WO2002051730A2 - Rotorblatt für eine windenergieanlage - Google Patents
Rotorblatt für eine windenergieanlage Download PDFInfo
- Publication number
- WO2002051730A2 WO2002051730A2 PCT/EP2001/015106 EP0115106W WO02051730A2 WO 2002051730 A2 WO2002051730 A2 WO 2002051730A2 EP 0115106 W EP0115106 W EP 0115106W WO 02051730 A2 WO02051730 A2 WO 02051730A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor blade
- wind
- size
- changing
- support structure
- Prior art date
Links
- 238000009434 installation Methods 0.000 title abstract description 11
- 238000004804 winding Methods 0.000 claims description 11
- 230000002349 favourable effect Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0232—Adjusting aerodynamic properties of the blades with flaps or slats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
- F03D1/0641—Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/305—Flaps, slats or spoilers
- F05B2240/3052—Flaps, slats or spoilers adjustable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/31—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a rotor blade for a wind energy installation and a wind energy installation with at least one rotor blade according to the invention.
- Rotor blades for wind turbines are generally known and are widely visible on any wind turbine. These rotor blades have an external shape that takes into account the special aerodynamic requirements. In order to save material and weight, these rotor blades generally consist of a first, inner support structure and an aerodynamically favorable surface enveloping this first support structure.
- Wind turbines must be designed according to specified guidelines for certain load cases. These are, on the one hand, the loads occurring during operation (so-called operating loads) and, on the other hand, the so-called extreme load cases. These extreme load cases arise from certain situations or faults such as a power failure, a fault in the blade adjustment, an extraordinarily strong wind gust (50-year gust etc.).
- the invention is based on the knowledge that a certain rotor blade area (nominal area) is required in normal operation of the wind energy installation, while this is in extreme wind and e.g. in a transport situation is too big.
- part of the surface is formed from a deformable material which is part of a closed container.
- This closed container can e.g. be filled with a gaseous medium, this gaseous medium being acted upon by a predeterminable pressure.
- the effective surface of the rotor blade and thus the area of attack for the wind is smaller.
- the load on the subsequent components including the tower decreases.
- the rotor blade has a second and / or inherently movable second support structure.
- the deformable material can be provided at predetermined locations on this second support be attached to the structure. Furthermore, the deformable material can be fastened on one side to a rotatable winding core.
- the second supporting structure can now be extended, i.e. that is, folding arms can be fully extended or telescopic arms fully extended.
- the deformable material can be attached on one side to a rotatable winding core. If the rotor blade area is now to be reduced, the winding core is rotated so that it winds up the deformable material, analogously to an awning.
- the folding arms are folded and reduce the size of the second supporting structure in the area of the surface that can be reduced, so that the surface of the rotor blade is reduced accordingly.
- part of the surface of the rotor blade consists of lamella-like strips which are each arranged on a support rail which can be pivoted about its own longitudinal axis. In normal operation, these fins are aligned so that they increase the aerodynamically effective surface of the rotor blade.
- the mounting rails can be swiveled so that these slats e.g. get into the slipstream of the remaining rotor blade and thereby the surface of the rotor blade is reduced.
- a movable part of the aerodynamically effective surface of the rotor blade consists of a single surface element which can be displaced in the direction of the depth of the rotor blade. In normal operation, this surface element extends the surface of the rotor blade, preferably on the suction side, in order to create a large, aerodynamically effective surface.
- this surface element comparable to the flap system of an aircraft wing, can be moved such that it is either moved into the rotor blade and thus from the remaining surface of the rotor blade is covered, or is moved to the surface of the rotor blade and in turn covers the surface of the rotor blade. In any case, this results in a reduction in the surface area of the rotor blade.
- this surface element can be pivoted on one side to the first support structure or the rear edge of the rotor blade. To change the size of the rotor blade surface, this element can be pivoted around this pivot axis either to the suction side or to the pressure side of the rotor blade.
- a pivoting of this surface element by approximately 90 ° has the effect that this element is essentially perpendicular to the direction of the air flow on the rotor blade and has a corresponding braking effect, since it forms an obstacle for the air flowing along the surface of the rotor blade.
- Figure 1 is a plan view of a complete according to the invention
- Figure 2 is a plan view of the front part of a rotor blade according to the invention.
- Figure 3 is a simplified cross-sectional representation of a first
- Figure 4 is a simplified cross-sectional representation of a second
- Figures 5a, 5b a simplified cross-sectional representation of a third
- Figure 6 is a simplified cross-sectional representation of a fourth
- Figure 7 is a simplified cross-sectional representation of a fifth Embodiment of a rotor blade according to the invention.
- Figures 8a, 8b simplified cross-sectional views of a sixth
- Figure 9 top view of a construction variant of a rotor blade according to the invention.
- FIG. 10 A plan view of a complete rotor blade according to the invention is shown in simplified form in FIG.
- the rotor blade 10 is divided into two areas.
- the rotor blade 10 is constructed conventionally in substantial parts.
- a division of the rotor blade can be seen in an area adjacent to the rotor blade root 12, namely the area with the greatest blade depth. This division marks the area of the rotor blade 14, the surface of which can be reduced if necessary and thus removed from the action of the wind.
- FIG. 2 The fixed part of the rotor blade 10, the surface of which remains unchanged, is shown in FIG. 2.
- the aerodynamically effective surface of the rotor blade 10 is significantly reduced, and as a result the load, in particular in extreme wind situations, is also significantly lower than in the case of a rotor blade constructed in a conventional manner.
- FIG. 3 shows a simplified cross-sectional illustration of a first embodiment according to the invention.
- the rotor blade 10 is divided into a front region 11 and a rear box 14.
