WO2002077240A1 - Synthase d'acide desoxymugineique et gene de cette synthase - Google Patents

Synthase d'acide desoxymugineique et gene de cette synthase Download PDF

Info

Publication number
WO2002077240A1
WO2002077240A1 PCT/JP2002/001940 JP0201940W WO02077240A1 WO 2002077240 A1 WO2002077240 A1 WO 2002077240A1 JP 0201940 W JP0201940 W JP 0201940W WO 02077240 A1 WO02077240 A1 WO 02077240A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
reductase
iron
plant
enzyme
Prior art date
Application number
PCT/JP2002/001940
Other languages
English (en)
French (fr)
Inventor
Naoko Nishizawa
Satoshi Mori
Takashi Negishi
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to JP2002576682A priority Critical patent/JPWO2002077240A1/ja
Priority to US10/399,608 priority patent/US20040093634A1/en
Priority to KR10-2003-7005264A priority patent/KR20030084892A/ko
Priority to EP02702724A priority patent/EP1380647A4/en
Publication of WO2002077240A1 publication Critical patent/WO2002077240A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Definitions

  • the present invention relates to a reductase that reduces the keto form of nicotianamine to 2′-deoxymugineic acid in the process of biosynthesizing mugineic acids involved in a plant iron acquisition mechanism, a gene encoding the reductase, and the gene. Plants with enhanced resistance to iron deficiency. Further, the present invention relates to an enzyme group for biosynthesizing mugineic acids involved in the iron acquisition mechanism of a plant, or an enzyme for creating a plant with enhanced resistance to iron deficiency comprising a group of genes encoding them. It relates to kits and gene kits. Background art
  • Iron is the fourth most abundant element on the crust and an essential element in plants. Iron exists as an insoluble form of iron (III) under normal aerobic conditions in the presence of oxygen, and plants cannot absorb the iron present as an insoluble state. In particular, when there is a lot of limestone, the soil becomes liquoric and many plants absorb insoluble iron and cannot be used, and die due to iron deficiency.
  • Plants have acquired a mechanism to solubilize and absorb insoluble ferrous iron in order to absorb and use iron, which is an essential element for plants.
  • Mechanisms that plants have acquired to solubilize and absorb insoluble ferrous iron known as Strategy I and Strategy II. ing,
  • a mechanism called Strategy I releases protons from the roots, lowers the pH in the rhizosphere, solubilizes insoluble Fe 3 +, and reduces iron in the root surface. After being reduced by the enzyme to Fe 2 + , iron is taken up by the ferrous transporter. This iron acquisition mechanism has been adopted in dicotyledonous plants and monocotyledonous plants other than grasses.
  • Gramineae plants secrete mugineic acids, which are natural iron chelate known as phytosiderophores, from the roots and can release trivalent iron of insoluble bear in soil as an iron-mugineic acid chelate. Solubilized and absorbed from the roots in the form of chelate It absorbs iron by a highly sophisticated mechanism. This mechanism of iron acquisition in grasses is called Strategy II.
  • Mugineic acid has the following formula with a four-membered ring containing a nitrogen atom,
  • phytosiderophores that form iron and trivalent iron.
  • DMA deoxymugineic acid
  • AVA aveninic acid
  • HMA 3-hydroxymugineic acid
  • HMA 3-eppi-hydroxymugineic acid
  • (epi) -HMA) 3-eppi-hydroxymugineic acid
  • distinconic acid which is an open form of 3-hydroxymugineic acid.
  • Fig. 1 shows the chemical structural formulas of these mugineic acids and mugineic acid derivatives, and the outline of their biosynthetic pathways.
  • SAM S-adenosylmethionine
  • nicotianamine synthase three molecules of S-adenosylmethionine are combined by nicotianamine synthase to produce one molecule of nicotianamine ( ⁇ ⁇ ).
  • the resulting nicotianamine is converted to 3 "-keto form by nicotianamine aminotransferase, and then to 2'-deoxymugineic acid (DMA) by some reductase.
  • DMA 2'-deoxymugineic acid
  • mugineic acid MA
  • PI and Nishizawa, 1987, PI ant Cell Physiol, 28. 1081-1092; Shojiina et al., 1989, Biol. Metals, 2, 142-145; Sojima et al. , 1990, Plant Physiol., 93, 1497-1503 The synthesis and secretion of mugineic acids are strongly induced by iron deficiency conditions.
  • iron deficiency conditions There are six types of mugineic acids known so far, and the type and amount of mugineic acid secreted by each gramineous plant are different, and this difference is the difference in iron deficiency tolerance among gramineous plants. It is believed to be.
  • NAS nicotianamine synthase
  • NAAT nicotianianaminaminotransferase
  • IDS 3 is a protein involved in the synthesis of MA from DMA.
  • the Ids3 gene is most strongly expressed during iron deficiency treatment (Nakanishi, et al., 1993, Plant Cell Physiol., 34, 401-410).
  • IDS3 protein is detected in cereals and rye that secrete MA and later, and is not detected in wheat that secretes only DMA and does not secrete MA.
  • an experiment using a wheat-wheat chromosome-added line in which wheat chromosomes were added one by one to wheat showed that MA was secreted only in plants to which chromosome 4 was added, and that IDS 3 was supplemented with chromosome 4. Since it is expressed only in E.
  • IDS 3 may be a mugineate synthase. More recently, analysis of mugineic acids secreted by transgenic rice transfected with the Ids3 gene has revealed that MA is secreted in addition to DMA. From these, it was concluded that IDS 3 was a mugineate synthase. In addition, the gene for the SAM synthase that produces SAM from methionine has also been isolated (Takizawa, et al., 1996, J. Plant Nu., 19 (8-9), 1189-1200). Almost all enzymes involved in the pathway from biosynthesis to mugineic acid (MA) were obtained. However, although it is known that the enzyme that produces DMA from keto bodies may be NADH or NADPH-dependent reductase, neither the protein nor the gene has been purified or isolated.
  • An object of the present invention is to isolate and identify a reductase that generates DMA from a keto body, and a gene thereof, thereby clarifying the whole picture of all enzymes involved in mugineic acid biosynthesis, and It provides a means to introduce the iron acquisition mechanism in plants.
  • a characteristic phenomenon of mugineic acid secretion in plants is diurnality. Barley begins secretion of mugineic acid after sunrise, peaks at 3-5 hours, and disappears at sunset (Takagi, et al., 1984, J. Plant Nu., 469-477). Iron deficiency also alters the fine structure of barley roots, increasing the number and size of special granules in root tip cells.
  • the granules had ribosomes on the surface, and the membrane was considered to be derived from the rough endoplasmic reticulum (rER), which was thinner than the Golgi-derived granules. These granules are observed in cortical cells, epidermal cells, and root cap cells.These granules exist in a swollen state before sunrise when mugineic acid is secreted, and shrink as mugineic acids are secreted. Therefore, it was presumed to be a site for synthesis and storage of mugineic acids (NisMzawa, et al., 1987, J. Plant Nu., 15, 695-713).
  • NAS biosynthetic pathway of mugineic acid
  • GFP jellyfish-derived green fluorescent protein
  • transgenic rice with naat-A introduced was analyzed. Among them, it has been found that even in iron-deficient soils, some of them grow in a manner similar to Clos cissis, and that the secretion of mugineic acid also increases. This is because the introduction of naat-A This is probably because the amount of production increased and DMA was generated by the endogenous reductase.In this case, the amount of DMA and mugineic acid produced was regulated by the endogenous reductase. When naat-A and reductase genes are introduced into rice at the same time, it is thought that rice that is more resistant to iron deficiency than transgenic rice into which naat-A has been introduced can be created.
