decomposes itself to water and natural gas.
  • the natural gas g is separated from water h by a gas separator 74 and then supplied to the combustor 7 through a dehumidifier 75. Some of this natural gas g is power! After being heated by the heater 76 to become high pressure and driving the expansion turbine 25 having the same axis as the generator 4, it is supplied to the demand area or the consumption area via the gas main line 42b.
  • the natural gas g supplied to the combustor 7 is mixed and burned with the combustion air e compressed by the intake compressor 6 and introduced into the gas bin 8 to drive the generator 4 and the intake compressor 6 It will be the driving force.
  • Exhaust gas a exiting the gas turbine 8 is introduced into a waste heat boiler 9 to recover waste heat.
  • the high-temperature and high-pressure steam d generated in the waste heat boiler 9 is introduced into the steam turbine 2 and contributes to power generation.
  • the steam b exiting the steam turbine 2 is introduced into the steam turbine condenser 10 and cooled.
  • the condensate c is returned to the waste heat boiler 9 by a pump (not shown).
  • the combined cycle power plant 1 includes a bypass line 77 that bypasses the gas turbine intake air cooler 5 in the water circulation line 7, and the steam turbine condenser 10 and the gas
  • the methane hydrate slurry ⁇ is supplied to the steam turbine condenser 1
  • the steam b derived from the waste heat boiler 9 is cooled and condensed, while decomposing itself into water and natural gas.
  • This natural gas g is separated from water h by a gas separator 74 and then supplied to the combustor 7 through a dehumidifier 75.
  • the water h separated by the gas separator 74 is returned to the water circulation line 72 by a drain transfer pump 78.
  • the value per methane treatment amount obtained by dividing the increase in power generation output by the amount of methane hydrate dissociated gas is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A combined power facility in which a generator is driven by a steam turbine and a gas turbine. A methane hydrate storage tank is annexed to the combined power facility, so that the cold water which is produced upon decomposition of the methane hydrate in the methane hydrate storage tank is introduced into an suction air cooler attached to the gas turbine to cool combustion suction air and is used as cooling water for the steam turbine condenser. Further, in other seasons than summer, part of the exhaust gas discharged from the gas turbine is mixed with combustion suction air so as to hold the combustion suction air at a predetermined temperature throughout the year.

Description

明 細 書  Specification
ガス供給事業における電力平準化方法及びメタンハイドレート冷熱利用 発電システム Electricity leveling method and methane hydrate cold power generation system in gas supply business
技 術 分 野  Technical field
本発明は、 ガス供給事業における電力平準ィ匕方法及びメタンハイドレ 一ト冷熱利用発電システムに関するものである。  The present invention relates to a power leveling method and a methane hydrate cold power generation system in a gas supply business.
背 景 技 術  Background technology
近年、環境問題が重要視され、 特に、 炭酸ガスの排出に伴う地球温暖 化防止のため、 クリーンな燃料である天然ガスの利用促進が推奨されて いる。  In recent years, environmental issues have become important, and in particular, promotion of the use of natural gas, a clean fuel, has been recommended to prevent global warming due to carbon dioxide emissions.
天然ガスは、通常、 L N G (液化天然ガス) として輸入されているが、 天然ガスを L N Gに転換するには大規模な冷凍設備や、 多大な電力 (約 3 8 0 kWh / t ) を必要とするため、 埋蔵量の多い大規模なガス田や、 大電力を賄える特化された地域からの導入に限られている。  Natural gas is usually imported as LNG (liquefied natural gas), but converting natural gas to LNG requires large-scale refrigeration equipment and a large amount of electricity (about 380 kWh / t). Therefore, it is limited to introduction from large-scale gas fields with large reserves and specialized areas that can supply large power.
しかし、天然ガスの需要に応ずるために、 上記以外の地域、 例えば、 中小規模のガス田などからの導入が望まれている。 このような中小規模 のガス田などの天然ガスは、 ガス状のまま輸入される可能性もあり、 そ の対応についても今から検討しておく必要がある。  However, in order to meet the demand for natural gas, introduction from other regions, such as small and medium-sized gas fields, is desired. Natural gas from such small and medium-sized gas fields may be imported in gaseous form, and it is necessary to consider how to deal with it.
—方、 ガスの昼夜の需要バランスが偏っていることも事実であり、 こ の点に関しては、 ガスも電力と同じである。 しかし、 天然ガスを需要先 や消費地に送給するガス供給事業者の立場からすれば、 仮に、夜間に天 然ガスの送給が可能であれば、需要量がほぼ決まつているため、 ガスの 需要先に応じて需要地の近郊に天然ガスと水との水和物であるガスハイ ドレ一トの製造及び貯蔵タンクを用意すると、 ガス受入れ基地における 過大なガスホルダ一の設置が不要となり、 ガス受入れ基地における設備 投資を大幅に軽減することが可能となる。 この場合、 ガス受入れ基地の抱える問題を各地に分散することになる が、 その反面、需要地の特性 (需要パターン) に応じたガスの供給が可 能となるなどの利点がある。 特に、 L N Gではなく、 ガス状で導入する 場合には、 極めて有効なガスの送給と貯蔵とが可能となる。 —On the other hand, it is also true that the demand balance between gas and daytime demand is uneven, and in this regard, gas is the same as electricity. However, from the point of view of gas suppliers that supply natural gas to consumers and consumers, if natural gas can be supplied at night, the demand is almost fixed. If a gas hydrate, which is a hydrate of natural gas and water, is prepared and a storage tank is provided near the demand area according to the gas demand destination, it is not necessary to install an excessive gas holder at the gas receiving terminal. This will significantly reduce capital investment at gas receiving terminals. In this case, the problems of the gas receiving terminal will be dispersed to various places, but on the other hand, there are advantages such as the possibility of supplying gas according to the characteristics of the demand area (demand pattern). In particular, when gas is introduced instead of LNG, extremely effective gas supply and storage can be achieved.
天然ガスをガスハイドレートにすると、 天然ガスの体積は、約 1 / 1 When natural gas is converted to gas hydrate, the volume of natural gas is about 1/1
5 0〜1 Z 1 7 0に縮小するが、仮に、 これに相当する容積に天然ガス を圧縮して貯蔵する場合には、 導管圧力が 3 0 a t a (約 2 . 9 M P a ) とすれば、 約 5倍の圧縮動力が必要となる。 つまり、天然ガスを 1 5 0 気圧以上に圧縮する必要がある。 If the natural gas is compressed and stored to a volume equivalent to this, if the pipeline pressure is 30 ata (approximately 2.9 MPa), Approximately five times as much compression power is required. In other words, it is necessary to compress natural gas to 150 atmospheres or more.
従って、 天然ガスの圧縮貯蔵は、 高圧容器を要するから極めて高価な 設備が必要となるとともに、漏洩の危険がある。  Therefore, compressed storage of natural gas requires a high-pressure vessel, which requires extremely expensive equipment, and there is a risk of leakage.
