WO2002075271A1 - Lagerelement, sowie messvorrichtung - Google Patents

Lagerelement, sowie messvorrichtung Download PDF

Info

Publication number
WO2002075271A1
WO2002075271A1 PCT/EP2002/003010 EP0203010W WO02075271A1 WO 2002075271 A1 WO2002075271 A1 WO 2002075271A1 EP 0203010 W EP0203010 W EP 0203010W WO 02075271 A1 WO02075271 A1 WO 02075271A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing element
bearing
measuring
plate
measuring device
Prior art date
Application number
PCT/EP2002/003010
Other languages
English (en)
French (fr)
Inventor
Jochen Corts
Original Assignee
Jochen Corts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jochen Corts filed Critical Jochen Corts
Publication of WO2002075271A1 publication Critical patent/WO2002075271A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/02Rolling stand frames or housings; Roll mountings ; Roll chocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2203/00Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
    • B21B2203/38Strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B28/00Maintaining rolls or rolling equipment in effective condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/07Adaptation of roll neck bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • F16C17/246Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety related to wear, e.g. sensors for measuring wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/12Rolling apparatus, e.g. rolling stands, rolls

Definitions

  • the present invention relates to a bearing element, in particular a plate-shaped flat slide bearing or guide element for roll stands, which has at least one slide bearing surface that can be brought into contact with a component and is subject to wear during operation.
  • the invention further relates to an essvorrich- device for determining the wear and stress condition of bearing elements.
  • Bearing elements of the type mentioned are known as so-called wear plates or flat guide elements for roll stands of rolling mills. They can be used in particular in the construction of heavy machinery or rolling mills and are designed to withstand particularly high loads.
  • a roll stand comprises a stand and chocks that receive the rolls. Wear plates are used both on the stand and the chocks, which are exposed to considerable loads and wear during the rolling process. The quality of the rolled goods largely depends on the tolerances between the wear plates attached to the stand and the chocks.
  • the mechanical forces applied by the rolling stock to the rollers are transferred to roller bearings and are transferred from the chocks receiving these roller bearings to the opposite wear plates of the roller stand by means of the wear plates.
  • the distance between the opposite wear plates in contact with their slide bearing surfaces should be as small as possible and is closely tolerated, so that precise guidance is ensured and the surface pressures between the wear plates of the roll stand and the chocks can be kept as low as possible.
  • the precision and stability of the wear plates has a decisive influence on the mechanical behavior of the entire roll stand. If the wear plates show a high level of wear and the strengths have possibly decreased locally compared to the original values, then the bearing gap between the wear plates increases considerably and precise mechanical control of the rolling mill is no longer guaranteed.
  • the object of the present invention is to provide a bearing element which can be measured in terms of thickness in a simple manner by means of a measuring device.
  • a further object of the invention is to provide a measuring device for determining the wear state of bearing elements, in particular plate-shaped plain bearing or guide elements for roll stands.
  • the invention achieves the object according to a first aspect in a bearing element of the type mentioned at the beginning by at least one extending from the sliding bearing surface into the interior of the bearing element to a reference surface Measuring bore.
  • a suitable measuring device such as a depth gauge.
  • the invention is achieved with a bearing element of the type mentioned at the outset by means of a machine-readable data carrier fastened to the bearing element.
  • each bearing element can be identified and easily identified by reading the data content of the data carrier.
  • wear plates bearing elements in the form of plate-shaped slide bearing or guide elements, which are also referred to below as wear plates.
  • data processing systems can be used to generate a status picture of the roll stand, particularly with regard to the distances and tolerances between the chocks and the roll stand, so that it can be determined that whether the rollers can be stored in the desired positions or whether the wear plates have to be replaced due to excessive wear.
  • the machine-readable data carrier is preferably designed as a transponder with a microchip and antenna.
  • Such transponders store data on the respective bearing element in a simple and efficient manner, which can be transmitted contactlessly by means of magnetic fields using an antenna and a reading device.
  • the bearing element is further developed in that the measuring bore has an internal thread and can be closed with a threaded pin.
  • the grub screw prevents particles, liquids and other contaminants from entering the measuring bore, for example scale or cooling water.
  • the threaded pin have a recess which can be positively engaged with a turning tool and in operation is substantially aligned with the contact surface of the bearing element, so that the threaded pin can be inserted and removed easily.
  • the measuring bore is expediently designed as a through-bore and the reference surface is formed by a surface of the bearing element opposite the slide bearing surface or on a component receiving the bearing element.
  • the bearing elements designed as wear plates for roll stands are fastened to the roll stand or an installation piece of a roll set, which represent the component having the reference surface.
  • a plurality of measuring bores are preferably arranged distributed over the surface and are formed in particular in the edge region of a wear plate, since particularly high wear occurs there.
  • the invention achieves the object in accordance with a further aspect with a measuring device with the features of claim 10.
  • the state of several wear plates of rolling stands can be determined by taking thickness measurements on wear plates, the detector first scanning the machine-readable data carrier, preferably a transponder, in order to identify a specific wear plate, then the thickness measurement at several locations of a bearing element is carried out, the recorded measured values are then fed to the electronic computer system, where the recorded measured values are processed taking into account the data recorded on the data carrier of the respective wear plate.
  • the tolerance between the components can be determined, so that it can then be decided whether the wear plates have to be replaced due to excessive wear.
  • rolling parameters can also be readjusted, for example the rolling pressure on the chocks.
  • the measuring device is expediently designed as a depth measuring device and the data carrier as a transponder.
  • the measuring device emits a signal in the form of light, ultrasound or electromagnetic waves in the direction of the reference surface, from which the signal is reflected and recorded by the measuring device in order to determine the strength. Further advantageous developments result from the subclaims.
  • Another object of the invention is to provide a slide bearing element which is able to measure the distance to the respective counter surface.
  • the sensors are preferably installed in the bearing elements of the chocks and send their signals from the slide bearing plates of the chocks in the direction of the opposite sliding surfaces of the slide bearing plates that are installed in the roller stand.
  • the invention also achieves the object of measuring the pressure which is exerted on a bearing element designed as a bearing plate by measuring by means of suitable, in particular piezoelectric pressure sensors or via strain gauges or other suitable methods.
  • Figure 1 shows a bearing element 2 according to the invention in the form of a wear plate as a top view;
  • Figure 2 shows a bearing element according to the invention in a cross section
  • Figure 3 shows a bearing element according to the invention, attached to another component, in a cross-sectional view
  • Figure 4 shows a rolling stand with bearing elements according to the invention designed as plates in a schematic representation
  • Figure 5 shows a measuring device according to the invention together with the bearing element according to the invention in a schematic representation
  • Figure 6 shows an inventive bearing element with built-in distance and pressure sensor and an accelerometer in section.
  • FIG. 1 shows a bearing element 2 according to the invention in the form of a wear plate for a rolling stand 4 of a rolling mill, which is shown schematically in FIG.
  • the bearing element 2 can be used in various plain bearings or guides and is designed in particular for high loads.
  • bearing elements 2 are used on the roll stand 4, in particular as stand plates 6, 8, which are fastened to the roll stand 10, and as chock plates 12, 14, 16, 18, which are attached to the chocks 20 of the upper or of the lower set of rollers 22, 24 are attached.
  • Each set of rolls 22, 24 has a rolls 27, 28 coming into contact with the rolling stock 26.
  • each roll set has a total of four chock plates 12, 14, 16, 18, and the roll stand 10 has a total of four stand plates 6, 8; the plates 6, 8, 12, 14, 16, 18 are also referred to below as bearing elements 2 according to the invention.
  • a flat bearing element 2 according to the invention has a cuboid or rectangular slide bearing surface 30 which is in contact with an opposing component during operation and is subject to wear. It can be seen in FIG. 4 that, for example, the insert plate 12 is in contact with its slide bearing surface 30 with an opposite slide bearing surface 30 of the stator plate 6.
  • the bearing elements 2 according to the invention can also be used on other slide bearings or guides of heavy engineering.