- This rear box 14 consists of two sheets of deformable material 18, which together with the rear wall of the front area 11 form a closed container 16. If this closed container 16 is now filled with a gaseous medium under pressure, the deformable material 18 forms part (identified by the reference number 14 in FIG. 1) of the surface of the rotor blade 10 according to the invention which is aerodynamically active in normal operation. A suitable choice of the filling pressure results in such stability of this part of the rotor blade 10 that it develops its normal effect in normal wind conditions.
- this part of the rear box in which the filling medium is accommodated
- This active emptying has the advantage that the shape of the rotor blade is defined at all times, while indefinite situations could arise when the back box gives way due to external pressure.
- a pressure relief valve can be provided, through which an overpressure forming in the container 1 6 can escape.
- the pressure required for normal operation can be restored. If controllable valves and / or pressure sensors (also not shown) are also provided, the filling pressure in the container 16 can also be tracked in the event of fluctuations in the wind pressure, in order to always maintain optimal operating conditions.
- FIG. 4 shows a second embodiment of the present invention, in which the surface of the suction side of the rotor blade 10 is extended instead of a complete rear box 14.
- This extension is a surface element 24, which adjoins the surface of the front area 11.
- This surface element can be used to reduce the aerodynamically effective area 24 can be moved in the direction of the arrow.
- This shifting can take place, for example, hydraulically, namely with corresponding hydraulic cylinders, pneumatically, with pneumatic cylinders, by means of electric drives or in another suitable manner.
- Corresponding pumps, compressors or drives (actuators) (of course not shown in the figure for reasons of clarity) must of course be provided for this.
- This shifting can take place into the front area so that the surface of the front area 11 covers the surface element 24.
- the displacement can also take place on the surface of the front area 11 so that the surface element 24 in turn covers the corresponding part of the surface of the front area 11. In both cases, there is a reduction in the aerodynamically effective surface area of the rotor blade 10.
- FIG. 5a shows a roll 20 of a deformable material and the reference symbol 30 denotes folding arms which are in the folded state.
- the mechanics can be comparable to that of an awning.
- This embodiment is shown in the state of normal operation in FIG. 5b.
- the folding arms 30 are stretched, and since the deformable material 18 is attached to it, this was unwound from the winding 20 when the folding arms 30 were extended, so that the winding core 21 no longer carries the entire material winding.
- the deformable material 18 is fastened on the one hand to the winding core 21 and on the other hand to the ends of the folding arms 30 pointing to the right in the figure. These ends of the folding arms 30 can in turn be connected by a web, not shown, on the one hand to achieve a higher strength of the construction and on the other hand to fix the deformable material.
- a scissor-lattice-like device (not shown) which is actuated in synchronism with the folding arms 30 and the deformable material 1 can be provided below the deformable material 18 8 supports in the extended state.
- the surface element 24 is pivotably articulated on the back of the front area 11 and thus extends the suction side of this front area 11.
- the surface element 24 is supported by a compression spring 28 which is arranged between the surface element 24 and the supporting structure of the front area 11.
- this compression spring 28 supports the surface element 24 so that it maintains the desired position. If there is a wind pressure beyond the normal operating conditions on the upper side of the rotor blade 10, the pressure on the surface of the surface element 24 increases and overcomes the force of the spring 28, so that the surface element 24 in FIG. 6 is pressed downwards, i.e. the wind pressure yields, and accordingly reduces the aerodynamically effective surface accordingly.
- corresponding telescopic elements such as hydraulic or pneumatic devices or mechanical devices for actively adjusting the surface element can of course be formed, for example threaded rods and worm drive or the like can be used to hold the surface element 24 in a first predetermined position or in a second specified Position to move.
- corresponding pumps, compressors or drives must of course be provided for the actuation of these actuators, which in turn are not shown in this figure to improve clarity.
- the wind load that acts on the surface element 24 can in turn be detected and, depending on this detected wind load, the surface element 24 can be pivoted about the pivot axis in order to make an optimal setting for the current operating conditions.
- Figure 7 shows a fifth embodiment of the invention.
- the surface element 24 is arranged on the rear of the front region 11 on a pivot axis 22 which can be rotated about its own longitudinal axis. In the position shown in FIG. 7, the surface element 24 in turn extends the aerodynamically effective surface of the rotor blade 10.
- the pivot axis 22 with the surface element 24 attached to it is now rotated about its longitudinal axis in such a way that the outer end of the surface element 24 moves in one of the two directions shown by the double arrow.
- This leads to a reduction in the aerodynamically effective surface of the rotor blade 10 and, as a result, to a change in the wind load on the rotor blade 10 and all subsequent components of the wind energy installation.
- FIGS. 8a and 8b A variant of the embodiment shown in FIG. 7 is shown in FIGS. 8a and 8b.
- the surface element designated by 24 in FIG. 7 is divided into three lamella-like elements 26 in FIG. 8a. These are deliberately shown at a distance in FIG. 8a in order to clarify this division.
- these three elements are of course arranged in such a way that they form as closed a surface as possible, which in turn connects as smoothly as possible to the front region 11 of the rotor blade 10.
- Each of the slats 26 is arranged on its own pivot axis.
- Each of these pivot axes 28 can be rotated about its own longitudinal axis and thus allows the slats 26 to pivot by rotating the pivot axis 28 about the longitudinal axis.
- FIG. 8 b shows the device according to the invention in the situation in which these fins are pivoted in such a way that the aerodynamically effective surface of the rotor blade 10 is reduced.
- the slats 26 are pivoted in the flow shadow of the front area 1 1. This means that on the one hand they no longer act as a rotor blade surface, but on the other hand they are also protected from the onslaught of the wind and are therefore not exposed to increased loads.