ところで、 導管圧力を 3 O a t aとしてガスハイ ドレ一トを製造する 場合の所要動力と、天然ガスを 3 0 a t aから 1 5 0 a t a (約 1 4 . 7 M P a ) まで昇圧する場合の所要動力とを比較して見ると、前者で 2 8 0 3 kW、 後者で 1 2 0 0 kWとなり、前者より後者の方が有利とな るが、前者のガスハイドレート製造手段を先に出願したメタンハイドレ 一ト冷熱利用発電システムと一体化することにより、前者の不利 (冷凍 機動力が圧縮機動力を上回ること) を解消することが可能となる。 ■ 発 明 の 開 示  By the way, the required power for producing a gas hydrate with a conduit pressure of 3 O ata and the required power for increasing the natural gas pressure from 30 ata to 150 ata (approximately 14.7 MPa). Comparing with the former, the former is 280 kW and the latter is 120 kW, and the latter is more advantageous than the former. By integrating the system with the cold heat power generation system, it is possible to eliminate the former disadvantage (power of the refrigerator exceeds that of the compressor). ■ Disclosure of the invention
本発明は、 上記の知見に基づいたものであり、 ガス供給事業における 電力平準化を計ることができるガス供給事業における電力平準化方法を 提供することを目的とするものである。 また、年間を通じてガスハイド レートの冷熱を利用した高効率発電が計れることができるメ夕ンガスハ イドレート冷熱利用発電システムを提供することを目的とするものであ る。  The present invention is based on the above findings, and an object of the present invention is to provide a power leveling method in a gas supply business capable of measuring power level in a gas supply business. It is another object of the present invention to provide a main gas hydrate cold power generation system that can measure high efficiency power generation using gas hydrate cold throughout the year.
上記目的を達成するため、本発明のガス供給事業における電力平準化 方法は、 天然ガスをガス導入基地からガス消費地区に送給するに際し、 前言己ガス導入基地のガス圧送用コンプレッサを夜間電力を用いて運転し てガス導入基地の天然ガスをガス消費地区の近郊に設置したガスハイド レート生成貯蔵設備に送給する工程と、該ガスハイドレート生成貯蔵設 備を夜間電力を用いて運転して天然ガスと水の水和物であるガスハイド レ一トを生成する工程と、該ガスハイドレ一トを前記ガスハイドレート 生成貯蔵設備に貯蔵する工程とから構成されている。 In order to achieve the above object, electric power leveling in the gas supply business of the present invention When sending natural gas from the gas introduction terminal to the gas consuming area, the method described above was used to operate the gas pumping compressor at the gas introduction terminal using nighttime electric power to transfer the natural gas from the gas introduction terminal to the gas consuming area. Feeding the gas hydrate to the gas hydrate generating and storing facility installed in the country, and operating the gas hydrate generating and storing facility using nighttime electric power to generate a gas hydrate that is a hydrate of natural gas and water. And storing the gas hydrate in the gas hydrate generation and storage facility.
上記のように、本発明は、 天然ガス導入基地のガス圧送用コンプレツ サゃ、 ガスハイドレ一ト生成貯蔵設備などを夜間電力を使用して運転す るので、 比較的安価な夜間電力を用いて夜間に天然ガス導入基地からガ スハイドレート生成貯蔵設備に天然ガスを供給することが可能になると ともに、 ガスハイドレ一ト生成貯蔵設備において夜間にガスハイ ドレ一 トを生成することができる。 その上、 昼夜の消費電力を平準化すること ができるので、 工業上、 非常に有益である。  As described above, the present invention operates the gas pumping compressor, gas hydrate generation and storage facility, etc. of the natural gas introduction terminal using night power, so that relatively inexpensive night power can be used at night. Natural gas can be supplied from the natural gas introduction terminal to the gas hydrate generation and storage facility at the same time, and gas hydrate can be generated at night in the gas hydrate generation and storage facility. In addition, power consumption during the day and night can be leveled, which is very useful in industry.
一方、 本発明のメタンハイドレート冷熱利用発電システムは、 蒸気夕 一ビン及びガスタービンにより発電機を駆動する複合発電設備において、 該複合発電設備にメ夕ンハイドレート貯槽を併設し、該メタンハイドレ —ト貯槽内のメタンハイドレ一卜が分解した時に生じた冷水を、前記ガ スタービンに付随する吸気冷却器に導入して燃焼用吸気を冷却すると共 に、 夏期以外の期間においては、前記ガスタービンから排出される排ガ スの一部を燃焼用吸気に混合させて年間を通じて燃焼用吸気を所定温度 に保持することを特徴としている。  On the other hand, the methane hydrate cold-heat power generation system according to the present invention is a combined power generation system in which a generator is driven by a steam turbine and a gas turbine. The cold water generated when the methane hydrate in the gas storage tank is decomposed is introduced into an intake air cooler attached to the gas turbine to cool the combustion intake air, and the gas turbine is used during periods other than summer. It is characterized in that a part of the exhaust gas discharged from the fuel is mixed with the intake air for combustion to maintain the intake air for combustion at a predetermined temperature throughout the year.
上記のように、本発明は、複合発電システムにおいて、 ガスタービン に付随する吸気冷却器にメ夕ンハイドレート分解時に生じた冷水を導入 して燃焼用吸気を冷却すると共に、 夏期以外の期間においては、 ガス夕 —ビンから排出される排ガスの一部を燃焼用吸気に混合させて年間を通 じて燃焼用吸気を所定温度に保持するようにしたので、 年間を通じてメ タンハイドレ一ト分解時の冷熱を有効に利用することが可能になり、 ガ スタービンを年間を通じて最高効率点で運転することができるとともに、 温排水の問題も解消し、 環境に悪影響を及ぼすことも皆無となった。 また、 本発明のメタンハイドレート冷熱利用発電システムは、 ガス夕As described above, the present invention relates to a combined power generation system that cools intake air for combustion by introducing chilled water generated during main hydrate decomposition into an intake cooler associated with a gas turbine and cools the intake air during periods other than summer. Will mix a portion of the flue gas emitted from the bottle with the combustion air As a result, the intake air for combustion is maintained at a predetermined temperature, making it possible to effectively use the cold heat generated during the decomposition of methane hydrate throughout the year, and to operate the gas turbine at the highest efficiency throughout the year. As well as being able to solve the problem of hot drainage, there was no negative impact on the environment. Further, the methane hydrate cold-heat power generation system of the present invention is a gas-cooled power generation system.
—ビンに付随する吸気冷却器及びメタンハイドレ一ト貯槽を含むループ 状の閉回路を形成するとともに、 該閉回路にメタンハイ ドレートの分解 時に生じた冷熱を循環させ、 かつ、 メタンハイドレート分解時に生じた 余剰冷水を前記閉回路の系外に排出することを特徴としている。 -Form a loop-shaped closed circuit including an intake air cooler and a methane hydrate storage tank attached to the bin, circulate the cold generated during the decomposition of methane hydrate through the closed circuit, and generate the methane hydrate during decomposition. Further, the method is characterized in that surplus chilled water is discharged out of the closed circuit system.
また、 本発明のメ夕ンハイ ドレ一ト冷熱利用発電システムは、 メタン ハイドレ一ト貯槽、 蒸気タービン復水器及びガス夕一ビン吸気冷却器に よりループ状の閉回路を形成するとともに、 該閉回路にメタンハイドレ 一トの分解時に生じた冷熱を循環させることを特徴としている。  In addition, the power generation system utilizing cold heat of the present invention uses a methane hydrate storage tank, a steam turbine condenser, and a gas turbine bin intake cooler to form a closed loop circuit. The circuit is characterized by circulating cold generated during the decomposition of methane hydrate.