  • An object of the present invention is to clarify the whole picture of a group of enzymes that biosynthesize mugineic acids, which are iron scrapes that are collectively called iron siderophores in the iron acquisition mechanism, and to generate DMA from keto bodies for that purpose.
  • the purpose is to isolate and identify reductase and its gene.
  • Another object of the present invention is to clarify the entirety of a group of enzymes that biosynthesize mugineic acids in plants and to create plants with higher tolerance to iron deficiency.
  • FIG. 1 shows the biosynthetic pathway of mugineic acid and its derivatives in gramineous plants.
  • FIG. 2 is a photograph, instead of a drawing, showing that three amplified fragments were obtained by PCR using Digigenerate primers.
  • Figure 3 is a photograph instead of a drawing showing the results of Northern blot analysis of the aboveground part and the root part in the iron deficiency treatment area (two weeks) and the iron supply area of rye.
  • 1 is the one using a 200 bp PCR fragment
  • 2 is the one using a 500 bp PCR fragment
  • 3 is the one using a 700 bp PCR fragment.
  • FIG. 4 shows the results of measuring the reductase activity of the present invention by HPLC.
  • the amount of reductase activity was measured by HPLC as the amount of DMA.
  • 1 is for DMA only
  • 2 is for reductase gene 1
  • 3 is for reductase gene 2
  • 4 in the case of reductase gene 5 5 in the case of reductase gene 7, 6 in the case of NA AT + N a BH 4 in the case of a 7 Habe Kuta one control (PYH 2 3).
  • FIG. 5 is a photograph instead of a drawing showing the result of Northern plot analysis in which the time-dependent change of the reductase gene of the present invention with respect to the iron deficiency response was examined.
  • Iron deficiency treatment of rye root was performed on days 0, 2, 4, 7, and 14 and on day 5 after continued re-administration of iron from day 14 on iron deficiency treatment.
  • 1 indicates the case of reductase gene 1
  • 2 indicates the case of reductase gene 2 (5).
  • FIG. 6 shows the nucleotide sequence of the cDNA of reductase gene 1 of the present invention and the deduced amino acid sequence.
  • FIG. 7 shows the nucleotide sequence of cDNA and the deduced amino acid sequence of reductase gene 2 of the present invention.
  • FIG. 8 shows the nucleotide sequence of the cDNA of reductase gene 5 of the present invention and the deduced amino acid sequence.
  • FIG. 9 shows a comparison of the amino acid sequences of reductase gene 1, reductase gene 2 (5) of the present invention, and rice dalhithione reductase.
  • FIG. 10 is a photograph, instead of a drawing, showing the expression response of the reductase gene and the glutathione reductase gene of the present invention to metal stress.
  • DMAS means the reductase gene of the present invention
  • GR means the daltathione reductase gene.
  • R means root and S means above-ground part (leaves, stems, etc.).
  • FIG. 11 shows the amino acid sequences of the probe regions used to examine the expression response of the reductase gene and daltathione reductase gene of the present invention to metal stress.
  • DMA S 1 and DMA S 2 mean the reductase gene of the present invention
  • GR means the daltathione reductase gene.
  • the narrow box in the upper part of Fig. 11 shows the area of the probe used to observe the response of GR to the metal, and the wide box from the top to the bottom shows the area corresponding to the metal of DMAS.
  • the present invention relates to a reductase that reduces a keto form of nicotianamine to 2′-deoxymugineic acid, and a gene encoding the same.
  • the present invention relates to a transformant into which a gene encoding a reductase that reduces a keto form of nicotianamine to 2′-deoxymugineic acid, and a plant body.
  • the present invention comprises a reductase for reducing the keto form of nicotianamine to 2'-deoxymugineic acid, and at least one other enzyme for biosynthesizing mugineic acids, which are iron chelators.
  • the present invention relates to a kit of enzymes for biosynthesizing mugineic acids, which are iron chelators, and a gene kit for creating plants with enhanced resistance to iron deficiency comprising genes encoding those enzymes.
  • aldo-keto reductase gene superf ami a family of aldo-keto reductase genes that cover a wide range of NADH and NAD PH-dependent reductases ly (Seery, et al., 1998, J. Mol. Evol., 46, 139-146)) is considered to be the most appropriate, and based on the relatively conserved amino acid sequence of the family. The following two areas were selected.
  • FIG. 2 is a photograph replacing the drawing showing the three obtained PCR fragments.
  • the bands on the right side of FIG. 2 show the fragments of 200 bp, 500 bp, and 700 bp from the bottom, respectively.
  • the PCR fragment of 200 bp was considered to contain the nucleotide sequence of the target gene, and the cDNA clone containing this nucleotide sequence was isolated.
  • the DNA clones that were induced by iron deficiency in roots by Northern analysis were used as probes, and cDNA clones were isolated by colony hybridization.
  • a total of 8 sheets of iron-deficient barley root cDNA library were applied to an LB plate containing ampicillin to a total of 250 to 50,000 clones.
  • Primary screening The positive screening was performed until the third screening so that the positive clone became a single clone. As a result, four positive clones were obtained (named 1, 2, 5, and 7 respectively).
  • the sequence of the obtained cDNA clone was determined.
  • the nucleotide sequences of these genes showed the highest homology to rice glutathione reductase (Kaminaka, et al., 1998, Plant Cell Physiol., 39, 1269-1280).
  • these cDNA clones were examined for enzyme activity using a protein obtained by transforming yeast using this cDNA. Since the keto body serving as a substrate is an unstable compound, its precursor, nicotianamine, was used as a starting material.
  • the measurement was performed according to the method of measuring NA AT activity by the method of Takahashi (Takahashi, et al., Plant Physiol., 121, 947-956 (1999)). That is, after reacting the nicotianamine the presence of NA AT and keto form, instead of chemical reduction with N a BH 4, using the protein expressed from the transformant yeast.
  • a protein expressed from an empty vector containing no insert pYH23
  • the amount of activity was measured by detecting the amount of DMA using HPLC.
  • FIG. 4 in FIG. 4 shows the case of only DMA, and shows the retention time in standard DMA.
  • 4 in Fig. 4 shows the expression of reductase gene 1.
  • 4 in FIG. 4 shows the expression of reductase gene 2.
  • 4 in FIG. 4 shows the expression of reductase gene 5.
  • 5 in FIG. 4 shows the expression of reductase gene 7.
  • 6 of FIG. 4 is a case of chemical reduction with N a BH 4
  • 7 of FIG. 4 are those expressing the control vector (P YH 2 3).
  • Fig. 5 shows the use of reductase gene 1
  • 2 in FIG. 5 shows the use of reductase gene 2.
  • 0d, 2d, 4d, 7d, 141, and 501 are the iron deficiency treatments of rye root on days 0, 2, 4, 7, 14 and iron deficiency treatment, respectively. Shown 5 days after continued re-administration of iron from day 1.
  • reductase genes 1, 2, and 5 had the same nucleotide sequence in the open reading frame (ORF) portion.
  • the 0 RF of reductase gene 1 was 3 15 bp more at the 5 'end of the other two 0 RF portions.
  • the amino acid sequence of reductase gene 1 is shown in SEQ ID NO: 1 in the sequence listing, and the amino acid sequence of reductase gene 2 is shown in SEQ ID NO: 2 in the sequence listing.