  • the bearing elements 2 have at least one, in the exemplary embodiment a total of nine measuring bores 32, which are designed as cylindrical through bores and extend from the slide bearing surface 30 into the interior of the bearing element 2 up to a reference surface 34.
  • Each measuring bore 32 has a continuous internal thread 36.
  • a set screw 38 shown in FIG. 2 can be screwed into the measuring bore 32 with the aid of a turning tool, not shown, which can be positively engaged with a recess 40 which is designed as an internal hexagon.
  • the component 3 can also be referred to as a support plate.
  • the bearing element 2 is fastened to a further component 3, which has the reference surface 34.
  • the further component 3 can be, for example, a chock 20 shown in FIG. 4, which receives the plate 12 according to the invention or a stand 10, which receives a stand plate 6 according to the invention.
  • the measuring bores 32 extend from the slide bearing surfaces 30 to the stand 10 or the mounting piece 20 which has the reference surface 34.
  • the measuring bore can be designed as a blind bore and the reference surface 34 at the bottom of such a blind bore, and thus, in a manner not shown be formed on the bearing element 2.
  • the measuring bores 32 are formed in the edge region of the bearing element 2 formed as a plate, with the exception of a central measuring bore 32.
  • FIGS. 2 and 3 there is a machine-readable data carrier 42 in the form of a transponder with a microchip and antenna on the bearing element 2 attached and arranged in a milled recess 44, which can also be called a pocket, and glued there.
  • the data carrier 42 stores in the chip data relating to the specific bearing element so that it can be identified, as well as any other data relating to the service life of the bearing element 2, its strength, dimensions or the like.
  • Each bearing element 2 shown in FIG. 4 in the form of the plates 6, 8 , 12, 14, 16, 18 has a data carrier 42.
  • the stored data also relate to the position of the plates 6, 8, 12, 14, 16, 18 within the roll stand 4, ie the exact position on the stand 10 or the roller sets 22, 24.
  • the data can be saved, changed, can be added or deleted.
  • the data exchange between the transponder and a detector or reader takes place without contact via magnetic fields in different frequency ranges.
  • the detector is explained in more detail below with reference to FIG. 5.
  • a transponder such as that offered by Schreiner Datango- und Codetik GmbH & Co. KG, 80995 Kunststoff, can be used.
  • FIG. 5 schematically illustrates a measuring device 46 according to the invention for determining the state of wear of bearing elements 2, in particular plates 6, 8, 12, 14, 16, 18 for roll stands 4.
  • the measuring device 46 has an electronic computer system 50 housed in a housing 48, which contains an input device 52 in the form of a keyboard, a display device 54 for displaying data and / or diagrams, an electronic data memory 56 and a microprocessor 58.
  • An interface 60 can be used to transmit data to or from the computer system 50.
  • the measuring device 46 further comprises a measuring device 64 for measuring the thickness or thickness of a bearing element 2, which is coupled to the computer system 50 by means of the interface 60 and a line 62, and a detector 68 for machine reading, which is also coupled to the computer system 50 by means of an interface 60 and a line 66 of the machine-readable data carrier 42 assigned to the bearing element 2 in the form of the transponder.
  • the measuring device 64 is designed as a depth measuring device that either works mechanically or emits a signal in the form of light, ultrasound or electromagnetic waves, as shown schematically in FIG. is set, and is positioned relative to the measuring bore 32 of the bearing element 2 in such a way that the signal passes axially through the measuring bore 32, then reflects onto the reference surface 34 formed on the component 3, and passes through the measuring bore 32 back towards the measuring device 64.
  • the measuring device 64 is equipped with a signal pickup.
  • the thickness S of the bearing element 2 in the region of the measuring bore 32 can be determined by means of a transit time measurement of the signal for passing through the measuring bore 32.
  • the strength measurement value provided by the measuring device 64 is fed to the computer system 50 by means of line 62.
  • the detector 65 reads the data stored in the data carrier 42 (transponder) and also transmits this via line 66 to the computer system 50.
  • a bearing element 2 according to the invention is attached to a component 3.
  • the plates 6, 8, 12, 14, 16, 18 are attached to the stand 10 or the chocks 20 and brought into their operating position.
  • Setscrews 38 (FIG. 2) are screwed into the measuring bores 32, so that they are either aligned with their upper side with the sliding bearing surface 30 or somewhat below the sliding bearing surface 30 within the measuring bore 32. 4, the bearing elements 2 move during operation, so that the sliding bearing surfaces 30 wear out.
  • the bearing elements are designed to take high and extreme loads, especially in heavy machinery or rolling mill construction.
  • the operation is interrupted.
  • the roller sets 22, 24 are removed from the stand 10.
  • the set screws 38 are then screwed out of the measuring bores 32 by inserting a turning tool into the recess 40.
  • the detector 65 of the measuring device 46 according to the invention is moved into the vicinity of the data device designed as a transponder. brought carrier 42 and arranged above the recess 44 that the data stored in the chip of the transponder is read and transmitted to the computer system in the manner described above.
  • the measuring device 64 depth gauge
  • the measuring device 64 is placed above a measuring bore 32 of the bearing element 2 and a measured value for the thickness or thickness of the bearing element 2 is generated in the area of this measuring bore. This measured value is also transmitted to the computer system 50 of the measuring device 46. The set screw 38 is then screwed back into the measuring bore 32.
  • a topography or, in other words, a thickness profile of a bearing element 2 can be determined on the basis of the multiple measured values of a bearing element 2, and the data are stored in the memory 56.
  • a topography of all the bearing elements 2 of a roll stand 4 is generated with the aid of position data of the bearing elements 2, which are pre-stored in the memory 56, and also position data of the measuring bores 32 on a bearing element 2.
  • the distance between the sliding bearing surfaces 30 and the distance and the tolerance between the bearing elements 2 of a roll stand can be determined by calculation.
  • the so-called opening of a window of a roll stand 4, ie an opening gap between opposite bearing elements 2 can also be determined.
  • the entire state of a roll stand, in particular the topographies of the bearing elements 2 and also the openings of a roll stand window and of columns, can be graphically displayed and checked on the display 54. On the basis of the measured values determined, it can be decided whether individual bearing elements 2 have to be exchanged or surface-treated.
  • the topography of the plates 12, 14, 16, 18 mounted on them can be determined in the same way by measuring the chocks.
  • FIG. 6 shows the transducers 70 for the distance measurement, the pressure measurement 72 and the acceleration measurement 74, which are preferably installed in the bearing elements 12, 14, 16, 18 of the chocks 20.
  • the measuring sensors for the distance measurement 70 send their measurement signals from the slide bearing plates 12, 14, 16, 18 in the direction of the respectively opposite sliding surfaces of the slide bearing plates 6 and 8, which are each installed in the roller stand 10 (shown as an arrow).
  • the distance between the chock plates 12, 14, 16 and 18 from the roller stand plates 6 and 8 is measured by evaluating the differential states of the pulses sent and received by the transducer 70. The measurement can also take place in another direction.
  • the transducers for pressure 72 and for acceleration 74 either determine the pressurized contact of the slide bearing surfaces of the bearing plates 12, 14, 16 and 18 and the counter plates 6 and 8 or they measure the acceleration due to the movement using suitable methods.
  • the recorded measured values are either transmitted via cable 78 or via a suitable transmission unit 80 to a suitable measured value computer 82. wear.
  • This transmission unit can be designed, for example, in the form of a suitable transmission unit.
  • one or more transducers can be built into the bearing elements, in particular a slide bearing plate, and dynamically inductively measure the distance to an opposite counter surface by means of ultrasound or similar measuring methods.
  • the sensors which are built into the slide bearing plate, are designed and suitable to measure the pressure load on the slide bearing plate piezoelectrically, by means of strain gauges or the like.
  • one or more transducers are built into the slide bearing plate and designed and suitable to measure the acceleration of the slide bearing plate.
  • measurement sensors can be included in the slide bearing element, which feed the recorded distance measurement values to a computer system, so that the distance of the slide bearing surfaces from one another can be measured with the aid of pre-stored position data of the measurement points.
  • the pressure load on the plain bearing surface can be measured using pre-stored position data of the measuring points.
  • the acceleration of a slide bearing element can be recorded by means of acceleration sensors, and the recorded measurement values are fed to a computer system, so that the movement behavior of the slide bearing element can be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Die Erfindung betrifft ein Lagerelement (2), insbesondere plattenförmiges Gleitlageroder Führungselement für Walzgerüste, welches mindestens eine mit einem Bauteil in Kontakt bringbare und im Betrieb verschleiss unterliegende Gleitlagerfläche (30) aufweist. Die Erfindung ist gekennzeichnet durch mindestens eine sich von der Gleitlagerfläche in das innere des Lagerelements bis zu einer Referenzfläche (34) erstreckende Messbohrung (32).