- Such an arrangement is achieved in that, in addition to a rotation of the pivot axes 28 about their longitudinal axes, the distance between the pivot axis 28 on the left in the figure and the front region 11 of the rotor blade 10 on the one hand and between the pivot axes 28 with one another on the other hand is reduced.
- the surface of the pressure side can, of course, alternatively or additionally be changed accordingly.
- the surface of the rotor blade according to FIG. 1 is, for example, more than 10% larger than the surface of the rotor blade according to FIG. 2.
- the surface size can be reduced at a wind speed of above 20 m / s, so that the surface size decreases significantly - as shown in FIG. 2.
- the controller is preferably computer-aided and, if necessary, ensures the optimally set surface size of the rotor blade.
- FIG. 14 shows a further design variant of a rotor blade according to the invention.
- the structure is built up by pivotable brackets 32, which in turn can be covered with a deformable film and are pivotably mounted in position points 34.
- pivotable brackets 32 By moving in the direction of the rotor blade tip (arrow), these swivel brackets can now be swiveled around the bearing points 34, for example, and thus change the rear box profile.
- FIGS. 9a to 14b show further alternative or supplementary embodiments to the previous FIGS. 3 to 8b.
- Figure 1 1 b ( Figure 1 1 a essentially corresponds to Figure 6) is shown in addition to Figure 6, an element 25 on the pressure side. Since the point of application for the spring 28 has not been changed compared to the illustration in FIG. 6 or 11 a, the elements 24 and 25 must be connected at the rear edge of the sheet, so that they can be pivoted about an articulation point 26. Under certain circumstances, it is advisable with this solution to form an overlap from the rotor blade box 11 over the element 25 along the rotor blade length.
- Figure 1 2b (extension of what is shown in Figure 7 or Figure 1 2a) also shows a pressure-side element 25, which in the case shown is attached to a common shaft 1 2 via a mechanical connection as well as the suction-side element 24 is.
- FIG. 13a and 13b show a further development of what is already in the Figures 8a and 8b is shown. Separate shafts 28 are shown for corresponding elements on the pressure side.
- FIG. 13a shows a rotor blade in normal operation analogously to FIG. 8a
- FIG. 1 3b shows a situation in which the rear box is no longer effective due to a corresponding rotation or by moving the shafts 28.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002552837A JP4020783B2 (ja) | 2000-12-23 | 2001-12-20 | 風力発電のための回転翼 |
DK01985915.6T DK1350027T3 (da) | 2000-12-23 | 2001-12-20 | Rotorblad til et vindenergianlæg |
KR1020037008305A KR100614102B1 (ko) | 2000-12-23 | 2001-12-20 | 풍력 발전 설비를 위한 회전자 날개 |
BRPI0116502-0A BR0116502B1 (pt) | 2000-12-23 | 2001-12-20 | lámina de rotor para uma instalação de energia eólica, e, instalação de energia eólica. |
CA002432556A CA2432556C (en) | 2000-12-23 | 2001-12-20 | Rotor blade for a wind power installation |
ES01985915T ES2397263T3 (es) | 2000-12-23 | 2001-12-20 | Pala de rotor para una instalación de energía eólica |
EP01985915A EP1350027B1 (de) | 2000-12-23 | 2001-12-20 | Rotorblatt für eine windenergieanlage |
US10/451,753 US7204674B2 (en) | 2000-12-23 | 2001-12-20 | Rotor blade for a wind power installation |
NZ526588A NZ526588A (en) | 2000-12-23 | 2001-12-20 | Rotor blade for a wind power installation |
AU2002235802A AU2002235802B2 (en) | 2000-12-23 | 2001-12-20 | Rotor blade for a wind power installation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10064912.2 | 2000-12-23 | ||
DE10064912.2A DE10064912B4 (de) | 2000-12-23 | 2000-12-23 | Rotorblatt für eine Windenergieanlage |
DE10152449.8 | 2001-10-26 | ||
DE10152449A DE10152449A1 (de) | 2001-10-26 | 2001-10-26 | Rotorblatt für eine Windenergieanlage |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002051730A2 true WO2002051730A2 (de) | 2002-07-04 |
WO2002051730A3 WO2002051730A3 (de) | 2002-11-07 |
Family
ID=26008086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/015106 WO2002051730A2 (de) | 2000-12-23 | 2001-12-20 | Rotorblatt für eine windenergieanlage |
Country Status (15)
Country | Link |
---|---|
US (1) | US7204674B2 (de) |
EP (1) | EP1350027B1 (de) |
JP (1) | JP4020783B2 (de) |
KR (1) | KR100614102B1 (de) |
CN (1) | CN100365271C (de) |
AU (1) | AU2002235802B2 (de) |
BR (1) | BR0116502B1 (de) |
CA (1) | CA2432556C (de) |
CY (1) | CY1113626T1 (de) |
DK (1) | DK1350027T3 (de) |
ES (1) | ES2397263T3 (de) |
NZ (1) | NZ526588A (de) |
PT (1) | PT1350027E (de) |
TR (1) | TR200700949A2 (de) |
WO (1) | WO2002051730A2 (de) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004097215A1 (de) * | 2003-04-28 | 2004-11-11 | Aloys Wobben | Rotorblatt einer windenergieanlage |
WO2007105174A1 (en) * | 2006-03-14 | 2007-09-20 | Tecsis Tecnologia E Sistemas Avançados Ltda | Multi-element blade with aerodynamic profiles |
WO2008003330A1 (en) * | 2006-07-07 | 2008-01-10 | Danmarks Tekniske Universitet (Technical University Of Denmark) | Variable trailing edge section geometry for wind turbine blade |
WO2008035149A2 (en) * | 2006-02-23 | 2008-03-27 | Stichting Nationaal Lucht- En Ruimtevaart Laboratorium | Rotor blade for a wind turbine |
EP2085609A1 (de) * | 2007-09-14 | 2009-08-05 | Gamesa Innovation & Technology, S.L. | Windturbinenschaufel mit Biegklappen, die von Oberflächendruckänderungen gesteuert werden |
WO2009130500A2 (en) * | 2008-04-21 | 2009-10-29 | Brm Power Limited | Energy output limiter for wind turbine rotor(s) |
US7708530B2 (en) | 2002-06-05 | 2010-05-04 | Aloys Wobben | Rotor blade for a wind power plant |
NL2003896C2 (nl) * | 2009-12-02 | 2011-06-06 | Emergya Wind Technologies Holdings N V | Windturbineblad met variabel oppervlak en daarmee uitgeruste windturbine. |
WO2011026495A3 (en) * | 2009-09-04 | 2011-07-14 | Vestas Wind Systems A/S | Wind turbine rotor blade |
EP2405129A1 (de) * | 2010-07-06 | 2012-01-11 | Lm Glasfiber A/S | Windturbinenschaufel mit variabler Austrittskante |
US8317479B2 (en) | 2008-08-01 | 2012-11-27 | Vestas Wind Systems A/S | Segmented rotor blade extension portion |
US8393865B2 (en) | 2008-08-01 | 2013-03-12 | Vestas Wind Systems A/S | Rotor blade extension portion having a skin located over a framework |
WO2013045601A1 (en) * | 2011-09-29 | 2013-04-04 | Lm Wind Power A/S | A wind turbine blade |
US8517682B2 (en) | 2007-04-30 | 2013-08-27 | Vestas Wind Systems A/S | Wind turbine blade |
US9039372B2 (en) | 2007-04-30 | 2015-05-26 | Vestas Wind Systems A/S | Wind turbine blade |
WO2018162102A1 (en) * | 2017-03-07 | 2018-09-13 | Siemens Wind Power A/S | Pressure supply system for a pneumatically activatable aerodynamic device of a rotor blade of a wind turbine |
WO2018162100A1 (en) * | 2017-03-07 | 2018-09-13 | Siemens Wind Power A/S | Safety system for an aerodynamic device of a wind turbine rotor blade |
EP2350452B2 (de) † | 2008-10-14 | 2020-08-19 | Vestas Wind Systems A/S | Windturbinenblatt mit einer Vorrichtung zur Änderung der aerodynamischen Fläche oder Form |
US11428204B2 (en) | 2017-10-24 | 2022-08-30 | Wobben Properties Gmbh | Rotor blade of a wind turbine and method for designing same |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004225883B2 (en) * | 2003-03-31 | 2010-06-17 | Technical University Of Denmark | Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control |
US8157533B2 (en) * | 2005-10-17 | 2012-04-17 | Vestas Wind Systems A/S | Wind turbine blade with variable aerodynamic profile |
DE102006022279B4 (de) * | 2006-05-11 | 2016-05-12 | Aloys Wobben | Rotorblatt für eine Windenergieanlage |
KR100809620B1 (ko) * | 2007-01-31 | 2008-03-05 | 장길훈 | 풍력 발전용 풍차 |
ES2324002B1 (es) * | 2007-06-22 | 2010-05-13 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Pala de aerogenerador con alerones deflectables. |
KR100915623B1 (ko) * | 2007-11-30 | 2009-09-07 | 이종배 | 날개의 폭 조절이 가능한 풍차 |
US8192161B2 (en) | 2008-05-16 | 2012-06-05 | Frontier Wind, Llc. | Wind turbine with deployable air deflectors |
US8267654B2 (en) * | 2008-05-16 | 2012-09-18 | Frontier Wind, Llc | Wind turbine with gust compensating air deflector |
DE102009009272B4 (de) * | 2009-02-17 | 2013-02-28 | Siemens Aktiengesellschaft | Qualitätsprüfung für Rotorblätter einer Windenergieanlage |
DK2404055T3 (en) * | 2009-03-06 | 2016-12-12 | Vestas Wind Sys As | The wind turbine which provides increased power |
GB2475694A (en) * | 2009-11-25 | 2011-06-01 | Vestas Wind Sys As | Flap control for wind turbine blades |
CN101737270B (zh) * | 2010-02-05 | 2011-09-07 | 济南高新开发区中泰环保技术开发中心 | 特大型垂直轴风力发电装置 |
US20110223021A1 (en) * | 2010-03-10 | 2011-09-15 | Vestas Wind Systems A/S | Wind turbine rotor blade |
US8011887B2 (en) * | 2010-07-21 | 2011-09-06 | General Electric Company | Rotor blade assembly |
EP2612023B1 (de) * | 2010-09-01 | 2015-10-14 | Vestas Wind Systems A/S | Rotorschaufel für eine windturbine mit beweglicher steuerfläche |
US20110268557A1 (en) * | 2010-09-29 | 2011-11-03 | General Electric Company | System and method for attenuating the noise of airfoils |
GB201109412D0 (en) * | 2011-06-03 | 2011-07-20 | Blade Dynamics Ltd | A wind turbine rotor |
US20130067798A1 (en) * | 2011-09-19 | 2013-03-21 | Steve KELTNER | Fly repeller |
CN109113924B (zh) * | 2011-12-22 | 2021-04-20 | Lm Wp 专利控股有限公司 | 由具有不同类型的负载支承结构的内侧部分和外侧部分组装的风力涡轮机叶片 |
US9816384B2 (en) * | 2011-12-28 | 2017-11-14 | Orville J. Birkestrand | Power generation apparatus |
US9816383B2 (en) * | 2011-12-28 | 2017-11-14 | Orville J. Birkestrand | Power generation apparatus |
US10677217B2 (en) * | 2012-10-03 | 2020-06-09 | General Electric Company | Wind turbine and method of operating the same |
KR101434469B1 (ko) * | 2013-04-29 | 2014-08-26 | 삼성중공업 주식회사 | 풍력 발전장치용 블레이드 |
CN104234941A (zh) * | 2013-06-24 | 2014-12-24 | 王智勇 | 一种可折叠的风力发电机桨叶 |
KR101497343B1 (ko) * | 2013-10-10 | 2015-03-02 | 삼성중공업 주식회사 | 블레이드 |
DK2908001T3 (da) * | 2014-02-12 | 2017-01-02 | Siemens Ag | Midler til dæmpning af belastning på en vindmøllerotorvinge |
EP2998571B1 (de) * | 2014-09-19 | 2017-11-01 | Siemens Aktiengesellschaft | Aufzugbeeinflussungsvorrichtung für ein Rotorblatt einer Windenergieanlage |
DE102015206430A1 (de) * | 2015-04-10 | 2016-10-13 | Wobben Properties Gmbh | Rotorblatt einer Windenergieanlage |
US10507902B2 (en) | 2015-04-21 | 2019-12-17 | General Electric Company | Wind turbine dome and method of assembly |
DE102015116634A1 (de) * | 2015-10-01 | 2017-04-06 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt und Windenergieanlage |
KR101628308B1 (ko) * | 2016-04-01 | 2016-06-08 | 손기태 | 수평축 풍력발전기용 가변 단면형 블레이드 |
US11384734B1 (en) | 2017-04-07 | 2022-07-12 | Orville J. Birkestrand | Wind turbine |
EP3667077A1 (de) * | 2018-12-13 | 2020-06-17 | Siemens Gamesa Renewable Energy A/S | Schnelle anpassung der windturbinenschaufeldurchflussregulierung |
AU2021227962A1 (en) | 2020-02-27 | 2022-08-18 | Orville J. Birkestrand | Toroidal lift force engine |
GB202010416D0 (en) * | 2020-07-07 | 2020-08-19 | General Electric Renovables Espana Sl | Rotor blade assembly for mitigating stall induced vibrations |
EP4403767A1 (de) | 2023-01-20 | 2024-07-24 | Siemens Gamesa Renewable Energy Innovation & Technology S.L. | Strömungsveränderndes element für eine windturbinenschaufel |
EP4403765A1 (de) | 2023-01-20 | 2024-07-24 | Siemens Gamesa Renewable Energy Innovation & Technology S.L. | Strömungsveränderndes element für windturbinenschaufel |
EP4403766A1 (de) | 2023-01-20 | 2024-07-24 | Siemens Gamesa Renewable Energy Innovation & Technology S.L. | Strömungsveränderndes element für windturbinenschaufel |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3126677A1 (de) * | 1981-07-07 | 1983-01-20 | Erno-Raumfahrttechnik Gmbh, 2800 Bremen | "rotorblattausbildung fue schnellaufende rotoren" |
FR2587675A1 (fr) * | 1985-09-24 | 1987-03-27 | Dumortier Paul | Ailerons a profils reversibles par autodeformation |
EP0283730A1 (de) * | 1987-03-14 | 1988-09-28 | Mtb Manövriertechnisches Büro | Von Luft oder Wasser umströmter Strömungskörper |
EP0375382A2 (de) * | 1988-12-21 | 1990-06-27 | British Aerospace Public Limited Company | Aerodynamische Geräuschunterdrückung für Tragflächenklappen |
DE4428731A1 (de) * | 1994-08-15 | 1996-02-22 | Infan Gmbh Ingenieurgesellscha | Längenvariables Rotorblatt für Windkraftanlagen, insbesondere für Windkraftanlagen an Binnenlandstandorten |
US5527151A (en) * | 1992-03-04 | 1996-06-18 | Northern Power Systems, Inc. | Advanced wind turbine with lift-destroying aileron for shutdown |
GB2311978A (en) * | 1996-04-10 | 1997-10-15 | Robert Pyatt | Adjustable wing |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1403069A (en) * | 1921-08-12 | 1922-01-10 | Burne Edward Lancaster | Means for regulating the speed of wind motors |
US2622686A (en) * | 1942-07-21 | 1952-12-23 | Chevreau Rene Louis Pier Marie | Wind motor |
US2428936A (en) * | 1943-09-10 | 1947-10-14 | Goodrich Co B F | Aerodynamic brake |
US2400388A (en) * | 1944-03-17 | 1946-05-14 | Goodrich Co B F | Aerodynamic brake |
US2442783A (en) * | 1944-07-01 | 1948-06-08 | Us Sec War | Turbine rotor |
US2453403A (en) * | 1946-07-03 | 1948-11-09 | Charles E Bogardus | Windbreaker for parked aircraft |
US2616509A (en) * | 1946-11-29 | 1952-11-04 | Thomas Wilfred | Pneumatic airfoil |
US3184187A (en) * | 1963-05-10 | 1965-05-18 | Isaac Peter | Retractable airfoils and hydrofoils |
US3463420A (en) * | 1968-02-28 | 1969-08-26 | North American Rockwell | Inflatable wing |
US3987984A (en) * | 1973-04-09 | 1976-10-26 | Albert George Fischer | Semi-rigid aircraft wing |
US3874816A (en) * | 1973-10-23 | 1975-04-01 | Thomas E Sweeney | Windmill blade |
FR2290585A1 (fr) * | 1974-11-07 | 1976-06-04 | Morin Bernard | Aile de rotor a profil variable, notamment pour eolienne |
SU577300A1 (ru) * | 1975-12-09 | 1977-10-25 | Свердловский Ордена Трудового Красного Знамени Горный Институт Им. В.В.Вахрушева | Лопатка турбомашины |
DE2829716A1 (de) * | 1977-07-07 | 1979-01-25 | Univ Gakko Hojin Tokai | Windkraftmaschine mit vertikaler achse |
JPS5928754B2 (ja) * | 1979-05-18 | 1984-07-16 | 富治 高山 | 垂直軸風車の翼体 |
US4274011A (en) * | 1980-03-14 | 1981-06-16 | Marvin Garfinkle | Wind turbine for marine propulsion |
US4498017A (en) | 1982-12-16 | 1985-02-05 | Parkins William E | Generating power from wind |
US4692095A (en) * | 1984-04-26 | 1987-09-08 | Sir Henry Lawson-Tancred, Sons & Co. Ltd. | Wind turbine blades |
US4613760A (en) | 1984-09-12 | 1986-09-23 | The English Electric Company Limited | Power generating equipment |
JP2604349B2 (ja) | 1984-12-12 | 1997-04-30 | 日本電気株式会社 | 半導体装置 |
SU1539378A1 (ru) * | 1988-03-29 | 1990-01-30 | Институт Электродинамики Ан Усср | Лопасть ветроколеса |
GB2227286A (en) * | 1989-01-17 | 1990-07-25 | Howden Wind Turbines Limited | Control of a wind turbine and adjustable blade therefor |
DE3913505A1 (de) * | 1989-04-25 | 1989-11-16 | Astrid Holzem | Fluegel mit aerodynamischer bremse fuer windkraftmaschinen |
DE4002972C2 (de) | 1990-02-01 | 1994-06-16 | Guenter Waldherr | Tragflügel mit veränderbarem Profil, insbesondere zur Verwendung als Segel |
JPH05180146A (ja) | 1991-12-27 | 1993-07-20 | Mitsubishi Heavy Ind Ltd | 風車過負荷防止装置 |
US5320491A (en) * | 1992-07-09 | 1994-06-14 | Northern Power Systems, Inc. | Wind turbine rotor aileron |
DE4435606A1 (de) | 1994-10-06 | 1996-04-11 | Manfred Dipl Ing Maibom | Flügel mit veränderbarer Form bezüglich der Wechselwirkung mit dem strömenden Medium |
US5570859A (en) * | 1995-01-09 | 1996-11-05 | Quandt; Gene A. | Aerodynamic braking device |
US5570997A (en) * | 1995-07-17 | 1996-11-05 | Pratt; Charles W. | Horizontal windmill with folding blades |
DE19719221C1 (de) | 1997-05-07 | 1998-10-29 | Roland Stelzer | Rotorblatt, insbesondere für Windkraftanlagen |
US6420795B1 (en) | 1998-08-08 | 2002-07-16 | Zond Energy Systems, Inc. | Variable speed wind turbine generator |
US6015115A (en) * | 1998-03-25 | 2000-01-18 | Lockheed Martin Corporation | Inflatable structures to control aircraft |
US6133716A (en) | 1998-10-23 | 2000-10-17 | Statordyne, Inc. | High-efficiency high-power uninterrupted power system |
US6523781B2 (en) * | 2000-08-30 | 2003-02-25 | Gary Dean Ragner | Axial-mode linear wind-turbine |
US6682302B2 (en) * | 2001-03-20 | 2004-01-27 | James D. Noble | Turbine apparatus and method |
US6465902B1 (en) | 2001-04-18 | 2002-10-15 | The United States Of America As Represented By The Secretary Of The Navy | Controllable camber windmill blades |
-
2001
- 2001-12-20 WO PCT/EP2001/015106 patent/WO2002051730A2/de not_active Application Discontinuation
- 2001-12-20 US US10/451,753 patent/US7204674B2/en not_active Expired - Lifetime
- 2001-12-20 NZ NZ526588A patent/NZ526588A/en not_active IP Right Cessation
- 2001-12-20 CN CNB018216803A patent/CN100365271C/zh not_active Expired - Fee Related
- 2001-12-20 TR TR2007/00949A patent/TR200700949A2/xx unknown
- 2001-12-20 CA CA002432556A patent/CA2432556C/en not_active Expired - Lifetime
- 2001-12-20 AU AU2002235802A patent/AU2002235802B2/en not_active Ceased
- 2001-12-20 EP EP01985915A patent/EP1350027B1/de not_active Expired - Lifetime
- 2001-12-20 PT PT1985915T patent/PT1350027E/pt unknown
- 2001-12-20 BR BRPI0116502-0A patent/BR0116502B1/pt not_active IP Right Cessation
- 2001-12-20 JP JP2002552837A patent/JP4020783B2/ja not_active Expired - Fee Related
- 2001-12-20 KR KR1020037008305A patent/KR100614102B1/ko active IP Right Grant
- 2001-12-20 DK DK01985915.6T patent/DK1350027T3/da active
- 2001-12-20 ES ES01985915T patent/ES2397263T3/es not_active Expired - Lifetime
-
2013
- 2013-01-04 CY CY20131100008T patent/CY1113626T1/el unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3126677A1 (de) * | 1981-07-07 | 1983-01-20 | Erno-Raumfahrttechnik Gmbh, 2800 Bremen | "rotorblattausbildung fue schnellaufende rotoren" |
FR2587675A1 (fr) * | 1985-09-24 | 1987-03-27 | Dumortier Paul | Ailerons a profils reversibles par autodeformation |
EP0283730A1 (de) * | 1987-03-14 | 1988-09-28 | Mtb Manövriertechnisches Büro | Von Luft oder Wasser umströmter Strömungskörper |
EP0375382A2 (de) * | 1988-12-21 | 1990-06-27 | British Aerospace Public Limited Company | Aerodynamische Geräuschunterdrückung für Tragflächenklappen |
US5527151A (en) * | 1992-03-04 | 1996-06-18 | Northern Power Systems, Inc. | Advanced wind turbine with lift-destroying aileron for shutdown |
DE4428731A1 (de) * | 1994-08-15 | 1996-02-22 | Infan Gmbh Ingenieurgesellscha | Längenvariables Rotorblatt für Windkraftanlagen, insbesondere für Windkraftanlagen an Binnenlandstandorten |
GB2311978A (en) * | 1996-04-10 | 1997-10-15 | Robert Pyatt | Adjustable wing |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8100663B2 (en) | 2002-06-05 | 2012-01-24 | Aloys Wobben | Rotor blade for a wind power plant |
US7914261B2 (en) | 2002-06-05 | 2011-03-29 | Aloys Wobben | Rotor blade for a wind power plant |
US7708530B2 (en) | 2002-06-05 | 2010-05-04 | Aloys Wobben | Rotor blade for a wind power plant |
AU2004234487B2 (en) * | 2003-04-28 | 2009-02-19 | Aloys Wobben | Rotor blade of a wind energy facility |
JP2010043650A (ja) * | 2003-04-28 | 2010-02-25 | Aloys Wobben | 風力発電設備のローターブレード |
KR100812796B1 (ko) | 2003-04-28 | 2008-03-12 | 알로이즈 워벤 | 풍력 발전 장치용 로터 블레이드 |
US7946803B2 (en) | 2003-04-28 | 2011-05-24 | Aloys Wobben | Rotor blade for a wind power system |
CN100366893C (zh) * | 2003-04-28 | 2008-02-06 | 艾劳埃斯·乌本 | 一种风力发电设备的转子叶片 |
JP2006524772A (ja) * | 2003-04-28 | 2006-11-02 | アロイス・ヴォベン | 風力発電設備のローターブレード |
WO2004097215A1 (de) * | 2003-04-28 | 2004-11-11 | Aloys Wobben | Rotorblatt einer windenergieanlage |
EP2258943A3 (de) * | 2003-04-28 | 2013-10-02 | Aloys Wobben | Profil eines Rotorsblatts einer Windenergieanlage |
WO2008035149A3 (en) * | 2006-02-23 | 2009-02-19 | Stichting Nationaal Lucht En R | Rotor blade for a wind turbine |
WO2008035149A2 (en) * | 2006-02-23 | 2008-03-27 | Stichting Nationaal Lucht- En Ruimtevaart Laboratorium | Rotor blade for a wind turbine |
WO2007105174A1 (en) * | 2006-03-14 | 2007-09-20 | Tecsis Tecnologia E Sistemas Avançados Ltda | Multi-element blade with aerodynamic profiles |
WO2008003330A1 (en) * | 2006-07-07 | 2008-01-10 | Danmarks Tekniske Universitet (Technical University Of Denmark) | Variable trailing edge section geometry for wind turbine blade |
US8419363B2 (en) | 2006-07-07 | 2013-04-16 | Danmarks Tekniske Universitet | Variable trailing edge section geometry for wind turbine blade |
US9039372B2 (en) | 2007-04-30 | 2015-05-26 | Vestas Wind Systems A/S | Wind turbine blade |
EP2153059B2 (de) † | 2007-04-30 | 2019-02-13 | Vestas Wind Systems A/S | Windturbinenschaufel |
US8517682B2 (en) | 2007-04-30 | 2013-08-27 | Vestas Wind Systems A/S | Wind turbine blade |
EP2085609A1 (de) * | 2007-09-14 | 2009-08-05 | Gamesa Innovation & Technology, S.L. | Windturbinenschaufel mit Biegklappen, die von Oberflächendruckänderungen gesteuert werden |
ES2326352A1 (es) * | 2007-09-14 | 2009-10-07 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Pala de aerogenerador con alerones deflectables controlados por cambios de la presion en la superficie. |
WO2009130500A2 (en) * | 2008-04-21 | 2009-10-29 | Brm Power Limited | Energy output limiter for wind turbine rotor(s) |
WO2009130500A3 (en) * | 2008-04-21 | 2010-03-11 | Brm Power Limited | Energy output limiter for wind turbine rotor(s) |
US8317479B2 (en) | 2008-08-01 | 2012-11-27 | Vestas Wind Systems A/S | Segmented rotor blade extension portion |
US8393865B2 (en) | 2008-08-01 | 2013-03-12 | Vestas Wind Systems A/S | Rotor blade extension portion having a skin located over a framework |
EP2350452B2 (de) † | 2008-10-14 | 2020-08-19 | Vestas Wind Systems A/S | Windturbinenblatt mit einer Vorrichtung zur Änderung der aerodynamischen Fläche oder Form |
WO2011026495A3 (en) * | 2009-09-04 | 2011-07-14 | Vestas Wind Systems A/S | Wind turbine rotor blade |
WO2011068405A1 (en) | 2009-12-02 | 2011-06-09 | Ewt Ip B.V. | Wind turbine blade with variable surface area and wind turbine equipped therewith |
NL2003896C2 (nl) * | 2009-12-02 | 2011-06-06 | Emergya Wind Technologies Holdings N V | Windturbineblad met variabel oppervlak en daarmee uitgeruste windturbine. |
US8794919B2 (en) | 2010-07-06 | 2014-08-05 | Lm Glasfiber A/S | Wind turbine blade with variable trailing edge |
EP2405129A1 (de) * | 2010-07-06 | 2012-01-11 | Lm Glasfiber A/S | Windturbinenschaufel mit variabler Austrittskante |
WO2013045601A1 (en) * | 2011-09-29 | 2013-04-04 | Lm Wind Power A/S | A wind turbine blade |
WO2018162102A1 (en) * | 2017-03-07 | 2018-09-13 | Siemens Wind Power A/S | Pressure supply system for a pneumatically activatable aerodynamic device of a rotor blade of a wind turbine |
WO2018162100A1 (en) * | 2017-03-07 | 2018-09-13 | Siemens Wind Power A/S | Safety system for an aerodynamic device of a wind turbine rotor blade |
US11231009B2 (en) | 2017-03-07 | 2022-01-25 | Siemens Gamesa Renewable Energy A/S | Safety system for an aerodynamic device of a wind turbine rotor blade |
US11274649B2 (en) | 2017-03-07 | 2022-03-15 | Siemens Gamesa Renewable Energy A/S | Pressure supply system for a pneumatically activatable aerodynamic device of a rotor blade of a wind turbine |
US11428204B2 (en) | 2017-10-24 | 2022-08-30 | Wobben Properties Gmbh | Rotor blade of a wind turbine and method for designing same |
Also Published As
Publication number | Publication date |
---|---|
EP1350027B1 (de) | 2012-11-07 |
NZ526588A (en) | 2006-02-24 |
ES2397263T3 (es) | 2013-03-05 |
US20040105752A1 (en) | 2004-06-03 |
CA2432556C (en) | 2008-07-08 |
WO2002051730A3 (de) | 2002-11-07 |
EP1350027A2 (de) | 2003-10-08 |
DK1350027T3 (da) | 2013-02-04 |
CY1113626T1 (el) | 2016-06-22 |
CN100365271C (zh) | 2008-01-30 |
PT1350027E (pt) | 2013-01-24 |
JP2004520521A (ja) | 2004-07-08 |
BR0116502B1 (pt) | 2009-12-01 |
TR200700949A2 (tr) | 2007-10-22 |
CN1511231A (zh) | 2004-07-07 |
US7204674B2 (en) | 2007-04-17 |
AU2002235802B2 (en) | 2006-06-22 |
CA2432556A1 (en) | 2002-07-04 |
BR0116502A (pt) | 2004-02-03 |
KR100614102B1 (ko) | 2006-08-22 |
KR20030064848A (ko) | 2003-08-02 |
JP4020783B2 (ja) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1350027B1 (de) | Rotorblatt für eine windenergieanlage | |
EP1620646B1 (de) | Rotorblatt einer windenergieanlage | |
DE102005034078B4 (de) | Windkraftanlagen-Rotorblatt mit in der Ebene liegender Pfeilung und Vorrichtungen welche dasselbe verwenden, und Verfahren für dessen Herstellung | |
DE102011053404B4 (de) | Windkraftanlagen-Rotorflügel mit aerodynamischem Winglet | |
EP2274200B1 (de) | Landeklappenkinematik angetrieben über ritzelantrieb | |
EP1514023B1 (de) | Windenergieanlage | |
DE60110098T2 (de) | Regelungsmethode für eine windturbine und regeleinrichtung dafür | |
DE19741326C2 (de) | Anströmprofil mit variabler Profiladaption | |
EP2085610B1 (de) | Vertikalachsen-Windturbine mit Steuerungsvorrichtung sowie Verfahren zum aerodynamischen Bremsen | |
DE2632697A1 (de) | Windkraftmaschine | |
DE3013774C2 (de) | ||
DE10348060B4 (de) | Rotorblatt eines Rotors einer Windenergieanlage | |
DE102007020870A1 (de) | Hochauftriebssystem am Tragflügel eines Flugzeugs | |
EP2280163B1 (de) | Windenergieanlage sowie Rotorblatt für eine Windenergieanlage | |
WO2009086648A2 (de) | Windkraftanlage | |
DE102009052641A1 (de) | Hinterkantenklappensystem | |
EP3377759A1 (de) | Steuerung einer windenergieanlage mit verstellbaren rotorblättern | |
DE10152449A1 (de) | Rotorblatt für eine Windenergieanlage | |
EP1010616B1 (de) | Adaptiver Flugzeugtragflügel | |
EP3737856B1 (de) | Windenergieanlage mit endkantenströmungsklappe | |
EP3677771A1 (de) | Vertikale windenergieanlage | |
DE10064912B4 (de) | Rotorblatt für eine Windenergieanlage | |
EP2976524A1 (de) | Rotorblatt einer windenergieanlage, windenergieanlage und verfahren zum betreiben einer windenergieanlage | |
EP3698041B1 (de) | Rotorblatt und rotor für eine windenergieanlage, mit einer lagerlosen pitchverstellung und windenergieanlage | |
DE29808047U1 (de) | Windturbine mit vertikaler oder geneigter Achse und Auftriebsausnutzung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2432556 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002235802 Country of ref document: AU Ref document number: 526588 Country of ref document: NZ Ref document number: 972/CHENP/2003 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037008305 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002552837 Country of ref document: JP Ref document number: 2001985915 Country of ref document: EP Ref document number: 2003/00970 Country of ref document: TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018216803 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037008305 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2001985915 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10451753 Country of ref document: US |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020037008305 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 526588 Country of ref document: NZ |