  • nucleotide sequence of reductase gene 1 is represented by SEQ ID NO: 3 in the sequence listing
  • nucleotide sequence of reductase gene 2 is represented by SEQ ID NO: 4 in the sequence listing
  • nucleotide sequence of reductase gene 5 is represented by SEQ ID NO: 5 in the sequence listing.
  • FIG. 6 the nucleotide sequence of reductase gene 1 and the estimated amino acid sequence
  • the amino acid sequence shown in FIG. 8 is shown in FIG. 8, respectively.
  • information obtained from the amino acid sequence predicted based on the determined base sequence was examined.
  • Each amino acid sequence had 89.5% homology to rice glutathione reductase (see FIG. 9).
  • the upper row shows the amino acid sequence of reductase gene 1
  • the middle row shows the amino acid sequence of reductase gene 2 or 5
  • the lower row shows rice. 1 shows the amino acid sequence of glutathione reductase.
  • reductase gene 1 may be localized in the plasma membrane (plasmamembrane) and reductase gene 2 (5) may be localized in the endoplasmic reticulum (endoplasmic ret iculum (membrane)).
  • reductase gene 2 may be localized in the endoplasmic reticulum (endoplasmic ret iculum (membrane)).
  • rice glucanthione reductase which showed the highest homology of 89.3% between the amino acid sequence and the amino acid sequence of the reductase gene of the present invention, showed the highest possibility in the cytoplasm. .
  • the reductase of the present invention and the gene thereof have no homology to the NAD (P) H-dependent reductase family, which was the basis for designing the diene regenerate primer, and have the highest homology to daltathione reductase. Indicated.
  • the location of gene 2 (or 5) predicted from the amino acid sequence was the membrane of the endoplasmic reticulum. Taking this into account and the fact that NAS and NAAT involved in the mugineic acid biosynthesis pathway are localized in granules derived from the rough endoplasmic reticulum specific to iron-deficient barley roots, two genes were isolated. Or 5 is likely to be the target gene.
  • the gene of the present invention is a reductase that catalyzes the reaction of DMA from keto bodies in the mugineic acid biosynthesis pathway. It can be said that the path to creation has been opened.
  • the reductase of the present invention is a reductase that reduces the keto form of nicotianamine to 2′-deoxymugineic acid, and is referred to as “strategy II” of the iron acquisition mechanism of plants according to the present invention.
  • substrategy II the iron acquisition mechanism of plants according to the present invention.
  • all enzymes are DOO in / yo to have been elucidated for the biosynthesis of mugineic acids are natural iron chelate one data one generally called Huai Toshiderofoa in technique are
  • plants can acquire an iron acquisition mechanism called “Strategy II” and have a resistance to iron deficiency. Will be strengthened.
  • NAAT one of a group of enzymes for biosynthesis of mugineic acids, has been used to produce transformed rice with the introduction of the naat genome.
  • NAAT is based on the synthesis of mugineic acids It is an enzyme that catalyzes the reaction from NA in the tract to the keto body, and it has been found that the introduction of this gene enables the growth of iron-deficient soil without causing clonal cis.
  • iron deficiency causes excessive expression of the naat gene to produce excessive amounts of keto bodies, and excess keto bodies are converted to DMA by endogenous reductase. As a result, it is considered that they could grow on iron-deficient soil without chlorosis.
  • the amount of reductase endogenous in rice is lower than that in barley, as inferred from the amount of DMA secreted.
  • keto bodies produced excessively by the induction of naat gene expression may not be efficiently converted to DMA.
  • rice transformed with the naat genome with the gene of the present invention which encodes an enzyme that catalyzes the reaction from keto bodies to DMA, can reduce the keto body produced excessively by NAAT by a reductase. It is expected that the DNA will be more efficiently converted to DMA and will be more resistant to iron deficiency than rice transformed with the naat genome alone.
  • the present invention provides a reductase that reduces the keto form of nicotianamine to 2′-deoxymugineic acid in the process of biosynthesizing mugineic acids involved in the iron acquisition mechanism of plants.
  • the reductase of the present invention preferably has the amino acid sequence of SEQ ID NO: 1 or 2 in the sequence listing. If the amino acid sequence has the activity of reducing the keto form of nicotianamine to 2'-deoxymugineic acid in the process of biosynthesizing mugineic acids, one or more amino acids are substituted with other amino acids. Or one or more amino acids may be deleted, or one or more amino acids may be further added. Further, it may have an amino acid sequence generated by combining these substitutions, deletions and additions.
  • the present invention also provides a gene encoding the above-described reductase of the present invention.
  • a preferred nucleotide sequence of the gene of the present invention comprises the nucleotide sequence described in any of SEQ ID NO: 3, SEQ ID NO: 4 or SEQ ID NO: 5 in the Sequence Listing, but is not limited thereto. Encodes the amino acid sequence described above. For example, this can be changed to a nucleotide sequence that facilitates expression.
  • the gene of the present invention also includes a sequence complementary to these base sequences or a gene consisting of a base sequence that can hybridize with the base sequence under stringent conditions.
  • the present invention also includes a base sequence consisting of a part of the gene of the present invention. These partial sequences can also be used as primers for PCR, and the present invention includes the partial sequences used in such a method.
  • the gene of the present invention may have a necessary promoter overnight region upstream thereof.
  • Such promoters are not limited to those shown in the following sequence listing, and a promoter suitable for a plant to which the gene of the present invention is introduced is selected. Can be.
  • the present invention provides a transformant transformed with the above-described gene of the present invention.
  • various cells such as bacteria such as Escherichia coli, animal cells such as hamsters, plant cells, and yeasts can be used. These transformants can be produced by expressing the reductase of the present invention.
  • the present invention also provides a plant into which the above-described gene of the present invention has been introduced.
  • the elucidation of the reductase of the present invention has clarified the whole picture of the enzymes involved in the biosynthesis of mugineic acids.Therefore, as a mechanism for acquiring iron, there is Steg-I II, in which mugineic acids act as iron chelating agents. Even in plants that do not have these, it is possible to introduce the genes encoding these enzymes into a set and introduce them into plants to newly provide a mechanism for iron acquisition by Strategy II. Therefore, the plant into which the gene of the present invention is introduced is not limited to a gramineous plant having an iron acquisition mechanism by Strategy II, but is preferably introduced into a gramineous plant.
  • the gene of the present invention alone can be expected to enhance resistance to iron deficiency even when introduced alone, it is preferable to introduce a gene encoding another enzyme, preferably naat, simultaneously, to thereby further reduce iron deficiency. Plants with enhanced tolerance can be obtained.