Description

LAGERELEMENT , SOWIE MESSVORRICHTUNG
Die vorliegende Erfindung betrifft ein Lagerelement, insbesondere ein plattenförmi- ges flächiges Gleitlager- oder Führungselement für Walzgerüste, welches mindestens eine mit einem Bauteil in Kontakt bringbare und im Betrieb Verschleiß unterliegende Gleitlagerfläche aufweist. Die Erfindung betrifft ferner eine essvorrich- tung zum Ermitteln des Verschleiß- und Belastungszustandes von Lagerelementen.
Lagerelemente der eingangs genannten Art sind als sogenannte Verschleißplatten oder Flachführungselemente für Walzgerüste von Walzwerken bekannt. Sie sind insbesondere im Schwermaschinen- oder Walzwerksbau einsetzbar und zur Aufnahme besonders hoher Lasten ausgelegt. Ein Walzgerüst umfasst einen Ständer und die Walzen aufnehmende Einbaustücke. Sowohl am Ständer als auch den Einbaustücken kommen Verschleißplatten zum Einsatz, die während des Walzvorganges erheblichen Belastungen und Verschleiß ausgesetzt sind. Die Qualität des gewalzten Gutes hängt maßgeblich von den Toleranzen zwischen den am Ständer und den Einbaustücken befestigten Verschleißplatten ab. Während des Walzprozesses übertragen sich die von dem Walzgut auf die Walzen aufgebrachten mechanischen Kräfte auf Walzenlager und werden von den diese Walzenlager aufnehmenden Einbaustücken mittels der Verschleißplatten auf die gegenüberliegenden Verschleißplatten des Walzenständers übertragen. Der Abstand zwischen den gegenüberliegenden, mit ihren Gleitlagerflächen in Kontakt stehenden Verschleißplatten soll möglichst gering sein und ist eng toleriert, so dass eine präzise Führung gewährleistet und die Flächenpressungen zwischen den Verschleißplatten des Walzenständers und der Einbaustücke möglichst gering gehalten werden können. Die Präzision und Stabilität der Verschleißplatten hat einen entscheidenden Einfluss auf das mechanische Verhalten des gesamten Walzenständers. Wenn die Verschleißplatten einen hohen Verschleiß aufweisen und sich die Stärken gegenüber den ursprünglichen Werten ggf. lokal verringert haben, dann vergrößert sich der Lagerspalt zwischen den Verschleißplatten stark und eine präzise mechanische Regelung der Walzstraße ist nicht mehr gewährleistet.
Zur Feststellung des Verschleißes werden deshalb regelmäßige Vermessungen vorgenommen. Hierzu werden die aus den Walzen und Einbaustücken bestehenden Walzensätze aus dem Walzenständer entnommen. Dann kann die Stärke der Verschleißplatten des Walzgerüstes und der Einbaustücke gemessen werden. Hierzu wird mit aufwendigen Messapparaturen der Abstand der Gleitlagerflächen gegenüberliegender, am Walzständer und an den Einbaustücken befestigter Verschleißplatten ermittelt, was sehr zeitaufwendig ist.
Aufgabe der vorliegenden Erfindung ist es, ein Lagerelement bereitzustellen, welches auf einfache Weise mittels eines Messgerätes hinsichtlich der Stärke vermessen werden kann.
Aufgabe der Erfindung ist es ferner, ein Lagerelement bereitzustellen, welches auf einfache Weise identifizierbar ist und in der Lage ist, die erfassten Messwerte an ein geeignetes Aufnahmegerät in der Nähe der Messstelle zu übertragen.
Ferner besteht eine Aufgabe der Erfindung darin, eine Messvorrichtung zum Ermitteln des Verschleiß-Zustandes von Lagerelementen, insbesondere plattenförmi- gen Gleitlager- oder Führungselementen für Walzgerüste bereitzustellen.
Die Erfindung löst die Aufgabe gemäß eines ersten Aspekts bei einem Lagerelement der eingangs genannten Art durch mindestens eine sich von der Gleitlagerfläche in das Innere des Lagerelements bis zu einer Referenzfläche erstreckende Messbohrung. Durch die Anbringung einer derartigen Messbohrung kann mittels einer geeigneten Messvorrichtung wie einem Tiefenmesser einfach und mit hoher Genauigkeit eine Messung der Stärke des Lagerelements vorgenommen werden.
Die Erfindung wird gemäß eines weiteren Aspektes mit einem Lagerelement der eingangs genannten Art gelöst durch einen an dem Lagerelement befestigten maschinenlesbaren Datenträger.
Durch einen solchen maschinenlesbaren Datenträger kann jedes Lagerelement gekennzeichnet und auf einfache Weise identifiziert werden durch Lesen des Dateninhalts des Datenträgers. Dadurch ist es in bevorzugter Weise erstmals möglich, Lagerelemente in Form von plattenförmigen Gleitlager- oder Führungselementen, die nachfolgend auch als Verschleißplatten bezeichnet werden, zu identifizieren. Durch Vornahme von Dicken- oder Stärkenmessungen aller Verschleißplatten eines Walzgerüstes und eindeutige maschinelle Identifizierbarkeit der einzelnen Verschleißplatten kann mit Hilfe von Datenverarbeitungsanlagen ein Zustandsbild des Walzgerüstes, insbesondere im Hinblick auf Abstände und Toleranzen zwischen den Einbaustücken und dem Walzenständer generiert werden, so dass festgestellt werden kann, ob die Walzen in den gewünschten Positionen gelagert werden können oder ob die Verschleißplatten aufgrund von zu hohen Verschleißes ausgetauscht werden müssen.
Vorzugsweise ist der maschinenlesbare Datenträger als Transponder mit einem Micro-Chip und Antenne ausgebildet. Derartiger Transponder speichern auf einfache und effiziente Weise Daten zu dem jeweiligen Lagerelement, welche mit Hilfe einer Antenne und eines Lesegerätes berührungslos mittels magnetischer Felder übertragen werden können.
Das Lagerelement wird dadurch weitergebildet, dass die Messbohrung ein Innengewinde aufweist und mit einem Gewindestift verschließbar ist. Durch den Gewindestift wird verhindert, dass in die Messbohrung Partikel, Flüssigkeiten und sonstige Verunreinigungen eindringen, beispielsweise Zunder oder Kühlwasser.
Gemäß einer Weiterbildung wird vorgeschlagen, dass der Gewindestift eine mit einem Drehwerkzeug formschlüssig in Eingriff bringbare Ausnehmung aufweist und im Betrieb mit der Anlagefläche des Lagerelements im Wesentlichen fluchtet, so dass der Gewindestift einfach eingesetzt und herausgenommen werden kann. Zweckmäßigerweise ist die Messbohrung als Durchgangsbohrung ausgebildet und ist die Referenzfläche durch eine der Gleitlagerfläche gegenüberliegende Oberfläche des Lagerelements oder an einem das Lagerelement aufnehmenden Bauteil ausgebildet.