更に、 本発明のメタンハイ ドレ一ト冷熱利用発電システムは、 ガス導 入基地からガス消費地区に至るガス導管沿いにメタンハイドレート生成 貯槽設備及び複合発電設備を設け、 前記メタンハイドレ一ト生成貯槽設 備は、 メタンハイドレ一ト生成槽と、 冷凍機と、 熱交換器と、 補給水夕 ンクと、 メタンハイドレ一ト貯蔵タンクとから構成され、 前記複合発電 設備は、 蒸気タービンと、 発電機と、 ガスタービン吸気冷却器と、 吸気 圧縮機と、 燃焼器と、 ガスタービンと、 廃熱ボイラと、 蒸気タービン復 水器及び膨張タービンとから構成されたメタンハイドレート冷熱利用発 電システムであって、 前記メタンハイドレ一ト生成貯槽設備に蓄えられ た冷熱を、 前記吸気冷却器及び蒸気タービン復水器に送給することを特 徴としている。 · 上記のように、 本発明は、 メ夕ンハイドレート生成貯槽内に蓄えた冷 熱、 すなわち、 メタンハイドレ一トスラリーを吸気冷却器及び蒸気夕一 ビン復水器に送給するようにしたので、水で燃焼用空気や復水を冷却す る場合に比べて発電機の出力が大幅に向上する。 特に、 メタンハイドレ ート生成貯槽内に蓄えた冷熱、 すなわち、 メタンハイドレートスラリー を蒸気夕一ビン復水器に送給すると、 水で冷却する場合に比べて蒸気夕 一ビンの排気圧力が大幅に低下し、 発電機の出力が大幅に向上する。 更 に、本発明は、 高圧の天然ガスを膨張タービンで膨張させるので、 発電 機の出力向上に寄与することとなる。 Further, the methane hydrate cold energy power generation system of the present invention further comprises a methane hydrate generation storage tank facility and a combined power generation facility provided along a gas pipe extending from a gas introduction base to a gas consuming area; The equipment includes a methane hydrate generation tank, a refrigerator, a heat exchanger, a makeup water tank, and a methane hydrate storage tank, and the combined power generation equipment includes a steam turbine, a generator, A methane hydrate cold-heat power generation system comprising a gas turbine intake cooler, an intake compressor, a combustor, a gas turbine, a waste heat boiler, a steam turbine condenser and an expansion turbine. Supplying the cold heat stored in the methane hydrate generation storage tank equipment to the intake air cooler and the steam turbine condenser. That. · As described above, the present invention uses the cooling heat stored in the main hydrate generation storage tank, that is, the methane hydrate slurry, with the intake cooler and the steam Since the water is supplied to the bin condenser, the output of the generator is greatly improved as compared with the case where the combustion air or the condensate is cooled with water. In particular, when the chilled heat stored in the methane hydrate generation storage tank, that is, the methane hydrate slurry is fed to the steam evening bin condenser, the exhaust pressure of the steam evening bin is significantly larger than when cooling with water. And the output of the generator is greatly improved. Furthermore, the present invention expands the high-pressure natural gas by the expansion turbine, thereby contributing to an improvement in the output of the generator.
上記メ夕ンハイドレート生成貯槽設備に蓄え.られた冷熱は、 スラリー 状のメ夕ンハイドレートである。  The cold heat stored in the above-mentioned main hydrate generation storage tank facility is slurry-type main hydrate.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係るメタンハイドレート冷熱利用発電システムの概 略図である。  FIG. 1 is a schematic diagram of a methane hydrate cold heat power generation system according to the present invention.
第 2図は本発明に係るメタンハイドレート冷熱利用発電システムの他 の実施形態を示す概略図である。  FIG. 2 is a schematic view showing another embodiment of the methane hydrate cold heat power generation system according to the present invention.
第 3図は本発明に係るガス供給事業における電力平準ィヒ方法の概略図 である。  FIG. 3 is a schematic diagram of a power leveling method in a gas supply business according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を用いて説明する。 図 1は、本発明 に係るメタンハイドレート冷熱利用発電システムの概略図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a methane hydrate cold heat power generation system according to the present invention.
図 1において、 1は、 複合発電装置であり、 蒸気タービン 2及びガス 夕一ビン 3によって発電機 4を駆動して発電するようになっている。 こ のガス夕一ビン 3は、 吸気冷却器 5と、 吸気圧縮機 6と、燃焼器 7と、 膨張タ一ビン 8とから構成され、 膨張タービン 8の排ガス aを廃熱ボイ ラ 9に導入して熱回収するようになっている。 また、蒸気タービン 2は、 仕事後の蒸気 bを復水器 1 0に導入して液化させた後、復水 cをポンプ 1 1によって廃熱ボイラ 9に給水するようになっている。 そして、 廃熱 ボイラ 9で発生した蒸気 dは、蒸気タービン 2に導入され、発電に供す るようになっている。 In FIG. 1, reference numeral 1 denotes a combined power generation device, which is configured to generate power by driving a generator 4 by a steam turbine 2 and a gas bin 3. This gas bin 3 is composed of an intake cooler 5, an intake compressor 6, a combustor 7, and an expansion turbine 8, and the exhaust gas a of the expansion turbine 8 is introduced into the waste heat boiler 9. To recover heat. Further, the steam turbine 2 introduces the post-work steam b into the condenser 10 to liquefy it, and then supplies the condensate c to the waste heat boiler 9 by the pump 11. And waste heat The steam d generated in the boiler 9 is introduced into the steam turbine 2 and is used for power generation.
一方、 復水器 1 0と、 吸気冷却器 5と、 メタンハイドレート貯槽 1 2 と、 ポンプ 1 3とは、 連通管 1 4によって連通され、 ループ状の閉回路 1 5を構成している。 この閉回路 1 5には、 吸気冷却器 5を迂回するバ ィパス 1 6が設けられている。 1 7は、 0及気導入管であり、燃焼用空気 eを吸気冷却器 5を経て吸気圧縮機 6に導入するようになっている。 こ の吸気導入管 1 7には、 吸気冷却器 5より上流側において排気導入管 1 8が接続しており、 ガスタービン 3から排出された排ガス aの一部が導 入されるようになっている。 排気導入管 1 8は、 ブロア一 1 9を備えて いる。  On the other hand, the condenser 10, the intake air cooler 5, the methane hydrate storage tank 12, and the pump 13 are connected by a communication pipe 14 to form a closed loop circuit 15. The closed circuit 15 is provided with a bypass 16 that bypasses the intake air cooler 5. Reference numeral 17 denotes an air intake pipe, which introduces combustion air e into an intake compressor 6 via an intake cooler 5. An exhaust introduction pipe 18 is connected to the intake introduction pipe 17 on the upstream side of the intake air cooler 5 so that a part of the exhaust gas a discharged from the gas turbine 3 is introduced. I have. The exhaust introduction pipe 18 has a blower 19.