  • the elucidation of the reductase of the present invention has elucidated all the enzymes in the biosynthetic pathway of mugineic acids shown in FIG. 1, and has clarified the whole picture. For biosynthesis of mugineic acids involved in di-II It also provides a group of enzymes.
  • the present invention provides "S-adenosylmethionine synthase” which converts methionine to S-adenosylmethionine (SAM), "nicotianamine synthase” which converts it to nicotianamine (NA), and converts it to a keto body "Nicotianamine aminotransferase (NAAT)", and the present invention
  • kit of enzymes for the biosynthesis of mugineic acids which are iron chelators, consisting of "reductase” and "IDS3", which further converts to mugineic acid.
  • the kit of the enzyme of the present invention comprises the reductase of the present invention as an essential enzyme and contains at least one other enzyme, and is preferably capable of completing biosynthesis from methionine. Kit containing all enzymes.
  • the present invention provides a gene kit for creating a plant with enhanced resistance to iron deficiency, comprising a gene encoding each enzyme of the above enzyme group. By introducing these genes into plants, plants with enhanced resistance to iron deficiency can be created. By introducing genes encoding the above all enzymes, plants in which the biosynthesis process of mugineic acids from methionine is enhanced can be created.
  • the gene of each enzyme to be introduced into the plant is preferably a gene containing the promoter region of the plant into which the gene is introduced. Further, the plant into which each gene is introduced is not limited to a gramineous plant, but is preferably a gramineous plant.
  • Seeds of wheat are arranged on a paper towel moistened with distilled water, and germinated by placing them at room temperature for 3 days, protected from light with aluminum foil. I let it.
  • the seedlings were transplanted onto nets floating in a hydroponic solution, and grown with pumping. After the emergence of the second leaf, it was transplanted into a 20 L container and continued hydroponics.
  • composition of the water culture solution [7 X 1 0- 4 MK 2 S_rei_4, 1 X 1 0- 4 M KC and 1 X 1 0 - 4 M KH 2 P 0 4, 2 X 1 0 - 3 MC a (NO 3) 2, 5 X 1 0 "4 M Mg S_ ⁇ 4, 1 X 1 0- 5 MH 2 B 0 3, 5 X 1 0" 7 M Mn S 0 4, 5 X 1 0 "7 MZ n S 0 4, 2 X 1 0 - 7 MC u SO 4, 1 X 1 0 - 8 M (NH 4) e Mo 0 24, was 1. 5 X 1 0 "4 MF e- EDTA].
  • the pH of the hydroponic solution was adjusted with INHC1 so as to be around pH 5.5 every day.
  • the hydroponic solution was prepared using distilled water and replaced every week. When the fourth leaves appeared, the roots were washed with distilled water to remove the adhered iron, and then transferred to an iron-free hydroponic solution and cultivated until the desired period, starting with iron deficiency treatment.
  • Example 2 Design of Digineated Primer and PCR Using It
  • PCR was performed using the cDNA library of iron-deficient rye root as a type II.
  • a PCR used for hybridization was prepared using a PCR primer fragment (Random Primer DNA Labeling Kit) Ver. 20 (TaKaRa). The hybridization was carried out at 65 ° C for 18 hours using a hybridization solution (0.5 M potassium monophosphate buffer, ImM EDTA, 7% (w / v) SDS). Church High-Pri washing solution (40 mM church phosphate buffer, 1% (w / V) SDS) was performed twice at 65 ° C for 10 minutes. After washing, the membrane was wrapped in Saran wrap and exposed to an IP imaging plate (Fuji Film) for 1 mm in a cassette. The image processing was performed using a BAS2000 imaging analyzer (Fuji Film).
  • FIG. 1 in FIG. 3 was obtained using a 200 bp PCR fragment
  • 2 in FIG. 3 was obtained using a 500 Obp PCR fragment
  • 3 in FIG. 3 was a 700 bp PCR fragment. Is used.
  • Example 4 Screening
  • a cDNA clone was isolated by colony hybridization using a probe which was capable of inducing iron deficiency in roots by Northern analysis as a probe. Ambicillin The iron-deficient barley root cDNA library was applied to a total of eight LB plates containing 5,000 to 5,000 Z-clones. In the primary screening, positive clones were transformed into single clones until tertiary screening. The sequence of the obtained cDNA clone was determined.
  • the cDNA activity of the cDNA clone obtained by the screening was examined.
  • the protein used was obtained by transforming yeast into cDNA. Since the keto form in the biosynthetic pathway of mugineic acids is an unstable compound, its precursor, nicotianamine, was used as a starting material.
  • the assay was performed according to the method of measuring NAAT activity by the method of Takahashi et al. (Takahashi, ei al., Plant Physiol., 121, 947-956 (1999)). After making the keto form is reacted with NAAT nicotianamine was reacted protein expressed from c DNA clones obtained instead of chemical reduction by N a BH 4.
  • the proteins used were all proteins obtained by crushing yeast.
  • FIG. 4 in FIG. 4 shows the case of only the DMA, and shows the retention time in the standard DMA.
  • 4 in FIG. 4 shows the expression of reductase gene 1.
  • 4 in FIG. 4 shows the expression of reductase gene 2.
  • 4 in FIG. 4 shows the expression of reductase gene 5.
  • 5 in FIG. 4 shows the expression of reductase gene 7.
  • 6 of FIG. 4 is a case of chemical reduction with N a BH 4
  • 7 of FIG. 4 are those that expressed the control vector one (P YH 2 3).
  • RNA used was 5 days before the iron deficiency in the wheat root (day 0), 2, 4, 7, and 14 days after the iron deficiency and 14 days after the iron deficiency. This is a total of 6 samples. From the migration of the RNA to the image processing, the same procedure as in the Northern analysis of the PCR fragment was performed.
  • FIG. 5 shows the use of reductase gene 1
  • FIG. 5 2 shows the use of reductase gene 2.
  • 0 d, 2 d, 4 d, 7 d, 14 d, and 5 d are the iron deficiency treatments of oat roots on days 0, 2, 4, 7, 14 and iron deficiency treatment, respectively. Shown 5 days after continued re-administration of iron from day 5.
  • Seeds of wheat (Hordeum vulgare L. cv. Eh imehadaka no.1) were arranged on a paper towel moistened with distilled water, allowed to stand at room temperature for three days while protected from light with aluminum foil, and allowed to germinate.
  • the seedlings were transplanted onto nets floating in a hydroponic solution, and grown with pumping. After the emergence of the second leaf, it was transplanted into a 20 L container and continued hydroponics.
  • the composition of Mizukoeki is [7 X 1 0- 4 MKS 0 1 X 1 0- 4 M KC 1, 1 X 1 0- 4 MKH 2 P 0 4, 2 X 1 0 "3 ⁇ C a (NO 3) , 2.
  • RNA was extracted by sampling the roots and aboveground parts of barley that had been subjected to metal deficiency (Fe, Zn).
  • the method for extracting RNA is as follows.
  • RNA was electrophoresed on a 1.2% agarose gel, and then blotted on a membrane (Hyb0nd-N +, Amersham Pharmacia).
  • the probes used for hybridization were PCR It was prepared by labeling with Random Primer DNA Labeling Kit Ver. 2.0 (TaKaRa). The hybridization was performed at 65 ° C using a hybridization solution (0.5 M char-monophosphate buffer, ImM EDTA, 7% (w / v) SDS). We went for 8 hours. Washing was performed twice at 65 ° C. for 10 minutes with a church hybrid washing solution (40 mM thiocyanate buffer, 1% (w / V) SDS). After washing, the membrane was wrapped in Saran wrap, and exposed to an IP imaging plate (Fuji Film) for 1 mm in a cassette. Image processing was performed with a BAS3000 imaging analyzer (Fuji Film).