Die als Verschleißplatten für Walzgerüste ausgebildeten Lagerelemente werden an dem Walzständer oder einem Einbaustück eines Walzensatzes befestigt, welche das die Referenzfläche aufweisende Bauteil darstellen.
Vorzugsweise sind mehrere Messbohrungen über die Oberfläche verteilt angeordnet und insbesondere im Randbereich einer Verschleißplatte ausgebildet, da dort besonders hoher Verschleiß auftritt.
Die Erfindung löst die Aufgabe gemäß eines weiteren Aspektes mit einer Messvorrichtung mit den Merkmalen des Anspruchs 10.
Mit Hilfe einer erfindungsgemäßen Messvorrichtung kann der Zustand mehrerer Verschleißplatten von Walzgerüsten ermittelt werden, indem Stärkenmessungen an Verschleißplatten vorgenommen werden, wobei zunächst der Detektor den maschinenlesbaren Datenträger, vorzugsweise einem Transponder abtastet, um eine konkrete Verschleißplatte zu identifizieren, dann die Stärkenmessung an mehreren Orten eines Lagerelements vorgenommen wird, dann die aufgenommenen Messwerte der elektronischen Rechneranlage zugeführt werden, wo die aufgenommen Messwerte unter Berücksichtigung der vom Datenträger aufgenommen Daten der jeweiligen Verschleißplatte verarbeitet werden. Mit Hilfe der erfindungsgemäßen Mess Vorrichtung lässt sich die Toleranz zwischen den Bauteilen feststellen, so dass dann entschieden werden kann, ob die Verschleißplatten aufgrund zu hohen Verschleißes ausgetauscht werden müssen. Auch können in Abhängigkeit von den aufgenommenen Toleranzwerten Walzparameter neu adjustiert werden, beispielsweise der Walzdruck auf die Einbaustücke.
Die Messvorrichtung ist zweckmäßigerweise als Tiefenmessvorrichtung und der Datenträger als Transponder ausgebildet. Eine Weiterbildung sieht vor, dass die Messvorrichtung ein Signal in Form von Licht, Ultraschall oder elektromagnetischen Wellen in Richtung auf die Referenzfläche aussendet, von welcher das Signal reflektiert und von der Messvorrichtung aufgenommen wird, um die Stärke zu bestimmen. Weitere Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
Aufgabe der Erfindung ist es ferner, ein Gleitlagerelement bereitzustellen, welches in der Lage ist, den Abstand zur jeweiligen Gegenfläche zu messen.
Zur Lösung wird vorgeschlagen, über eine oder mehrere, induktiv, mit Ultraschall oder ähnlich messende Messwertaufnehmer, die in das als Gleitlagerplatte ausgebildete Gleitlagerelement eingebaut sind, dynamisch den Abstand zur jeweiligen Gegenfläche zu messen.
Die Messwertaufnehmer sind dabei vorzugsweise in die Lagerelemente der Einbaustücke eingebaut und senden ihre Signale von den Gleitlagerplatten der Einbaustücke aus in Richtung der jeweils gegenüber liegenden Gleitoberflächen der Gleitlagerplatten die im Walzenständer eingebaut sind.
Die Erfindung löst ferner die Aufgabe, den Druck, der jeweils auf ein als Lagerplatte ausgebildetes Lagerelement ausgeübt wird, zu messen, indem mittels geeigneter, insbesondere piezoelektrischer Drucksensoren oder über Dehnmessstreifen bzw. andere, geeignete Verfahren zu messen.
Außerdem soll es erfindungsgemäss möglich sein, über einen oder mehrere Messwertaufnehmer, die in die Gleitlagerplatte eingebaut sind, die Beschleunigung einer Gleitlagerplatte oder anderer Lagerelemente zu messen. Dies wird gelöst durch einen an dem Lagerelement befestigten Messwertaufnehmer zum Aufnehmen der Beschleunigung des Lagerelements.
Weitere Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
Die Erfindung ist nachstehend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen dargestellt. Es zeigen: Figur 1 ein erfindungsgemäßes Lagerelement 2 in Form einer Verschleißplatte als Draufsicht;
Figur 2 ein erfindungsgemäßes Lagerelement in einem Querschnitt;
Figur 3 ein erfindungsgemäßes Lagerelement, befestigt an einem weiteren Bauteil, in einer Querschnittsdarstellung;
Figur 4 ein Walzgerüst mit erfindungsgemäßen als Platten ausgebildeten Lagerelementen in einer schematischen Darstellung und
Figur 5 eine erfindungsgemäße Messvorrichtung nebst erfindungsgemäßem Lagerelement in einer schematischen Darstellung;
Figur 6 ein erfindungsgemäßes Lagerelement mit eingebautem Abstands- und Drucksensor sowie einem Beschleunigungsaufnehmer im Schnitt.
Figur 1 zeigt ein erfindungsgemäßes Lagerelement 2 in Form einer Verschleißplatte für ein in Figur 4 schematisch dargestelltes Walzgerüst 4 eines Walzwerkes. Das Lagerelement 2 kann in verschiedenen Gleitlagern oder Führungen eingesetzt werden und ist insbesondere für hohe Belastungen ausgelegt.
Mehrere erfindungsgemäße Lagerelemente 2 sind an dem Walzgerüst 4 eingesetzt, namentlich als Ständer-Platten 6, 8, die an dem Walzenständer 10 befestigt sind, sowie als Einbaustück-Platten 12, 14, 16, 18, die an den Einbaustücken 20 des oberen bzw. des unteren Walzensatzes 22, 24 befestigt sind. Jeder Walzensatz 22, 24 weist eine mit dem Walzgut 26 in Kontakt kommende Walzen 27, 28 auf. In nicht dargestellter Weise weist jeder Walzensatz insgesamt vier Einbaustück-Platten 12, 14, 16, 18, und der Walzenständer 10 insgesamt vier Ständer- Platten 6, 8 auf; die Platten 6, 8, 12, 14, 16, 18 sind nachfolgend auch als erfindungsgemäße Lagerelemente 2 bezeichnet. Wie aus den Figuren 1 bis 3 ersichtlich ist, weist ein erfindungsgemäßes flächiges Lagerelement 2 eine quader- oder rechteckförmige Gleitlagerfläche 30 auf, die im Betrieb mit einem gegenüberliegenden Bauteil in Kontakt steht und Verschleiß unterliegt. In Figur 4 ist erkennbar, dass beispielsweise die Einbaustück-Platte 12 mit ihrer Gleitlagerfläche 30 in Kontakt steht mit einer gegenüberliegenden Gleitlagerflache 30 der Ständer-Platte 6. Die erfindungsgemäßen Lagerelemente 2 können auch an anderen Gleitlagern oder Führungen des Schwermaschinenbaus eingesetzt werden.