上記メ夕ンハイドレート貯槽 1 2には、 メ夕ンハイドレ一ト fが貯蔵 されているが、 メタンハイドレート f の分解によって得られたメタン g の一部は、 配管 2 0を通ってガス夕一ビン燃焼器 7に導入され、残りの メタン gは、 配管 2 0から分岐する枝管 2 1を通って消費ゾーン (図示 せず) に供給される。 配管 2 0は、 ブースタ 2 2を備えている。 メタン ハイドレート貯槽 1 2の内部は、 多孔板 2 3によって上下に仕切られて おり、 多孔板 2 3上にメ夕ンハイ ドレ一ト f が貯蔵され、 貯槽 1 2の底 部に冷水 hが貯蔵されている。  The main hydrate f is stored in the main hydrate storage tank 12, and a part of the methane g obtained by the decomposition of the methane hydrate f is passed through the pipe 20 to the gas hydrate. The remaining methane g is introduced into the single-bin combustor 7 and supplied to a consumption zone (not shown) through a branch pipe 21 branched from a pipe 20. The pipe 20 includes a booster 22. The inside of the methane hydrate storage tank 12 is vertically divided by a perforated plate 23, and the main hydrate f is stored on the perforated plate 23, and cold water h is stored at the bottom of the storage tank 12. Have been.
この冷水 hは、 ポンプ 1 3によって閉回路 1 5内に送出され、先ず、 復水器 1 0にて蒸気タービン 2から排出された蒸気 bを復水させる。 次 に、 吸気冷却器 5にてガスタービン圧縮機 6に導入される燃焼用空気 e を設計温度 (摂氏 2 0 °C ) に冷却する。 しかる後に、 メタンハイドレ一 ト貯槽 1 2に戻り、 図示しないノズルから貯槽 1 2内のメタンハイドレ ート f上に噴射され、 メタンハイドレート f をメタン gと水 hに分解さ せる。 メタンハイドレート貯槽 1 2内で再生されたメタン は、燃料として、 その一部がガス夕一ビン燃焼器 7に供給され、 残りのメタン gは、 枝管 2 1を経て消費ゾーン (図示せず) に供給される。 メタンハイドレート 分解時に生じた余剰冷水 は、 閉ループの枝管 2 4から系外に排出さ れる。 この余剰冷水 h ' は、 かなり低温(摂氏 5 °C ) であるから、 メタ ンハイドレート生成水として図示しない貯水槽に貯蔵される。 The cold water h is sent into the closed circuit 15 by the pump 13, and first, the steam b discharged from the steam turbine 2 is condensed by the condenser 10. Next, the intake air cooler 5 cools the combustion air e introduced into the gas turbine compressor 6 to a design temperature (20 ° C.). Thereafter, the methane hydrate returns to the methane hydrate storage tank 12 and is jetted from a nozzle (not shown) onto the methane hydrate f in the storage tank 12 to decompose the methane hydrate f into methane g and water h. Part of the methane regenerated in the methane hydrate storage tank 12 is supplied as fuel to the gas bin combustor 7, and the remaining methane g passes through the branch pipe 21 to the consumption zone (not shown). ). Methane hydrate The excess cold water generated during the decomposition is discharged out of the system from the closed-loop branch pipe 24. The surplus chilled water h 'has a very low temperature (5 ° C) and is stored in a water storage tank (not shown) as methane hydrate generated water.
また、 メタンハイドレート貯槽 1 2の冷たい水 hを、 先ず最初に、復 水器 1 0に通水することにより復水器 1 0の真空度が上がるため、 復水 器を海水などの常用の冷却水で冷却する場合に比べて蒸気タービン 1の 断熱熱落差を大幅に高めることが可能である。  In addition, the cold water h in the methane hydrate storage tank 12 is first passed through the condenser 10 to increase the degree of vacuum in the condenser 10, so that the condenser is used for ordinary water such as seawater. The adiabatic heat drop of the steam turbine 1 can be greatly increased as compared with the case of cooling with cooling water.
復水器 1 0を出た後の冷水 hは、 夏場のガスタービンの吸気温度を、 平均気温である摂氏 1 5 - 2 0 °C程度に冷却することが可能であり、蒸 気タービン 2及びガスタービン 3の出力増大に寄与することができる。 一般的に、 冷水 hは、夏場を除けば、 吸気冷却器 5を迂回するバイパス 1 6を通って閉回路 1 5に戻ることになるが、 メタンハイドレート貯槽 1 2の再生ガス量が同じであると仮定すると、 冷水 hが吸気冷却器 5を 通らないために、 メタンハイドレートを分解させる分解熱量が不足する。 従って、本発明にあっては、 吸気冷却器 5に冷水 hを、 常時、 流し続 けると共に、 夏場以外の冬期及び中間期においては、 ガスタービンの膨 張夕一ビン 8から排出される排ガス aの一部を燃焼用空気 eに混合させ、 吸気冷却器 5の入口温度を一定に保持する。 その結果、 ガスタービン 3 は、年間を通じ、 常に設計温度 (例えば、摂氏 1 5 °C ) で運転される。 排ガス aの供給量は、排気導入管 1 8に配設させた制御弁 2 5によって 調整される。  The cold water h after leaving the condenser 10 can cool the intake temperature of the gas turbine in summer to about 15-20 ° C, the average temperature, and the steam turbine 2 and This can contribute to an increase in the output of the gas turbine 3. Generally, the cold water h returns to the closed circuit 15 through the bypass 16 bypassing the intake air cooler 5 except in summer, but the regenerated gas volume in the methane hydrate storage tank 12 is the same. Assuming that there is, since the cold water h does not pass through the intake air cooler 5, the amount of decomposition heat to decompose methane hydrate is insufficient. Therefore, in the present invention, the cold water h is continuously supplied to the intake cooler 5 and the exhaust gas a discharged from the expansion bin 8 of the gas turbine a in winter and in the middle period other than summer. Is mixed with the combustion air e to keep the inlet temperature of the intake air cooler 5 constant. As a result, the gas turbine 3 is always operated at the design temperature (eg, 15 ° C) throughout the year. The supply amount of the exhaust gas a is adjusted by a control valve 25 provided in the exhaust gas introduction pipe 18.
ガスタービン 7の排ガスの一部が燃焼用空気に混入することによって ガスタービン燃焼空気の酸素濃度は、新鮮な空気に比べて、若干、下が ることになるが、 ガスタービンの排ガス中の酸素濃度は、 比較的高いこ とでもあり、 燃焼上、 問題がないと考えられる。 As part of the exhaust gas from the gas turbine 7 mixes with the combustion air, the oxygen concentration of the gas turbine combustion air is slightly lower than that of fresh air. In other words, the oxygen concentration in the exhaust gas from the gas turbine is relatively high, so it is considered that there is no problem in terms of combustion.
上記のように、本発明によれば、 年間を通じ、 メ夕ンハイドレ一ト分 解時の冷熱を有効に利用することができる。 その結果、 ガスタービンを、 年間を通じて最高効率点で運転することができる。 また、 温排水の問題 も解消し、 環境に悪影響を及ぼすこともない。  As described above, according to the present invention, it is possible to effectively use the cold heat generated during main hydrate disassembly throughout the year. As a result, gas turbines can operate at the highest efficiency point throughout the year. It also eliminates the problem of hot drainage and does not adversely affect the environment.
次に、 本発明に係るメタンハイドレ一ト冷熱利用発電システムの他の 実施形態及びガス供給事業における電力平準化方法について説明する。 図 3に示すように、 ガス田 3 1で採取した天然ガス gは、 ガス圧送用 ステ一シヨン 32、 パイプライン 3 3及びガス前処理設備 34を経て液 化プラント 3 5に送給され、 液化天然ガス (以下、 LNGという) とな つて LNGタンク 36に貝宁蔵される。  Next, another embodiment of the methane hydrate cold heat power generation system according to the present invention and a power leveling method in a gas supply business will be described. As shown in Fig. 3, the natural gas g collected in the gas field 31 is sent to the liquefaction plant 35 through the gas pumping station 32, the pipeline 33 and the gas pretreatment facility 34, and is liquefied. It is stored in LNG tank 36 as natural gas (hereinafter LNG).
LNGタンク 36内の LNGは、 LNGタンカー 37により輸送され、 ガス導入基地 38側の LNGタンク 39に貯蔵される。 この LNGタン ク 39内の LNGは、 LNGポンプ 40で気化器 4 1に送給され、高圧 の天然ガス gに再生される。 この高圧の天然ガス gは、 ガス主幹線 42 を経て第 1の工場 44 a及び発電所 4 5 aに送給される。  The LNG in the LNG tank 36 is transported by the LNG tanker 37 and stored in the LNG tank 39 on the gas introduction terminal 38 side. The LNG in the LNG tank 39 is supplied to the vaporizer 41 by the LNG pump 40 and is regenerated into high-pressure natural gas g. This high-pressure natural gas g is sent via the main gas line 42 to the first plant 44a and the power plant 45a.
更に、 ガス主幹線 4 に設けられた 1段目のガバナー弁 46 aによつ て減圧された中圧の天然ガス g' は、 枝管 43を経て第 2の工場 44 b 及び発電所 4 5 bに送給される。 更に、 ガス主幹線 42に設けられた 段目のガバナー弁 46 bによって減圧された低圧の天然ガス g" は、 枝 管 43を経て一般家庭 47及び業務施設 48に送給される。  Further, the medium-pressure natural gas g ′, which is depressurized by the first-stage governor valve 46 a provided on the gas main line 4, passes through the branch pipe 43 to the second plant 44 b and the power plant 45. Sent to b. Further, the low-pressure natural gas g ″ depressurized by the governor valve 46 b of the stage provided on the gas main line 42 is sent to the general household 47 and the business facility 48 via the branch 43.
ところで、本発明では、 第 1の工場 44 aや発電所 45 aの近郊にガ スハイドレ一ト生成貯蔵設備 1 2及び発電所 1を設置する以外に、消費 地域 A, B, C, 〜の近郊にガスハイドレート生成貯蔵設備 1 2及び発 電所 1を設置する。 一方、 天然ガス gの一部は、 ガスブースタ一 4 9により昇圧され、 海 底パイプライン 5 0を経て天然ガスノ 'ッファータンク 5 1に送給される。 この天然ガスバッファ一タンク 5 1の天然ガス gは、 ガス圧送用コンプ レッサ 5 2により圧送され、 上記ガス主幹線 4 2及び枝管 4 3を経てェ 場 4 4、 発電所 4 5、 一般家庭 4 7、 業務施設 4 8及び消費地域 A, B , C , 〜に送給される。 その際、 上記ガス圧送用コンプレッサ 5 2は、 夜 間電力を使用して運転されているので、 電力の平準化を計ることができ る。 また、 上記発電所 1で発電された電力は、 上記工場 4 4、 一般家庭 4 7、 業務施設 4 8及び消費地域 A, B , C, 〜に送電される。 By the way, according to the present invention, in addition to installing the gas hydrate generation and storage facility 12 and the power plant 1 near the first factory 44a and the power plant 45a, the suburbs of the consumption areas A, B, C, Gas hydrate generation and storage facility 1 and power plant 1 will be installed in On the other hand, a part of the natural gas g is pressurized by the gas booster 49 and sent to the natural gas buffer tank 51 via the submarine pipeline 50. The natural gas g from the natural gas buffer tank 51 is pumped by the gas pumping compressor 52 and passes through the gas main line 42 and the branch pipe 43 to produce power 44, power plants 45, and general households. 47, business facilities 48 and consumption areas A, B, C, ... At that time, since the gas pressure compressor 52 is operated using nighttime electric power, the electric power can be leveled. The power generated by the power plant 1 is transmitted to the factory 44, general households 47, business facilities 48, and consumption areas A, B, C, and so on.
上記のガスハイドレート生成貯蔵設備 1 2及び発電所 1は、 図 2に示 すように構成されている。  The gas hydrate generation and storage facility 12 and the power plant 1 described above are configured as shown in FIG.
ガスハイ ドレート生成貯蔵設備 1 2は、 メタンハイドレート生成槽 6 1 と、 冷凍機 6 2と、 熱交換器 6 3と、 補給水タンク 6 4と、 メタンハ ィ ドレ一ト貯蔵タンク 6 5から構成され、 夜間電力を使用して運転され ている。  The gas hydrate generation and storage facility 12 is composed of a methane hydrate generation tank 61, a refrigerator 62, a heat exchanger 63, a makeup water tank 64, and a methane hydroxide storage tank 65. It is operated using night power.
上記ガバナー弁 4 6より上流側のガス主幹線 4 2 aから分岐した枝管 6 6からメタンハイドレ一ト生成槽 6 1に天然ガス gが供給されるとと もに、 補給水夕ンク 6 4内の水 hが補給水ポンプ 6 7によってメ夕ンハ ィ ドレート生成槽 6 1に供給されると、 メタンハイドレート生成槽 6 1 内でメタンを主成分とする天然ガスと水の水和物であるメタンハイ ドレ ート f が生成される。  Natural gas g is supplied to the methane hydrate generation tank 61 from a branch pipe 66 branched from the gas main line 42 upstream of the governor valve 46, and make-up water is supplied. When the water h in the tank is supplied to the main hydrate generation tank 61 by the make-up water pump 67, the methane hydrate generation tank 61 generates natural gas mainly composed of methane and water hydrate. A certain methane hydrate f is generated.
ここで、 メタンハイ ドレート生成槽内の圧力及び温度としては、 例え ば、 1〜4 °C、 3 0〜1 0 0気圧の範囲が好ましい。 また、 水 hは、 メ 夕ンハイドレート生成槽 6 1に噴霧状態で供給することが好ましい。 このメタンハイドレート生成槽 6 1内の水 h及びメタンハイドレート f は、 攪拌手段 6 8により攪拌されてスラリー Γ になるとともに、 ス ラリ一循環ポンプ 6 9により導出される。 そして、 メタンハイドレート 貯蔵タンク 6 5に貯蔵されるとともに、 その一部は、 スラリー循環ライ ン 7 0を経てメタンハイ ドレ一ト生成槽 6 1に戻される。 このスラリー 循環ライン 7 0は、 その途中に熱交換器 6 3及び冷凍機 6 2を備え、 ス ラリー循環ライン 7 0を循環するメタンハイドレートスラリー Γ を所 定温度に冷却する。 また、 メタンハイ ドレート貯蔵タンク 6 5内でメタ ンハイドレートスラリー; r から分離した水 hは、 スラリ一移送ポンプHere, the pressure and temperature in the methane hydrate production tank are preferably, for example, in the range of 1 to 4 ° C. and 30 to 100 atm. The water h is preferably supplied to the main hydrate generation tank 61 in a spray state. The water h and the methane hydrate f in the methane hydrate production tank 61 are stirred by the stirring means 68 to become slurry 、, and It is derived by a lary circulation pump 69. Then, the methane hydrate is stored in the methane hydrate storage tank 65, and a part thereof is returned to the methane hydrate generation tank 61 via the slurry circulation line 70. The slurry circulation line 70 includes a heat exchanger 63 and a refrigerator 62 in the middle thereof, and cools the methane hydrate slurry circulating in the slurry circulation line 70 to a predetermined temperature. The water separated from the methane hydrate slurry in the methane hydrate storage tank 65;
7 1及び水循環ライン 7 2により補給水タンク 6 4に戻される。 The water is returned to the make-up water tank 6 4 by the water circulation line 7 2.