  • FIG. 10 shows the results of Northern using the sequence of DMA S1 (corresponding to the common sequence of DMA S1, DMAS2, and GR widely enclosed in squares in FIG. 11) as a probe. It is strongly expressed in iron-deficient roots (in addition, it is relatively strongly expressed in zinc-deficient roots and above-ground parts (leaves, stems, etc.)). However, when a GR-specific sequence (the sequence enclosed by the narrow rectangle in Fig. 11) was used as a probe, it was not expressed under any stress even in the control (control). These two results imply that GR gene expression is not related to iron deficiency at all, indicating that the gene is hardly expressed under normal conditions.
  • DMAS 1 or DMAS 2 is a gene that is strongly induced at the root of iron deficiency in wheat. Therefore, it can be concluded that DMAS is an enzyme that induces gene expression under iron deficiency conditions and synthesizes dexoximugine acid from keto bodies. Although the genomic gene for DMAS has not yet been isolated, it is thought that the 5 'upstream of this genomic gene still contains an unknown iron deficiency-responsive cis element. Industrial applicability
  • the present invention relates to a reductase that reduces the keto form of nicotianamine to 2′-deoxymugineic acid in the process of biosynthesizing mugineic acids involved in the iron acquisition mechanism of a plant, a gene encoding the reductase, and the gene.
  • the present invention provides a plant with enhanced resistance to iron deficiency. By increasing the tolerance of plants to iron deficiency, Plants can be cultivated even in soils where iron supply is difficult, such as rickety soil, and the area of cultivable land that can be cultivated will be expanded, and it will be possible to solve future food and resource problems.
  • the elucidation of the reductase of the present invention has elucidated the entire biosynthetic pathway of mugineic acids in plants. Therefore, it has become possible to create plants with significantly enhanced iron deficiency tolerance using the enzymes involved in biosynthesis and the genes encoding them.
  • the present invention provides a series of enzyme systems necessary for biosynthesis of mugineic acids and a series of gene systems encoding them, whereby plants can be provided with the mechanism of iron acquisition by strategy II by strategy II. It is also possible to give it.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 デォキシムギネ酸合成酵素及びその遺伝子 技術分野
本発明は、 植物の鉄獲得機構に関与するムギネ酸類を生合成する過程における, ニコチアナミンのケト体を 2 ' —デォキシムギネ酸に還元する還元酵素、 それを コードする遺伝子、 及び当該遺伝子が導入されることによる鉄欠乏耐性が強化さ れた植物に関する。 また、 本発明は植物の鉄獲得機構に閧与するムギネ酸類を生 合成するための酵素群、 又はそれらをコードする遺伝子群からなる、 鉄欠乏耐性 が強化された植物を創生するための酵素キッ ト、 及び遺伝子キッ 卜に関する。 背景技術
鉄は地殻上で第 4番目に存在量の多い元素であり、 植物に必須の元素である。 鉄は酸素が存在する通常の好気条件下では 3価鉄の不溶態として存在しており、 不溶態として存在している鉄をこのまま植物は吸収することができない。 特に、 石灰岩が多い場合には土壌はアル力リ性となって多くの植物は不溶態の鉄を吸収 し、 利用することができずに鉄欠乏によって枯死することになる。
植物は、 植物に必須の元素である鉄を吸収し、 利用するために、 不溶態の三価 鉄を可溶化してこれを吸収するための機構を獲得してきている。 植物が、 不溶態 の三価鉄を可溶化してこれを吸収するために獲得してきた機構としては、 「スト ラテジ一 I」 と 「ストラテジー I I」 と呼ばれている 2種類の方法が知られている,
「ストラテジー I」 と呼ばれている機構は、 根からプロトンを放出し根圏の p Hを低下させることにより不溶態の F e 3 +を可溶化し、 さらに根の表層に存在す る鉄還元酵素によって F e 2 +に還元した後、 二価鉄のトランスポーターによって 細胞内に鉄を取り込む。 この鉄獲得機構は、 双子葉植物やイネ科以外の単子葉植 物に採用されている。 一方、 イネ科植物はファイ トシデロフォアと総称される天 然の鉄キレー夕一であるムギネ酸類を根から分泌し、 土壌中の不溶熊の 3価の鉄 を 「鉄 -ムギネ酸」 キレートとして可溶化し、 キレートの形で根から吸収すると いう高度に巧妙なメカニズムにより鉄を吸収している。 イネ科植物のこの鉄獲得 機構は、 「ストラテジー II」 と呼ばれている。
ムギネ酸 (MA) は、 窒素原子を含む 4員環を有する次式、
Figure imgf000003_0001
で示される化合物であり、 3価の鉄とキレ一トを形成するフアイトシデロフォア と総称される天然の鉄キレ一夕一としては、 このムギネ酸とその誘導体である 5 種類のものが知られている。 これらの 5種類の誘導体とは、 ムギネ酸の前駆体で ある水酸基が欠落したデォキシムギネ酸 (DMA) 、 デォキシムギネ酸 (DM A) の開環体であるアベニン酸 (AVA) 、 ムギネ酸のァゼチジン環に水酸基が 結合した 3—ヒドロキシムギネ酸 (HMA) 及び 3—ェピ—ヒドロキシムギネ酸 ( ( e p i ) - HMA) 、 並びに 3—ヒドロキシムギネ酸の開環体であるディス ティンコン酸である。 '
これらのムギネ酸及びムギネ酸誘導体の化学構造式、 並びにその生合成経路の 概要を第 1図に示す。 まず、 S—アデノシルメチォニン合成酵素によりメチォ二 ンから S—アデノシルメチォニン (S AM) が作られる。 次いで、 ニコチアナミ ン合成酵素により 3分子の S—アデノシルメチォニンが結合して 1分子のニコチ アナミン (Ν Α) が生成される。 生成したニコチアナミンは、 ニコチアナミンァ ミノ基転移酵素により 3 " —ケト体になり、 続いて何らかの還元酵素により 2 ' ーデォキシムギネ酸 (DMA) になる。 これがさらに水酸化されてムギネ酸 (M A) をはじめとする他のムギネ酸誘導体になる (Mori and Nishizawa, 1987, PI ant Cell Physiol, 28. 1081-1092; Shoj iina et al. , 1989, Biol. Metals, 2, 142-145; S oj ima et al. , 1990, Plant Physiol. , 93, 1497-1503) 。 ムギネ酸類の合成と分泌は鉄欠乏条件によって強く誘導される。 これまでに知 られているムギネ酸類は 6種類存在し、 それぞれのイネ科植物によって分泌され るムギネ酸の種類と分泌量は異なっており、 この違いがイネ科植物間の鉄欠乏耐 性の差となっていると考えられている。
イネ、 トウモロコシ、 コムギはムギネ酸類生合成経路の最初のムギネ酸である DM Aまでを分泌し、 ォォムギは DMAと MA、 さらに水酸化された ( e p i ) - HMAを分泌する。 ライムギは DMA、 MA、 HMAを分泌する。 ェンバクは DMA及びアベニン酸 (AVA) を分泌する。 調べられている限り 「ス トラテジ — 11」 による鉄獲得機構を持っているイネ科植物はすべて DMAを分泌し、 DM Aまでの生合成経路をもつていると考えられる。
ムギネ酸類の生合成系において、 S AMから N Aへの反応を触媒するニコチア ナミン合成酵素 (NAS) と、 N Aからケト体への反応を触媒するニコチアナミ ンァミノ基転移酵素 (NAAT) の活性は鉄欠乏処理で強く誘導される (Kanaza , et al. , 1995, ed J. Abadia, 37-41) 。 そして、 これらのいずれの酵素も鉄 欠乏ォォムギ根から精製され、 その遺伝子がクローニングされた (Takahashi, e t al. , 1999, Plant Physiol. , 121, 947-956; Higuchi, et al. , 1999, Plant Physiol. , 119, 471-479) 。
DMAから MAの合成に関与しているタンパク質として I D S 3が挙げられる。 I d s 3遺伝子は, 鉄欠乏処理で最も強く発現する (Nakanishi, et al., 1993, Plant Cell Physiol. , 34, 401-410) 。 I D S 3タンパク質は、 イネ科植物のう ち MA以降を分泌するォォムギとライムギに検出され、 DMAのみを分泌し M Aを分泌しないコムギでは検出されない。 また、 コムギにォォムギの染色体を一 本ずつ添加したコムギ -ォォムギ染色体添加系統を用いた実験により、 ォォムギ 第四染色体が加わった植物でのみ MAが分泌され、 I D S 3が第四染色体を添加 した系統でのみ発現していることから、 I D S 3がムギネ酸合成酵素であろうと 推定されてきた。 さらに最近になって、 I d s 3遺伝子を導入した形質転換イネ の分泌するムギネ酸類の解析によって、 D M Aに加えて M Aが分泌されているこ とがわかった。 これらのことから、 I D S 3がムギネ酸合成酵素であると結論づ けられた。 また、 メチォニンから S AMを生成させる S AM合成酵素の遺伝子も単離され ており (Takizawa, et al. , 1996, J. Plant Nu. , 19 (8-9), 1189-1200) 、 メチ ォニンからムギネ酸 (MA) が生合成されるまでの経路に関わる酵素はほぼ得ら れたこととなった。 しかし、 ケト体から DMAを生成する酵素は NADH、 また は NAD P H依存型還元酵素であろうということは知られてはいるものの、 その タンパク質、 遺伝子のいずれも精製 ·単離には至っていない。
本発明は、 ケト体から DMAを生成させる還元酵素、 及びその遺伝子を単離 · 同定することを目的とし、 これによりムギネ酸の生合成に関与する全酵素の全貌 を明らかにし、 鉄欠乏耐性の植物における鉄獲得機構を導入する手段を提供する。 ところで、 植物におけるムギネ酸の分泌の特徴的な現象として、 日周性が挙げ られる。 ォォムギは日の出後からムギネ酸の分泌を始め、 3 ~ 5時間をピークに 減少し、 日没時には分泌がなくなる (Takagi, et al. , 1984, J. Plant Nu., 46 9-477) 。 また、 鉄欠乏によってォォムギ根の微細構造が変化し、 根の先端細胞の 特殊な顆粒の数および大きさに増加がみられる。 その顆粒は表面にリボソームが ついていて、 膜がゴルジ由来の顆粒よりも薄く粗面小胞体 ( r E R) 由来のもの と考えられた。 そして、 この顆粒は皮層細胞、 表皮細胞及び根冠細胞で観察され、 この顆粒はムギネ酸が分泌される日の出前には膨潤した状態で存在し、 ムギネ酸 類が分泌されるに伴い収縮することから、 ムギネ酸類の合成 ·貯蔵部位であると 推定されていた (NisMzawa, et al. , 1987, J. Plant Nu. , 15, 695-713) 。 そこで、 ムギネ酸の生合成経路に関わるタンパク質 (NAS, NA AT) の局 在を免疫染色法およびクラゲ由来の緑色蛍光タンパク質 (GF P) を用いたトラ ンジェントアツセィ法により観察したところ、 いずれの夕ンパク質も鉄欠乏ォォ ムギの根で増加する特殊な顆粒に局在することが明らかになった (未発表) 。 さ らに、 ケト体から DMAを生成させる還元酵素を同定し、 その局在を明らかにす ることで、 当該顆粒がムギネ酸合成部位であることをより明確にすることができ る。
また、 最近 n a a t— Aを導入した形質転換イネの解析が行われた。 その中で 鉄欠乏土壌においてもクロ口シスにならす成長するものもあり、 ムギネ酸の分泌 量も増加することがわかってきた。 これは、 n a a t— Aの導入によりケト体の 生成量が増加し、 内在する還元酵素で DM Aまで生成されたためであると考えら れるが、 この場合には内在する還元酵素によって DM Aやムギネ酸の産生量が規 定されることから、 イネに n a a t— Aと還元酵素の遺伝子を同時に導入した場 合には、 単に n a a t — Aを導入した形質転換イネより鉄欠乏に強いイネを創出 することができるものと考えられる。
このように、 より鉄欠乏耐性の大きい植物を創出するためには、 鉄獲得機構に おけるファイ トシデロフォアと総称される鉄キレ一ターであるムギネ酸類を生合 成する酵素群の全貌を明らかにすることが望まれている。 発明の開示
本発明は、 鉄獲得機構におけるフアイ トシデロフォアと総称される鉄キレ一夕 —であるムギネ酸類を生合成する酵素群の全貌を明らかにすることを目的とし、 そのためのケト体から DMAを生成させる還元酵素、 及びその遺伝子を単離 · 同 定することを目的とする。
また、 本発明は、 植物におけるムギネ酸類を生合成する酵素群の全貌を明らか にし、 より鉄欠乏耐性の大きい植物を創出することを目的としている。 図面の簡単な説明
第 1図は、 ィネ科植物におけるムギネ酸及びその誘導体の生合成経路を示した ものである。
第 2図は、 デイジエネレイ トプライマーを用いた P C Rにより 3つの増幅され た断片が得られたことを示す図面に代わる写真である。
第 3図は、 ォォムギの鉄欠乏処理区 ( 2週間) 及び鉄供給区における地上部と 根部におけるノ一ザンブロッ ト解析の結果を示す図面に代わる写真である。 1は 2 0 0 b pの P C R断片を用いたもの、 2は 5 0 0 b pの P C R断片を用いたも の、 3は 7 0 0 b pの P C R断片を用いたものである。
第 4図は、 H P L Cによる本発明の還元酵素活性を測定した結果を示すもので ある。 還元酵素活性量を DM A量として H P L Cにより測定したものである。 1 は DMAのみの場合、 2は還元酵素遺伝子 1の場合、 3は還元酵素遺伝子 2の場 合、 4は還元酵素遺伝子 5の場合、 5は還元酵素遺伝子 7の場合、 6は N A AT + N a BH4の場合、 7はべクタ一コントロール (PYH 2 3) の場合を示す。 第 5図は、 本発明の還元酵素遺伝子の鉄欠乏応答に対する経時的変化を調べた ノーザンプロット解析の結果を示す図面に代わる写真である。 ォォムギ根の鉄^ 乏処理 0、 2、 4、 7、 1 4日目、 及び鉄欠乏処理 1 4日目から鉄を再投与し続 けてから 5 日目のものを用いて行った。 1は還元酵素遺伝子 1の場合、 2は還元 酵素遺伝子 2 ( 5) の場合を示す。
第 6図は、 本発明の還元酵素遺伝子 1の c DNAの塩基配列及び推定されるァ ミノ酸配列を示す。
第 7図は、 本発明の還元酵素遺伝子 2の c D N Aの塩基配列及び推定されるァ ミノ酸配列を示す。
第 8図は、 本発明の還元酵素遺伝子 5の c DNAの塩基配列及び推定されるァ ミノ酸配列を示す。
第 9図は、 本発明の還元酵素遺伝子 1、 還元酵素遺伝子 2 ( 5) 、 及びイネの ダル夕チオン還元酵素とのアミノ酸配列の比較を示す。 ,
'第 1 0図は、 本発明の還元酵素遺伝子とグル夕チオン還元酵素遺伝子の金属ス トレスに対する発現応答を示す、 図面に代わる写真である。 第 1 0図中、 DMA Sは本発明の還元酵素遺伝子を意味し、 G Rはダルタチオン還元酵素遺伝子を意 味する。 また、 Rは根部、 Sは地上部 (葉、 茎等) をそれぞれ意味する。
第 1 1図は、 本発明の還元酵素遺伝子とダルタチオン還元酵素遺伝子の金属ス トレスに対する発現応答を調べる際に使用したプローブの領域のアミノ酸配列を 示す。 第 1 1図中、 DMA S 1及び DMA S 2は本発明の還元酵素遺伝子を意味 し、 G Rはダルタチオン還元酵素遺伝子を意味する。 また、 第 1 1図上部の細長 四角で囲った部分は GRの金属に対する応答を見る際に使用したプローブの領域 を示し、 上部から下部にかけての広く四角で囲った部分は、 DMASの金属に対 する応答を見る際に使用したプローブの領域を示す。 発明を実施するための最良の形態
本発明は、 ニコチアナミンのケト体を 2 ' —デォキシムギネ酸に還元する還元 酵素、 及びそれをコードする遺伝子に関する。
また、 本発明は、 ニコチアナミンのケト体を 2 ' —デォキシムギネ酸に還元す る還元酵素をコードする遺伝子が導入された形質転換体、 及び植物体に関する。 さらに、 本発明は、 ニコチアナミンのケト体を 2 ' ーデォキシムギネ酸に還元 する還元酵素、 及び鉄キレ一ターであるムギネ酸類を生合成させるための少なく とも 1種の他の酵素を含有してなる、 鉄キレーターであるムギネ酸類を生合成さ せるための酵素のキッ ト、 及びそれらの酵素をコードする遺伝子からなる鉄欠乏 耐性が強化された植物を創生するための遺伝子キッ トに関する。
ムギネ酸類の生合成経路に関わる酵素類、 タンパク質の多くは精製あるいは遺 伝子の単離に成功しているが、 ケト体から DM Aの反応を触媒する酵素、 及びそ れをコ一ドする遺伝子については未だに精製 ·単離に成功していない。 そこで、 本発明者らは、 ムギネ酸類の生合成経路のケト体から DM Aの反応を触媒する酵 素をコードする遺伝子の単離を試みた。 この遺伝子は、 1 0年前の生嶋 (S h o j i ma) による取り込み実験によって NAD ( P ) H依存性の酵素であること が報告されている (Shojima, et al. , 1990, Plant Physiol. , 93, 1497-1503) が、 それ以降はタンパク質、 遺伝子の精製 ·単離までには至っていない。
D Μ Αの分泌量から推察すると、 イネに内在する還元酵素はォォムギに比べて 少なく、 ォォムギからの単離を試みた。
まず、 目的の還元酵素が属すると思われる酵素ファミリ一を検索し、 その結果. NADH、 NAD P H依存型還元酵素を広く網羅したアルドーケト還元酵素遺伝 子スーノ、一ファミリー (aldo-keto reductase gene superf ami ly (Seery, et a l., 1998, J. Mol. Evol. , 46, 139-146) ) が最も適切であると考え、 そのファ ミリーのうちで比較的保存されているアミノ酸配列をもとに次の二つの領域を選 んだ。
5 ' - YT I GAYTAYB T I GAC - 3 ' ( 5 ' 側)
5 ' - RTGRCAYT C 1 AYYTG— 3 ' ( 3 ' 側) その二つの領域の配列を塩基配列に置き換えたのを基にしてディジエネレイ トプ ライマーを設計した。
このプライマーを用いて、 ォォムギ (Hordeum vulgare L. cv. Ehimehadaka n o.l) の鉄欠乏状態の根からの c DN Aライブラリ一を铸型にして P C Rを行った, その結果、 3つの P C R断片 ( 2 0 0, 5 0 0, 7 0 0 b p ) が得られた (第 2図) 。 第 2図は、 得られた 3つの P C R断片を示す図面に代わる写真である。 第 2図の右側のバンドがそれぞれ下から 2 0 0 b p、 5 0 0 b p、 及び 7 0 0 b Pの断片を示している。
得られた P C R断片が目的の遺伝'子であることを調べるために、 ォォムギの地 上部と根での鉄欠乏区 (一 F e) 及び鉄供給区 (+ F e) での発現をノーザン解 析でみた。 結果を第 3図に図面に代わる写真で示す。 第 3図の左上の 1は 2 0 0 b pの P C R断片を用いた場合であり、 第 3図の右上の 2は 5 0 0 b pの P C R 断片を用いた場合であり、 第 3図の中下の 3は 7 0 O b pの P C R断片を用いた 場合である。 各写真とも、 左側の 2つが根部であり、 右側の 2つが地上部である。 根部及び地上部の各々の一 F eは鉄欠乏処理区 (2週間) であり、 + F eは鉄供 給区のものである。
5 0 0 b p及び 7 0 0 b pの P C R断片をプロ一プにしたものでは、 地上部、 根ともに鉄欠乏、 鉄供給いずれでも発現がみられなかった。 一方、 2 0 O b pの P C R断片をプロープに用いたものでは、 全ての条件で発現しているバンドと鉄 欠乏区の根でのみ発現しているバンドの二つが検出された (第 3図の 1参照) 。 ムギネ酸類生合成経路のうち、 ケト体から DMAを生成する過程の前後の反応を 触媒する酵素の遺伝子は、 いずれも鉄欠乏ォォムギ根でのみ発現している。 この ことから目的の遺伝子は、 鉄欠乏ォォムギ根でのみ発現している可能性が高いと 考えられる。 よって、 2 0 0 b pの P C R断片が目的の遺伝子の塩基配列を含む ものであると考え、 この塩基配列を含む c DN Aクロ一ンを単離することにした。 ノ一ザン解析で根で鉄欠乏誘導のみられるものをプロ一ブにして、 コロニーハ イブリダィゼイシヨンにより c D N Aクローンの単離を行った。 アンピシリンを 含んだ L Bプレートに 2 5 0 0 0〜 5 0 0 0 0クロ一ン Z枚になるように計 8枚 に鉄欠乏ォォムギ根 c DNAライブラリ一を塗付した。 1次スクリーニングでポ ジティブなクローンを単一クローンにするように 3次スクリ一ニングまで行った。 その結果、 4つのポジティブクローンが得られた (各々 1、 2、 5、 7 と名付け た) 。 ここで得られた c DNAクローンについて、 シークェンスを決定した。 こ れらの遺伝子の塩基配列は、 いずれ.もイネのグルタチオン還元酵素 (Kaminaka, et al., 1998, Plant Cell Physiol. , 39, 1269-1280) に最も高い相同性を示し た。
次に、 これらの c D N Aクローンについて、 この c DN Aを用いて酵母を形質 転換して得られたタンパク質を用いた酵素活性を調べた。 基質となるケト体は不 安定な化合物であるために、 その前駆体であるニコチアナミンを出発物とした。 高橋の方法 (Takahashi, et al. , Plant Physiol. , 121, 947-956 (1999)) による N A AT活性測定法に準じて行った。 即ち、 N A ATの存在下にニコチアナミン を反応させてケト体とした後、 N a B H4による化学的な還元の代わりに、 酵母の 形質転換体から発現させたタンパク質を用いた。 コントロールとして、 インサー トの入っていない空のベクタ一 (p YH 2 3) から発現させたタンパク質を用い た。 活性量は、 H P L Cを用いて DMA量を検出することにより測定した。
H P L Cの結果を第 4図に示す。 第 4図の 1は DM Aのみの場合であり、 標準 DMAにおける保持時間 (retention time) を示す。 第 4図の 2は還元酵素遺伝 子 1を発現させたものである。 第 4図の 3は還元酵素遺伝子 2を発現させたもの である。 第 4図の 4は還元酵素遺伝子 5を発現させたものである。 第 4図の 5は 還元酵素遺伝子 7を発現させたものである。 第 4図の 6は N a BH4による化学的 な還元の場合であり、 第 4図の 7はコントロールベクター (P YH 2 3 ) を発現 させたものである。
ベクターのみで行ったとき (第 4図の 7 ) と比べて多く DMAがみられるもの を活性ありと判断した。 その結果、 還元酵素遺伝子 7 (第 4図の 5) の c DNA から得られたタンパク質以外では DMAが検出された。 そのうち、 還元酵素遺伝 子 2 (第 4図の 3 ) と還元酵素遗伝子 5 (第 4図の 4) の c DNAのものが最も 高い活性がみられた。
次に、 ここで活性がみられた 1、 2、 5について、 鉄欠乏に対する応答をみる ことにした。 得られた c D N Aクローンのうち活性がみられた還元酵素遺伝子 1 、 2及び 5 について、 鉄欠乏に対する経時的変化をノーザン解析により行った。 用いた R N Aはォォムギ根を鉄欠乏にする直前 ( 0 日目) のものと、 鉄欠乏にしてから 2、 4、 7 、 1 4日目のもの、 さらに鉄欠乏にしてから 1 4日経過したものに 5 日間 鉄を与え続けたものの計 6サンプルである。 R N Aの泳動から画像処理までは、 P C R断片のノーザン解析と同様に行った。
その結果を第 5図に図面に代わる写真で示す。 第 5図の 1は還元酵素遺伝子 1 を用いたものであり、 第 5図の 2は還元酵素遺伝子 2を用いたものである。 第 5 図の 0 d、 2 d、 4 d、 7 d、 1 4 1及び5 01は、 それぞれォォムギ根の鉄欠乏 処理 0 、 2、 4、 7、 1 4日目、 及び鉄欠乏処理 1 4日目から鉄を再投与し続け てから 5 日目のものを示す。
この結果、 いずれの遺伝子においても鉄欠乏が進むにつれて発現が誘導されて おり、 さらに、 鉄を与えたことで発現が減少することがわかった (第 5図の 5 d ) 。
次に、 活性がみられた還元酵素遺伝子 1 、 2及び 5の c D N Aクローンの塩基 配列を決定した。 その結果、 還元酵素遺伝子 2と 5はオープンリーディングフレ ーム (O R F ) 部分の塩基配列が同一のものであった。 また、 還元酵素遺伝子 1 の 0 R Fは他の二つの 0 R F部分の 5 ' 末端側に 3 1 5 b p多いものであった。 還元酵素遺伝子 1のアミノ酸配列を配列表の配列番号 1に、 還元酵素遺伝子 2 のアミノ酸配列を配列表の配列番号 2にそれぞれ示す。 また、 還元酵素遺伝子 1 の塩基配列を配列表の配列番号 3に、 還元酵素遺伝子 2の塩基配列を配列表の配 列番号 4に、 還元酵素遺伝子 5の塩基配列を配列表の配列番号 5に、 それぞれ示 す。 さらに、 還元酵素遺伝子 1の塩基配列及び推定されるアミノ酸配列を第 6図 に、 還元酵素遺伝子 2の塩基配列及び推定されるアミノ酸配列を第 7図に、 還元 酵素遺伝子 5の塩基配列及び推定されるァミノ酸配列を第 8図に、 それぞれ示す, 次に、 決定された塩基配列を基に予測されるアミノ酸配列から、 得られる情報 について調べた。 それぞれのアミノ酸配列は、 イネのグルタチオン還元酵素に 8 9 . 5 %の相同性があった (第 9図参照) 。 第 9図の上段は還元酵素遺伝子 1の アミノ酸配列を、 中段は還元酵素遺伝子 2又は 5のアミノ酸配列を、 下段はイネ のグルタチオン還元酵素のアミノ酸配列をそれぞれ示している。
次に、 得られたタンパク質の P S ORTによる局在予測を行った。 その結果、 還元酵素遺伝子 1によるものは原形質膜 (plasmamembrane) に、 還元酵素遺伝子 2 ( 5 ) によるものは小胞体 (endoplasmic ret iculum (membrane) ) に局在する可 能性があることがわかった。 一方、 本発明の還元酵素遺伝子のアミノ酸配列とァ ミノ酸配列で 8 9. 3 %と最も高い相同性を示したイネのグル夕チオン還元酵素 は細胞質 (cytoplasm) に最も高い可能性を示した。
本発明の還元酵素、 及びその遺伝子は、 デイジエネレイ トプライマーの設計の もとになつた NAD (P) H依存型還元酵素ファミリ一とは相同性がなく、 ダル タチオン還元酵素に最も高い相同性を示した。 また、 遺伝子 2 (又は 5) はアミ ノ酸配列から予測される局在場所が小胞体の膜であった。 このことと、 鉄欠乏ォ ォムギ根に特異的な粗面小胞体由来の顆粒にムギネ酸類生合成経路に関わる N A Sと NAATが局在することとを考えあわせると単離された遺伝子のうち 2ある いは 5が目的の遺伝子である可能性が高いといえる。 さらに、 鉄欠乏に対する経 時的変化ではいずれも、 鉄欠乏による誘導と鉄投与による発現の減少がみられた ことから、 これらの遺伝子が鉄に対する応答性を持つことが明らかになった。 ' 以上を総合して考えると、 本発明の遺伝子はムギネ酸類生合成経路中のケト体 から DMAの反応を触媒する還元酵素であり、 将来的に今までにない強度な鉄欠 乏耐性イネの創出への道が開けたといえる。
このように、 本発明の還元酵素は、 ニコチアナミンのケト体を 2 ' —デォキシ ムギネ酸に還元する還元酵素であり、 本発明により植物の鉄獲得機構の 「ストラ テ一ジ II」 と呼ばれている手法におけるフアイ トシデロフォアと総称される天然 の鉄キレ一タ一であるムギネ酸類を生合成するための酵素群の全てが解明された し とに /よ 0
したがって、 これらの酵素又はこれらの酵素をコ一ドする遺伝子を植物体に導 入することにより、 植物は 「ストラテジー II」 と呼ばれている鉄獲得機構を取得 することができ、 鉄欠乏耐性が強化されることになる。
ムギネ酸類を生合成するための酵素群の中の 1種である NAATでは n a a t ゲノムを導入した形質転換イネが作られてきた。 NAATは、 ムギネ酸類合成経 路の N Aからケト体への反応を触媒する酵素であり、 この遺伝子が導入されるこ とにより、 鉄欠乏土壌でクロ口シスにならず生育できることがわかった。 この N A A Tの遺伝子が単独で形質転換されたイネは、 鉄欠乏により n a a t遺伝子の 発現誘導によって過剰量のケト体が生成し、 そして、 過剰に存在するケト体は内 在の還元酵素によって D M Aに変換され、 この結果鉄欠乏土壌でクロロシスにな らず生育できたと考えられる。
しかし、 ィネに内在する還元酵素は D M Aの分泌量から推察するにォォムギに 比べて少なく、 n a a t遺伝子の発現誘導によって過剰に生成されたケト体を効 率よく D M Aに変換していない可能性が高い。 そうしたことから考えると、 ケ卜 体から D M Aへの反応を触媒する酵素をコ一ドする本発明の遺伝子を、 n a a t ゲノムと共に形質転換したイネは、 N A A Tにより過剰に作られたケト体を還元 酵素により効率よく D M Aに変換して、 n a a tゲノム単独で形質転換したイネ よりも数段鉄欠乏耐性に強くなると期待される。 こうした点から考えると、 ケト 体から D M Aの反応を触媒する還元酵素を単離することは非常に重要なことであ るといえる。 本発明は、 植物の鉄獲得機構に関与するムギネ酸類を生合成する過程における, ニコチアナミンのケト体を 2 ' —デォキシムギネ酸に還元する還元酵素を提供す るものである。 本発明の還元酵素は好ましくは配列表の配列番号 1又は 2に記載 のアミノ酸配列を有するものである。 このアミノ酸配列は、 ムギネ酸類を生合成 する過程における、 ニコチアナミンのケト体を 2 ' —デォキシムギネ酸に還元す る活性を有するのであれば、 1個又は 2個以上のアミノ酸が他のアミノ酸で置換 されてもよいし、 1個又は 2個以上のアミノ酸が欠失してもよいし、 1個又は 2 個以上のアミノ酸がさらに付加してもよい。 また、 これらの置換、 欠失、 付加が 組み合わされれて生起したアミノ酸配列を有するものであってもよい。
また、 本発明は前記した本発明の還元酵素をコードしてなる遺伝子を提供する ものである。 本発明の遺伝子の好ましい塩基配列は、 配列表の配列番号 3、 配列 番号 4又は配列番号 5のいずれかに記載される塩基配列からなるものであるが、 これに限定されるものではない。 前記したアミノ酸配列をコードするものであれ ば、 これを発現しやすい塩基配列に変更することもできる。 また、 これらの塩基 配列の相補的な配列や、 ストリージェントな条件下で当該塩基配列とハイプリダ ィズし得る塩基配列からなる遺伝子もまた本発明の遺伝子に包含される。
さらに、 本発明の遺伝子の一部からなる塩基配列も本発明に包含される。 これ らの部分的な配列は P C R用のプライマーとしても使用できるものであり、 本発 明はこのような方法に使用される部分配列を包含している。
また、 本発明の遺伝子はその上流に必要なプロモ一夕一領域を有していてもよ い。 このようなプロモ一夕一は下記の配列表に示されるものに限定されるもので はなく、 本発明の遺伝子が導入される植物体に応じてその植物に適したプロモー 夕一を選択することができる。
本発明は、 前記した本発明の遺伝子で形質転換された形質転換体を提供するも のである。 本発明の形質転換体における宿主細胞としては、 大腸菌などの細菌類 やハムスターなどの動物細胞、 植物細胞、 酵母類などの各種の細胞を使用するこ とができる。 これらの形質転換体により本発明の還元酵素を発現させて製造する ことができる。
また、 本発明は、 前記した本発明の遺伝子が導入された植物を提供する。 本発 明の還元酵素の解明によりムギネ酸類の生合成に関与する酵素群の全貌が明らか にされたことから、 鉄獲得機構としてムギネ酸類が鉄キレ一ト剤として作用する ストテジ一I Iを有さない植物においてもこれらの酵素群をコードする遺伝子をセ ットにして植物に導入し、 新たにストラテジ一 I Iによる鉄獲得機構を付与するこ とも可能となる。 したがって、 本発明の遺伝子が導入される植物としては、 スト ラテ一ジ I Iによる鉄獲得機構を有するイネ科植物に限定されるものではないが、 イネ科植物への導入が好ましい。
また、 本発明の遺伝子を単独で導入しても鉄欠乏耐性の強化を期待することは できるが、 好ましくは他の酵素をコードする遺伝子、 好ましくは n a a tを同時 に導入することにより、 より鉄欠乏耐性が強化された植物をえることができる。 前述してきたように、 本発明の還元酵素の解明により第 1図に示されるムギネ 酸類の生合成経路におけるすべての酵素が解明され、 その全貌が明らかになった, したがって、 本発明は、 ストラテ一ジ I Iに関与するムギネ酸類の生合成のための 酵素群を提供するものでもある。 即ち、 本発明はメチォニンを S —アデノシルメ チォニン (S A M ) に変換する 「S—アデノシルメチォニン合成酵素」 、 それを ニコチアナミン (N A ) に変換する 「ニコチアナミン合成酵素」 、 それをケト体 に変換する 「ニコチアナミンァミノ基転移酵素 (N A A T ) 」 、 及び本発明の
「還元酵素」 、 さらにムギネ酸に変換する 「 I D S 3」 などからなる、 鉄キレー ターであるムギネ酸類を生合成させるための酵素のキッ トを提供するものである。 本発明の酵素のキッ トは、 本発明の還元酵素を必須の酵素とし、 他の酵素の少な くとも 1種を含有してなるものであり、 好ましくはメチォニンからの生合成を完 成させ得る全酵素を含有するキッ トである。 本発明の酵素のキッ トを用いること によりメチォニンまたはその生合成過程の生成物からムギネ酸類を簡便に製造さ せることができることになる。
また、 本発明は、 前記した酵素群の各酵素をコードする遺伝子を含有してなる、 鉄欠乏耐性が強化された植物を創生するための遺伝子キッ トを提供するものであ る。 これらの遺伝子を植物に導入することにより鉄欠乏耐性の強化された植物を 創生することができる。 前記した全酵素についてそれらをコードする遺伝子を導 入することにより、 メチォニンからムギネ酸類の生合成過程が強化された植物を 創生することができる。
植物に導入される各酵素の遺伝子は、 当該遺伝子が導入される植物のプロモー 夕一領域を含有している遺伝子であることが好ましい。 また、 各遺伝子が導入さ れる植物としては、 イネ科植物に限定されるものではないが、 イネ科植物が好ま しい。 実施例
次に実施例により本発明をより詳細に説明するが、 本発明はこれらの実施例に 限定されるものではない。 実施例 1 ォォムギの栽培
ォォムギ (Hor deum vu l gare L . cv. E ime adaka no . 1 ) の種子を、 蒸留水で湿 らせたペーパータオル上に並べ、 アルミホイルで遮光して室温に 3日間置き発芽 させた。 芽生えを水耕液に浮かべたネッ トの上に移植し、 ポンプで通気しながら 育てた。 第二葉が現れた後、 2 0 Lの容器に移植し、 水耕栽培を続けた。
水耕液の組成は、 [ 7 X 1 0— 4M K2S〇4、 1 X 1 0— 4M KC し 1 X 1 0 -4 M KH2P 04、 2 X 1 0 - 3M C a (N O 3) 2、 5 X 1 0 "4M Mg S〇 4、 1 X 1 0- 5M H2B 03、 5 X 1 0 "7M Mn S 04、 5 X 1 0 "7M Z n S 04、 2 X 1 0 - 7M C u S O 4 , 1 X 1 0 - 8M (N H4) eMo 024、 1. 5 X 1 0 "4M F e— EDTA] であった。
毎日 p H 5. 5付近になるように水耕液の p Hを I N HC 1で調整した。 水耕 液は蒸留水を用いて調製し、 1週間ごとに取り替えた。 第四葉が現れたら、 根を 蒸留水で洗浄して付着した鉄を除いた後、 鉄分を除いた水耕液に移して、 鉄欠乏 処理を始め目的の期間まで栽培した。 実施例 2 デイジエネレイ トプライマーの設計とそれを用いた P CR
まず、 目的の還元酵素が属すると思われる酵素ファミリ一を見つけることから 始めた。 その結果、 NADH、 NAD PH依存型還元酵素を広く網羅したアルド ケ卜盧元酵禁遺伝子スーパ一ファミリ一 ^aldo-keto reductase gene super f am ily) が最も適切であると考えた。 次に、 そのファミリ一のうちで比較的保存され ているアミノ酸配列をもとに二つの領域を選んだ。 その二つの領域の配列を塩基 配列に置き換えたのを基にしてディジエネレイ トプライマ一を設計した。 デイジ エネレイ トプライマーは合成した。
L D Y V/L D · - · 5 ' - YT I GAYTAYB T I GAC - 3 ' ( 5 ' 側)
Q V/ I E C H · - · 5 ' - RTGR CAYT C 1 AYYTG- 3 ' ( 3 ' 側)
このプライマ一を用いて、 鉄欠乏ォォムギ根の c DN Aライブラリ一を铸型に して P C Rを行った。
その結果、 2 0 0 b p、 5 0 0 b p、 及び 7 0 0 b pの 3つの P CR断片を得 た。 結果を第 2図に示す。 実施例 3 鉄欠乏ォォムギ根で誘導される P C R断片の選抜
P C Rによって増幅した断片のうち目的のものは、 鉄欠乏の根で誘導されるも のと考えられるのでその選抜の方法としてノーザン解析を用いた。 RNAは、 鉄 欠乏を 2週間かけたォォムギの根と地上部をサンプリングしたものから抽出した。 RN Aの抽出方法は以下の通りである。
植物を液体窒素を用いて擦り潰したものを抽出バッファー ( 1 5 OmM L i C l, 5mM E D T A p H 8 , 5 % S D S , 8 0 mMT r i s - H C 1 H 9 ) に溶かした。 次に、 フエノール - クロ口ホルム抽出を 2回行った。 その上 清に 0. 3 M酢酸ナトリウムと 1容量のイソプロパノールを入れて遠心した。 沈 殿物を 3 M塩化リチウムで溶解し 1 0分間氷冷させた後、 遠心した。 沈殿物を 8 0 %エタノールで洗浄して、 滅菌水によって RN Aを溶解した。 保存は - 8 0で で行った。 得られた RNAを 1. 2 %ァガロースゲルに泳動した後、 メンブレン (Hy b o n d— N + , アマシャムフアルマシア) にブロッテイングした。
ハイブリダィゼ一ションに用いるプロ一プは、 P C R断片をそれぞれランダム プライマ一ラベリングキッ ト (Random Primer DNA Labelling Kit) V e r . 2 0 (T a K a R a ) により作製した。 ハイプリダイゼ一シヨンは、 チヤ一チハイ ブリダィゼ一シヨン液 ( 0. 5 Mチヤ一チリン酸バッファー, I mM EDTA, 7 % (w/ v) S D S) を用いて 6 5 °Cで 1 8時間行った。 チャーチハイプリ洗 浄液 ( 4 0 mM チャーチリン酸バッファー, 1 % (w/ V ) S D S) で 6 5°C、 1 0分間を 2回行った。 洗浄後、 メンブレンをサランラップに包んでカセッ ト内 で I Pイメージングプレート (Fuji Film) に 1晚露光した。 画像処理は B A S 2 0 0 0イメージングアナライザ一 (Fuji Film) で行った。
結果を第 3図に示す。 第 3図の 1は 2 0 0 b pの P C R断片を用いたもの、 第 3図の 2は 5 0 O b pの P C R断片を用いたもの、 第 3図の 3は 7 0 0 b pの P CR断片を用いたものである。 実施例 4 スクリーニング
ノ一ザン解析で根で鉄欠乏誘導のみられるものをプローブにして、 コロニーハ イブリダィゼイシヨンにより c D N Aクローンの単離を行った。 アンビシリンを 含んだ L Bプレートに 2 5 0 0 0〜 5 0 0 0 0クロ一ン Z枚になるように計 8枚 に鉄欠乏ォォムギ根 c DNAライブラリ一を塗付した。 1次スクリーニングでポ ジティブなクローンを単一クローンにするように 3次スクリ一二ングまで行った。 そこで得られた c DNAクロ一ンについてはシークェンスを決定した。 実施例 5 活性測定による選抜
スクリーニングで得られた c DN Aクローンについて、 酵素活性を調べた。 用 いるタンパク質は、 酵母に c DNAを形質転換して得られたものを用いた。 また、 ムギネ酸類の生合成経路中のケト体は不安定な化合物であるために、 その前駆体 であるニコチアナミンを出発物とした。 高橋らの方法 (Takahashi, ei al. , Pla nt Physiol., 121, 947-956 (1999)) による N A A T活性測定法に準じて行った。 ニコチアナミンを NAATで反応させケト体を作った後、 N a BH4による化学的 還元の代わりに得られた c DNAクローンより発現させたタンパク質を反応させ た。 用いたタンパク質は全て酵母を破砕して得られたタンパク質を分子量 3 0 k D a以上のものを ウルトラフリ一 (Ultrafree) C 3 - L TK (Japan milli pore Co.) にトラップして、 そのカップ上で酵素反応させた。 還元酵素の反応に 用いるバッファ一は、 0. 1 M T r i s, 0. I mM EDTA, 1 0mM NAD ( P ) H, p H 8. 5を用いた。 コントロールとして、 インサートの入つ ていないベクター (p YH 2 3) から発現させたタンパク質を用いた。 活性量は、 H P L Cを用いて DM A量を検出することにより測定した。
結果を第 4図に示す。 第 4図の 1は DMAのみの場合であり、 標準 DMAにお ける保持時間 (retention time) を示す。 第 4図の 2は還元酵素遺伝子 1を発現 させたものである。 第 4図の 3は還元酵素遺伝子 2を発現させたものである。 第 4図の 4は還元酵素遺伝子 5を発現させたものである。 第 4図の 5は還元酵素遺 伝子 7を発現させたものである。 第 4図の 6は N a B H 4による化学的な還元の場 合であり、 第 4図の 7はコントロールベクタ一 ( P YH 2 3 ) を発現させたもの である。
ベクターでのみで行ったとき (第 4図の 7 ) と比べて多く DMAがみられるも のを活性ありと判断した。 その結果、 還元酵素遺伝子 7 (第 4図の 5) の c DN Aから得られたタンパク質以外では DMAが検出された。 そのうち、 還元酵素遺 伝子 2 (第 4図の 3) と還元酵素遺伝子 5 (第 4図の 4) の c DNAのものが最 も高い活性がみられた。 実施例 6 ノーザン解析
得られた c DN Aクローンのうち活性がみられたものについて、 鉄欠乏に対す る経時的変化をノーザン解析により行った。 用いた RNAはォォムギ根の鉄欠乏 をかける直前 (0 日目) と、 かけてから 2、 4、 7、 1 4日目、 さらに鉄欠乏を かけてから 1 4日経過したものに 5 日間鉄を与え続けたものの計 6サンプルであ る。 RN Aの泳動から画像処理までは、 P C R断片のノーザン解析と同様に行つ た。
結果を第 5図に示す。 第 5図の 1は還元酵素遺伝子 1を用いたものであり、 第 5図の 2は還元酵素遺伝子 2を用いたものである。 第 5図の 0 d、 2 d、 4 d、 7 d、 1 4 d及び 5 dは、 それぞれォォムギ根の鉄欠乏処理 0、 2、 4、 7、 1 4日目、 及び鉄欠乏処理 1 4日目から鉄を再投与し続けてから 5日目のものを示 す。
この結果、 いずれの遺伝子においても鉄欠乏が進むにつれて発現が誘導されて おり、 さらに、 鉄を与えたことでの発現が減少することがわかった (第 5図の 5 d) 。 実施例 7 本発明の還元酵素遺伝子とダルタチオン還元酵素遺伝子の金属ストレ スに対する発現応答
イネの還元酵素遺伝子 (DMAS l , DMA S 2) と、 イネのグルタチオン還 元酵素遺伝子 (GR) の塩基配列を比較すると、 前者は G Rの一部であることが わかる。 したがって、 GRそのものが鉄欠乏で誘導されてその産物であるダル夕 チオン還元酵素そのものが DMA S活性を持った可能性がある。 この可否を確認 するために、 G R遗伝子の 5 '上流のみに属する塩基配列をプローブにして、 鉄と 亜鉛の金属ストレス下でのノーザン法による遺伝子発現を調べた。 ( 1 ) 植物材料
ォォムギ (Hordeum vulgare L. cv. Eh imehadaka no.1) の種子を、 蒸留水で湿 らせたペーパータオル上に並べ、 アルミホイルで遮光して室温に 3日間置き発芽 させた。 芽生えを水耕液に浮かべたネッ トの上に移植し、 ポンプで通気しながら 育てた。 第二葉が現れた後、 2 0 Lの容器に移植し、 水耕栽培を続けた。 水耕液 の組成は [ 7 X 1 0— 4M K S 0 1 X 1 0— 4M KC 1 、 1 X 1 0— 4M K H2P 04、 2 X 1 0 "3Μ C a (N O 3) 、 2. 5 X 1 0 ~4U Mg S 04、 I X 1 0— 5M H2B〇 3、 5 X 1 0— 7M Mn S 04、 5 X 1 0— 7M Z n S〇4、 2 X 1 0 - 7M C u S O 1 X 1 0 -8 M (NH4) 6Mo 724、 1. 5 X 1 0一4 M F e— EDTA] とした。 毎日 pH 5. 5付近になるように水耕液の p Hを I N HC 1で調整した。 水耕液は蒸留水を用いて調製し、 1週間ごとに取り替え た。 第四葉が現れたら、 根を蒸留水で洗浄して付着している金属を除いた後、 各 々の金属 (F e、 Z n) だけを除いた水耕液に移して、 金属欠乏処理 (F e、 Z n) を始め、 目的の期間まで栽培した。
(2 ) ノーザン解析
金属欠乏 (F e、 Z n) をかけたォォムギの根と地上部をサンプリングし、 R N Aを抽出した。
R N Aの抽出方法は以下の通りである。
液体窒素で凍結した植物を乳鉢中で擦り潰し、 抽出バッファー ( 1 5 0mM L i C l、 5 mM EDTA p H 8、 5 % S D S、 8 0 mM T r i s - H C 1 p H 9 ) に溶解した。 次に、 フエノールークロロホルムによる抽出を 2回行った。 得られた上清に 0. 3 M酢酸ナトリウムと 1容量のィソプロパノールを入れて遠 心した。 沈殿物を 3 M塩化リチウムで溶解し 1 0分間氷冷した後、 さらに遠心し た。 その沈殿物を 8 0 %エタノールで洗浄した後、 滅菌水により RN Aを溶解し た。 保存は— 8 0 °Cで行った。
得られた RNAを 1 . 2 %ァガロースゲルに泳動した後、 メンブレン (Hy b 0 n d— N +、 アマシャムフアルマシア) にブロッテイングした。
ハイプリダイゼィションに用いたプローブは、 P C R断片をそれぞれランダム プライマーラベリングキッ ト (Random Primer DNA Labelling Kit) V e r . 2. 0 (T a K a R a ) により標識して作製した。 ハイブリダィゼイシヨンは、 チヤ —チハイブリダィゼイシヨン液 ( 0. 5 Mチヤ一チリン酸バッファ一、 I mM EDTA、 7 % (w/v) S D S) を用いて 6 5 °Cで 1 8時間行った。 洗浄は、 チャーチハイブリ洗浄液 ( 40 mMチヤ一チリン酸バッファ一、 1 % (w/ V ) S D S) で 6 5°C、 1 0分間を 2回行った。 洗浄後、 メンブレンをサランラップ に包み、 カセッ ト内で I Pイメージングプレート (Fuji Film) に 1晚露光した。 画像処理は B A S 3 0 0 0イメージングアナライザ一 (Fuj i Film) で行った。
( 3) 結果と考察
第 1 0図に DMA S 1の配列 (第 1 1図の広く四角で囲った、 DMA S l , D MAS 2 , G Rの共通配列に相当する) をプローブにしてノーザンした結果を示 す。 これは鉄欠乏の根部で強く発現している (ほかに、 亜鉛欠乏の根部と地上部 (葉、 茎等) でも比較的強く発現している) 。 しかし GR固有の配列 (第 1 1図 の細長四角で囲った配列) をプローブにした場合は、 対照区 (コントロール) で も、 どのストレス下でも発現していない。 この 2つの結果は G Rの遺伝子発現が 鉄欠乏と何ら関係がないことを意味しており、 通常条件でもほとんど発現してい ない遺伝子であることを示している。 逆に DMAS 1または DMAS 2がォォム ギの鉄欠乏の根部で強く誘導される遺伝子であることを示している。 したがって DMASは鉄欠乏条件下で遺伝子発現が誘導され、 ケト体からデォキシムギネ酸 を合成する酵素であると結論できる。 DMASのゲノム遺伝子はまだク口一ニン グされていないが、 このゲノム遺伝子の 5 '上流にはまだ未知の鉄欠乏応答性シス エレメントが含まれていると考えられる。 産業上の利用可能性
本発明は、 植物の鉄獲得機構に関与するムギネ酸類を生合成する過程における、 ニコチアナミンのケト体を 2 ' —デォキシムギネ酸に還元する還元酵素、 それを コードする遺伝子、 及び当該遺伝子が導入されることによる鉄欠乏耐性が強化さ れた植物を提供するものである。 植物の鉄欠乏耐性を強化することにより、 アル 力リ土壌などの鉄の供給が困難な土壌においても植物の栽培が可能となり、 栽培 可能な耕地面積が拡大され、 今後の食糧問題や資源問題を解決することが可能と なる。 また、 本発明の還元酵素の解明により植物のムギネ酸類の生合成経路の全 貌を解明することができた。 したがって、 これらの生合成に関与している酵素群, 及びそれらをコードする遺伝子を用いて、 鉄欠乏耐性を格段に強化した植物を創 生するも可能となった。
したがって、 本発明は、 ムギネ酸類の生合成に必要な一連の酵素系、 及びそれ らをコ一ドする一連の遺伝子系を提供するものであり、 これにより植物にストラ テージ I Iによる鉄獲得機構を付与させることも可能となる。

Claims

請 求 の 範 囲
1 . ニコチアナミンのケト体を 2 ' ーデォキシムギネ酸に還元する還元酵素。
2 . 還元酵素が、 ォォムギ由来のものである請求の範囲第 1項に記載の還元酵 素。
3 . 還元酵素が、 配列表の配列番号 1又は 2に記載されるアミノ酸配列、 又は 当該アミノ酸配列における 1個若しくは 2個以上のアミノ酸が欠失、 付加若しく は置換されてなるアミノ酸配列からなるものである請求の範囲第 1項又は第 2項 に記載の還元酵素。
4 . 請求の範囲第 1項〜第 3項のいずれかに記載の還元酵素をコ一ドしてなる 遺 子。
5 . 遺伝子が、 配列表の配列番号 3、 配列番号 4又は配列番号 5のいずれかに 記載される塩基酸配列、 又はストリージェン卜な条件下で当該塩基配列とハイブ リダイズし得る塩基配列からなるものである請求の範囲第 4項に記載の遺伝子。
6 . 請求の範囲第 4項又は第 5項に記載の遺伝子で形質転換された形質転換体,
7 . 形質転換体の宿主細胞が、 植物細胞である請求の範囲第 6項に記載の形質 転換体。
8 . 請求の範囲第 4項又は第 5項に記載の遺伝子が導入された植物。
9 . 植物がィネ科植物である請求の範囲第 8項に記載の植物。
1 0. 鉄欠乏耐性が強化された植物である請求の範囲第 8項又は第 9項に記載 の植物。
1 1. 請求の範囲第 1項〜第 3項に記載の還元酵素、 及び鉄キレーターである ムギネ酸類を生合成させるための少なくとも 1種の他の酵素を含有してなる、 鉄 キレ一ターであるムギネ酸類を生合成させるための酵素のキッ ト。
1 2. 請求の範囲第 4項又は第 5項に記載の遺伝子、 及び鉄キレ一夕一である ムギネ酸類を生合成させるための少なくとも 1種の他の酵素をコ一ドする遺伝子 を含有してなる、 鉄欠乏耐性が強化された植物を創生するための遺伝子キッ ト。
1 3. 遺伝子が、 当該遺伝子が導入される植物のプロモーター領域を含有して いる遺伝子である請求の範囲第 1 2項に記載の遺伝子キッ ト。
1 4. 遺伝子が導入される植物がイネ科植物である請求の範囲第 1 3項に記載 の遺伝子キッ ト。
PCT/JP2002/001940 2001-03-23 2002-03-04 Synthase d'acide desoxymugineique et gene de cette synthase WO2002077240A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002576682A JPWO2002077240A1 (ja) 2001-03-23 2002-03-04 デオキシムギネ酸合成酵素及びその遺伝子
US10/399,608 US20040093634A1 (en) 2001-03-23 2002-03-04 Deoxymugineic acid synthase and gene thereof
KR10-2003-7005264A KR20030084892A (ko) 2001-03-23 2002-03-04 데옥시뮤기네산 합성효소 및 그의 유전자
EP02702724A EP1380647A4 (en) 2001-03-23 2002-03-04 DEOXYMUGINEIC ACID SYNTHASE AND GENE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001086162 2001-03-23
JP2001-86162 2001-03-23

Publications (1)

Publication Number Publication Date
WO2002077240A1 true WO2002077240A1 (fr) 2002-10-03

Family

ID=18941579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001940 WO2002077240A1 (fr) 2001-03-23 2002-03-04 Synthase d'acide desoxymugineique et gene de cette synthase

Country Status (6)

Country Link
US (1) US20040093634A1 (ja)
EP (1) EP1380647A4 (ja)
JP (1) JPWO2002077240A1 (ja)
KR (1) KR20030084892A (ja)
CN (1) CN1213147C (ja)
WO (1) WO2002077240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043203A (ja) * 2006-08-10 2008-02-28 Japan Science & Technology Agency デオキシムギネ酸合成酵素およびその利用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255336B1 (ko) * 2009-12-10 2013-04-16 포항공과대학교 산학협력단 미량 원소 함량이 증가된 벼 품종 및 이를 이용한 기능성 식품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860499A2 (en) * 1997-02-21 1998-08-26 Sumitomo Chemical Company Limited Nicotianamine aminotrassferase and gene therefor
WO2001001762A1 (fr) * 1999-07-05 2001-01-11 Japan Science And Technology Corporation Production de riz resistant aux carences en fer
JP2001017181A (ja) * 1999-07-09 2001-01-23 Japan Science & Technology Corp 鉄欠乏オオムギ根に出現する36kDaタンパク質の遺伝子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0860499A2 (en) * 1997-02-21 1998-08-26 Sumitomo Chemical Company Limited Nicotianamine aminotrassferase and gene therefor
WO2001001762A1 (fr) * 1999-07-05 2001-01-11 Japan Science And Technology Corporation Production de riz resistant aux carences en fer
JP2001017181A (ja) * 1999-07-09 2001-01-23 Japan Science & Technology Corp 鉄欠乏オオムギ根に出現する36kDaタンパク質の遺伝子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAMINAKA H. ET AL.: "Gene cloning expression of cytosolic glutathione reductase in rice (Oryza sativa L.)", PLANT CELL PHYSIOL., vol. 39, no. 12, 1998, pages 1269 - 1280, XP002952404 *
NEGISHI TAKAYUKI ET AL.: "Deoxymugineic acid gosei koso idenshi no cloning", JAPANESE SOCIETY OF SOIL SCIENCE AND PLANT NUTRITION KOEN YOSHISHU, vol. 47, 25 March 2001 (2001-03-25), pages 65, XP002956314 *
See also references of EP1380647A4 *
STEVENS R.G. ET AL.: "Cloning and characterization of a sytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress", PLANT MOL. BIOL., vol. 35, no. 5, 1997, pages 641 - 654, XP002952403 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043203A (ja) * 2006-08-10 2008-02-28 Japan Science & Technology Agency デオキシムギネ酸合成酵素およびその利用

Also Published As

Publication number Publication date
US20040093634A1 (en) 2004-05-13
CN1213147C (zh) 2005-08-03
CN1484704A (zh) 2004-03-24
KR20030084892A (ko) 2003-11-01
EP1380647A4 (en) 2004-12-08
JPWO2002077240A1 (ja) 2004-07-15
EP1380647A1 (en) 2004-01-14

Similar Documents

Publication Publication Date Title
Lescano et al. Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants
Koike et al. OsYSL2 is a rice metal‐nicotianamine transporter that is regulated by iron and expressed in the phloem
CN107541520B (zh) 与水稻根发育和抗逆性相关OsSAUR11基因及编码蛋白与应用
CN102943084B (zh) 水稻抗逆相关基因OsPP2C44及其编码蛋白与应用
CN116179589B (zh) SlPRMT5基因及其蛋白在调控番茄果实产量中的应用
CN110923253B (zh) OsPTP1在植物磷高效育种中的应用
Nozoye et al. Diurnal changes in the expression of genes that participate im phytosiderophore synthesis in rice
WO2002077240A1 (fr) Synthase d'acide desoxymugineique et gene de cette synthase
CN114350673B (zh) 一种调控种子活力的水稻kob1基因及其调控方法
CN115851783A (zh) HvSRLP基因及其调控植物对镉耐受性和镉积累中的用途
CN112708603B (zh) 水稻are2基因在植物氮代谢调控中的应用
CN113584047B (zh) 大麦HvNAT2基因及其用途
CN104805093B (zh) 水稻基因OsLOL3在延缓植物叶片衰老和提高植物耐旱性中的应用
CN108165557A (zh) 小麦TaZCCT2基因在调控植物开花时间中的应用
CN113930440B (zh) 一种通过抑制OsSDP基因表达提高水稻耐盐性的方法
JP5164093B2 (ja) イネの病原菌に対する抵抗性を高める方法及び病原菌耐性イネ形質転換体
CN109956996B (zh) 一种谷子产量相关蛋白SiAMP1及其编码基因与应用
CN101157921B (zh) 培育抗旱和/或在逆境中延迟生长植物的方法
JPWO2006126294A1 (ja) ムギネ酸鉄錯体選択的トランスポーター遺伝子
CN112941057B (zh) ZmGGH基因的应用及调控玉米叶酸含量的材料及方法
KR101231142B1 (ko) Ids 유전자가 포함된 식물체 개화 촉진용 조성물
KR101965971B1 (ko) 인산 결핍 유도 프로모터 및 이의 용도
CN117683104A (zh) 大豆抗旱性基因GmACO9及其编码的蛋白和应用
CN117947080A (zh) Nest1基因在调节水稻耐盐性中的应用
CN118562818A (zh) 大麦HvHKT1.4基因、蛋白、载体、应用及鉴定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR PH US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002576682

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037005264

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10399608

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1-2003-500307

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 028034260

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002702724

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037005264

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002702724

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002702724

Country of ref document: EP