Wie die Figuren 1 bis 3 veranschaulichen, weisen die erfindungsgemäßen Lagerelemente 2 mindestens eine, im Ausführungsbeispiel insgesamt neun Messbohrungen 32 auf, welche als zylindrische Durchgangsbohrungen ausgebildet sind und sich ausgehend von der Gleitlagerflache 30 ins Innere des Lagerelements 2 bis zu einer Referenzfläche 34 erstrecken. Jede Messbohrung 32 weist ein durchgehendes Innengewinde 36 auf. Ein in Figur 2 dargestellter Gewindestift 38 ist in die Messbohrung 32 einschraubbar mit Hilfe eines nicht dargestellten Drehwerkzeugs, welches formschlüssig in Eingriff bringbar ist mit einer Ausnehmung 40, die als Innensechskant ausgebildet ist. Das Bauteil 3 kann auch als Tragplatte bezeichnet werden.
Wie Figur 3 zeigt, ist das Lagerelement 2 an einem weiteren Bauteil 3 befestigt, welches die Referenzfläche 34 aufweist. Das weitere Bauteil 3 kann beispielsweise ein in Figur 4 dargestelltes Einbaustück 20, welches die erfindungsgemäße Platte 12 aufnimmt oder ein Ständer 10, welcher eine erfindungsgemäße Ständerplatte 6 aufnimmt, sein. In diesen Fällen erstrecken sich die Messbohrungen 32 von den Gleitlagerflächen 30 zu dem die Referenzfläche 34 aufweisenden Ständer 10 bzw. dem Einbaustück 20. Alternativ kann in nicht dargestellter Weise die Messbohrung als Sacklochbohrung ausgebildet sein und die Referenzfläche 34 an dem Boden einer solchen Sacklochbohrung und somit an dem Lagerelement 2 ausgebildet sein. Wie Fig. 1 zeigt, sind die Messbohrungen 32 im Randbereich des als Platte gebildeten Lagerelements 2 ausgebildet mit Ausnahme einer zentralen Messbohrung 32.
Wie aus den Figuren 2 und 3 ersichtlich, ist ein maschinenlesbarer Datenträger 42 in Form eines Transponders mit Micro-Chip und Antenne an dem Lagerelement 2 befestigt und in einer ausgefrästen Ausnehmung 44, die auch als Tasche bezeichnet werden kann, angeordnet und dort eingeklebt. Der Datenträger 42 speichert im Chip Daten betreffend das konkrete Lagerelement, so dass dieses identifizierbar ist, sowie weitere beliebige Daten betreffend die Lebensdauer des Lagerelementes 2, deren Stärke, Abmessungen oder dgl. Jedes in Figur 4 dargestellte Lagerelement 2 in Form der Platten 6, 8, 12, 14, 16, 18 weist einen Datenträger 42 auf. Die gespeicherten Daten beziehen sich auch auf die Position der Platten 6, 8, 12, 14, 16, 18 innerhalb des Walzgerüstes 4, d. h. der genauen Position an dem Ständer 10 bzw. den Walzensätzen 22, 24. Die Daten können gespeichert, geändert, ergänzt oder gelöscht werden. Der Datenaustausch zwischen Transponder und einem Detektor oder Lesegerät erfolgt berührungslos über magnetische Felder in verschiedenen Frequenzbereichen. Der Detektor ist unten näher anhand von Figur 5 erläutert. Beispielsweise kann ein Transponder zum Einsatz kommen, wie er von der Firma Schreiner Datenträger- und Codedruck GmbH & Co. KG, 80995 München, angeboten wird.
Figur 5 veranschaulicht schematisch eine erfindungsgemäße Messvorrichtung 46 zum Ermitteln des Verschleiß-Zustandes von Lagerelementen 2, insbesondere Platten 6, 8, 12, 14, 16, 18 für Walzgerüste 4. Die Messvorrichtung 46 weist eine in einem Gehäuse 48 untergebrachte elektronische Rechneranlage 50 auf, die eine Eingabevorrichtung 52 in Form einer Tastatur, eine Anzeigevorrichtung 54 zum Anzeigen von Daten und/oder Diagrammen, einen elektronischen Datenspeicher 56 sowie einen Mikroprozessor 58 enthält. Mittels einer Schnittstelle 60 können Daten zu bzw. von der Rechneranlage 50 übertragen werden.
Die Messvorrichtung 46 umfasst ferner eine mittels der Schnittstelle 60 und einer Leitung 62 mit der Rechneranlage 50 gekoppelte Messvorrichtung 64 zur Messung der Stärke oder Dicke eines Lagerelements 2 sowie einen ebenfalls mittels Schnittstelle 60 und einer Leitung 66 mit der Rechneranlage 50 gekoppelten Detektor 68 zum maschinellen Lesen des maschinenlesbaren, dem Lagerelement 2 zugeordneten Datenträger 42 in Form des Transponders.
Die Messvorrichtung 64 ist als Tiefenmessvorrichtung ausgebildet, die entweder mechanisch arbeitet oder ein Signal in Form von Licht, Ultraschall oder elektromagnetischen Wellen abgibt, wie in Figur 5 schematisch anhand des Pfeils 68 darge- stellt ist, und so relativ zu der Messbohrung 32 des Lagerelements 2 angesetzt wird, dass das Signal die Messbohrung 32 axial durchläuft, dann auf die an dem Bauteil 3 ausgebildeten Referenzfläche 34 reflektiert und die Messbohrung 32 zurück in Richtung auf die Messvorrichtung 64 durchläuft. Die Mess Vorrichtung 64 ist mit einem Signalaufnehmer ausgestattet. Mittels einer Laufzeitmessung des Signals für das Durchlaufen der Messbohrung 32 kann die Stärke S des Lagerelements 2 im Bereich der Messbohrung 32 ermittelt werden. Der von der Messvorrichtung 64 bereitgestellte Stärken-Messwert wird mittels Leitung 62 der Rechneranlage 50 zugeführt.
Der Detektor 65 liest die in dem Datenträger 42 (Transponder) gespeicherten Daten und übermittelt diese durch Leitung 66 ebenfalls zu der Rechneranlage 50.
Die Funktion und Betriebsweise zur Ermittlung des Verschleißes mindestens eines Lagerelementes 2, insbesondere erfindungsgemäßer Verschleiß-Platten 6, 8, 12, 14, 16, 18 ist anhand der Figuren näher erläutert.
Ein erfindungsgemäßes Lagerelement 2 wird an einem Bauteil 3 befestigt. Bei dem in Figur 4 dargestellten Ausführungsbeispiel werden die Platten 6, 8, 12, 14, 16, 18 an dem Ständer 10 bzw. den Einbaustücken 20 befestigt und in ihre Betriebsposition gebracht. Gewindestifte 38 (Figur 2) sind in die Messbohrungen 32 eingeschraubt, so dass sie entweder mit ihrer Oberseite mit der Gleitlagerfläche 30 Fluchten oder etwas unterhalb der Gleitlagerfläche 30 innerhalb der Messbohrung 32 liegen. Im Betrieb kommt es, wie Figur 4 veranschaulicht, zu Bewegungen der Lagerelemente 2, so dass die Gleitlagerflächen 30 verschleißen. Die Lagerelemente sind für die Aufnahme hoher und extremer Lasten, insbesondere im Schwermaschinen- oder Walzwerksbau ausgelegt.