一方、 発電所である複合発電設備 1は、 蒸気夕一ビン 2と、 発電機 4 と、 ガスタービン吸気冷却器 5と、 吸気圧縮機 6と、 燃焼器 7と、 ガス タービン 8と、 廃熱ボイラ 9と、 蒸気タービン復水器 1 0及び膨張夕一 ビン 2 5から構成され、 上記発電機 4を、 蒸気タービン 2と、 ガスター ビン 8及び膨張タービン 1 5により駆動するようになっている。  On the other hand, the combined power generation facility 1, which is a power plant, has a steam bin 1, a generator 4, a gas turbine intake cooler 5, an intake compressor 6, a combustor 7, a gas turbine 8, and waste heat. The generator 4 includes a boiler 9, a steam turbine condenser 10 and an expansion bin 25, and the generator 4 is driven by the steam turbine 2, the gas turbine 8, and the expansion turbine 15.
更に、 この複合発電設備 1は、 上記水循環ライン 7 2と、 上記ガバナ —弁 4 6により下流側のガス主幹線 4 2 bとを結ぶメタンハイドレ一ト 分解ライン 7 3に、 上記スラリー移送ポンプ 7 1から上記ガス主幹線 4 2 b側に向かって、 順次、 ガスタービン吸気冷却器 5、 ガス分離器 7 4、 除湿器 7 5、 加熱器 7 6及び膨張夕一ビン 2 5を配している。  Further, the combined cycle power plant 1 is connected to the methane hydrate decomposition line 73 connecting the water circulation line 72 and the downstream gas main line 42 b by the governor valve 46 to the slurry transfer pump 73. The gas turbine inlet cooler 5, gas separator 74, dehumidifier 75, heater 76 and expansion bin 25 are arranged in this order from 1 to the main gas line 4 2b side. .
しかして、 メタンハイ ドレ一ト貯蔵タンク 6 5のメタンハイドレート スラリー f ' をメタンハイドレート分解ライン 7 3に送給すると、 メタ ンハイドレートスラリー Γ は、 ガスタービン吸気冷却器 5にて燃焼用 空気 eを冷却する一方、 自分自身、 水と天然ガスに分解する。 この天然 ガス gは、 ガス分離器 7 4で水 hと分離した後、 除湿器 7 5を経て上記 燃焼器 7に供給される。 この天然ガス gの一部は、 力!]熱器 7 6で加熱さ れて高圧となり、 発電機 4と軸を同じくする膨張タービン 2 5を駆動し た後、 ガス主幹線 4 2 bを経て需要地又は消費地に供給される。 上記燃焼器 7に供給された天然ガス gは、 吸気圧縮機 6で圧縮された 燃焼用空気 eと混合燃焼してガス夕一ビン 8に導入され、 発電機 4及び 吸気圧縮機 6を駆動する原動力となる。 ガスタービン 8を出た排ガス a は、廃熱ボイラ 9に導入され、廃熱が回収される。 廃熱ボイラ 9で生じ た高温高圧の蒸気 dは、 蒸気タービン 2に導入され、 発電に寄与する。 蒸気タービン 2を出た蒸気 bは、 蒸気タービン復水器 1 0に導入され、 冷却される。 復水 cは、 図示しないポンプにより廃熱ボイラ 9に戻され る。 Thus, when the methane hydrate slurry f ′ in the methane hydrate storage tank 65 is supplied to the methane hydrate decomposition line 73, the methane hydrate slurry 、 is supplied to the gas turbine intake cooler 5 for combustion air. While cooling e, it decomposes itself to water and natural gas. The natural gas g is separated from water h by a gas separator 74 and then supplied to the combustor 7 through a dehumidifier 75. Some of this natural gas g is power! After being heated by the heater 76 to become high pressure and driving the expansion turbine 25 having the same axis as the generator 4, it is supplied to the demand area or the consumption area via the gas main line 42b. The natural gas g supplied to the combustor 7 is mixed and burned with the combustion air e compressed by the intake compressor 6 and introduced into the gas bin 8 to drive the generator 4 and the intake compressor 6 It will be the driving force. Exhaust gas a exiting the gas turbine 8 is introduced into a waste heat boiler 9 to recover waste heat. The high-temperature and high-pressure steam d generated in the waste heat boiler 9 is introduced into the steam turbine 2 and contributes to power generation. The steam b exiting the steam turbine 2 is introduced into the steam turbine condenser 10 and cooled. The condensate c is returned to the waste heat boiler 9 by a pump (not shown).
更に、 この複合発電設備 1は、上記水循環ライン 7 にガスタービン 吸気冷却器 5を迂回するバイパスライン 7 7を配するとともに、 このバ ィパスライン 7 7に上記蒸気タ一ビン復水器 1 0及びガス分離器 7 4を 配しており、 上記メ夕ンハイドレート貯蔵夕ンク 6 5のメタンハイドレ —トスラリー Γ をバイパスライン 7 7に送給すると、 メタンハイ ドレ 一トスラリー Γ は、 蒸気タービン復水器 1 0にて廃熱ボイラ 9から導 出された蒸気 bを冷却して復水させる一方、 自分自身、 水と天然ガスに 分解する。 この天然ガス gは、 ガス分離器 7 4で水 hと分離した後、 除 湿器 7 5を経て上記燃焼器 7に供給される。 一方、 ガス分離器 7 4で分 離された水 hは、 ドレン移送ポンプ 7 8により上記水循環ライン 7 2に 戻される。 '  Further, the combined cycle power plant 1 includes a bypass line 77 that bypasses the gas turbine intake air cooler 5 in the water circulation line 7, and the steam turbine condenser 10 and the gas When the methane hydrate slurry の from the above-mentioned main hydrate storage tank 65 is supplied to the bypass line 775, the methane hydrate slurry 、 is supplied to the steam turbine condenser 1 At 0, the steam b derived from the waste heat boiler 9 is cooled and condensed, while decomposing itself into water and natural gas. This natural gas g is separated from water h by a gas separator 74 and then supplied to the combustor 7 through a dehumidifier 75. On the other hand, the water h separated by the gas separator 74 is returned to the water circulation line 72 by a drain transfer pump 78. '
(実施例) - 本発明のメタンハイドレート冷熱利用発電システム (図 1参照) と、 従来の複合発電システムとを比較した。 設定条件は次の通りとした。  (Example)-A comparison was made between the methane hydrate cold heat power generation system of the present invention (see Fig. 1) and a conventional combined power generation system. The setting conditions were as follows.
•ガス夕ービン基準吸気温度:摂氏 1 5 °C  • Gas evening-bore reference intake temperature: 15 ° C
定格出力 (発電端) 2 0, 0 0 0 kW  Rated output (power generation end) 200,000 kW
発電効率(発電端) 3 1 %  Power generation efficiency (power generation end) 3 1%
排 気 流 量 8 0 k g / s -排 気 温 度 500 °C Exhaust air flow 80 kg / s -Exhaust temperature 500 ° C
-燃 料 天然ガス  -Fuel Natural gas
その,結果、 本発明では、  As a result, in the present invention,
■蒸気タービン出力 7, 3 5 5 kW  ■ Steam turbine output 7, 3 5 5 kW
'ガスタービン出力 1 8, 000 kW  '' Gas turbine output 1 8,000 kW
•復水器圧力 0. 0 1 7 a t a  • Condenser pressure 0.0 1 7 at a
•ガスタービン吸気温度 20°C  • Gas turbine intake temperature 20 ° C
となり、 従来例では、 In the conventional example,
'蒸気タービン出力 5, 980 kW  '' Steam turbine output 5, 980 kW
·ガスタービン出力 1 6, 400 kW  · Gas turbine output 16 400 kW
-復水器圧力 0. 075 a t a  -Condenser pressure 0.075 a t a
•ガスタービン吸気温度 32°C  • Gas turbine inlet temperature 32 ° C
となる。 Becomes
従って、本発明の方が従来例に比べて 297 5 kW (= ( 73 5 5 + 1 8000) - (5980 + 1 6400) ) だけ出力が増加した。 なお、 発電出力増加分を、 メタンハイドレ一ト解離ガス量で割り算し たメタン処理量当たりの値は、  Therefore, the output of the present invention was increased by 2975 kW (= (7355 + 18000)-(5980 + 1640)) as compared with the conventional example. In addition, the value per methane treatment amount obtained by dividing the increase in power generation output by the amount of methane hydrate dissociated gas is:
( (73 55 + 1 8000) - (5980+ 1 6400) ) /1 5. 5 = 1 9 2 kW/t (CH4 ) ((73 55 + 1 8000)-(5980 + 1 6400)) / 1 5.5 = 1 92 kW / t (CH 4 )
となり、 メタンハイドレート生成単位にほぼ匹敵する,結果となった。 そ の結果、 メタンハイドレ一トを生成するに要する動力を、 ほぼ 1 00% 回収可能であることが分かつた。 Which is almost equivalent to methane hydrate production unit. As a result, it was found that almost 100% of the power required to produce methane hydrate could be recovered.

Claims

請 求 の 範 囲 The scope of the claims
1 . 天然ガスをガス導入基地からガス消費地区に送給するに際し、 前記ガス導入基地のガス圧送用コンプレッサを夜間電力を用いて運転し てガス導入基地の天然ガスをガス消費地区の近郊に設置したガスハイド レ一ト生成貯蔵設備に送給する工程と、該ガスハイドレート生成貯蔵設 備を夜間電力を用いて運転して天然ガスと水の水和物であるガスハイド レ一トを生成する工程と、該ガスハイドレートを前記ガスハイドレート 生成貯蔵設備に貯蔵する工程とからなるガス供給事業における電力平準 化方法。  1. When sending natural gas from the gas introduction terminal to the gas consuming area, the gas pumping compressor at the gas introduction terminal is operated using nighttime electric power to install the natural gas at the gas introduction terminal near the gas consuming area. Sending the gas hydrate to the gas hydrate generating and storing facility, and operating the gas hydrate generating and storing facility using nighttime electric power to generate a gas hydrate that is a hydrate of natural gas and water. And a step of storing the gas hydrate in the gas hydrate generation and storage facility.
2 . 蒸気タービン及びガス夕一ビンにより発電機を駆動する複合発 電設備において、 該複合発電設備にメタンハイドレート貯槽を併設し、 該メタンハイドレート貯槽内のメタンハイドレ一卜が分解した時に生じ た冷水を、前記ガスタービンに付随する吸気冷却器に導入して燃焼用吸 気を冷却すると共に、夏期以外の期間においては、 前記ガスタービンか ら排出される排ガスの一部を燃焼用吸気に混合させて年間を通じて燃焼 用吸気を所定温度に保持することを特徴とするメタンハイドレート冷熱 利用発電システム。  2. In a combined power generation facility that drives a generator by a steam turbine and a gas bin, a methane hydrate storage tank is installed in the combined power generation facility, and the methane hydrate in the methane hydrate storage tank is decomposed. Chilled water is introduced into an intake air cooler associated with the gas turbine to cool the intake air for combustion, and during periods other than summer, a portion of the exhaust gas discharged from the gas turbine is used as intake air for combustion. A methane hydrate cold heat power generation system that mixes and maintains combustion intake air at a predetermined temperature throughout the year.
3 . ガスタービンに付随する吸気冷却器及びメタンハイドレート貯 槽を含むループ状の閉回路を形成するとともに、該閉回路にメ夕ンハイ ドレ一トの分解時に生じた冷熱を循環させ、 かつ、 メ夕ンハイドレート 分解時に生じた余剰冷水を前記閉回路の系外に排出することを特徴とす る請求項 2記載のメ夕ンハイドレ一ト冷熱利用発電システム。  3. A loop-shaped closed circuit including an intake air cooler and a methane hydrate storage tank associated with the gas turbine is formed, and cold generated during decomposition of the main hydrate is circulated through the closed circuit, and 3. The power generation system according to claim 2, wherein surplus chilled water generated at the time of decomposition is discharged out of the closed circuit system.
4 . メタンハイドレート貯槽、 蒸気タービン復水器及びガス夕一ビ ン吸気冷却器によりループ状の閉回路を形成するとともに、該閉回路に メタンハイドレートの分解時に生じた冷熱を循環させる請求項 2又は 3 記載のメ夕ンハイドレート冷熱利用発電システム。 4. A closed loop circuit is formed by the methane hydrate storage tank, the steam turbine condenser, and the gas intake bin intake cooler, and the cold generated during the decomposition of methane hydrate is circulated through the closed circuit. 4. The power generation system using cold heat from the main hydrate described in 2 or 3.
5 . ガス導入基地からガス消費地区に至るガス導管沿いにメ夕ンハ ィドレート生成貯槽設備及び複合発電設備を設け、前記メタンハイドレ ート生成貯槽設備は、 メタンハイドレ一ト生成槽と、 冷凍機と、 熱交換 器と、 補給水タンクと、 メタンハイドレート貯蔵タンクとから構成され、 前記複合発電設備は、蒸気タービンと、 発電機と、 ガスタ一ビン吸気冷 却器と、 吸気圧縮機と、燃焼器と、 ガスタービンと、廃熱ボイラと、蒸 気タービン復水器及び膨張タービンとから構成されたメタンハイドレー ト冷熱利用発電システムであって、 前記メタンハイドレート生成貯槽設 備に蓄えられた冷熱を、 前記吸気冷却器及び蒸気タービン復水器に送給 することを特徴とするメタンハイドレート冷熱利用発電システム。 5. A main hydrate generation storage tank facility and a combined cycle power generation facility will be installed along the gas conduit from the gas introduction base to the gas consuming area, and the methane hydrate generation storage tank facility will be equipped with a methane hydrate generation tank and a refrigerator. , A heat exchanger, a make-up water tank, and a methane hydrate storage tank, and the combined power generation facility includes a steam turbine, a generator, a gas turbine intake cooler, an intake compressor, and combustion. Methane hydrate cooling / heating power generation system comprising a steam generator, a gas turbine, a waste heat boiler, a steam turbine condenser, and an expansion turbine, wherein the system is stored in the methane hydrate generation storage tank facility. A methane hydrate cold heat power generation system, wherein cold heat is supplied to the intake cooler and the steam turbine condenser.
6 . 前記メ夕ンハイドレート生成貯槽設備に蓄えられた冷熱がスラ リ一状のメ夕ンハイドレートである請求項 5記載のメ夕ンハイドレート 冷熱利用発電システム。  6. The main hydrate cooling power generation system according to claim 5, wherein the cold stored in the main hydrate generating storage facility is a slurry-shaped main hydrate.
PCT/JP2002/002071 2001-03-06 2002-03-06 Electric power leveling method and methane hydrate cold-heat utilization power generating system in gas supply business WO2002077515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002575527A JPWO2002077515A1 (en) 2001-03-06 2002-03-06 Electric power leveling method and methane hydrate cold energy power generation system in gas supply business

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-61332 2001-03-06
JP2001061332 2001-03-06
JP2002044528 2002-02-21
JP2002-44528 2002-02-21

Publications (1)

Publication Number Publication Date
WO2002077515A1 true WO2002077515A1 (en) 2002-10-03

Family

ID=26610672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002071 WO2002077515A1 (en) 2001-03-06 2002-03-06 Electric power leveling method and methane hydrate cold-heat utilization power generating system in gas supply business

Country Status (2)

Country Link
JP (1) JPWO2002077515A1 (en)
WO (1) WO2002077515A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112345A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Method and device for decomposing gas-hydrate in gas turbine combined power generation system
JP2006283596A (en) * 2005-03-31 2006-10-19 Chubu Electric Power Co Inc Device and method for supplying heat of decomposition of gas hydrate in electric power plant
WO2007122692A1 (en) * 2006-04-14 2007-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Method of decomposing gas hydrate, and apparatus therefor, in gas turbine combined power generation system
JP2007321601A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Gas combined-cycle power generation system and method utilizing gas hydrate
CN110701013A (en) * 2019-11-08 2020-01-17 中国石油大学(北京) Thermoelectric power generation system and thermoelectric power generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595834A (en) * 1982-07-02 1984-01-12 Hitachi Ltd Gas turbine plant
WO1996041096A1 (en) * 1995-06-07 1996-12-19 Jon Steinar Gudmundsson Method of oil and gas transportation
JPH11200884A (en) * 1998-01-19 1999-07-27 Mitsubishi Heavy Ind Ltd Gas turbine equipment and liquefied natural gas combined cycle power generation plant including this gas turbine equipment
JP2000304196A (en) * 1999-04-16 2000-11-02 Ishikawajima Harima Heavy Ind Co Ltd Natural gas hydrate transporting method and container thereof
JP2001192683A (en) * 2000-01-12 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd Method for transporting, storing and using natural gas
JP2001316683A (en) * 2000-04-28 2001-11-16 Mitsubishi Heavy Ind Ltd Apparatus for decomposition of natural gas hydrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595834A (en) * 1982-07-02 1984-01-12 Hitachi Ltd Gas turbine plant
WO1996041096A1 (en) * 1995-06-07 1996-12-19 Jon Steinar Gudmundsson Method of oil and gas transportation
JPH11200884A (en) * 1998-01-19 1999-07-27 Mitsubishi Heavy Ind Ltd Gas turbine equipment and liquefied natural gas combined cycle power generation plant including this gas turbine equipment
JP2000304196A (en) * 1999-04-16 2000-11-02 Ishikawajima Harima Heavy Ind Co Ltd Natural gas hydrate transporting method and container thereof
JP2001192683A (en) * 2000-01-12 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd Method for transporting, storing and using natural gas
JP2001316683A (en) * 2000-04-28 2001-11-16 Mitsubishi Heavy Ind Ltd Apparatus for decomposition of natural gas hydrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112345A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Method and device for decomposing gas-hydrate in gas turbine combined power generation system
JP2006283596A (en) * 2005-03-31 2006-10-19 Chubu Electric Power Co Inc Device and method for supplying heat of decomposition of gas hydrate in electric power plant
JP4684709B2 (en) * 2005-03-31 2011-05-18 中部電力株式会社 Method and apparatus for supplying gas hydrate decomposition heat in a power plant
WO2007122692A1 (en) * 2006-04-14 2007-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Method of decomposing gas hydrate, and apparatus therefor, in gas turbine combined power generation system
EP2009253A1 (en) * 2006-04-14 2008-12-31 MITSUI ENGINEERING & SHIPBUILDING CO., LTD Method of decomposing gas hydrate, and apparatus therefor, in gas turbine combined power generation system
EP2009253A4 (en) * 2006-04-14 2014-03-12 Mitsui Shipbuilding Eng Method of decomposing gas hydrate, and apparatus therefor, in gas turbine combined power generation system
JP2007321601A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Gas combined-cycle power generation system and method utilizing gas hydrate
CN110701013A (en) * 2019-11-08 2020-01-17 中国石油大学(北京) Thermoelectric power generation system and thermoelectric power generation method

Also Published As

Publication number Publication date
JPWO2002077515A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP2856552B2 (en) Improved co-cycle plant using liquefied natural gas as fuel.
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
US7574856B2 (en) Configurations and methods for power generation with integrated LNG regasification
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
CN101806293B (en) Integrating and optimizing method for improving generation efficiency of liquefied natural gas cold energy
JP4554641B2 (en) Methane hydrate cold power generation system
CN101287893B (en) Method for increasing the efficiency of a combined gas/steam power station with integrated fuel gasifier
JPH11506181A (en) Combined cycle power plant using liquefied natural gas (LNG) and gas turbine plant using LNG as fuel
US20100275644A1 (en) Natural gas liquefaction plant and motive power supply equipment for same
JP4094185B2 (en) Cold power generation system
CN103267394A (en) Method and device for efficiently utilizing cold energy of liquefied natural gas
JP2001193483A (en) Gas turbine system
CN117722819B (en) Novel liquefied air energy storage system of self-balancing type coupling LNG cold energy
CN111076496A (en) Peak regulation system and peak regulation method for air separation device of thermal power plant
WO2002077515A1 (en) Electric power leveling method and methane hydrate cold-heat utilization power generating system in gas supply business
KR101637436B1 (en) Air compressor cooling system, cooling method of floating storage power plant, and fuel gas supply method using the system
JPH11343865A (en) Cryogenic turbine power generation system
JP4817555B2 (en) Natural gas storage system
JPH11200884A (en) Gas turbine equipment and liquefied natural gas combined cycle power generation plant including this gas turbine equipment
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
CN112174363B (en) LNG cold energy utilization co-production fresh water and carbon dioxide sealing device
JP2002168101A (en) Composite energy system
JP2001241304A (en) Combined power generation system utilizing gas pressure energy
JP2000120404A (en) Combined power generating plant
KR101371253B1 (en) A combined system of lng regasification and power generation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002575527

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase