JP2004150685A - Nitrogen producing equipment and turbine power generation equipment - Google Patents

Nitrogen producing equipment and turbine power generation equipment Download PDF

Info

Publication number
JP2004150685A
JP2004150685A JP2002315370A JP2002315370A JP2004150685A JP 2004150685 A JP2004150685 A JP 2004150685A JP 2002315370 A JP2002315370 A JP 2002315370A JP 2002315370 A JP2002315370 A JP 2002315370A JP 2004150685 A JP2004150685 A JP 2004150685A
Authority
JP
Japan
Prior art keywords
nitrogen
turbine
oxygen
cooling means
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002315370A
Other languages
Japanese (ja)
Inventor
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002315370A priority Critical patent/JP2004150685A/en
Publication of JP2004150685A publication Critical patent/JP2004150685A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/80Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce nitrogen by using latent heat for evaporating liquid nitrogen as a cold source. <P>SOLUTION: This nitrogen producing equipment comprises a compressor 1 for compressing air, a second low-temperature heat exchanger 6 for cooling and liquefying the compressed air, a separation/purification system 7 for separating the air liquefied by the second low-temperature heat exchanger 6 into liquid nitrogen and liquid oxygen and purifying the air, and a nitrogen pump 11 for forcing the liquid nitrogen separated by the separation/purification system 7 to the second low-temperature heat exchanger 6. The second low-temperature heat exchanger 6 exchanges heat between the liquid nitrogen forced by the nitrogen pump 11 and the compressed air and evaporates the liquid nitrogen for obtaining high-pressure nitrogen. The heat exchanger also cools the compressed air by the latent heat and cold heat and uses the latent heat for evaporating the liquid nitrogen as a cold source to produce nitrogen. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液体窒素及び液体酸素を得るための深冷設備において窒素ガスを製造する窒素ガス製造装置に関する。
【0002】
また本発明は、液体窒素及び液体酸素を得るための深冷設備において窒素ガスを製造して窒素ガスを消費することができるタービン発電設備に関する。
【0003】
【従来の技術】
環境保全の観点から、発電設備(発電プラント)で水素や炭化水素系燃料を純酸素で燃焼させるタービン発電設備が提案されている。このようなタービン発電設備ではタービンの排気ガスが再循環流体として再び圧縮機に導入される。つまり、閉サイクルとなっているため、環境にCO 他の排気を排出しない排気無排出プラントとできる。
【0004】
純酸素を使用するタービン発電設備では、必ず別途プラントとして深冷設備が必要となる。深冷設備では、液化天然ガス等の冷熱を活用して空気を液化し、液体窒素及び液体酸素を得る際の動力(原単位)を削減する技術がある。
【0005】
【発明が解決しようとする課題】
発電設備に専用の深冷設備を併設する場合、液体酸素に関してはガス化して純酸素として発電設備で使用することができるが、液体窒素の使用先がない。
【0006】
特に、大規模な発電所では余剰になる液体窒素の量も大量となってしまう。発電設備でこの液体窒素を利用できるようにすれば発電所内部で全ての液体酸素・液体窒素を消費でき工業ガス市場に影響(供給過剰)を与えずにすむ。
【0007】
本発明は、上記状況に鑑みてなされたもので、液体窒素及び液体酸素を得るための深冷設備において、液体窒素を気化するための潜熱を冷熱源とすることで窒素を製造することができる窒素製造装置を提供することを目的とする。
【0008】
また本発明は、上記状況に鑑みてなされたもので、液体窒素及び液体酸素を得るための深冷設備において液体窒素を気化するための潜熱を冷熱源とすることで窒素を製造したのちその窒素を作動流体と消費することができるタービン発電設備を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明の窒素製造設備は、
空気を圧縮する空気圧縮機と、
圧縮空気を冷却して液化する液化冷却手段と、
液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプとを備え、
液化冷却手段では、窒素ポンプで圧送された液体窒素を圧縮空気との間で熱交換して蒸発させて高圧窒素を得ると同時にその潜熱及び冷熱で圧縮空気が冷却される
ことを特徴とする。
【0010】
上記目的を達成するための本発明の窒素製造設備は、
空気を圧縮する空気圧縮機と、
圧縮空気を冷却して液化する液化冷却手段と、
液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、
液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を圧縮空気との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で圧縮空気が冷却される
ことを特徴とする。
【0011】
上記目的を達成するための本発明の窒素製造設備は、
空気を圧縮する空気圧縮機と、
圧縮空気を膨張して発電を行うタービンと、
タービンの排気流体を冷却して液化する液化冷却手段と、
液化冷却手段で液化された排気流体を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、を備え、
液化冷却手段では、窒素ポンプで圧送された液体窒素を排気流体との間で熱交換して蒸発させて高圧窒素を得ると同時にその潜熱及び冷熱で排気流体が冷却される
ことを特徴とする。
【0012】
上記目的を達成するための本発明の窒素製造設備は、
空気を圧縮する空気圧縮機と、
圧縮空気を膨張して発電を行う膨張タービンと、
タービンの排気流体を冷却して液化する液化冷却手段と、
液化冷却手段で液化された排気流体を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、
液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を排気流体との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で排気流体が冷却される
ことを特徴とする。
【0013】
そして、液化冷却手段で得られる高圧窒素は、高圧窒素ガスであることを特徴とする。
【0014】
また、液化冷却手段で得られる高圧窒素及び高圧酸素は、高圧窒素ガス及び高圧酸素ガスであることを特徴とする。
【0015】
また、液化天然ガス貯蔵手段及び/または液炭酸貯蔵手段を備え、
液化冷却手段には、液化天然ガス貯蔵手段からの液化天然ガス及び/または液炭酸貯蔵手段からの液化炭酸が冷熱源として供給されることを特徴とする。
【0016】
また、圧縮空気を冷却する冷却手段が備えられていることを特徴とする。
【0017】
また、冷却手段の冷熱源は、液化冷却手段で得られた高圧窒素及び高圧酸素の顕熱であることを特徴とする。
【0018】
また、圧縮機及び燃焼器及びタービンからなるガスタービン設備と、
ガスタービン設備のタービンの排気ガスの熱回収を行って蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラで生成された蒸気を作動熱源とする吸収冷凍機とを備え、
冷却手段の冷熱源は、吸収冷凍機で生成された冷水であることを特徴とする。
【0019】
また、ガスタービン設備の圧縮機の吸気を冷却する吸気冷却手段と、
ガスタービン設備の圧縮機からの圧縮空気の一部を冷却し冷却後の圧縮空気を空気圧縮機に供給する中間冷却手段と
を備え、
吸気冷却手段及び中間冷却手段の冷熱源は、分離・精製手段で分離された液体窒素及び液体酸素、及びまたは、液化冷却手段で得られた高圧窒素及び高圧酸素であることを特徴とする。
【0020】
また、吸気冷却手段及び中間冷却手段の冷熱源として、吸収冷凍機で生成された冷水がさらに用いられることを特徴とする。
【0021】
また、液化冷却手段で得られた高圧窒素ガスが燃焼器に供給され、燃焼器からの燃焼ガスがタービンに送られることを特徴とする。
【0022】
また、液化冷却手段で得られた高圧窒素(気体)及び高圧酸素(気体)が燃焼器に供給され、燃焼器からの燃焼ガスがタービンに送られることを特徴とする。
【0023】
上記目的を達成するための本発明のタービン発電設備は、
請求項1もしくは請求項3に記載の窒素製造設備と、
燃焼器からの燃焼ガスが送られて作動するタービンとを備え、
高圧窒素製造設備で得られた高圧窒素が燃焼器に供給されて燃料と共に燃焼されることを特徴とする。
【0024】
そして、圧縮機及び燃焼器及びタービンからなるガスタービン設備を更に備え、
窒素製造設備で得られた高圧窒素がガスタービン設備の圧縮機の吸気の冷熱源とされた後にタービンの燃焼器に供給されることを特徴とする。
【0025】
上記目的を達成するための本発明のタービン発電設備は、
請求項2もしくは請求項4に記載の窒素製造設備と、
燃焼器からの燃焼ガスが送られて作動するタービンとを備え、
窒素製造設備で得られた高圧窒素及び高圧酸素が燃焼器に供給されて燃料と共に燃焼されることを特徴とする。
【0026】
そして、圧縮機及び燃焼器及びタービンからなるガスタービン設備を更に備え、
窒素製造設備で得られた高圧窒素がガスタービン設備の圧縮機の吸気の冷熱源とされた後にタービンの燃焼器に供給されることを特徴とする。
【0027】
【発明の実施の形態】
本発明の一実施形態例に係る窒素製造設備は、空気を圧縮する空気圧縮機と、圧縮空気を冷却して液化する液化冷却手段と、液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を圧縮空気との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で圧縮空気が冷却される。これと同時に高圧の窒素及び酸素を製造する設備である。
【0028】
液体窒素及び液体酸素の蒸発においては同時に空気の液化を行い、液化の冷熱源として深冷液体の潜熱と顕熱が回生活用される。
【0029】
本発明は、液体窒素・酸素を圧縮空気との間で熱交換して蒸発させ、高圧気体の窒素・酸素を得る。一方、空気圧縮機で圧縮された空気を高圧の窒素(及び高圧の酸素)の顕熱により冷却し、タービンで出力を取り出して更に温度を下げた後に液化冷却手段で圧縮空気を冷却して液化する構成も本発明の形態である。
【0030】
【実施例】
第1実施例に係る窒素製造装置を説明する。本実施例では、圧縮空気を高圧気体の窒素及び酸素の顕熱により冷却したのち、タービンで膨張させて出力を取り出して更に減温し、その後に液化冷却手段で圧縮空気を冷却して液化する。空気液化の冷熱は、液体窒素と液体酸素の蒸発潜熱で高圧の窒素(気体)及び高圧の酸素(気体)を製造する設備となっている。
【0031】
図1には本発明の第1実施例に係る窒素製造装置としての空気液化・気化プラントの概略系統を示してある。
【0032】
図に示すように、空気液化・気化プラント21には、電動機10により駆動される圧縮機1が備えられ、圧縮機1で圧縮された圧縮空気は冷却手段としての予冷熱交換器2で冷却され膨張タービン3で膨張される。膨張タービン3には発電機4が連結され、発電出力を取り出す。膨張タービン3で膨張された空気は第1深冷熱交換器5で冷却され、更に、液化冷却手段としての第2深冷熱交換器6で冷却されて液化される。
【0033】
第2深冷熱交換器6で冷却されて液化された流体は分離・精製手段としての分離・精製システム7により深冷液体gl (窒素)及び深冷液体gl(酸素)とされる。分離・精製システム7から余剰排出される深冷気体gaは第1深冷熱交換器5及び予冷熱交換器2の冷熱源とされ圧縮機1の吸気(大気)に合流される。圧縮機1の入口空気が深冷気体gaとの混合吸気となっているので、圧縮空気1の流量が増大し低温吸気により圧縮機1の排気も低温となって後流の液化プラント系統の冷却が容易となる。
【0034】
分離・精製システム7により分離された深冷液体gl (窒素)は液化窒素タンク8に貯留され、分離された深冷液体gl(酸素)は液化酸素タンク9に貯留される。液化窒素タンク8に貯留された深冷液体gl (窒素)は窒素ポンプ11により第2深冷熱交換器6に送られ、液化酸素タンク9に貯留された深冷液体gl(酸素)は酸素ポンプ12により第2深冷熱交換器6に送られる。
【0035】
第2深冷熱交換器6に送られた深冷液体gl (窒素)及び深冷液体gl(酸素)は気化されて深冷気体gg (窒素)及び深冷気体gg (酸素)とされる。第2深冷熱交換器6では深冷液体gl (窒素)及び深冷液体gl(酸素)が気化する際の潜熱で膨張タービン3及び第1深冷熱交換器5を経由した低温空気を液化する。つまり、第2深冷熱交換器6では液化と気化が同時に行われる。第2深冷熱交換器6からの深冷気体gg (窒素)及び深冷気体gg (酸素)は予冷熱交換器2に送られ、顕熱が予冷熱交換器2の冷熱源とされる。
【0036】
第2深冷熱交換器6では液化天然ガスLNG が気化できるようにすると、液化天然ガスの潜熱も冷熱源として活用できる。
【0037】
上述した空気液化・気化プラント21は、液体窒素及び液体酸素を発電利用のために気体にする。つまり、液化と蒸発を同時に行うものである。液相の深冷液体gl (窒素)及び深冷液体gl(酸素)を窒素ポンプ11及び酸素ポンプ12で加圧しているので、高圧の深冷気体gg (窒素)及び深冷気体gg (酸素)が得られるので、通常のガスタービン構成にある圧縮機を用いなくても深冷気体gg (窒素)及び深冷気体gg (酸素)をタービン燃焼器の高圧気体として用いたり、深冷気体gg (酸素)を純酸素としてガスタービン設備に備えられた燃料電池の反応用酸素として用いることが可能となる。
【0038】
上述した空気液化・気化プラント21では、深冷液体gl (窒素)及び深冷液体gl(酸素)の蒸発時の潜熱を活用して空気液化の冷熱源としているので、ターボ冷凍機等の別途冷熱を発生するための動力を削減することができる。また、液化天然ガスlng の気化による潜熱も同様に活用できる。つまり、深冷液体gl (窒素)及び深冷液体gl(酸素)の冷熱を活用する目的は、気化動力(原単位)を下げて経済性を高めるためである。
【0039】
図2に基づいて上述した空気液化・気化プラント21を備えたタービン発電設備の実施例を説明する。図2には本発明の第1実施例に係るタービン発電設備の概略系統を示してある。
【0040】
図2に示したタービン発電設備は、図1に示した空気液化・気化プラント21からの窒素・酸素と、燃料が燃焼器15,16,17に送られ、その燃焼ガスで作動するタービン25,26,27と、圧縮機31及び燃焼器32及びタービン33からなる第1ガスタービン設備34と、圧縮機35及び燃焼器36及びタービン37からなる第2ガスタービン設備38の吸気冷却ガスタービン発電設備で構成されている。
【0041】
タービン25,26は軸直結につなげられ、タービン25,26の同軸に発電機29が備えられている。また、タービン27には同軸に発電機30が備えられている。タービン25,26の燃焼器15,16には空気液化・気化プラント21で製造された高圧酸素gg が燃料fとともに供給される。高圧酸素gg は加熱熱交換器41で蒸気sによって所定の温度に制御される。
【0042】
第1ガスタービン設備34では、圧縮機31の吸気が吸気冷却装置45に直接噴射される深冷気体gg (低温の窒素ガス)で冷却される。圧縮機31からの圧縮空気が燃料fと燃焼器32で燃焼し、燃焼器32からの燃焼ガスによりタービン33が作動し、発電機46で発電出力が取り出される。タービン33の排気は排熱回収ボイラ47で熱回収され、排熱回収ボイラ47で生成された蒸気は図示しない蒸気タービンに送られると共に深冷熱交換器41に加熱用の蒸気として送られる。
【0043】
第2ガスタービン設備38では、圧縮機35の吸気が吸気熱交換装置48によって深冷気体gg で間接的に冷却される。圧縮機35からの圧縮空気が燃料fと燃焼器36で燃焼し、燃焼器36からの燃焼ガスによりタービン37が作動し、発電機49で発電出力が取り出される。タービン37の排気は排熱回収ボイラ50で熱回収され、排熱回収ボイラ50で生成された蒸気は図示しない蒸気タービンに送られると共に深冷熱交換器41に加熱用の蒸気として送られる。
【0044】
熱交換された後の深冷気体gg (窒素)は加熱熱交換器42で加熱用蒸気sとの間で熱交換され、タービン25の燃焼器25に供給される。加熱熱交換器42には、排熱回収ボイラ47で生成された蒸気も使用される。
【0045】
タービン25の燃焼器15には、空気液化・気化プラント21で製造された深冷気体gg (酸素)及び深冷気体gg (窒素)が昇温の後燃料fとともに送られ、燃焼器15からの燃焼ガスによりタービン25が作動される。タービン25の排気はタービン26の燃焼器16に供給される。燃焼器16には空気液化・気化プラント21で製造され昇温したgg (酸素)及び燃料fが供給され、燃焼器16からの燃焼ガスによりタービン26が作動される。タービン25及びタービン26の出力が発電機29で発電出力として取り出される。
【0046】
タービン26の排気は排熱回収ボイラ18で熱回収され、排熱回収ボイラ18で生成された蒸気は図示しない蒸気タービンに送られると共に加熱熱交換器41及び加熱熱交換器42に送られる。
【0047】
一方、タービン27には同軸に発電機29が結合され、タービン27の燃焼器17には空気液化・気化プラント21で製造され昇温したgg (高圧の酸素ガス:高圧O)が燃料fとともに供給される。また、燃焼器17には液炭酸プラント20からの高圧COが送られる。燃焼器17からの燃焼ガスによりタービン27が作動され、タービン27の出力が発電機30で発電出力として取り出される。
【0048】
タービン27の排気は排熱回収ボイラ19で熱回収され、排熱回収ボイラ19で生成された蒸気は図示しない蒸気タービンに送られると共に熱交換器(41,42,43)に送られる。排熱回収ボイラ19で熱回収された排気ガスからはCO(HO )が回収され、再び液体炭酸として環境には排出しない。
【0049】
通常、ガスタービンでは吸気の20%から6%程度の酸素Oを消費しているため、残りの酸素Oは更に2台のガスタービンを作動させる余力を持っている。つまり、空気液化・気化プラント21で製造した酸素O(空気から分離した酸素O)は3倍に活用できることになる。例えば、窒素で作動する発電において1/3酸素Oの当量燃焼、閉サイクル発電設備において1/3酸素Oの当量燃焼、燃料電池を備えた閉サイクル発電設備において1/3酸素Oの当量燃焼等に活用できる。
【0050】
図2に示した実施例では、高圧の窒素作動の発電におけるタービン25,26に酸素Oを2/3(1/3の2倍)使用し、高圧のCO作動の発電におけるタービン27に酸素Oを1/3使用した例を示してある。燃料fとO系に膨張タービンを併設しそのタービン排気を燃焼器15、16、17に投入すると、全体の効率をさらに向上させることができる。また、加熱熱交換器41,42の加熱源として排熱回収ボイラで生成された蒸気を用いることにより、窒素系と酸素系の流体を加熱して燃料fを節約することができる。
【0051】
図3に基づいて第2実施例に係る窒素製造装置を説明する。
【0052】
本実施例では、圧縮空気を高圧の窒素及び高圧の酸素・酸素・二酸化炭素及び気化LNG ガスの顕熱により冷却し、膨張タービンで膨張させて出力を取り出した後に液化冷却手段で圧縮空気を冷却して液化する。高圧の液体の窒素及び高圧の液体の酸素を製造する設備となっている。つまり、液化流体の蒸発と空気の液化を同時に行い、液化流体の蒸発潜熱と顕熱を回生活用するシステムをしている。
【0053】
図3には本発明の第2実施例に係る窒素製造装置としての深冷プラントの概略系統を示してある。尚、図1に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
【0054】
図に示すように、深冷プラント61には、電動機10により駆動されて空気を圧縮する圧縮機1が備えられ、圧縮機1で圧縮された空気は冷却手段としての予冷熱交換器62で冷却され膨張タービン3で出力を取り出す。膨張タービン3には発電機4が連結され、発電出力を取り出す。膨張タービン3の排気は低温となっているが更に深冷熱交換器63で冷却されて液化される。
【0055】
深冷熱交換器63で冷却されて液化された液体空気は分離・精製手段としての分離・精製システム7により深冷液体gl (窒素)及び深冷液体gl(酸素)とされる。分離・精製システム7により分離された深冷液体gl (窒素)は液体窒素タンク8に貯留され、分離・精製システム7により分離された及び深冷液体gl(酸素)は液体酸素タンク9に貯留される。液体窒素タンク8に貯留された深冷液体gl (窒素)は窒素ポンプ11により深冷熱交換器63に送られ、液体酸素タンク9に貯留された深冷液体gl(酸素)は酸素ポンプ12により深冷熱交換器63に送られる。
【0056】
深冷熱交換器63には、液化天然ガスタンク64に貯留された液化天然ガスlng がポンプ81により圧送され、更に、図示しない液炭酸タンクに貯留された液体CO がポンプ82により圧送される。深冷熱交換器63に送られた深冷液体gl (窒素)及び深冷液体gl(酸素)及び液化天然ガスlng 及び液体CO lcが気化するときの冷熱を空気液化に利用する(la1 →la2)。深冷熱交換器63の出口流体の窒素ln2 及び酸素lo2 及び天然ガスlng2及びCOlc2は予冷熱交換器62に送られ、顕熱が予冷熱交換器2の冷熱源とされる。
【0057】
尚、深冷プラント61としては、深冷熱交換器63及び予冷熱交換器2の複段冷熱利用で説明したが、予冷熱交換器2を省略した単段冷熱利用とすることも可能である。
【0058】
上述した深冷プラント61では、深冷液体gl (窒素)及び深冷液体gl(酸素)及び液化天然ガスlng 及び液体CO lcへの気化と空気の液化が同時に行われる。このための冷熱は、深冷液体の蒸発潜熱と顕熱を回生活用する。この場合、冷熱量の差(Q−Q−Q−QLNG −Q)についての最小限の(P−L)の生成動力(kW)を投入する。そして、夜間電力を用いて深冷液体gl (窒素)及び深冷液体gl(酸素)及び液化天然ガスlng 及び液体CO を貯留する場合時間差運用が行なえる。
【0059】
図4に基づいて上述した深冷プラント61を備えたタービン発電設備の実施例を説明する。図4には本発明の第2実施例に係るタービン発電設備の概略系統を示してある。
【0060】
図4に示したタービン発電設備は、図3に示した深冷プラント61と、燃焼器65からの燃焼ガスが送られて作動する窒素タービン66と、燃焼器67からの燃焼ガスが送られて作動する炭酸タービン68と、酸素を圧縮して燃焼器65,67に供給する発電機70で駆動される酸素圧縮機69とを備えている。
【0061】
燃焼器65には深冷プラント61で製造された深冷窒素ln3 及び液体酸素lo3 及び液化天然ガスlng3が供給される。また、必要に応じて酸素圧縮機69で圧縮された酸素が供給される。燃焼器65からの燃焼ガスにより窒素タービン66が作動され、窒素タービン66の出力が発電機71から取り出される。窒素タービン66の排気は排熱回収ボイラ72で熱回収され、排熱回収ボイラ72で生成された蒸気は図示しない蒸気タービンに送られる。
【0062】
燃焼器67には深冷プラント61で製造された液体酸素lo3 及び液化天然ガスlng3及び液体COlc3が供給される。また、酸素圧縮機69で圧縮された酸素が供給される。燃焼器67からの燃焼ガスにより炭酸タービン68が作動し、炭酸タービン68の出力が発電機73で取り出される。炭酸タービン68の排気は排熱回収ボイラ74で熱回収され、排熱回収ボイラ74で生成された蒸気は図示しない蒸気タービンに送られる。排熱回収ボイラ74で熱回収された炭酸タービン68の排気は図示しないCO回収系でCOを回収する。
【0063】
上述したタービン発電設備では、深冷窒素ln2 及び液体酸素lo2 及び液化天然ガスlng2及び液体COlc2の顕熱を利用して予冷熱交換器2で圧縮空気の予冷が行われる。発電設備では窒素タービン66と炭酸タービン68とが作動され、窒素タービン66の排気は環境に排出され、炭酸タービン68の排気は回収される。窒素タービン66の入口圧力は液相における窒素ポンプ11の昇圧で確保され、炭酸タービン68の入口圧力は液相におけるポンプ82の昇圧で確保される。
【0064】
また、炭酸タービン68の排気は合成プラントでCOが回収され、メタノールやジメチルエーテルの原料とされる。必要なHを電気分解で得る場合、併産するOは必要に応じて液体酸素に転換・貯蔵したり、図示の酸素圧縮機69を経由して発電設備の酸素供給ラインに投入利用される。
【0065】
図5乃至図8に基づいて第3実施例乃至第6実施例に係る窒素製造装置を説明する。
【0066】
第3実施例乃至第6実施例に係る窒素製造装置は、第1実施例における第1深冷熱交換器5、第2深冷熱交換器6、分離・精製システム7、液体窒素タンク8及び液体酸素タンク9の部位を深冷プラント76に内包されるものとして示してあり、予冷熱交換器2は後段冷却器57に置き替えした構成となっている。そして、図中で深冷プラント76で得られる流体は、深冷気体ggとして示してある。また、第2実施例を適用した場合には深冷プラント76で得られる流体は、深冷液体llとなる。
【0067】
図5には本発明の第3実施例に係る窒素製造装置の概略系統を示してある。尚、図1に示した部材と同一部材には同一符号を付してある。
【0068】
図に示すように、圧縮機51及び燃焼器52及びタービン53からなるガスタービン設備54が備えられ、ガスタービン設備54のタービン53の排気が排熱回収ボイラ55で熱回収される。排熱回収ボイラ55で発生した蒸気sは蒸気系14に送られると共に吸収冷凍機56の作動熱源とされる。
【0069】
一方、圧縮機1で圧縮された圧縮空気は後段冷却器57で冷却され、後段冷却器57で冷却された圧縮空気は膨張タービン3で膨張したのち深冷プラント76に送られる。吸収冷凍機56で生成された冷水l1は後段冷却器57に送られて後段冷却器57の冷熱源とされる。吸収冷凍機56を作動した蒸気は復水wとなって再び排熱回収ボイラ55に給水される。
【0070】
上述した窒素製造装置は、深冷プラント76にコージェネ設備を併設したので、圧縮機1の動力を削減することができ、予冷のための冷水l1の供給により、深冷プラント76の省エネルギー性を高めることができる。深冷プラント76で得るものは深冷の気体gg、液化物llのいずれでもよい。
【0071】
図6には本発明の第4実施例に係る窒素製造装置の概略系統を示してある。尚、図1及び図5に示した部材と同一部材には同一符号を付してある。
【0072】
図に示すように、圧縮機51及び燃焼器52及びタービン53からなるガスタービン設備54が備えられ、ガスタービン設備54のタービン53の排気が排熱回収ボイラ55で熱回収される。排熱回収ボイラ55で発生した蒸気sは蒸気系14に送られると共に吸収冷凍機56の作動熱源とされる。
【0073】
圧縮機51の吸気を冷却する吸気冷却器58が設けられ、圧縮機51の吸気が深冷気体ggもしくは深冷液体llで冷却される。圧縮機51で圧縮された圧縮空気の一部を分岐して中間冷却器59で冷却する。深冷気体ggもしくは深冷液体llの一部が冷却中間冷却器59で空気冷却に用いられ低温の空気が圧縮機1に送られる。
【0074】
一方、圧縮機1で圧縮された空気は後段冷却器57で冷却され、膨張タービン3で膨張してさらに低温となり深冷プラント76に送られる。吸収冷凍機56で生成された冷水l1は後段冷却器57に送られて後段冷却器57の冷熱源とされる。吸収冷凍機56を作動した蒸気は復水wとなり排熱回収ボイラ55に給水される。
【0075】
上述した窒素製造装置は、ガスタービン設備54の圧縮機51で圧縮された圧縮空気の一部を圧縮機1で加圧して膨張タービン3の断熱膨張冷却で深冷する。ガスタービン設備54の圧縮機51の吸気を吸気冷却器58で冷却する際の冷却媒体に深冷気体ggもしくは深冷液体llを用いて圧縮機吸気重量流量を増加させて出力増強を行う。圧縮機51の吸気冷却により増加した吸気量をそのまま圧縮機1の吸気として使用しこの予圧の分だけ圧縮機1のの圧縮比を軽減する。
【0076】
したがって、タービン53の出力を設計値に保った状態で圧縮機51の動力を設計値より後段冷却器57の分だけ高くすることになるが、予圧分には電動機10及び発電機5の効率がかからずに取り出されるためこれら2損失の影響でシステム効率が低下するのを防ぐことになり、結果としてシステム効率を向上させることができる。
【0077】
図7には本発明の第5実施例に係る窒素製造装置の概略系統を示してある。尚、図1及び図6に示した部材と同一部材には同一符号を付して重複する説明は省略してある。
【0078】
図7に示した窒素製造装置は、図6に示した窒素製造装置に対し、ガスタービン54の軸で駆動される圧縮機85を備え、圧縮機85の吸気を冷却する吸気冷却器58を備えている。更に、圧縮機51及び圧縮機85の吸気冷却器58の上流側には予冷器86がそれぞれ設けられている。また、中間冷却器59の上流には高温熱交換器87及び予冷器88が設けられている。また、後段冷却器57の後流側には仕上げ冷却器89が設けられている。予冷器86及び予冷器88の冷熱源は吸気冷凍機56からの冷水が用いられ、仕上げ冷却器89の冷熱源は深冷プラント76の深冷気体ggもしくは深冷液体llの一部が用いられる。深冷気体ggは深冷空気、深冷窒素、深冷液体llは液体空気、液体窒素、液体酸素である。
【0079】
尚、圧縮機1をガスタービン設備54の系と機械的に連結させる場合は軸直結あるいは歯車装置を介しての結合等の方法は自由である。
【0080】
上述した窒素製造装置は、圧縮機85(初段の圧縮機)が軸駆動であるが、その軸駆動力は吸気冷却によるガスタービン設備54の増出力で確保される。吸気冷却器58及び中間冷却器59には冷水を用いた予冷器86及び予冷器88を併用して深冷流体の節約を図っている。中間冷却器59には最上流に高温熱交換器87を設け、冷却流体は、下流熱交換器AC−IC あるいは別途熱交換器PCの出口流体や単独の(gg,ll) の他温度条件によって、▲1▼燃料、▲2▼給水、▲3▼蒸気とする。つまり、高温熱交換器87では、▲1▼燃料の場合に燃料予熱を行い、▲2▼の場合に蒸気を発生させ、▲3▼の場合に蒸気過熱を行う。
【0081】
後段冷却器57の後流には仕上げ冷却器89を設け、膨張タービン3の入口の温度の低減を図る。単独の冷却器毎に深冷プラント76の深冷気体ggもしくは深冷液体llの一部を流す他、各熱交換器を自由に選択して経由させる。例えば、仕上げ冷却器89から中間冷却器59、吸気冷却器58へとシリーズに深冷気体ggもしくは深冷液体llの一部を経由させてその都度昇温させ、吸気冷却器58の出口で高温流体として取り出すことも可能である。他の例として、仕上げ冷却器89から中間冷却器59及び吸気冷却器58、高温熱交換器87へと深冷気体ggもしくは深冷液体llの一部を経由させて、更に高温で取り出すことも可能である。
【0082】
尚、空気ラインの熱交換の配置は図6に示した窒素製造装置にも適用することができる。
【0083】
図8には本発明の第6実施例に係る窒素製造装置の概略系統を示してある。尚、図1及び図7に示した部材と同一部材には同一符号を付して重複する説明は省略してある。第6実施例に係る窒素製造装置のでは、深冷プラント76では深冷気体gg及び深冷液体llが製造されるようになっている。
【0084】
図8に示した窒素製造装置は、図7に示した窒素製造装置に対し、仕上げ冷却器89の後流側にタービン入口温度冷却器90を備えている。タービン入口温度冷却器90には深冷気体ggの一部が冷熱源として送られ、その後圧縮機51及び圧縮機85の吸気に混合される。深冷液体llの一部(必要量)はポンプ79で昇圧されて仕上げ冷却器89に送られる。
【0085】
上述した窒素製造装置は、深冷プラント76からの深冷気体ggの一部(必要量)をガスタービン設備54の圧縮機51に吸入し、吸気冷却効果によりガスタービン出力を向上させる。また、深冷プラント76からの深冷気体ggの一部を深冷設備系統の圧縮機85に吸入し、吸気量の増大と吐出温度の低下を図り、液化効率を向上させる。深冷プラント76からの深冷気体ggの一部を圧縮機51及び圧縮機85に混合するだけの場合もあり、各熱交換器は冷却計画に応じて自由に構成することができる。深冷プラント76からの深冷気体ggの一部を改めてタービン入口温度冷却器90に送り、膨張タービン3の入口温度を低下させてから圧縮機51及び圧縮機85に吸入することもある。深冷プラント76からの深冷気体ggの一部をタービン入口温度冷却器90に通さない場合、低温の深冷気体ggの一部を圧縮機51及び圧縮機85の入口に直接供給することができる。
【0086】
【発明の効果】
本発明の窒素製造設備は、空気を圧縮する空気圧縮機と、圧縮空気を冷却(膨張冷却)して液化する液化冷却手段と、液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプとを備え、液化冷却手段では、窒素ポンプで圧送された液体窒素を圧縮空気との間で熱交換して蒸発させて高圧窒素を得る。つまり液体窒素の蒸発潜熱による冷熱で圧縮空気が冷却されるので、液体窒素及び液体酸素を得るための深冷設備において、液体窒素を気化するための潜熱を冷熱源とすることで少ない動力で窒素を製造することができる窒素製造装置となる。
【0087】
本発明の窒素製造設備は、空気を圧縮する空気圧縮機と、圧縮空気を冷却して液化する液化冷却手段と、液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を圧縮空気との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で圧縮空気が冷却されるので、液体窒素及び液体酸素を得るための深冷設備において、液体窒素及び液体酸素を気化するための潜熱を冷熱源とすることで窒素及び酸素を製造することができる窒素製造装置となる。
【0088】
本発明の窒素製造設備は、空気を圧縮する空気圧縮機と、圧縮空気を膨張して発電を行うタービンと、タービンの排気流体を冷却して液化する液化冷却手段と、液化冷却手段で液化された排気流体を液体窒素と液体酸素に分離して精製する分離・精製手段と、分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプとを備え、液化冷却手段では、窒素ポンプで圧送された液体窒素を排気流体との間で熱交換して蒸発させて高圧窒素を得てその潜熱による冷熱で排気流体が冷却されるので、液体窒素及び液体酸素を得るための深冷設備において、液体窒素を気化するための潜熱を冷熱源とすることで窒素を製造することができる窒素製造装置となる。
【0089】
本発明の窒素製造設備は、空気を圧縮する空気圧縮機と、圧縮空気を膨張して発電を行うタービンと、タービンの排気流体を冷却して液化する液化冷却手段と、液化冷却手段で液化された排気流体を液体窒素と液体酸素に分離して精製する分離・精製手段と、分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を排気流体との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で排気流体が冷却されるので、液体窒素及び液体酸素を得るための深冷設備において、液体窒素及び液体酸素を気化するための潜熱を冷熱源とすることで窒素を製造することができる窒素製造装置となる。
【0090】
本発明のタービン発電設備は、請求項1もしくは請求項3に記載の窒素製造設備と、燃焼器からの高温燃焼ガスが送られて作動するタービンとを備え、高圧窒素製造設備で得られた高圧窒素が高圧酸素と共に燃焼器に供給されて燃料と共に燃焼されるので、液体窒素及び液体酸素を得るための深冷設備において液体窒素及び液体酸素を気化するための潜熱を冷熱源とすることで窒素を製造して窒素を消費することができるタービン発電設備となる。
【0091】
本発明のタービン発電設備は、請求項2もしくは請求項4に記載の窒素製造設備と、燃焼器からの高温燃焼ガスが送られて作動するタービンとを備え、窒素製造設備で得られた高圧窒素及び高圧酸素が燃焼器に供給されて燃料と共に燃焼されるので、液体窒素及び液体酸素を得るための深冷設備において液体窒素及び液体酸素を気化するための潜熱を冷熱源とすることで窒素を製造して窒素を消費することができるタービン発電設備となる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る窒素製造装置としての空気液化・気化プラントの概略系統図。
【図2】本発明の第1実施例に係るタービン発電設備の概略系統図。
【図3】本発明の第2実施例に係る窒素製造装置としての深冷プラントの概略系統図。
【図4】本発明の第2実施例に係るタービン発電設備の概略系統図。
【図5】本発明の第3実施例に係る窒素製造装置の概略系統図。
【図6】本発明の第4実施例に係る窒素製造装置の概略系統図。
【図7】本発明の第5実施例に係る窒素製造装置の概略系統図。
【図8】本発明の第6実施例に係る窒素製造装置の概略系統図。
【符号の説明】
1,31,35,85 圧縮機
2 予冷熱交換器
3 膨張タービン
4,29,30,46,49,71,73 発電機
5 第1深冷熱交換器
6 第2深冷熱交換器
7 分離・精製システム
8 液化窒素タンク
9 液化酸素タンク
10,70 モータ
11 窒素ポンプ
12 酸素ポンプ
14 蒸気系
15,16,17,32,36,65 燃焼器
18,19,47,50,72,74 排熱回収ボイラ
20 液炭酸プラント
21 空気液化・気化プラント
25,26,27,33,37 タービン
34 第1ガスタービン設備
38 第2ガスタービン設備
41,42 加熱熱交換器
45 吸気冷却装置
48 吸気熱交換装置
61,76 深冷プラント
62 予冷熱交換器
63 深冷熱交換器
64 液化天然ガスタンク
66 窒素タービン
68 炭酸タービン
69 酸素圧縮機
79,81,82 ポンプ
86 予冷器
87 高温熱交換器
89 仕上げ冷却器
90 タービン入口温度冷却器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing nitrogen gas in a cryogenic facility for obtaining liquid nitrogen and liquid oxygen.
[0002]
The present invention also relates to a turbine power generation facility capable of producing nitrogen gas and consuming the nitrogen gas in a cryogenic facility for obtaining liquid nitrogen and liquid oxygen.
[0003]
[Prior art]
From the viewpoint of environmental conservation, a turbine power generation facility that burns hydrogen or a hydrocarbon fuel with pure oxygen in a power generation facility (power generation plant) has been proposed. In such a turbine power generation facility, the exhaust gas of the turbine is introduced again into the compressor as a recirculating fluid. In other words, because of the closed cycle, CO 2 It can be an exhaust-free plant that does not emit other exhaust.
[0004]
In the case of turbine power generation equipment that uses pure oxygen, cryogenic equipment is always required as a separate plant. In a cryogenic facility, there is a technique for liquefying air using cold heat of liquefied natural gas or the like to reduce the power (unit consumption) when obtaining liquid nitrogen and liquid oxygen.
[0005]
[Problems to be solved by the invention]
When a dedicated cryogenic facility is installed in the power generation facility, liquid oxygen can be gasified and used as pure oxygen in the power generation facility, but there is no use destination for liquid nitrogen.
[0006]
In particular, in large-scale power plants, the amount of surplus liquid nitrogen becomes large. If this liquid nitrogen can be used in the power generation equipment, all of the liquid oxygen and liquid nitrogen can be consumed inside the power plant, so that the industrial gas market is not affected (excess supply).
[0007]
The present invention has been made in view of the above circumstances, and in a refrigeration facility for obtaining liquid nitrogen and liquid oxygen, nitrogen can be produced by using latent heat for vaporizing liquid nitrogen as a cold heat source. An object of the present invention is to provide a nitrogen production device.
[0008]
Further, the present invention has been made in view of the above circumstances, and in a cryogenic facility for obtaining liquid nitrogen and liquid oxygen, the latent heat for vaporizing liquid nitrogen is used as a cold heat source to produce nitrogen, and then the nitrogen is produced. It is an object of the present invention to provide a turbine power generation facility capable of consuming power with a working fluid.
[0009]
[Means for Solving the Problems]
The nitrogen production equipment of the present invention for achieving the above object,
An air compressor that compresses air,
Liquefaction cooling means for cooling and liquefying the compressed air;
Separation and purification means for separating and purifying the air liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pressure-feeding the liquid nitrogen separated by the separation / purification means to the liquefaction cooling means,
In the liquefaction cooling means, liquid nitrogen pumped by a nitrogen pump is heat-exchanged with compressed air to evaporate to obtain high-pressure nitrogen, and at the same time, the compressed air is cooled by its latent heat and cold heat.
It is characterized by the following.
[0010]
The nitrogen production equipment of the present invention for achieving the above object,
An air compressor that compresses air,
Liquefaction cooling means for cooling and liquefying the compressed air;
Separation and purification means for separating and purifying the air liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means, and an oxygen pump for pumping liquid oxygen separated by the separation / purification means to the liquefaction cooling means,
In the liquefaction cooling means, liquid nitrogen and liquid oxygen pumped by a nitrogen pump and an oxygen pump are heat-exchanged with compressed air and evaporated to obtain high-pressure nitrogen and high-pressure oxygen, and the compressed air is cooled by the cold heat of the latent heat. Be done
It is characterized by the following.
[0011]
The nitrogen production equipment of the present invention for achieving the above object,
An air compressor that compresses air,
A turbine that generates power by expanding compressed air,
Liquefaction cooling means for cooling and liquefying the exhaust fluid of the turbine,
Separation and purification means for separating and purifying the exhaust fluid liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pressure-feeding the liquid nitrogen separated by the separation / purification means to the liquefaction cooling means,
In the liquefaction cooling means, the liquid nitrogen pumped by the nitrogen pump exchanges heat with the exhaust fluid and evaporates to obtain high-pressure nitrogen, and at the same time, the exhaust fluid is cooled by its latent heat and cold heat.
It is characterized by the following.
[0012]
The nitrogen production equipment of the present invention for achieving the above object,
An air compressor that compresses air,
An expansion turbine that expands the compressed air to generate power,
Liquefaction cooling means for cooling and liquefying the exhaust fluid of the turbine,
Separation and purification means for separating and purifying the exhaust fluid liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means, and an oxygen pump for pumping liquid oxygen separated by the separation / purification means to the liquefaction cooling means,
In the liquefaction cooling means, liquid nitrogen and liquid oxygen pumped by a nitrogen pump and an oxygen pump are exchanged with the exhaust fluid for heat exchange and evaporate to obtain high-pressure nitrogen and high-pressure oxygen. Be done
It is characterized by the following.
[0013]
The high-pressure nitrogen obtained by the liquefaction cooling means is a high-pressure nitrogen gas.
[0014]
The high-pressure nitrogen and the high-pressure oxygen obtained by the liquefaction cooling means are a high-pressure nitrogen gas and a high-pressure oxygen gas.
[0015]
In addition, a liquefied natural gas storage unit and / or a liquid carbon dioxide storage unit is provided,
The liquefied cooling means is supplied with liquefied natural gas from the liquefied natural gas storage means and / or liquefied carbon dioxide from the liquefied carbon dioxide storage means as a cold heat source.
[0016]
Further, a cooling means for cooling the compressed air is provided.
[0017]
The cooling source of the cooling means is sensible heat of high-pressure nitrogen and high-pressure oxygen obtained by the liquefaction cooling means.
[0018]
Further, a gas turbine facility comprising a compressor, a combustor, and a turbine,
An exhaust heat recovery boiler that recovers heat from the exhaust gas of a gas turbine facility and generates steam;
An absorption refrigerator that uses steam generated by the exhaust heat recovery boiler as an operating heat source,
The cold source of the cooling means is cold water generated by an absorption refrigerator.
[0019]
An intake air cooling means for cooling the intake air of a compressor of the gas turbine equipment;
Intermediate cooling means for cooling a part of the compressed air from the compressor of the gas turbine equipment and supplying the cooled compressed air to the air compressor;
With
The cooling source of the intake cooling means and the intermediate cooling means is liquid nitrogen and liquid oxygen separated by the separation / purification means and / or high-pressure nitrogen and high-pressure oxygen obtained by the liquefaction cooling means.
[0020]
Further, as the cooling source of the intake air cooling means and the intermediate cooling means, cold water generated by an absorption refrigerator is further used.
[0021]
Further, the high pressure nitrogen gas obtained by the liquefaction cooling means is supplied to the combustor, and the combustion gas from the combustor is sent to the turbine.
[0022]
Further, high-pressure nitrogen (gas) and high-pressure oxygen (gas) obtained by the liquefaction cooling means are supplied to a combustor, and combustion gas from the combustor is sent to a turbine.
[0023]
To achieve the above object, the turbine power generation equipment of the present invention is:
A nitrogen production facility according to claim 1 or 3,
A turbine that is operated by sending combustion gas from the combustor,
The high-pressure nitrogen obtained in the high-pressure nitrogen production facility is supplied to a combustor and burned together with fuel.
[0024]
And further comprising a gas turbine facility comprising a compressor, a combustor and a turbine,
The high-pressure nitrogen obtained in the nitrogen production facility is supplied to the combustor of the turbine after being used as a cold heat source for the intake air of the compressor of the gas turbine facility.
[0025]
To achieve the above object, the turbine power generation equipment of the present invention is:
A nitrogen production facility according to claim 2 or claim 4,
A turbine that is operated by sending combustion gas from the combustor,
The high-pressure nitrogen and the high-pressure oxygen obtained in the nitrogen production facility are supplied to a combustor and burned together with the fuel.
[0026]
And further comprising a gas turbine facility comprising a compressor, a combustor and a turbine,
The high-pressure nitrogen obtained in the nitrogen production facility is supplied to the combustor of the turbine after being used as a cold heat source for the intake air of the compressor of the gas turbine facility.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
The nitrogen production equipment according to one embodiment of the present invention includes an air compressor that compresses air, a liquefaction cooling unit that cools and liquefies compressed air, and converts the air liquefied by the liquefaction cooling unit into liquid nitrogen and liquid oxygen. Separation / purification means for separating and purifying liquid nitrogen, a nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means, and a liquid oxygen separated for separation / purification means to the liquefaction cooling means. In the liquefaction cooling means, liquid nitrogen and liquid oxygen pumped by a nitrogen pump and an oxygen pump are heat-exchanged with compressed air to evaporate to obtain high-pressure nitrogen and high-pressure oxygen, and the latent heat is used. The compressed air is cooled by the cold heat. At the same time, it is a facility for producing high pressure nitrogen and oxygen.
[0028]
In the evaporation of liquid nitrogen and liquid oxygen, the air is liquefied at the same time, and the latent heat and sensible heat of the cryogenic liquid are reused as a cryogenic heat source.
[0029]
In the present invention, liquid nitrogen / oxygen is exchanged with compressed air for heat exchange to evaporate, thereby obtaining high-pressure gaseous nitrogen / oxygen. On the other hand, the air compressed by the air compressor is cooled by the sensible heat of high-pressure nitrogen (and high-pressure oxygen), the output is taken out by the turbine, the temperature is further lowered, and then the compressed air is cooled by the liquefaction cooling means to liquefy. This configuration is also an embodiment of the present invention.
[0030]
【Example】
A nitrogen production apparatus according to a first embodiment will be described. In this embodiment, after the compressed air is cooled by the sensible heat of the high-pressure gaseous nitrogen and oxygen, it is expanded by a turbine, the output is taken out, the temperature is further reduced, and then the compressed air is cooled and liquefied by liquefaction cooling means. . The cold heat of the air liquefaction is a facility that produces high-pressure nitrogen (gas) and high-pressure oxygen (gas) using the latent heat of vaporization of liquid nitrogen and liquid oxygen.
[0031]
FIG. 1 shows a schematic system of an air liquefaction / vaporization plant as a nitrogen production apparatus according to a first embodiment of the present invention.
[0032]
As shown in the figure, an air liquefaction / vaporization plant 21 is provided with a compressor 1 driven by an electric motor 10, and compressed air compressed by the compressor 1 is cooled by a precooling heat exchanger 2 as a cooling means. The expansion is performed by the expansion turbine 3. A generator 4 is connected to the expansion turbine 3 to take out a power generation output. The air expanded by the expansion turbine 3 is cooled by the first cryogenic heat exchanger 5, and is further cooled and liquefied by the second cryogenic heat exchanger 6 as liquefaction cooling means.
[0033]
The fluid cooled and liquefied by the second cryogenic heat exchanger 6 is cooled by the separation / purification system 7 as a separation / purification means. 1 (Nitrogen) and cryogenic liquid gl 2 (Oxygen). The cryogenic gas ga excessively discharged from the separation / refining system 7 is used as a cold heat source of the first cryogenic heat exchanger 5 and the pre-cooling heat exchanger 2 and is combined with the intake air (atmosphere) of the compressor 1. Since the inlet air of the compressor 1 is a mixed intake with the cryogenic gas ga, the flow rate of the compressed air 1 is increased, and the low-temperature intake also lowers the exhaust of the compressor 1 to cool the downstream liquefaction plant system. Becomes easier.
[0034]
The cryogenic liquid gl separated by the separation / purification system 7 1 (Nitrogen) is stored in the liquefied nitrogen tank 8 and separated cryogenic liquid gl 2 (Oxygen) is stored in the liquefied oxygen tank 9. Chilled liquid gl stored in liquefied nitrogen tank 8 1 (Nitrogen) is sent to the second cryogenic heat exchanger 6 by the nitrogen pump 11 and stored in the liquefied oxygen tank 9. 2 (Oxygen) is sent to the second cryogenic heat exchanger 6 by the oxygen pump 12.
[0035]
The cryogenic liquid gl sent to the second cryogenic heat exchanger 6 1 (Nitrogen) and cryogenic liquid gl 2 (Oxygen) is vaporized and chilled gas gg 1 (Nitrogen) and chilled gas gg 2 (Oxygen). In the second cryogenic heat exchanger 6, the cryogenic liquid gl 1 (Nitrogen) and cryogenic liquid gl 2 The low-temperature air that has passed through the expansion turbine 3 and the first cryogenic heat exchanger 5 is liquefied by the latent heat when (oxygen) evaporates. That is, in the second cryogenic heat exchanger 6, liquefaction and vaporization are performed simultaneously. Cryogenic gas gg from the second cryogenic heat exchanger 6 1 (Nitrogen) and chilled gas gg 2 (Oxygen) is sent to the precooling heat exchanger 2, and the sensible heat is used as a cold source of the precooling heat exchanger 2.
[0036]
If liquefied natural gas LNG can be vaporized in the second cryogenic heat exchanger 6, the latent heat of liquefied natural gas can also be used as a cold heat source.
[0037]
The above-described air liquefaction / vaporization plant 21 turns liquid nitrogen and liquid oxygen into gas for power generation use. That is, liquefaction and evaporation are performed simultaneously. Liquid cryogenic liquid gl 1 (Nitrogen) and cryogenic liquid gl 2 Since (oxygen) is pressurized by the nitrogen pump 11 and the oxygen pump 12, the high-pressure cryogenic gas gg 1 (Nitrogen) and chilled gas gg 2 (Oxygen) can be obtained, so that refrigerated gas gg can be obtained without using a compressor in a normal gas turbine configuration. 1 (Nitrogen) and chilled gas gg 2 (Oxygen) used as high pressure gas for turbine combustor, 2 (Oxygen) can be used as pure oxygen as reaction oxygen for a fuel cell provided in a gas turbine facility.
[0038]
In the air liquefaction / vaporization plant 21 described above, the cryogenic liquid gl 1 (Nitrogen) and cryogenic liquid gl 2 Since the latent heat at the time of evaporation of (oxygen) is used as a cold heat source for air liquefaction, it is possible to reduce the power required to separately generate cold heat such as a turbo refrigerator. In addition, the latent heat generated by the vaporization of the liquefied natural gas lng can be similarly used. That is, the cryogenic liquid gl 1 (Nitrogen) and cryogenic liquid gl 2 The purpose of utilizing the cold heat of (oxygen) is to reduce the vaporization power (unit consumption) and increase the economic efficiency.
[0039]
An embodiment of a turbine power generation facility including the above-described air liquefaction / vaporization plant 21 will be described with reference to FIG. FIG. 2 shows a schematic system of the turbine power generation equipment according to the first embodiment of the present invention.
[0040]
The turbine power generation system shown in FIG. 2 is configured such that the nitrogen and oxygen from the air liquefaction and vaporization plant 21 shown in FIG. 26, 27, a first gas turbine facility 34 comprising a compressor 31, a combustor 32 and a turbine 33, and an intake cooling gas turbine power plant of a second gas turbine facility 38 comprising a compressor 35, a combustor 36 and a turbine 37. It is composed of
[0041]
The turbines 25 and 26 are directly connected to a shaft, and a generator 29 is provided coaxially with the turbines 25 and 26. The turbine 27 is provided with a generator 30 coaxially. The high-pressure oxygen gg produced in the air liquefaction / vaporization plant 21 is supplied to the combustors 15 and 16 of the turbines 25 and 26. 2 Is supplied together with the fuel f. High pressure oxygen gg 2 Is controlled to a predetermined temperature by the steam s in the heating heat exchanger 41.
[0042]
In the first gas turbine facility 34, the cryogenic gas gg in which the intake air of the compressor 31 is directly injected into the intake air cooling device 45. 1 (Low temperature nitrogen gas). Compressed air from the compressor 31 is burned by the fuel f and the combustor 32, the combustion gas from the combustor 32 operates the turbine 33, and the generator 46 extracts power generation output. The exhaust gas of the turbine 33 is recovered by an exhaust heat recovery boiler 47, and the steam generated by the exhaust heat recovery boiler 47 is sent to a steam turbine (not shown) and also to the cryogenic heat exchanger 41 as heating steam.
[0043]
In the second gas turbine facility 38, the intake air of the compressor 35 is supplied to the refrigerated gas gg by the intake heat exchange device 48. 1 And indirectly cooled. The compressed air from the compressor 35 is burned by the fuel f and the combustor 36, the combustion gas from the combustor 36 operates the turbine 37, and the power generation output is taken out by the power generator 49. The exhaust gas of the turbine 37 is recovered by an exhaust heat recovery boiler 50, and the steam generated by the exhaust heat recovery boiler 50 is sent to a steam turbine (not shown) and to the cryogenic heat exchanger 41 as heating steam.
[0044]
Chilled gas gg after heat exchange 1 (Nitrogen) exchanges heat with the heating steam s in the heating heat exchanger 42 and is supplied to the combustor 25 of the turbine 25. Steam generated by the exhaust heat recovery boiler 47 is also used for the heating heat exchanger 42.
[0045]
In the combustor 15 of the turbine 25, the cryogenic gas gg produced in the air liquefaction / vaporization plant 21 is provided. 2 (Oxygen) and cryogenic gas gg 1 (Nitrogen) is sent together with the fuel f after the temperature rise, and the combustion gas from the combustor 15 operates the turbine 25. The exhaust of the turbine 25 is supplied to the combustor 16 of the turbine 26. In the combustor 16, the gg which was produced in the air liquefaction and vaporization plant 21 and was heated 2 (Oxygen) and the fuel f are supplied, and the turbine 26 is operated by the combustion gas from the combustor 16. The output of the turbine 25 and the turbine 26 is taken out by the generator 29 as a power generation output.
[0046]
The exhaust gas of the turbine 26 is recovered in the exhaust heat recovery boiler 18, and the steam generated in the exhaust heat recovery boiler 18 is sent to a steam turbine (not shown) and to a heating heat exchanger 41 and a heating heat exchanger 42.
[0047]
On the other hand, a generator 29 is coaxially coupled to the turbine 27, and the combustor 17 of the turbine 27 has a temperature of gg which is manufactured and heated in the air liquefaction / vaporization plant 21. 2 (High pressure oxygen gas: high pressure O 2 ) Is supplied together with the fuel f. The high pressure CO from the liquid carbon dioxide plant 20 is supplied to the combustor 17. 2 Is sent. The turbine 27 is operated by the combustion gas from the combustor 17, and the output of the turbine 27 is taken out by the generator 30 as a power generation output.
[0048]
The exhaust gas of the turbine 27 is recovered by the exhaust heat recovery boiler 19, and the steam generated by the exhaust heat recovery boiler 19 is sent to a steam turbine (not shown) and to the heat exchangers (41, 42, 43). The exhaust gas recovered by the heat recovery boiler 19 generates CO 2 (H 2 O 2) is recovered and does not discharge again to the environment as liquid carbon dioxide.
[0049]
Usually, in a gas turbine, about 20% to 6% of oxygen O 2 Is consumed, the remaining oxygen O 2 Has the spare capacity to operate two more gas turbines. That is, the oxygen O produced in the air liquefaction / vaporization plant 21 2 (Oxygen O separated from air 2 ) Can be used three times. For example, 1/3 oxygen O 2 Equivalent combustion, 1/3 oxygen O in closed cycle power plant 2 Equivalent combustion, 1/3 oxygen O in closed cycle power plant equipped with fuel cell 2 It can be used for equivalent combustion.
[0050]
In the embodiment shown in FIG. 2, oxygen O is supplied to turbines 25 and 26 in high-pressure nitrogen-operated power generation. 2 Using 2/3 (2 times 1/3) and high pressure CO 2 Oxygen O 2 Is shown as an example where 1/3 is used. Fuel f and O 2 When an expansion turbine is provided in the system and the turbine exhaust gas is supplied to the combustors 15, 16, 17, the overall efficiency can be further improved. Further, by using steam generated in the exhaust heat recovery boiler as a heating source of the heating heat exchangers 41 and 42, it is possible to heat the nitrogen-based and oxygen-based fluids and save fuel f.
[0051]
A nitrogen production apparatus according to a second embodiment will be described with reference to FIG.
[0052]
In this embodiment, the compressed air is cooled by the sensible heat of high-pressure nitrogen and high-pressure oxygen, oxygen, carbon dioxide and vaporized LNG gas, expanded by an expansion turbine, and the output is taken out. And liquefy. It is a facility for producing high pressure liquid nitrogen and high pressure liquid oxygen. In other words, the system performs evaporation of the liquefied fluid and liquefaction of the air at the same time, and reuses the latent heat of evaporation and the sensible heat of the liquefied fluid.
[0053]
FIG. 3 shows a schematic system of a cryogenic plant as a nitrogen production apparatus according to a second embodiment of the present invention. Note that the same members as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
[0054]
As shown in the figure, a cryogenic plant 61 is provided with a compressor 1 driven by an electric motor 10 to compress air, and the air compressed by the compressor 1 is cooled by a pre-cooling heat exchanger 62 as a cooling means. The output is taken out by the expansion turbine 3. A generator 4 is connected to the expansion turbine 3 to take out a power generation output. Although the exhaust gas of the expansion turbine 3 has a low temperature, it is further cooled by the cryogenic heat exchanger 63 and liquefied.
[0055]
The liquid air cooled and liquefied by the cryogenic heat exchanger 63 is subjected to the cryogenic liquid gl by the separation / purification system 7 as a separation / purification means. 1 (Nitrogen) and cryogenic liquid gl 2 (Oxygen). The cryogenic liquid gl separated by the separation / purification system 7 1 (Nitrogen) is stored in a liquid nitrogen tank 8 and separated by the separation / purification system 7 and cryogenic liquid gl 2 (Oxygen) is stored in the liquid oxygen tank 9. Chilled liquid gl stored in liquid nitrogen tank 8 1 (Nitrogen) is sent to the cryogenic heat exchanger 63 by the nitrogen pump 11 and stored in the liquid oxygen tank 9. 2 (Oxygen) is sent to the cryogenic heat exchanger 63 by the oxygen pump 12.
[0056]
The liquefied natural gas lng stored in the liquefied natural gas tank 64 is pumped to the cryogenic heat exchanger 63 by the pump 81, and further, the liquid CO stored in the liquefied carbonic acid tank (not shown). 2 Is pumped by the pump 82. The cryogenic liquid gl sent to the cryogenic heat exchanger 63 1 (Nitrogen) and cryogenic liquid gl 2 (Oxygen) and lng of liquefied natural gas and liquid CO 2 The cold heat when lc is vaporized is used for air liquefaction (la1 → la2). Nitrogen ln2 and oxygen lo2 and natural gas lng2 and CO of the outlet fluid of the cryogenic heat exchanger 63 2 The lc2 is sent to the pre-cooling heat exchanger 62, and the sensible heat is used as a cold heat source of the pre-cooling heat exchanger 2.
[0057]
Although the cryogenic heat exchanger 63 and the pre-cooling heat exchanger 2 have been described as using the multi-stage cold heat as the cryogenic heat plant 61, a single-stage cryogenic heat using the pre-cooling heat exchanger 2 may be omitted.
[0058]
In the cryogenic plant 61 described above, the cryogenic liquid gl 1 (Nitrogen) and cryogenic liquid gl 2 (Oxygen) and lng of liquefied natural gas and liquid CO 2 The vaporization to lc and the liquefaction of air are performed simultaneously. As the cold heat for this purpose, the latent heat of vaporization of the cryogenic liquid and the sensible heat are re-used. In this case, the difference in the amount of cold energy (Q L −Q N −Q O −Q LNG −Q C ) For the minimum (P T -L M ) Is supplied. And cryogenic liquid gl using nighttime electric power 1 (Nitrogen) and cryogenic liquid gl 2 (Oxygen) and lng of liquefied natural gas and liquid CO 2 In case of storage, time difference operation can be performed.
[0059]
An embodiment of a turbine power generation facility including the above-described cryogenic plant 61 will be described with reference to FIG. FIG. 4 shows a schematic system of a turbine power plant according to a second embodiment of the present invention.
[0060]
The turbine power plant shown in FIG. 4 receives the cryogenic plant 61 shown in FIG. 3, the nitrogen turbine 66 that is operated by sending the combustion gas from the combustor 65, and the combustion gas that is sent from the combustor 67. It includes a carbon dioxide turbine 68 that operates and an oxygen compressor 69 that is driven by a generator 70 that compresses oxygen and supplies it to the combustors 65 and 67.
[0061]
The combustor 65 is supplied with cryogenic nitrogen ln3, liquid oxygen lo3, and liquefied natural gas lng3 produced in the cryogenic plant 61. Further, oxygen compressed by the oxygen compressor 69 is supplied as needed. The nitrogen turbine 66 is operated by the combustion gas from the combustor 65, and the output of the nitrogen turbine 66 is extracted from the generator 71. The exhaust gas of the nitrogen turbine 66 is recovered by an exhaust heat recovery boiler 72, and the steam generated by the exhaust heat recovery boiler 72 is sent to a steam turbine (not shown).
[0062]
The combustor 67 has liquid oxygen lo3 and liquefied natural gas lng3 and liquid CO2 produced in the cryogenic plant 61. 2 lc3 is supplied. Further, oxygen compressed by the oxygen compressor 69 is supplied. The carbon dioxide turbine 68 operates by the combustion gas from the combustor 67, and the output of the carbon dioxide turbine 68 is taken out by the generator 73. The exhaust gas from the carbon dioxide turbine 68 is recovered by an exhaust heat recovery boiler 74, and the steam generated by the exhaust heat recovery boiler 74 is sent to a steam turbine (not shown). The exhaust gas of the carbon dioxide turbine 68 recovered by the exhaust heat recovery boiler 74 is CO (not shown). 2 CO in the recovery system 2 Collect.
[0063]
In the above-mentioned turbine power generation equipment, cryogenic nitrogen In2 and liquid oxygen lo2 and liquefied natural gas Ing2 and liquid CO 2 Precooling of the compressed air is performed in the precooling heat exchanger 2 using the sensible heat of lc2. In the power generation facility, the nitrogen turbine 66 and the carbon dioxide turbine 68 are operated, the exhaust gas of the nitrogen turbine 66 is discharged to the environment, and the exhaust gas of the carbon dioxide turbine 68 is recovered. The inlet pressure of the nitrogen turbine 66 is secured by increasing the pressure of the nitrogen pump 11 in the liquid phase, and the inlet pressure of the carbon dioxide turbine 68 is secured by increasing the pressure of the pump 82 in the liquid phase.
[0064]
Further, the exhaust gas of the carbonic acid turbine 68 is CO 2 Is recovered and used as a raw material for methanol and dimethyl ether. H required 2 Is obtained by electrolysis, 2 Is converted and stored as liquid oxygen as needed, and is supplied to an oxygen supply line of a power generation facility via an oxygen compressor 69 shown in the drawing.
[0065]
The nitrogen production apparatus according to the third to sixth embodiments will be described with reference to FIGS.
[0066]
The nitrogen production apparatus according to the third to sixth embodiments is the same as the first embodiment, except that the first cryogenic heat exchanger 5, the second cryogenic heat exchanger 6, the separation / refining system 7, the liquid nitrogen tank 8, and the liquid oxygen The portion of the tank 9 is shown as being included in the cryogenic plant 76, and the pre-cooling heat exchanger 2 is replaced with a post-stage cooler 57. The fluid obtained in the cryogenic plant 76 is shown as cryogenic gas gg in the figure. When the second embodiment is applied, the fluid obtained in the cryogenic plant 76 is a cryogenic liquid 11.
[0067]
FIG. 5 shows a schematic system of a nitrogen production apparatus according to a third embodiment of the present invention. The same members as those shown in FIG. 1 are denoted by the same reference numerals.
[0068]
As shown in the figure, a gas turbine facility 54 including a compressor 51, a combustor 52, and a turbine 53 is provided, and the exhaust gas of the turbine 53 of the gas turbine facility 54 is recovered by an exhaust heat recovery boiler 55. The steam s generated in the exhaust heat recovery boiler 55 is sent to the steam system 14 and is used as a working heat source of the absorption refrigerator 56.
[0069]
On the other hand, the compressed air compressed by the compressor 1 is cooled by the post-stage cooler 57, and the compressed air cooled by the post-stage cooler 57 is expanded by the expansion turbine 3 and then sent to the cryogenic plant 76. The cold water 11 generated by the absorption refrigerator 56 is sent to the post-stage cooler 57 and is used as a cold heat source of the post-stage cooler 57. The steam that has operated the absorption refrigerator 56 becomes condensed water w and is supplied to the exhaust heat recovery boiler 55 again.
[0070]
In the above-described nitrogen production apparatus, since the cogeneration facility is provided in the cryogenic plant 76, the power of the compressor 1 can be reduced, and the energy saving of the cryogenic plant 76 is improved by supplying the cold water 11 for pre-cooling. be able to. What is obtained in the cryogenic plant 76 may be either gg of chilled gas or liquefied product 11.
[0071]
FIG. 6 shows a schematic system of a nitrogen production apparatus according to a fourth embodiment of the present invention. The same members as those shown in FIGS. 1 and 5 are denoted by the same reference numerals.
[0072]
As shown in the figure, a gas turbine facility 54 including a compressor 51, a combustor 52, and a turbine 53 is provided, and the exhaust gas of the turbine 53 of the gas turbine facility 54 is recovered by an exhaust heat recovery boiler 55. The steam s generated in the exhaust heat recovery boiler 55 is sent to the steam system 14 and is used as a working heat source of the absorption refrigerator 56.
[0073]
An intake air cooler 58 for cooling the intake air of the compressor 51 is provided, and the intake air of the compressor 51 is cooled by the chilled gas gg or the chilled liquid 11. A part of the compressed air compressed by the compressor 51 is branched and cooled by the intercooler 59. A part of the refrigerated gas gg or the refrigerated liquid 11 is used for air cooling in the cooling intermediate cooler 59, and low-temperature air is sent to the compressor 1.
[0074]
On the other hand, the air compressed by the compressor 1 is cooled by the post-stage cooler 57, expanded by the expansion turbine 3 to a lower temperature, and sent to the cryogenic plant 76. The cold water 11 generated by the absorption refrigerator 56 is sent to the post-stage cooler 57 and is used as a cold heat source of the post-stage cooler 57. The steam that has operated the absorption refrigerator 56 becomes condensed water w and is supplied to the exhaust heat recovery boiler 55.
[0075]
In the above-described nitrogen production apparatus, a part of the compressed air compressed by the compressor 51 of the gas turbine facility 54 is pressurized by the compressor 1 and deeply cooled by adiabatic expansion cooling of the expansion turbine 3. The output of the compressor 51 of the gas turbine equipment 54 is increased by increasing the compressor intake weight flow rate by using the cryogenic gas gg or the cryogenic liquid 11 as a cooling medium when cooling the intake air of the compressor 51 in the intake air cooler 58. The intake air amount increased by the intake air cooling of the compressor 51 is directly used as the intake air of the compressor 1, and the compression ratio of the compressor 1 is reduced by the amount of the preload.
[0076]
Therefore, while the output of the turbine 53 is kept at the design value, the power of the compressor 51 is made higher than the design value by the amount of the post-stage cooler 57, but the efficiency of the motor 10 and the generator 5 is reduced by the preload. Since they are taken out without any delay, it is possible to prevent the system efficiency from being reduced due to the influence of these two losses, and as a result, it is possible to improve the system efficiency.
[0077]
FIG. 7 shows a schematic system of a nitrogen production apparatus according to a fifth embodiment of the present invention. Note that the same members as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and redundant description is omitted.
[0078]
The nitrogen production apparatus shown in FIG. 7 is different from the nitrogen production apparatus shown in FIG. 6 in that a compressor 85 driven by a shaft of a gas turbine 54 is provided, and an intake air cooler 58 that cools intake air of the compressor 85 is provided. ing. Further, a pre-cooler 86 is provided upstream of the intake air cooler 58 of the compressor 51 and the compressor 85, respectively. A high-temperature heat exchanger 87 and a precooler 88 are provided upstream of the intercooler 59. On the downstream side of the post-stage cooler 57, a finishing cooler 89 is provided. As a cold source of the precooler 86 and the precooler 88, cold water from the intake refrigerator 56 is used, and as a cold source of the finish cooler 89, a part of the cryogenic gas gg or the cryogenic liquid 11 of the cryogenic plant 76 is used. . The cryogenic gas gg is cryogenic air, cryogenic nitrogen, and cryogenic liquid 11 is liquid air, liquid nitrogen, and liquid oxygen.
[0079]
When the compressor 1 is mechanically connected to the system of the gas turbine equipment 54, any method such as direct connection to a shaft or connection via a gear device is available.
[0080]
In the nitrogen production apparatus described above, the compressor 85 (first stage compressor) is driven by an axis, and the axial driving force is secured by increasing the output of the gas turbine equipment 54 by cooling the intake air. A pre-cooler 86 and a pre-cooler 88 using cold water are used for the intake cooler 58 and the intercooler 59 to save cryogenic fluid. The intermediate cooler 59 is provided with a high-temperature heat exchanger 87 at the uppermost stream, and the cooling fluid depends on the outlet fluid of the downstream heat exchanger AC-IC or another heat exchanger PC or other (gg, 11) other temperature conditions. , (1) fuel, (2) water supply, and (3) steam. That is, the high-temperature heat exchanger 87 performs (1) fuel preheating in the case of fuel, generates steam in (2), and performs steam superheating in (3).
[0081]
A finish cooler 89 is provided downstream of the latter cooler 57 to reduce the temperature at the inlet of the expansion turbine 3. In addition to flowing a part of the cryogenic gas gg or the cryogenic liquid 11 of the cryogenic plant 76 for each single cooler, each heat exchanger is freely selected and passed. For example, from the finish cooler 89 to the intermediate cooler 59 and the intake cooler 58, the temperature is raised each time through a part of the refrigerated gas gg or a part of the refrigerated liquid 11, and the temperature is increased at the outlet of the intake cooler 58. It is also possible to take out as a fluid. As another example, it is also possible to take out the refrigerated gas gg or a part of the refrigerated liquid 11 from the finishing cooler 89 to the intercooler 59, the intake cooler 58, and the high-temperature heat exchanger 87 at a higher temperature to remove the refrigerated gas at a higher temperature. It is possible.
[0082]
The arrangement of the heat exchange in the air line can be applied to the nitrogen producing apparatus shown in FIG.
[0083]
FIG. 8 shows a schematic system of a nitrogen production apparatus according to a sixth embodiment of the present invention. Note that the same members as those shown in FIGS. 1 and 7 are denoted by the same reference numerals, and redundant description is omitted. In the nitrogen production apparatus according to the sixth embodiment, cryogenic gas gg and cryogenic liquid 11 are produced in the cryogenic plant 76.
[0084]
The nitrogen production apparatus shown in FIG. 8 is provided with a turbine inlet temperature cooler 90 on the downstream side of the finish cooler 89 in addition to the nitrogen production apparatus shown in FIG. A part of the cryogenic gas gg is sent to the turbine inlet temperature cooler 90 as a cold heat source, and then mixed with the intake air of the compressor 51 and the compressor 85. A part (required amount) of the cryogenic liquid 11 is pressurized by the pump 79 and sent to the finishing cooler 89.
[0085]
The above-mentioned nitrogen production device sucks a part (required amount) of the cryogenic gas gg from the cryogenic plant 76 into the compressor 51 of the gas turbine equipment 54, and improves the gas turbine output by the intake air cooling effect. In addition, a part of the cryogenic gas gg from the cryogenic plant 76 is sucked into the compressor 85 of the cryogenic facility system to increase the amount of intake air and lower the discharge temperature, thereby improving the liquefaction efficiency. In some cases, only part of the cryogenic gas gg from the cryogenic plant 76 is mixed into the compressor 51 and the compressor 85, and each heat exchanger can be freely configured according to the cooling plan. A part of the cryogenic gas gg from the cryogenic plant 76 may be sent to the turbine inlet temperature cooler 90 again to lower the inlet temperature of the expansion turbine 3 and then sucked into the compressor 51 and the compressor 85. When a part of the refrigerated gas gg from the refrigerated plant 76 is not passed through the turbine inlet temperature cooler 90, a part of the low-temperature refrigerated gas gg can be directly supplied to the inlets of the compressor 51 and the compressor 85. it can.
[0086]
【The invention's effect】
The nitrogen production equipment of the present invention comprises an air compressor for compressing air, a liquefied cooling means for cooling (expanded cooling) the compressed air to liquefy, and separating the air liquefied by the liquefied cooling means into liquid nitrogen and liquid oxygen. And a nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means.The liquefaction cooling means converts the liquid nitrogen pumped by the nitrogen pump into compressed air. Heat exchange between and evaporate to obtain high pressure nitrogen. In other words, the compressed air is cooled by the cold heat due to the latent heat of vaporization of liquid nitrogen, so in the refrigeration equipment for obtaining liquid nitrogen and liquid oxygen, the latent heat for vaporizing liquid nitrogen is used as a cold heat source to reduce nitrogen with less power. Is a nitrogen production apparatus capable of producing the same.
[0087]
The nitrogen production equipment of the present invention includes an air compressor that compresses air, a liquefied cooling unit that cools and liquefies compressed air, and separates and purifies air liquefied by the liquefied cooling unit into liquid nitrogen and liquid oxygen. Separation / purification means, a nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means, and an oxygen pump for pumping liquid oxygen separated by the separation / purification means to the liquefaction cooling means, In the liquefaction cooling means, liquid nitrogen and liquid oxygen pumped by a nitrogen pump and an oxygen pump are heat-exchanged with compressed air and evaporated to obtain high-pressure nitrogen and high-pressure oxygen, and the compressed air is cooled by the cold heat of the latent heat. Therefore, in a cryogenic facility for obtaining liquid nitrogen and liquid oxygen, a nitrogen production apparatus capable of producing nitrogen and oxygen by using latent heat for vaporizing liquid nitrogen and liquid oxygen as a cold heat source. To become.
[0088]
The nitrogen production facility of the present invention is an air compressor that compresses air, a turbine that expands compressed air to generate power, a liquefaction cooling unit that cools and liquefies the exhaust fluid of the turbine, and is liquefied by the liquefaction cooling unit. Separation / purification means for separating and purifying the exhaust fluid separated into liquid nitrogen and liquid oxygen, and a nitrogen pump for pressure-feeding the liquid nitrogen separated by the separation / purification means to the liquefaction cooling means. The liquid nitrogen pumped by the pump exchanges heat with the exhaust fluid and evaporates to obtain high-pressure nitrogen, and the exhaust fluid is cooled by the cold heat of the latent heat, so the deep cooling to obtain liquid nitrogen and liquid oxygen In the equipment, a nitrogen producing apparatus capable of producing nitrogen by using latent heat for vaporizing liquid nitrogen as a cold heat source is provided.
[0089]
The nitrogen production facility of the present invention is an air compressor that compresses air, a turbine that expands compressed air to generate power, a liquefaction cooling unit that cools and liquefies the exhaust fluid of the turbine, and is liquefied by the liquefaction cooling unit. Separation and purification means for separating and purifying the exhausted fluid into liquid nitrogen and liquid oxygen, a nitrogen pump for pumping the liquid nitrogen separated by the separation and purification means to the liquefaction cooling means, and separation by the separation and purification means. An oxygen pump for pumping liquid oxygen to the liquefied cooling means, wherein the liquefied cooling means evaporates the liquid nitrogen and liquid oxygen pumped by the nitrogen pump and the oxygen pump by exchanging heat with the exhaust fluid and evaporating the liquid nitrogen and liquid oxygen. And the exhaust fluid is cooled by the cold heat of the latent heat obtained from the high pressure oxygen, so that in the refrigeration equipment for obtaining liquid nitrogen and liquid oxygen, the latent heat for vaporizing liquid nitrogen and liquid oxygen is used as a cold heat source. The nitrogen producing apparatus capable of producing nitrogen at Rukoto.
[0090]
A turbine power generation facility according to the present invention includes the nitrogen production facility according to claim 1 or 3, and a turbine that operates by sending high-temperature combustion gas from a combustor, and includes a high-pressure nitrogen produced by the high-pressure nitrogen production facility. Since nitrogen is supplied to the combustor together with high-pressure oxygen and burned together with the fuel, the latent heat for vaporizing liquid nitrogen and liquid oxygen is used as a cold heat source in a cryogenic facility for obtaining liquid nitrogen and liquid oxygen. And a turbine power generation facility capable of consuming nitrogen.
[0091]
A turbine power generation facility according to the present invention includes the nitrogen production facility according to claim 2 or 4, and a turbine that operates by sending high-temperature combustion gas from a combustor, and obtains high-pressure nitrogen obtained by the nitrogen production facility. And high-pressure oxygen are supplied to the combustor and burned together with the fuel, so in the cryogenic facility for obtaining liquid nitrogen and liquid oxygen, the latent heat for vaporizing liquid nitrogen and liquid oxygen is used as a cold heat source to convert nitrogen. A turbine power generation facility that can be manufactured and consume nitrogen.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of an air liquefaction / vaporization plant as a nitrogen production device according to a first embodiment of the present invention.
FIG. 2 is a schematic system diagram of the turbine power generation equipment according to the first embodiment of the present invention.
FIG. 3 is a schematic system diagram of a cryogenic plant as a nitrogen production apparatus according to a second embodiment of the present invention.
FIG. 4 is a schematic system diagram of a turbine power generation facility according to a second embodiment of the present invention.
FIG. 5 is a schematic system diagram of a nitrogen production apparatus according to a third embodiment of the present invention.
FIG. 6 is a schematic system diagram of a nitrogen production apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a schematic system diagram of a nitrogen production apparatus according to a fifth embodiment of the present invention.
FIG. 8 is a schematic system diagram of a nitrogen production apparatus according to a sixth embodiment of the present invention.
[Explanation of symbols]
1,31,35,85 Compressor
2 Pre-cooling heat exchanger
3 Expansion turbine
4,29,30,46,49,71,73 Generator
5 First cryogenic heat exchanger
6 Second cryogenic heat exchanger
7 Separation and purification system
8 liquefied nitrogen tank
9 Liquefied oxygen tank
10,70 motor
11 Nitrogen pump
12 Oxygen pump
14 Steam system
15, 16, 17, 32, 36, 65 Combustor
18, 19, 47, 50, 72, 74 Waste heat recovery boiler
20 liquid carbon dioxide plant
21 Air liquefaction and vaporization plant
25, 26, 27, 33, 37 turbine
34 First gas turbine equipment
38 Second gas turbine equipment
41, 42 heating heat exchanger
45 Inlet cooling device
48 Inlet heat exchanger
61,76 Cryogenic plant
62 Pre-cooling heat exchanger
63 Cryogenic heat exchanger
64 Liquefied natural gas tank
66 Nitrogen turbine
68 Carbonated turbine
69 oxygen compressor
79, 81, 82 pump
86 Precooler
87 high temperature heat exchanger
89 Finish cooler
90 Turbine inlet temperature cooler

Claims (18)

空気を圧縮する空気圧縮機と、
圧縮空気を冷却して液化する液化冷却手段と、
液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと
を備え、
液化冷却手段では、窒素ポンプで圧送された液体窒素を圧縮空気との間で熱交換して蒸発させて高圧窒素を得ると同時にその潜熱及び冷熱で圧縮空気が冷却される
ことを特徴とする窒素製造設備。
An air compressor that compresses air,
Liquefaction cooling means for cooling and liquefying the compressed air;
Separation and purification means for separating and purifying the air liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pressure-feeding the liquid nitrogen separated by the separation / purification means to the liquefaction cooling means,
The liquefaction cooling means is characterized in that liquid nitrogen pumped by a nitrogen pump is exchanged with compressed air for heat exchange and evaporated to obtain high-pressure nitrogen, and at the same time, the compressed air is cooled by its latent heat and cold heat. production equipment.
空気を圧縮する空気圧縮機と、
圧縮空気を冷却して液化する液化冷却手段と、
液化冷却手段で液化された空気を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、
分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、
液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を圧縮空気との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で圧縮空気が冷却される
ことを特徴とする窒素製造設備。
An air compressor that compresses air,
Liquefaction cooling means for cooling and liquefying the compressed air;
Separation and purification means for separating and purifying the air liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means,
An oxygen pump for pumping liquid oxygen separated by the separation / purification means to the liquefaction cooling means,
In the liquefaction cooling means, liquid nitrogen and liquid oxygen pumped by a nitrogen pump and an oxygen pump are heat-exchanged with compressed air and evaporated to obtain high-pressure nitrogen and high-pressure oxygen, and the compressed air is cooled by the cold heat of the latent heat. Nitrogen production equipment characterized by being performed.
空気を圧縮する空気圧縮機と、
圧縮空気を膨張して発電を行うタービンと、
タービンの排気流体を冷却して液化する液化冷却手段と、
液化冷却手段で液化された排気流体を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、を備え、
液化冷却手段では、窒素ポンプで圧送された液体窒素を排気流体との間で熱交換して蒸発させて高圧窒素を得ると同時にその潜熱及び冷熱で排気流体が冷却される
ことを特徴とする窒素製造設備。
An air compressor that compresses air,
A turbine that generates power by expanding compressed air,
Liquefaction cooling means for cooling and liquefying the exhaust fluid of the turbine,
Separation and purification means for separating and purifying the exhaust fluid liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pressure-feeding the liquid nitrogen separated by the separation / purification means to the liquefaction cooling means,
The liquefaction cooling means is characterized in that liquid nitrogen pumped by a nitrogen pump is heat-exchanged with an exhaust fluid and evaporated to obtain high-pressure nitrogen, and at the same time, the exhaust fluid is cooled by its latent heat and cold heat. production equipment.
空気を圧縮する空気圧縮機と、
圧縮空気を膨張して発電を行うタービンと、
タービンの排気流体を冷却して液化する液化冷却手段と、
液化冷却手段で液化された排気流体を液体窒素と液体酸素に分離して精製する分離・精製手段と、
分離・精製手段で分離された液体窒素を液化冷却手段に圧送する窒素ポンプと、分離・精製手段で分離された液体酸素を液化冷却手段に圧送する酸素ポンプとを備え、
液化冷却手段では、窒素ポンプ及び酸素ポンプで圧送された液体窒素及び液体酸素を排気流体との間で熱交換して蒸発させて高圧窒素及び高圧酸素を得てその潜熱による冷熱で排気流体が冷却される
ことを特徴とする窒素製造設備。
An air compressor that compresses air,
A turbine that generates power by expanding compressed air,
Liquefaction cooling means for cooling and liquefying the exhaust fluid of the turbine,
Separation and purification means for separating and purifying the exhaust fluid liquefied by the liquefaction cooling means into liquid nitrogen and liquid oxygen,
A nitrogen pump for pumping liquid nitrogen separated by the separation / purification means to the liquefaction cooling means, and an oxygen pump for pumping liquid oxygen separated by the separation / purification means to the liquefaction cooling means,
In the liquefaction cooling means, liquid nitrogen and liquid oxygen pumped by a nitrogen pump and an oxygen pump are exchanged with the exhaust fluid for heat exchange and evaporate to obtain high-pressure nitrogen and high-pressure oxygen. Nitrogen production equipment characterized by being performed.
請求項1もしくは請求項3において、
液化冷却手段で得られる高圧窒素は、高圧窒素ガスであることを特徴とする窒素製造設備。
In claim 1 or claim 3,
The high pressure nitrogen obtained by the liquefaction cooling means is a high pressure nitrogen gas.
請求項2もしくは請求項4において、
液化冷却手段で得られる高圧窒素及び高圧酸素は、高圧窒素ガス及び高圧酸素ガスであることを特徴とする窒素製造設備。
In claim 2 or claim 4,
The high-pressure nitrogen and high-pressure oxygen obtained by the liquefaction cooling means are a high-pressure nitrogen gas and a high-pressure oxygen gas.
請求項1乃至請求項6のいずれか一項において、
液化天然ガス貯蔵手段及び/または液炭酸貯蔵手段を備え、
液化冷却手段には、液化天然ガス貯蔵手段からの液化天然ガス及び/または液炭酸貯蔵手段からの液化炭酸が冷熱源として供給されることを特徴とする窒素製造設備。
In any one of claims 1 to 6,
Liquefied natural gas storage means and / or liquid carbon dioxide storage means,
A nitrogen production facility, wherein the liquefied cooling unit is supplied with liquefied natural gas from the liquefied natural gas storage unit and / or liquefied carbon dioxide from the liquefied carbon dioxide storage unit as a cold heat source.
請求項2もしくは請求項4において、
圧縮空気を冷却する冷却手段が備えられていることを特徴とする窒素製造設備。
In claim 2 or claim 4,
A nitrogen production facility comprising cooling means for cooling compressed air.
請求項8において、
冷却手段の冷熱源は、液化冷却手段で得られた高圧窒素及び高圧酸素の顕熱であることを特徴とする窒素製造設備。
In claim 8,
A nitrogen production facility, wherein the cooling source of the cooling means is sensible heat of high-pressure nitrogen and high-pressure oxygen obtained by the liquefaction cooling means.
請求項8において、
圧縮機及び燃焼器及びタービンからなるガスタービン設備と、
ガスタービン設備のタービンの排気ガスの熱回収を行って蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラで生成された蒸気を作動熱源とする吸収冷凍機と
を備え、
冷却手段の冷熱源は、吸収冷凍機で生成された冷水であることを特徴とする窒素製造設備。
In claim 8,
Gas turbine equipment comprising a compressor, a combustor and a turbine;
An exhaust heat recovery boiler that recovers heat from the exhaust gas of a gas turbine facility and generates steam;
An absorption refrigerator that uses steam generated by the exhaust heat recovery boiler as an operating heat source,
A nitrogen production facility, wherein the cold source of the cooling means is cold water generated by an absorption refrigerator.
請求項10において、
ガスタービン設備の圧縮機の吸気を冷却する吸気冷却手段と、
ガスタービン設備の圧縮機からの圧縮空気の一部を冷却し冷却後の圧縮空気を空気圧縮機に供給する中間冷却手段と
を備え、
吸気冷却手段及び中間冷却手段の冷熱源は、分離・精製手段で分離された液体窒素及び液体酸素、及びまたは、液化冷却手段で得られた高圧窒素及び高圧酸素であることを特徴とする窒素製造設備。
In claim 10,
Intake cooling means for cooling the intake of the compressor of the gas turbine equipment,
Intermediate cooling means for cooling a part of the compressed air from the compressor of the gas turbine equipment and supplying the cooled compressed air to the air compressor,
Nitrogen production, wherein the cold heat sources of the intake cooling means and the intermediate cooling means are liquid nitrogen and liquid oxygen separated by the separation / purification means and / or high-pressure nitrogen and high-pressure oxygen obtained by the liquefaction cooling means. Facility.
請求項11において、
吸気冷却手段及び中間冷却手段の冷熱源として、吸収冷凍機で生成された冷水がさらに用いられることを特徴とする窒素製造設備。
In claim 11,
A nitrogen production facility, wherein cold water generated by an absorption refrigerator is further used as a cold heat source of the intake cooling means and the intermediate cooling means.
請求項5において、
液化冷却手段で得られた高圧窒素ガスが燃焼器に供給され、燃焼器からの燃焼ガスがタービンに送られることを特徴とする窒素製造設備。
In claim 5,
A nitrogen production facility wherein high-pressure nitrogen gas obtained by liquefaction cooling means is supplied to a combustor, and combustion gas from the combustor is sent to a turbine.
請求項6において、
液化冷却手段で得られた高圧窒素(気体)及び高圧酸素(気体)が燃焼器に供給され、燃焼器からの燃焼ガスがタービンに送られることを特徴とする窒素製造設備。
In claim 6,
A nitrogen production facility, wherein high-pressure nitrogen (gas) and high-pressure oxygen (gas) obtained by liquefaction cooling means are supplied to a combustor, and combustion gas from the combustor is sent to a turbine.
請求項1もしくは請求項3に記載の窒素製造設備と、
燃焼器からの燃焼ガスが送られて作動するタービンと
を備え、
高圧窒素製造設備で得られた高圧窒素が燃焼器に供給されて燃料と共に燃焼されることを特徴とする
タービン発電設備。
A nitrogen production facility according to claim 1 or 3,
A turbine that is operated by sending combustion gas from the combustor,
Turbine power generation equipment characterized in that high-pressure nitrogen obtained by high-pressure nitrogen production equipment is supplied to a combustor and burned together with fuel.
請求項15において、
圧縮機及び燃焼器及びタービンからなるガスタービン設備を更に備え、
窒素製造設備で得られた高圧窒素がガスタービン設備の圧縮機の吸気の冷熱源とされた後にタービンの燃焼器に供給されることを特徴とするタービン発電設備。
In claim 15,
Further comprising a gas turbine facility consisting of a compressor and a combustor and a turbine,
Turbine power generation equipment characterized in that high-pressure nitrogen obtained in a nitrogen production equipment is supplied to a combustor of a turbine after being used as a cold heat source for intake air of a compressor of a gas turbine equipment.
請求項2もしくは請求項4に記載の窒素製造設備と、
燃焼器からの燃焼ガスが送られて作動するタービンと
を備え、
窒素製造設備で得られた高圧窒素及び高圧酸素が燃焼器に供給されて燃料と共に燃焼されることを特徴とするタービン発電設備。
A nitrogen production facility according to claim 2 or claim 4,
A turbine that is operated by sending combustion gas from the combustor,
A high-pressure nitrogen and high-pressure oxygen obtained by a nitrogen production facility is supplied to a combustor and burned together with a fuel.
請求項17において、
圧縮機及び燃焼器及びタービンからなるガスタービン設備を更に備え、
窒素製造設備で得られた高圧窒素がガスタービン設備の圧縮機の吸気の冷熱源とされた後にタービンの燃焼器に供給されることを特徴とするタービン発電設備。
In claim 17,
Further comprising a gas turbine facility consisting of a compressor and a combustor and a turbine,
Turbine power generation equipment characterized in that high-pressure nitrogen obtained in a nitrogen production equipment is supplied to a combustor of a turbine after being used as a cold heat source for intake air of a compressor of a gas turbine equipment.
JP2002315370A 2002-10-30 2002-10-30 Nitrogen producing equipment and turbine power generation equipment Withdrawn JP2004150685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315370A JP2004150685A (en) 2002-10-30 2002-10-30 Nitrogen producing equipment and turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315370A JP2004150685A (en) 2002-10-30 2002-10-30 Nitrogen producing equipment and turbine power generation equipment

Publications (1)

Publication Number Publication Date
JP2004150685A true JP2004150685A (en) 2004-05-27

Family

ID=32459393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315370A Withdrawn JP2004150685A (en) 2002-10-30 2002-10-30 Nitrogen producing equipment and turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP2004150685A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733159B1 (en) 2006-12-07 2007-06-28 한국에어로(주) Air compressing and nitrogen generator
US20090282840A1 (en) * 2006-02-27 2009-11-19 Highview Enterprises Limited Energy storage and generation
FR2957408A1 (en) * 2010-03-09 2011-09-16 Air Liquide METHOD AND APPARATUS FOR HEATING AN AIR GAS FROM AN AIR SEPARATION APPARATUS
JP2014500424A (en) * 2010-10-18 2014-01-09 エクスパンション エナジー, エルエルシー System and method for liquid air production, power storage and power discharge
CN103775029A (en) * 2012-10-23 2014-05-07 中国石油天然气集团公司 Waste heat recovery liquid nitrogen evaporating system
EP2227624A4 (en) * 2007-12-06 2016-08-24 Sustainable Energy Solutions Llc Methods and systems for generating power from a turbine using pressurized nitrogen
US10876433B2 (en) 2016-02-02 2020-12-29 Highview Enterprises Limited Power recovery
WO2023234064A1 (en) * 2022-05-31 2023-12-07 三菱パワー株式会社 Plant for liquefying/gasifying gas and method for liquefying/gasifying gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090282840A1 (en) * 2006-02-27 2009-11-19 Highview Enterprises Limited Energy storage and generation
EP1989400B1 (en) 2006-02-27 2017-04-05 Highview Enterprises Limited A method of storing energy and a cryogenic energy storage system
KR100733159B1 (en) 2006-12-07 2007-06-28 한국에어로(주) Air compressing and nitrogen generator
EP2227624A4 (en) * 2007-12-06 2016-08-24 Sustainable Energy Solutions Llc Methods and systems for generating power from a turbine using pressurized nitrogen
FR2957408A1 (en) * 2010-03-09 2011-09-16 Air Liquide METHOD AND APPARATUS FOR HEATING AN AIR GAS FROM AN AIR SEPARATION APPARATUS
WO2011110775A3 (en) * 2010-03-09 2015-07-09 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and integrated device for separating air and heating a gas in air originating from an air separation device
CN104896874A (en) * 2010-03-09 2015-09-09 乔治洛德方法研究和开发液化空气有限公司 Method and integrated device for separating air and heating a gas in air originating from an air separation device
US9360251B2 (en) 2010-03-09 2016-06-07 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Method and integrated device for separating air and heating an air gas originating from an air separation device
JP2014500424A (en) * 2010-10-18 2014-01-09 エクスパンション エナジー, エルエルシー System and method for liquid air production, power storage and power discharge
CN103775029B (en) * 2012-10-23 2017-02-08 中国石油天然气集团公司 waste heat recovery liquid nitrogen evaporating system
CN103775029A (en) * 2012-10-23 2014-05-07 中国石油天然气集团公司 Waste heat recovery liquid nitrogen evaporating system
US10876433B2 (en) 2016-02-02 2020-12-29 Highview Enterprises Limited Power recovery
WO2023234064A1 (en) * 2022-05-31 2023-12-07 三菱パワー株式会社 Plant for liquefying/gasifying gas and method for liquefying/gasifying gas

Similar Documents

Publication Publication Date Title
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
US10100979B2 (en) Liquid air as energy storage
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
CA2499529C (en) Lng system and process with electrically powered refrigerant compressors and combined power generation cycle
CN112963207B (en) Liquefied air hybrid energy storage and power generation integrated system and method
US8555672B2 (en) Complete liquefaction methods and apparatus
WO2021043182A1 (en) Air separation apparatus and method using lng cold energy
US20120255312A1 (en) Method and System to Produce Electric Power
JP3460433B2 (en) Energy storage type gas turbine power generation system
US20110308275A1 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
RU2680285C2 (en) Station for reducing gas pressure and liquefying gas
KR20150028332A (en) Process and apparatus for generating electric energy
US4227374A (en) Methods and means for storing energy
US20110308276A1 (en) Method and system for periodic cooling, storing, and heating with multiple regenerators
JP2001193483A (en) Gas turbine system
EP2508721B1 (en) Integrated gasification combined cycle system with vapor absorption chilling
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
JPH11343865A (en) Cryogenic turbine power generation system
WO2014128959A1 (en) Carbon dioxide liquefaction device
CN215676067U (en) Liquid air production device utilizing LNG cold energy
CN109488400A (en) A kind of alcohol fuel project waste heat comprehensive utilization system
CN112648033B (en) BOG gas turbine, supercritical CO2 Brayton and kalina combined cycle power generation system utilizing LNG cold energy
JP3211942B2 (en) Method and apparatus for driving coal gasification combined cycle system
JP2000120404A (en) Combined power generating plant
JP2000265805A (en) Turbine facility

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110