Zur Ermittlung des Verschleißes der Lagerelemente 2 bzw. zur Ermittlung des Ver- schleiß-Zustandes mehrere Lagerelemente 2, die in Walzgerüsten 4 eingesetzt sind, wird der Betrieb unterbrochen. Hierzu werden die Walzensätze 22, 24 aus dem Ständer 10 entnommen. Dann werden die Gewindestifte 38 aus den Messbohrungen 32 herausgeschraubt, indem ein Drehwerkzeug in die Ausnehmung 40 eingesetzt wird. Dann wird, wie Figur 5 zeigt, der Detektor 65 der erfindungsgemäßen Messvorrichtung 46 in die Nähe des als Transponder ausgebildeten Da- tenträgers 42 gebracht und oberhalb der Ausnehmung 44 angeordnet, dass die in dem Chip des Transponders gespeicherten Daten gelesen und der Rechneranlage auf die zuvor beschriebene Weise übertragen werden.
Die Messvorrichtung 64 (Tiefenmesser) wird oberhalb einer Messbohrung 32 des Lagerelementes 2 angesetzt und ein Messwert für die Stärke oder Dicke des Lagerelements 2 im Bereich dieser Messbohrung generiert. Dieser Messwert wird ebenfalls an die Rechneranlage 50 der Messvorrichtung 46 übertragen. Anschließend wird der Gewindestift 38 wieder in die Messbohrung 32 eingeschraubt.
Dann werden mit Hilfe der Messvorrichtung 64 weitere Messwerte zur Stärke des Lagerelements 2 an den weiteren Messbohrungen 32 des Lagerelements 2 vorgenommen und die Messwerte übertragen. Auf diese Weise lässt sich aufgrund der mehreren Messwerte eines Lagerelements 2 eine Topografie oder anders ausgedrückt ein Stärken-Profil eines Lagerelements 2 ermitteln und die Daten werden in den Speicher 56 gespeichert.
Anschließend werden alle weiteren Lagerelemente 2, im Falle eines Walzgerüstes 4 alle Platten 6, 8, 12, 14, 16, 18 auf die zuvor beschriebene Weise vermessen, in dem zunächst mit Hilfe des Detektors 65 eine Platte identifiziert und anschließend die Stärken im Bereich aller Messbohrungen 32 mit Hilfe der Messvorrichtung 64 aufgenommen und an die Rechneranlage 50 übertragen werden. Dadurch lassen sich Profile der Stärke aller Lagerelemente 2 bzw. aller Platten 6, 8, 12, 14, 16, 18 eines Walzgerüstes 4 ermitteln.
Mit Hilfe von in dem Speicher 56 vorgespeicherter Positionsdaten der Lagerelemente 2 und auch Positionsdaten der Messbohrungen 32 an einem Lagerelement 2 wird eine Topografie aller Lagerelemente 2 eines Walzgerüstes 4 erzeugt. Insbesondere kann der Abstand der Gleitlagerflächen 30 und der Abstand und die Toleranz zwischen den Lagerelementen 2 eines Walzgerüstes rechnerisch ermittelt werden. Dadurch kann ferner die sogenannte Öffnung eines Fensters eines Walzenständers 4, d. h. ein sich öffnender Spalt zwischen gegenüberliegenden Lagerelementen 2 bestimmt werden. Der gesamte Zustand eines Walzgerüstes, insbesondere die Topographien der Lagerelemente 2 und auch die Öffnungen eines Walzenständer-Fensters und von Spalten können grafisch auf der Anzeige 54 dargestellt und kontrolliert werden. Anhand der ermittelten Messwerte kann entschieden werden, ob einzelne Lagerelemente 2 ausgetauscht oder oberflächenbehandelt werden müssen.
Über die Vermessung der Einbaustücke kann auf die gleiche Weise die Topographie der auf ihnen jeweils angebrachten Platten 12, 14, 16, 18 ermittelt werden.
Durch Überlagerung der Topographien des Walzenständers und der Einbaustücke lassen sich Rückschlüsse auf den Spalt zwischen diesen Maschinenelementen ziehen, die wiederum Aussagen über das Verhalten des Walzgutes im Betrieb und eine Präzisierung der Regelung des Walzprozesses haben.
Figur 6 zeigt die Messwertaufnehmer 70 für die Abstandsmessung, die Druckmessung 72 und die Beschleunigungsmessung 74, die vorzugsweise in die Lagerelemente 12, 14, 16, 18 der Einbaustücke 20 eingebaut sind. Dabei senden die Messwertaufnehmer für die Abstandsmessung 70 ihre Mess-Signale von den Gleitlagerplatten 12, 14, 16, 18 aus in Richtung der jeweils gegenüber liegenden Gleitoberflächen der Gleitlagerplatten 6 und 8 die jeweils im Walzenständer 10 eingebaut sind (als Pfeil dargestellt).
Über die Auswertung von Differenzzuständen der vom Messwertaufnehmer 70 gesendeten und empfangenen Impulse wird der Abstand der Einbaustückplatten 12, 14, 16 und 18 zu den Walzenständerplatten 6 und 8 gemessen. Die Messung kann ebenfalls in anderer Richtung erfolgen.
Die Messwertaufnehmer für Druck 72 und für die Beschleunigung 74 ermittein entweder die druckbeaufschlagte Berührung der Gleitlagerflächen der Lagerplatten 12, 14, 16 und 18 und der Gegenplatten 6 und 8 oder sie messen die Beschleunigung aufgrund der Bewegung über geeignete Verfahren.
Die aufgenommenen Messwerte werden entweder per Kabel 78 oder über eine geeignete Übertragungseinheit 80 an einen geeigneten Messwertrechner 82 über- tragen. Diese Übertragungseinheit kann beispielsweise in Form einer geeigneten Sendeeinheit ausgebildet sein.
Erfindungsgemäß kann ein oder mehrere Messwertaufnehmer in die Lagerelemente, insbesondere eine Gleitlagerplatte eingebaut sein und dynamisch induktiv, mittels Ultraschall oder ähnlichen Messmethoden den Abstand zu einer gegenüberliegenden Gegenfläche messen.
Die Messwertaufnehmer, die in die Gleitlagerplatte eingebaut sind, sind ausgebildet und geeignet, piezoelektrisch, mittels Dehnmessstreifen oder dgl. die Druckbelastung auf die Gleitlagerplatte zu messen.
Alternativ sind ein oder mehrere Messwertaufnehmer in die Gleitlagerplatte eingebaut und ausgebildet und geeignet, die Beschleunigung der Gleitlagerplatte zu messen.
Weiterhin können Messwertaufnehmer in das Gleitlagerelement aufgenommen sein, die die aufgenommenen Abstands-Messwerte einer Rechneranlage zuführen, so dass sich mit Hilfe von vorgespeicherten Positionsdaten der Messpunkte der Abstand der Gleitlageroberflächen zueinander vermessen lässt.
Wenn mehrere Druck-Messwerte eines Gleitlagerelementes aufgenommen werden und die aufgenommenen Messwerte einer Rechneranlage zugeführt werden lässt sich mit Hilfe von vorgespeicherten Positionsdaten der Messpunkte die Druckbelastung auf die Gleitlageroberfläche vermessen.
Die Beschleunigung eines Gleitlagerelementes kann mittels Beschleunigungsaufnehmern aufgenommen werden, die aufgenommenen Messwerte einer Rechneranlage zugeführt werden, so dass sich das Bewegungsverhalten des Gleitlagerelementes vermessen lässt.

Claims

Ansprüche
1. Lagerelement, insbesondere plattenförmiges Gleitlager- oder Führungselement für Walzgerüste, welches mindestens eine mit einem Bauteil in Kontakt bringbare und im Betrieb verschleiß unterliegende Gleitlagerfläche (30) aufweist, gekennzeichnet durch mindestens eine sich von der Gleitlagerfläche (30) in das Innere des Lagerelements (2) bis zu einer Referenzfläche (34) erstreckende Messbohrung (32).
2. Lagerelement, insbesondere nach dem Oberbegriff des Anspruchs 1 , gekennzeichnet durch einen an dem Lagerelement (2) befestigten maschinenlesbaren Datenträger (42).
3. Lagerelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Messbohrung (32) ein Innengewinde (36) aufweist und mit einem Gewindestift (38) verschließbar ist.
4. Lagerelement nach Anspruch 3, dadurch gekennzeichnet, dass der Gewindestift (38) eine mit einem Drehwerkzeug formschlüssig in Eingriff bringbare Ausnehmung aufweist und im Betrieb mit der Gleitlagerfläche (30) des Lagerelements (2) im Wesentlichen fluchtet.
5. Lagerelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Messbohrung (32) als Durchgangsbohrung ausgebildet ist und die Referenzfläche (34) durch eine der Gleitlagerfläche (30) gegenüberliegende Oberfläche des Lagerelements (2) oder an einem das Lagerelement (2) aufnehmenden Bauteil (3) ausgebildet ist.
6. Lagerelement nach Anspruch 5, dadurch gekennzeichnet, dass es als Gleitlager-Platte (2, 6, 8, 12, 14, 16, 18) ausgebildet ist und mehrere Messbohrungen (32) über die Oberfläche der Platte verteilt, vorzugsweise im Randbereich der Platte ausgebildet sind.
7. Lagerelement nach Anspruch 6, dadurch gekennzeichnet, dass die Platte (2) auf einer Tragplatte (3) befestigt ist und die Referenzfläche (34) an der Tragplatte (3) ausgebildet ist.
8. Lagerelement nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Datenträger (42) ein Transponder mit einem Micro-Chip ist und mittels des Chips Daten aus- bzw. eingelesen sowie gespeichert werden können.
9. Lagerelement nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass der Datenträger (42) in einer Ausnehmung (44) des Lagerelements (2) angeordnet ist.
10. Lagerelement, insbesondere nach einem der vorstehenden Ansprüche, gekennzeichnet durch mindestens einen an dem Lagerelement (2) befestigten Messwertaufnehmer (70) zum Messen des Abstandes des Lagerelementes (12, 14, 16, 18) von einem gegenüberliegenden Bauteil (6, 8).
11. Lagerelement, insbesondere nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen an dem Lagerelement (2) befestigten Messwertaufnehmer (72) zum Messen der Druckbelastung auf das Lagerelement (2).
12. Lagerelement, insbesondere nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen an dem Lagerelement (2) befestigten Messwertaufnehmer (74) zum Aufnehmen der Beschleunigung des Lagerelements (2).
13. Messvorrichtung zum Ermitteln des Verschleiß-Zustandes von Lagerelementen, insbesondere plattenförmigen Gleitlager- oder Führungselementen für Walzgerüste nach einem der vorstehenden Ansprüche, mit einer elektronischen Rechneranlage (50) zur elektronischen Datenverarbeitung, einer Messvorrichtung (64) zur Messung der Stärke eines Lagerelements (2), welche derart mit der Rechneranlage (50) gekoppelt ist, das aufgenommene Messdaten an die Rechenanlage (50) übertragen werden können, und einem Detektor (65) zum maschinellen Lesen eines maschinenlesbaren, einem Lagerelement (2) zugeordneten Datenträger (42), wobei der Detektor (65) derart mit der Rechenanlage (50) gekoppelt ist, dass von dem Datenträger (2) mittels des Detektors (65) aufgenommene Daten betreffend das jeweilige Lagerelement (2) der Rechenanlage (50) zugeführt werden können.
14. Messvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Messvorrichtung (64) als Tiefenmess- vorrichtung und der Datenträger (42) als Transponder ausgebildet ist.
PCT/EP2002/003010 2001-03-19 2002-03-19 Lagerelement, sowie messvorrichtung WO2002075271A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20104695.4 2001-03-19
DE2001204695 DE20104695U1 (de) 2001-03-19 2001-03-19 Lagerelement, insbesondere plattenförmiges Gleitlager- oder Führungselement für Walzgerüste, sowie Messvorrichtung

Publications (1)

Publication Number Publication Date
WO2002075271A1 true WO2002075271A1 (de) 2002-09-26

Family

ID=7954483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003010 WO2002075271A1 (de) 2001-03-19 2002-03-19 Lagerelement, sowie messvorrichtung

Country Status (2)

Country Link
DE (1) DE20104695U1 (de)
WO (1) WO2002075271A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1615091A1 (de) * 2003-02-14 2006-01-11 Ntn Corporation Maschinenkomponente mit ic-etikett und verfahren zur qualitätskontrolle und system zur abnormitätsuntersuchung
WO2009077873A3 (en) * 2007-10-31 2009-08-13 Corts Engineering Gmbh Rfid system and bearing components for rolling mill
WO2015011559A2 (en) 2013-03-25 2015-01-29 Corts Engineering Gmbh & Co. Kg Linear bearing plate providing controlled lubricant distribution
WO2020074519A1 (de) * 2018-10-08 2020-04-16 Sms Group Gmbh VORRICHTUNG UND VERFAHREN ZUM MESSEN EINES VERSCHLEIßZUSTANDS VON GLEITLAGER- ODER FÜHRUNGSELEMENTEN
CN111094153A (zh) * 2018-02-16 2020-05-01 工业金属机械铆钉公司 一种包括用于输送带辊密封件中的多功能传感器
CN112823250A (zh) * 2018-10-08 2021-05-18 Sms集团有限公司 用于确定轧辊在轧机机架中的方位和/或位置的设备和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624206B1 (de) * 2003-05-13 2010-03-17 JTEKT Corporation Lagerverwaltungssystem und verfahren dafür
DE10324924B4 (de) * 2003-06-03 2021-08-26 Ab Skf Verfahren zum Ermitteln einer von einem Gleitlager mit sphärisch oder zylindrisch ausgebildeten Lagerflächen aufgenommenen Last
DE102005056983A1 (de) * 2005-11-30 2007-05-31 Schaeffler Kg Verfahren zur Verlängerung der Nutzungsdauer eines Gelenklagers sowie eine Vorrichtung zur Durchführung dieses Verfahrens
TR201904863T4 (tr) 2010-07-26 2019-05-21 Corts Eng Gmbh & Co Kg Akışkanla düzleştirilen rulman plakası.
DE102016106112A1 (de) * 2016-04-04 2017-10-05 Federal-Mogul Deva Gmbh Gleitlager mit Verschleissüberwachung und zugehöriges Verfahren
DE202016102133U1 (de) * 2016-04-21 2017-05-23 Igus Gmbh Gleitlager, Kunststoffgleitelement, System und Verwendung zur Verschleißerkennung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845735A (en) * 1973-06-22 1974-11-05 Kaman Aerospace Corp Apparatus for measuring wear of rod end bearings
DE2742413A1 (de) * 1976-09-24 1978-03-30 Semt Verfahren und vorrichtung zur ermittlung der abnutzung der grundlager einer welle
JPS5572809A (en) * 1978-11-29 1980-06-02 Hitachi Ltd Method and device for detecting abrasion of sliding member
DE2908114A1 (de) * 1979-03-02 1980-09-11 Fortuna Werke Maschf Ag Verfahren zum messen des abriebes eines oder mehrerer an einem rotierenden koerper anliegender flaechenteile eines anderen feststehenden koerpers und vorrichtung zur durchfuehrung des verfahrens
JPH03102208A (ja) * 1989-09-18 1991-04-26 Toshiba Corp 軸摺動部監視装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845735A (en) * 1973-06-22 1974-11-05 Kaman Aerospace Corp Apparatus for measuring wear of rod end bearings
DE2742413A1 (de) * 1976-09-24 1978-03-30 Semt Verfahren und vorrichtung zur ermittlung der abnutzung der grundlager einer welle
JPS5572809A (en) * 1978-11-29 1980-06-02 Hitachi Ltd Method and device for detecting abrasion of sliding member
DE2908114A1 (de) * 1979-03-02 1980-09-11 Fortuna Werke Maschf Ag Verfahren zum messen des abriebes eines oder mehrerer an einem rotierenden koerper anliegender flaechenteile eines anderen feststehenden koerpers und vorrichtung zur durchfuehrung des verfahrens
JPH03102208A (ja) * 1989-09-18 1991-04-26 Toshiba Corp 軸摺動部監視装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 118 (P - 024) 22 August 1980 (1980-08-22) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 296 (P - 1231) 26 July 1991 (1991-07-26) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1615091A4 (de) * 2003-02-14 2009-11-25 Ntn Toyo Bearing Co Ltd Maschinenkomponente mit ic-etikett und verfahren zur qualitätskontrolle und system zur abnormitätsuntersuchung
EP1615091A1 (de) * 2003-02-14 2006-01-11 Ntn Corporation Maschinenkomponente mit ic-etikett und verfahren zur qualitätskontrolle und system zur abnormitätsuntersuchung
WO2009077873A3 (en) * 2007-10-31 2009-08-13 Corts Engineering Gmbh Rfid system and bearing components for rolling mill
US7916030B2 (en) 2007-10-31 2011-03-29 Jochen Corts RFID system and bearing components for rolling mill
EP2217978B1 (de) 2007-10-31 2016-02-24 Corts Engineering GmbH & Co. KG Rfid-system und lagerkomponente für walzwerk
WO2015011559A2 (en) 2013-03-25 2015-01-29 Corts Engineering Gmbh & Co. Kg Linear bearing plate providing controlled lubricant distribution
CN111094153A (zh) * 2018-02-16 2020-05-01 工业金属机械铆钉公司 一种包括用于输送带辊密封件中的多功能传感器
WO2020074519A1 (de) * 2018-10-08 2020-04-16 Sms Group Gmbh VORRICHTUNG UND VERFAHREN ZUM MESSEN EINES VERSCHLEIßZUSTANDS VON GLEITLAGER- ODER FÜHRUNGSELEMENTEN
CN112823250A (zh) * 2018-10-08 2021-05-18 Sms集团有限公司 用于确定轧辊在轧机机架中的方位和/或位置的设备和方法
CN112840207A (zh) * 2018-10-08 2021-05-25 Sms集团有限公司 用于测量滑动支承或引导元件的磨损状态的设备和方法
RU2770308C1 (ru) * 2018-10-08 2022-04-15 Смс Груп Гмбх Устройство и способ измерения состояния износа элементов подшипников скольжения или направляющих элементов
CN112823250B (zh) * 2018-10-08 2023-04-11 Sms集团有限公司 用于确定轧辊在轧机机架中的方位和/或位置的设备和方法
US11788982B2 (en) 2018-10-08 2023-10-17 Sms Group Gmbh Device and method for measuring a wear condition of plain bearing or guide elements

Also Published As

Publication number Publication date
DE20104695U1 (de) 2001-09-20

Similar Documents

Publication Publication Date Title
WO2002075271A1 (de) Lagerelement, sowie messvorrichtung
DE102007001620B4 (de) Verfahren zum Betrieb einer Bearbeitungsmaschine sowie Werkzeughalterung
DE10224938B4 (de) Verfahren und Vorrichtung zur Planheitsmessung von Bändern
EP2149450B1 (de) Pulverpresse
EP3864401B1 (de) Vorrichtung und verfahren zum messen eines verschleisszustands von gleitlager- oder führungselementen
DE19910197C1 (de) System und Verfahren zur Überwachung einer Walze mit einem Walzenkern und einem Walzenmantel
DE102005029637A1 (de) Einrichtung zur Überwachung einer Förderanlage
EP2344286B1 (de) Verfahren und vorrichtung zur ermittlung einer planheit eines metallbandes
DE102008001265A1 (de) Schabervorrichtung und Rakelvorrichtung
DE10361161A1 (de) Messvorrichtung
EP1566227B1 (de) Verfahren zur Ermittlung von Planheitsmessfehlern in Bändern, insbesondere Stahl- und Metallbändern, und Planheitsmessrolle
EP1502700A1 (de) Messsystem
DE3422762C2 (de)
EP1130485A1 (de) Sytem und Verfahren zur Überwachung einer Walze mit einem Walzenkern und einem Walzenmantel
EP0686839A2 (de) Anhängerkupplung mit einem Kraftaufnehmer
AT515672B1 (de) Biegepresse
DE3901961C2 (de)
DE102020117972A1 (de) Überwachungsvorrichtung und Verfahren zur Überwachung des Zustands eines Förderbands einer Förderbandanlage
DE102018132461B3 (de) Handgeführte Vorrichtung und Verfahren zur optischen berührungsfreien Bestimmung der Dicke eines gewalzten Metallbandes
DE2238509A1 (de) Hydraulische presse und verfahren zu ihrem betrieb
EP3864308B1 (de) Vorrichtung und verfahren zum bestimmen der lage und/oder der position einer walze in einem walzgerüst
EP2977196B1 (de) Pressverfahren mit kompensation von positionierfehlern bei einem pressvorgang und presse zur durchführung eines solchen verfahrens
DE202018107207U1 (de) Handgeführte Vorrichtung zur optischen berührungsfreien Bestimmung der Dicke eines gewalzten Metallbandes
DE19607836C1 (de) Verstellspindel
DE4441864A1 (de) Vorrichtung zur berührungslosen Geschwindigkeitsmessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP