WO2002051730A2 - Rotorblatt für eine windenergieanlage - Google Patents

Rotorblatt für eine windenergieanlage Download PDF

Info

Publication number
WO2002051730A2
WO2002051730A2 PCT/EP2001/015106 EP0115106W WO02051730A2 WO 2002051730 A2 WO2002051730 A2 WO 2002051730A2 EP 0115106 W EP0115106 W EP 0115106W WO 02051730 A2 WO02051730 A2 WO 02051730A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor blade
wind
size
changing
support structure
Prior art date
Application number
PCT/EP2001/015106
Other languages
English (en)
French (fr)
Other versions
WO2002051730A3 (de
Inventor
Aloys Wobben
Original Assignee
Aloys Wobben
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10064912.2A external-priority patent/DE10064912B4/de
Priority claimed from DE10152449A external-priority patent/DE10152449A1/de
Priority to ES01985915T priority Critical patent/ES2397263T3/es
Priority to KR1020037008305A priority patent/KR100614102B1/ko
Priority to BRPI0116502-0A priority patent/BR0116502B1/pt
Priority to CA002432556A priority patent/CA2432556C/en
Application filed by Aloys Wobben filed Critical Aloys Wobben
Priority to EP01985915A priority patent/EP1350027B1/de
Priority to US10/451,753 priority patent/US7204674B2/en
Priority to NZ526588A priority patent/NZ526588A/en
Priority to AU2002235802A priority patent/AU2002235802B2/en
Priority to DK01985915.6T priority patent/DK1350027T3/da
Priority to JP2002552837A priority patent/JP4020783B2/ja
Publication of WO2002051730A2 publication Critical patent/WO2002051730A2/de
Publication of WO2002051730A3 publication Critical patent/WO2002051730A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0232Adjusting aerodynamic properties of the blades with flaps or slats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/305Flaps, slats or spoilers
    • F05B2240/3052Flaps, slats or spoilers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a rotor blade for a wind energy installation and a wind energy installation with at least one rotor blade according to the invention.
  • Rotor blades for wind turbines are generally known and are widely visible on any wind turbine. These rotor blades have an external shape that takes into account the special aerodynamic requirements. In order to save material and weight, these rotor blades generally consist of a first, inner support structure and an aerodynamically favorable surface enveloping this first support structure.
  • Wind turbines must be designed according to specified guidelines for certain load cases. These are, on the one hand, the loads occurring during operation (so-called operating loads) and, on the other hand, the so-called extreme load cases. These extreme load cases arise from certain situations or faults such as a power failure, a fault in the blade adjustment, an extraordinarily strong wind gust (50-year gust etc.).
  • the invention is based on the knowledge that a certain rotor blade area (nominal area) is required in normal operation of the wind energy installation, while this is in extreme wind and e.g. in a transport situation is too big.
  • part of the surface is formed from a deformable material which is part of a closed container.
  • This closed container can e.g. be filled with a gaseous medium, this gaseous medium being acted upon by a predeterminable pressure.
  • the effective surface of the rotor blade and thus the area of attack for the wind is smaller.
  • the load on the subsequent components including the tower decreases.
  • the rotor blade has a second and / or inherently movable second support structure.
  • the deformable material can be provided at predetermined locations on this second support be attached to the structure. Furthermore, the deformable material can be fastened on one side to a rotatable winding core.
  • the second supporting structure can now be extended, i.e. that is, folding arms can be fully extended or telescopic arms fully extended.
  • the deformable material can be attached on one side to a rotatable winding core. If the rotor blade area is now to be reduced, the winding core is rotated so that it winds up the deformable material, analogously to an awning.
  • the folding arms are folded and reduce the size of the second supporting structure in the area of the surface that can be reduced, so that the surface of the rotor blade is reduced accordingly.
  • part of the surface of the rotor blade consists of lamella-like strips which are each arranged on a support rail which can be pivoted about its own longitudinal axis. In normal operation, these fins are aligned so that they increase the aerodynamically effective surface of the rotor blade.
  • the mounting rails can be swiveled so that these slats e.g. get into the slipstream of the remaining rotor blade and thereby the surface of the rotor blade is reduced.
  • a movable part of the aerodynamically effective surface of the rotor blade consists of a single surface element which can be displaced in the direction of the depth of the rotor blade. In normal operation, this surface element extends the surface of the rotor blade, preferably on the suction side, in order to create a large, aerodynamically effective surface.
  • this surface element comparable to the flap system of an aircraft wing, can be moved such that it is either moved into the rotor blade and thus from the remaining surface of the rotor blade is covered, or is moved to the surface of the rotor blade and in turn covers the surface of the rotor blade. In any case, this results in a reduction in the surface area of the rotor blade.
  • this surface element can be pivoted on one side to the first support structure or the rear edge of the rotor blade. To change the size of the rotor blade surface, this element can be pivoted around this pivot axis either to the suction side or to the pressure side of the rotor blade.
  • a pivoting of this surface element by approximately 90 ° has the effect that this element is essentially perpendicular to the direction of the air flow on the rotor blade and has a corresponding braking effect, since it forms an obstacle for the air flowing along the surface of the rotor blade.
  • Figure 1 is a plan view of a complete according to the invention
  • Figure 2 is a plan view of the front part of a rotor blade according to the invention.
  • Figure 3 is a simplified cross-sectional representation of a first
  • Figure 4 is a simplified cross-sectional representation of a second
  • Figures 5a, 5b a simplified cross-sectional representation of a third
  • Figure 6 is a simplified cross-sectional representation of a fourth
  • Figure 7 is a simplified cross-sectional representation of a fifth Embodiment of a rotor blade according to the invention.
  • Figures 8a, 8b simplified cross-sectional views of a sixth
  • Figure 9 top view of a construction variant of a rotor blade according to the invention.
  • FIG. 10 A plan view of a complete rotor blade according to the invention is shown in simplified form in FIG.
  • the rotor blade 10 is divided into two areas.
  • the rotor blade 10 is constructed conventionally in substantial parts.
  • a division of the rotor blade can be seen in an area adjacent to the rotor blade root 12, namely the area with the greatest blade depth. This division marks the area of the rotor blade 14, the surface of which can be reduced if necessary and thus removed from the action of the wind.
  • FIG. 2 The fixed part of the rotor blade 10, the surface of which remains unchanged, is shown in FIG. 2.
  • the aerodynamically effective surface of the rotor blade 10 is significantly reduced, and as a result the load, in particular in extreme wind situations, is also significantly lower than in the case of a rotor blade constructed in a conventional manner.
  • FIG. 3 shows a simplified cross-sectional illustration of a first embodiment according to the invention.
  • the rotor blade 10 is divided into a front region 11 and a rear box 14.
  • This rear box 14 consists of two sheets of deformable material 18, which together with the rear wall of the front area 11 form a closed container 16. If this closed container 16 is now filled with a gaseous medium under pressure, the deformable material 18 forms part (identified by the reference number 14 in FIG. 1) of the surface of the rotor blade 10 according to the invention which is aerodynamically active in normal operation. A suitable choice of the filling pressure results in such stability of this part of the rotor blade 10 that it develops its normal effect in normal wind conditions.
  • this part of the rear box in which the filling medium is accommodated
  • This active emptying has the advantage that the shape of the rotor blade is defined at all times, while indefinite situations could arise when the back box gives way due to external pressure.
  • a pressure relief valve can be provided, through which an overpressure forming in the container 1 6 can escape.
  • the pressure required for normal operation can be restored. If controllable valves and / or pressure sensors (also not shown) are also provided, the filling pressure in the container 16 can also be tracked in the event of fluctuations in the wind pressure, in order to always maintain optimal operating conditions.
  • FIG. 4 shows a second embodiment of the present invention, in which the surface of the suction side of the rotor blade 10 is extended instead of a complete rear box 14.
  • This extension is a surface element 24, which adjoins the surface of the front area 11.
  • This surface element can be used to reduce the aerodynamically effective area 24 can be moved in the direction of the arrow.
  • This shifting can take place, for example, hydraulically, namely with corresponding hydraulic cylinders, pneumatically, with pneumatic cylinders, by means of electric drives or in another suitable manner.
  • Corresponding pumps, compressors or drives (actuators) (of course not shown in the figure for reasons of clarity) must of course be provided for this.
  • This shifting can take place into the front area so that the surface of the front area 11 covers the surface element 24.
  • the displacement can also take place on the surface of the front area 11 so that the surface element 24 in turn covers the corresponding part of the surface of the front area 11. In both cases, there is a reduction in the aerodynamically effective surface area of the rotor blade 10.
  • FIG. 5a shows a roll 20 of a deformable material and the reference symbol 30 denotes folding arms which are in the folded state.
  • the mechanics can be comparable to that of an awning.
  • This embodiment is shown in the state of normal operation in FIG. 5b.
  • the folding arms 30 are stretched, and since the deformable material 18 is attached to it, this was unwound from the winding 20 when the folding arms 30 were extended, so that the winding core 21 no longer carries the entire material winding.
  • the deformable material 18 is fastened on the one hand to the winding core 21 and on the other hand to the ends of the folding arms 30 pointing to the right in the figure. These ends of the folding arms 30 can in turn be connected by a web, not shown, on the one hand to achieve a higher strength of the construction and on the other hand to fix the deformable material.
  • a scissor-lattice-like device (not shown) which is actuated in synchronism with the folding arms 30 and the deformable material 1 can be provided below the deformable material 18 8 supports in the extended state.
  • the surface element 24 is pivotably articulated on the back of the front area 11 and thus extends the suction side of this front area 11.
  • the surface element 24 is supported by a compression spring 28 which is arranged between the surface element 24 and the supporting structure of the front area 11.
  • this compression spring 28 supports the surface element 24 so that it maintains the desired position. If there is a wind pressure beyond the normal operating conditions on the upper side of the rotor blade 10, the pressure on the surface of the surface element 24 increases and overcomes the force of the spring 28, so that the surface element 24 in FIG. 6 is pressed downwards, i.e. the wind pressure yields, and accordingly reduces the aerodynamically effective surface accordingly.
  • corresponding telescopic elements such as hydraulic or pneumatic devices or mechanical devices for actively adjusting the surface element can of course be formed, for example threaded rods and worm drive or the like can be used to hold the surface element 24 in a first predetermined position or in a second specified Position to move.
  • corresponding pumps, compressors or drives must of course be provided for the actuation of these actuators, which in turn are not shown in this figure to improve clarity.
  • the wind load that acts on the surface element 24 can in turn be detected and, depending on this detected wind load, the surface element 24 can be pivoted about the pivot axis in order to make an optimal setting for the current operating conditions.
  • Figure 7 shows a fifth embodiment of the invention.
  • the surface element 24 is arranged on the rear of the front region 11 on a pivot axis 22 which can be rotated about its own longitudinal axis. In the position shown in FIG. 7, the surface element 24 in turn extends the aerodynamically effective surface of the rotor blade 10.
  • the pivot axis 22 with the surface element 24 attached to it is now rotated about its longitudinal axis in such a way that the outer end of the surface element 24 moves in one of the two directions shown by the double arrow.
  • This leads to a reduction in the aerodynamically effective surface of the rotor blade 10 and, as a result, to a change in the wind load on the rotor blade 10 and all subsequent components of the wind energy installation.
  • FIGS. 8a and 8b A variant of the embodiment shown in FIG. 7 is shown in FIGS. 8a and 8b.
  • the surface element designated by 24 in FIG. 7 is divided into three lamella-like elements 26 in FIG. 8a. These are deliberately shown at a distance in FIG. 8a in order to clarify this division.
  • these three elements are of course arranged in such a way that they form as closed a surface as possible, which in turn connects as smoothly as possible to the front region 11 of the rotor blade 10.
  • Each of the slats 26 is arranged on its own pivot axis.
  • Each of these pivot axes 28 can be rotated about its own longitudinal axis and thus allows the slats 26 to pivot by rotating the pivot axis 28 about the longitudinal axis.
  • FIG. 8 b shows the device according to the invention in the situation in which these fins are pivoted in such a way that the aerodynamically effective surface of the rotor blade 10 is reduced.
  • the slats 26 are pivoted in the flow shadow of the front area 1 1. This means that on the one hand they no longer act as a rotor blade surface, but on the other hand they are also protected from the onslaught of the wind and are therefore not exposed to increased loads.
  • Such an arrangement is achieved in that, in addition to a rotation of the pivot axes 28 about their longitudinal axes, the distance between the pivot axis 28 on the left in the figure and the front region 11 of the rotor blade 10 on the one hand and between the pivot axes 28 with one another on the other hand is reduced.
  • the surface of the pressure side can, of course, alternatively or additionally be changed accordingly.
  • the surface of the rotor blade according to FIG. 1 is, for example, more than 10% larger than the surface of the rotor blade according to FIG. 2.
  • the surface size can be reduced at a wind speed of above 20 m / s, so that the surface size decreases significantly - as shown in FIG. 2.
  • the controller is preferably computer-aided and, if necessary, ensures the optimally set surface size of the rotor blade.
  • FIG. 14 shows a further design variant of a rotor blade according to the invention.
  • the structure is built up by pivotable brackets 32, which in turn can be covered with a deformable film and are pivotably mounted in position points 34.
  • pivotable brackets 32 By moving in the direction of the rotor blade tip (arrow), these swivel brackets can now be swiveled around the bearing points 34, for example, and thus change the rear box profile.
  • FIGS. 9a to 14b show further alternative or supplementary embodiments to the previous FIGS. 3 to 8b.
  • Figure 1 1 b ( Figure 1 1 a essentially corresponds to Figure 6) is shown in addition to Figure 6, an element 25 on the pressure side. Since the point of application for the spring 28 has not been changed compared to the illustration in FIG. 6 or 11 a, the elements 24 and 25 must be connected at the rear edge of the sheet, so that they can be pivoted about an articulation point 26. Under certain circumstances, it is advisable with this solution to form an overlap from the rotor blade box 11 over the element 25 along the rotor blade length.
  • Figure 1 2b (extension of what is shown in Figure 7 or Figure 1 2a) also shows a pressure-side element 25, which in the case shown is attached to a common shaft 1 2 via a mechanical connection as well as the suction-side element 24 is.
  • FIG. 13a and 13b show a further development of what is already in the Figures 8a and 8b is shown. Separate shafts 28 are shown for corresponding elements on the pressure side.
  • FIG. 13a shows a rotor blade in normal operation analogously to FIG. 8a
  • FIG. 1 3b shows a situation in which the rear box is no longer effective due to a corresponding rotation or by moving the shafts 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Rotorblatt für eine Windenergieanlage sowie eine Windenergieanlage mit wenigstens einem erfindungsgemäßen Rotorblatt. Je kleiner die Windangriffsfläche, also insbesondere die Rotorblattfläche ist, um so geringer das Lastniveau ist, für welches die Anlage ausgelegt werden muss und um so einfacher ist das Rotorblatt transportierbar. Andererseits ergeben sich aus der Größe der Windenergieanlage für den Betrieb unvermeidbare Minimalbmessungen des Rotorblattes, die nicht unterschritten werden dürfen. Um ein Rotorblatt zu schaffen, das einerseits die aerodynamisch erforderliche Oberfläche aufweist, andereseits aber so ausgebildet ist, dass die Oberfläche des Rotorblattes und damit dessen Tiefe in vorgegebenen Situationen verringerbar ist, ist ein Teil der Oberfläche des Rotorblattes verformbar oder bewegbar.

Description

Rotorblatt für eine Windenergieanlage
Die vorliegende Erfindung betrifft ein Rotorblatt für eine Windenergieanlage sowie eine Windenergieanlage mit wenigstens einem erfindungsgemäßen Rotorblatt.
Rotorblätter für Windenergieanlagen sind allgemein bekannt und an jeder Windenergieanlage weithin sichtbar. Diese Rotorblätter weisen eine äußere Form auf, die den besonderen aerodynamischen Anforderungen Rechnung trägt. Um Material und Gewicht einzusparen, bestehen diese Rotorblätter allgemein aus einer ersten, inneren Tragstruktur und einer diese erste Tragstruktur umhüllenden, aerodynamisch günstig ausgebildeten Oberfläche.
Bei großen Windenergieanlagen nehmen die Rotorblätter aus Gründen der Aerodynamik beträchtliche Dimensionen an. Dies wirkt sich zum einen auf die Fertigung und den Transport, und zum anderen auf die Lasten aus, welche auf die Windenergieanlage im Betrieb einwirken. Diese ergeben sich insbesondere aus der mit steigender Größe automatisch zunehmenden Blattoberfläche wie auch der vergrößerten von den Rotorblättern überstrichenen Fläche.
Windenergieanlagen müssen nach vorgegebenen Richtlinien fürbestimmte Lastfälle ausgelegt werden. Dies sind zum einen die im Betrieb vorkommenden Lasten (sogenannte Betriebslasten) und zum anderen die sogenannten Extremlastfälle. Diese Extremlastfälle werden aus bestimmten Situationen bzw. Störungen wie z.B. einem Netzausfall, einer Störung der Blattverstellung, einer außerordentlichen starken Windbö (50-Jahres-Bö etc.), abgeleitet.
Dabei ist es verständlich, dass die von den Rotorblättern auf die Anlage übertragenen Lasten wesentlich von der dem Wind ausgesetzten Rotorblatt-Oberfläche abhängen. Für die Berechnung der Extremlast wird angenommen, dass die gesamte Rotorblattfläche einem Maximalwind ausgesetzt ist. Entsprechend müssen alle nachfolgenden Komponenten wie Antriebsstrang, Maschinenträger, Turm, Fundament, usw. ausgelegt werden.
Daraus ergibt sich, dass, je kleiner die Windangriffsfläche, also insbesondere die Rotorblattfläche ist, um so geringer das Lastniveau ist, für welches die Anlage ausgelegt werden muss. Das bedeutet auch einen geringeren Materialaufwand und damit geringere Kosten.
Dem gegenüber steht allerdings eine aus aerodynamischen Gründen benötigte, minimale Oberflächengröße, um die erforderlichen Kräfte für den Betrieb der Windenergieanlage - die Drehung des Generators - aufbringen zu können. Dabei ist es bei den bekannten Rotorblättern nachteilig, dass insbesondere im Blattwurzelnahen Bereich eine mit zunehmender Rotorblattgröße ebenfalls zunehmende Rotorblattiefe benötigt wird. Diese Tiefe wird dabei so groß, dass bereits ein Straßentransport eines solchen Rotorblattes nicht mehr, bzw. nur noch mit unverhältnismäßig hohem Aufwand möglich ist. Die Aufgabe der vorliegenden Erfindung ist es daher, ein Rotorblatt anzugeben, bei dem die beschriebenen Nachteile vermieden werden und welches die aerodynamisch erforderliche Oberfläche aufweist.
Die Aufgabe wird erfindungsgemäß mit einem Rotorblatt mit den Merkmalen nach Anspruch 1 gelöst. Vorteilhafte Weiterbildungen sind in den weiteren Ansprüchen beschrieben.
Der Erfindung liegt die Erkenntnis zugrunde, dass im Normalbetrieb der Windenergieanlage eine bestimmte Rotorblattfläche (Nennfläche) erforderlich ist, während diese bei Extremwind und z.B. in einer Transportsituation u.U. zu groß ist.
Erfindungsgemäß wird daher vorgeschlagen, ein Rotorblatt der eingangs genannten Art derart weiterzubilden, dass ein Teil der Oberfläche aktiv verformbar oder bewegbar ist.
In einer bevorzugten Ausführungsform der Erfindung ist ein Teil der Oberfläche aus einem verformbaren Material gebildet, das Teil eines geschlossenen Behälters ist. Dieser geschlossene Behälter kann z.B. mit einem gasförmigen Medium gefüllt werden, wobei dieses gasförmige Medium mit einem vorgebbaren Druck beaufschlagt wird. Dadurch ergibt sich eine teilweise aufblasbare Oberfläche des Rotorblattes, die während des Transportes oder bei Auftreten von Extremwind entlüftet werden kann und somit weniger Raum beansprucht bzw. unter dem Winddruck nachgibt. Dadurch wird die wirksame Oberfläche des Rotorblattes und damit die Angriffsfläche für den Wind kleiner. Gleichzeitig sinkt die Belastung der nachfolgenden Komponenten einschließlich des Turmes.
In einer besonders bevorzugten Ausführungsform der Erfindung weist das Rotorblatt eine an sich und/oder in sich bewegbare zweite Tragstruktur auf.
Dabei kann das verformbare Material an vorgebenen Stellen dieser zweiten Trag- struktur befestigt sein. Weiterhin kann das verformbare Material mit einer Seite an einem drehbaren Wickelkern befestigt sein.
Im Normalbetrieb der Windenergieanlage kann nun die zweite Tragstruktur ausgefahren sein, d. h., Faltarme können vollständig gestreckt oder teleskopartige Arme voll ausgefahren sein. Das verformbare Material kann mit einer Seite an einem drehbaren Wickelkern befestigt sein. Soll nun die Rotorblattfläche verringert werden, wird - analog zu einer Markise - der Wickelkern so gedreht, dass er das verformbare Material aufwickelt. Gleichzeitig werden die Faltarme gefaltet und verkleinern die zweite Tragstruktur im Bereich der verkleinerbaren Oberfläche, so dass sich die Oberfläche des Rotorblattes entsprechend verringert.
In einer alternativen Ausführungsform der Erfindung besteht ein Teil der Oberfläche des Rotorblattes aus lamellenartigen Streifen, die jeweils auf einer um die eigene Längsachse schwenkbaren Tragschiene angeordnet sind. Dabei sind diese Lamellen im Normalbetrieb so ausgerichtet, dass sie die aerodynamisch wirksame Oberfläche des Rotorblattes vergrößern. Für den Transport und/oder bei Extremlasten können die Tragschienen so geschwenkt werden, dass diese Lamellen z.B. in den Windschatten des verbleibenden Rotorblattes gelangen und dadurch wird die Oberfläche des Rotorblattes verringert.
In einer insbesondere bevorzugten Weiterbildung der Erfindung besteht ein beweglicher Teil der aerodynamisch wirksamen Oberfläche des Rotorblattes aus einem einzelnen Flächenelement, welches in Richtung der Tiefe des Rotorblattes verschiebbar ist. Im Normalbetrieb verlängert dieses Flächenelement die Oberfläche des Rotorblattes, bevorzugt an der Saugseite, um eine große, aerodynamisch wirksame Oberfläche zu schaffen.
Zur Verringerung der Oberfläche kann dieses Flächenelement, vergleichbar mit dem Klappensystem einer Flugzeugtragfläche so verfahren werden, dass es entweder in das Rotorblatt hinein verschoben wird und somit von der verbleibenden Oberfläche des Rotorblattes abgedeckt ist, oder auf die Oberfläche des Rotorblattes verschoben wird und seinerseits die Oberfläche des Rotorblattes abdeckt. In jedem Fall ergibt sich hieraus eine Verringerung der Oberfläche des Rotorblattes.
In einer alternativen Ausführungsform der Erfindung kann dieses Flächenelement mit einer Seite schwenkbar an der ersten Tragstruktur bzw. der Hinterkante des Rotorblattes angelenkt sein. Zur Veränderung der Größe der Rotorblatt-Oberfläche kann dieses Element um diese Schwenkachse herum entweder zur Saugseite oder zur Druckseite des Rotorblattes hin geschwenkt werden.
Eine Schwenkung dieses Flächenelementes um etwa 90° bewirkt dabei, dass dieses Element im Wesentlichen senkrecht zu der Richtung der Luftströmung am Rotorblatt steht und eine entsprechende Bremswirkung entfaltet, da es für die auf der Oberfläche des Rotorblattes entlang strömende Luft ein Hindernis bildet.
Im Folgenden werden mehrere erfindungsgemäße Ausführungsformen anhand der beigefügten Zeichnungen näher erläutert. Dabei zeigen:
Figur 1 eine Draufsicht auf ein erfindungsgemäßes vollständiges
Rotorblatt;
Figur 2 eine Draufsicht auf den vorderen Teil eines erfindungsgemäßen Rotorblattes;
Figur 3 eine vereinfachte Querschnitts-Darstellung einer ersten
Ausführungsform eines erfindungsgemäßen Rotorblattes;
Figur 4 eine vereinfachte Querschnitts-Darstellung einer zweiten
Ausführungsform eines erfindungsgemäßen Rotorblattes;
Figuren 5a, 5b eine vereinfachte Querschnitts-Darstellung einer dritten
Ausführungsform eines erfindungsgemäßen Rotorblattes;
Figur 6 eine vereinfachte Querschnitts-Darstellung einer vierten
Ausführungsform eines erfindungsgemäßen Rotorblattes;
Figur 7 eine vereinfachte Querschnitts-Darstellung einer fünften Ausführungsform eines erfindungsgemäßen Rotorblattes; Figuren 8a, 8b vereinfachte Querschnitts-Darstellungen einer sechsten
Ausführungsform eines erfindungsgemäßen Rotorblattes;
Figur 9 Draufsicht auf eine Konstruktionsvariante eines erfindungsgemäßen Rotorblattes.
In Figur 1 ist eine Draufsicht eines vollständigen, erfindungsgemäßen Rotorblattes vereinfacht dargestellt. Das Rotorblatt 10 ist in zwei Bereiche aufgeteilt. Dabei ist das Rotorblatt 10 in wesentlichen Teilen konventionell aufgebaut. In einem der Rotorblattwurzel 1 2 benachbarten Bereich, nämlich dem Bereich mit der größten Blatttiefe ist jedoch eine Teilung des Rotorblattes erkennbar. Diese Teilung markiert den Bereich des Rotorblattes 14, dessen Oberfläche bei Bedarf verringert und somit der Einwirkung des Windes entzogen werden kann.
Der feste Teil des Rotorblattes 10, dessen Oberfläche unverändert bleibt, ist in Figur 2 gezeigt. Wie in dieser Figur deutlich erkennbar ist, ist die aerodynamisch wirksame Oberfläche des Rotorblattes 10 deutlich verringert, und dadurch ist auch die Belastung, insbesondere in Extremwind-Situationen, deutlich geringer als bei einem in konventioneller Weise aufgebauten Rotorblatt.
Figur 3 zeigt eine vereinfachte Querschnitts-Darstellung einer ersten erfindungsgemäßen Ausführungsform. Dabei ist das Rotorblatt 10 in einen vorderen Bereich 1 1 und einen Hinterkasten 14 aufgeteilt. Dieser Hinterkasten 14 besteht aus zwei Bahnen verformbaren Materials 18, die zusammen mit der Rückwand des vorderen Bereiches 1 1 einen geschlossenen Behälter 1 6 bilden. Wird nun dieser geschlossene Behälter 16 unter Druck mit einem gasförmigen Medium befüllt, bildet das verformbare Material 18 einen Teil (in Figur 1 mit dem Bezugszeichen 14 kenntlich gemacht) der im Normalbetrieb aerodynamisch wirksamen Oberfläche des erfindungsgemäßen Rotorblattes 10. Durch eine geeignete Wahl des Fülldruckes ergibt sich eine solche Stabilität dieses Teils des Rotorblattes 10, dass er bei normalen Windverhältnissen seine normale Wirkung entfaltet. In einer Extremwind-Situation ist der Winddruck auf diesen Teil des Rotorblattes 10 jedoch größer, so dass dann der äußere Druck größer als der Innendruck ist, und somit kommt es zu einer Verformung des Rotorblattes im Bereich des Hinterkastens 14 und das Rotorblatt gibt dem äußeren Winddruck nach. Dadurch wird die Angriffsfläche für diesen Extremwind geringer und damit die Lasten auf die nachfolgende Konstruktion kleiner. Ergänzend sei ausgeführt, dass dieser Teil des Hinterkastens (in dem das Füllmedium untergebracht ist), z.B. beim Überschreiten einer vorgegebenen Windgeschwindigkeit aktiv entleert werden kann, um die Oberfläche des Rotorblattes zu verkleinern. Diese aktive Entleerung hat den Vorteil, dass die Form des Rotorblattes jederzeit definiert ist, während bei einem Nachgeben des Hinterkastens infolge äußeren Druckes unbestimmte Situationen auftreten könnten.
Um Beschädigungen insbesondere des Behälters 1 6 zu vermeiden, kann z.B. ein (nicht dargestelltes) Überdruckventil vorgesehen sein, durch welches ein sich im Behälter 1 6 bildender Überdruck entweichen kann.
Durch die Verwendung eines Kompressors 1 7 kann der für den Normalbetrieb erforderliche Druck wieder hergestellt werden. Werden weiterhin (ebenfalls nicht dargestellte) steuerbare Ventile und/oder Drucksensoren vorgesehen, kann der Fülldruck in dem Behälter 1 6 auch bei Schwankungen des Winddruckes nachgeführt werden, um so stets optimale Betriebsbedingungen beizubehalten.
Figur 4 zeigt eine zweite Ausführungsform der vorliegenden Erfindung, bei welcher anstelle eines vollständigen Hinterkastens 14 die Oberfläche der Saugseite des Rotorblattes 10 verlängert ist. Diese Verlängerung ist ein Flächenelement 24, welches sich an die Oberfläche des vorderen Bereiches 1 1 anschliesst.
Zur Verringerung der aerodynamisch wirksamen Fläche kann dieses Flächenelement 24 in der Richtung des Pfeiles verschoben werden. Dieses Verschieben kann z.B. hydraulisch, nämlich mit entsprechenden Hydraulikzylindern, pneumatisch, mit Pneumatikzylindern, durch Elektroantriebe oder auf andere geeignete Weise erfolgen. Dazu müssen natürlich entsprechende (jedoch aus Gründen der Übersichtlichkeit in der Figur nicht dargestellte) Pumpen, Kompressoren oder Antriebe (Aktuatoren) vorgesehen sein.
Dabei kann dieses Verschieben in den vorderen Bereich hinein erfolgen, so dass die Oberfläche des vorderen Bereiches 1 1 das Flächenelement 24 überdeckt. Alternativ kann die Verschiebung auch auf der Oberfläche des vorderen Bereiches 1 1 erfolgen, so dass das Flächenelement 24 seinerseits den entsprechenden Teil der Oberfläche des vorderen Bereiches 1 1 überdeckt. In beiden Fällen ergibt sich eine Verringerung der aerodynamisch wirksamen Oberfläche des Rotorblattes 10.
Eine dritte Ausführungsform der vorliegenden Erfindung ist in den Figuren 5a und 5b gezeigt. Figur 5a zeigt einen Wickel 20 eines verformbaren Materials und das Bezugszeichen 30 bezeichnet Faltarme, die im gefalteten Zustand sind. Die Mechanik kann hier vergleichbar mit derjenigen einer Markise sein.
In Figur 5b ist diese Ausführungsform im Zustand des Normalbetriebs gezeigt. Die Faltarme 30 sind gestreckt, und da das verformbare Material 1 8 daran befestigt ist, wurde dieses beim Ausfahren der Faltarme 30 von dem Wickel 20 abgewickelt, so dass der Wickelkern 21 jetzt nicht mehr den gesamten Materialwickel trägt.
In dieser abgewickelten Situation ist das verformbare Material 1 8 einerseits an dem Wickelkern 21 und andererseits an den in der Figur nach rechts weisenden Enden der Faltarme 30 befestigt. Diese Enden der Faltarme 30 können wiederum durch einen nicht dargestellten Steg verbunden sein, um einerseits eine höhere Festigkeit der Konstruktion zu erreichen und andererseits das verformbare Material zu fixieren. Um ein Nachgeben des verformbaren Materials 18 zwischen dem Wickelkern 21 und den äußeren Enden der Faltarme 30 zu verhindern, kann unterhalb des verformbaren Materials 18 eine (nicht dargestellte) scherengitterartige Vorrichtung vorgesehen sein, die synchron mit den Faltarmen 30 betätigt wird und das verformbare Material 1 8 im ausgefahrenen Zustand stützt.
Ein Verringern der wirksamen Oberfläche verläuft in umgekehrter Weise; die Faltarme 30 und das (nicht dargestellte) Scherengitter werden eingefahren (gefaltet) und gleichzeitig wird das verformbare Material 18 auf dem Wickelkern 21 aufgewickelt, so dass sich schließlich wieder der in Figur 5a dargestellte Wickel 20 ergibt und die wirksame Oberfläche des Rotorblattes 10 verringert ist.
In einer in Figur 6 gezeigten vierten Ausführungsform der Erfindung ist das Flächenelement 24 an der Rückseite des vorderen Bereiches 1 1 schwenkbar angelenkt und verlängert somit die Saugseite dieses vorderen Bereiches 1 1 . Dabei wird das Flächenelement 24 von einer Druckfeder 28 gestützt, die zwischen dem Flächenelement 24 und der Tragkonstruktion des vorderen Bereiches 1 1 angeordnet ist.
Im Normalbetrieb stützt diese Druckfeder 28 das Flächenelement 24 so, dass es die gewünschte Position beibehält. Ergibt sich nun jenseits der normalen Betriebsbedingungen ein Winddruck auf der Oberseite des Rotorblattes 10, steigt der Druck auf die Oberfläche des Flächenelementes 24 und überwindet die Kraft der Feder 28, so dass das Flächenelement 24 in der Figur 6 nach unten gedrückt wird, dem Winddruck also nachgibt, und somit die aerodynamisch wirksame Oberfläche entsprechend verringert.
Alternativ zu der Feder 28 können natürlich entsprechende teleskopische Elemente wie hydraulische oder pneumatische Vorrichtungen oder mechanische Vorrichtungen zur aktiven Verstellung des Flächenelements gebildet sein, z.B. können Gewindestangen und Schneckenantrieb o.a. verwendet werden, um das Flächenelement 24 in einer ersten vorgegebenen Position zu halten oder in eine zweite vorgegebene Position zu verfahren. Für die Betätigung dieser Stellglieder müssen natürlich entsprechende Pumpen, Kompressoren oder Antriebe vorgesehen sein, die in dieser Figur wiederum zur Verbesserung der Übersichtlichkeit nicht dargestellt sind.
Ebenso kann wiederum die Windlast erfasst werden, die auf das Flächenelement 24 einwirkt und abhängig von dieser erfassten Windlast kann das Flächenelement 24 um die Schwenkachse herum geschwenkt werden, um eine fürdie momentanen Betriebsbedingungen optimale Einstellung vorzunehmen.
Figur 7 zeigt eine fünfte Ausführungsform der Erfindung. In dieser fünften Ausführungsform ist das Flächenelement 24 anstelle einer schwenkbaren Anlenkung an der Rückseite des vorderen Bereiches 1 1 auf einer um ihre eigene Längsachse drehbaren Schwenkachse 22 angeordnet. In der in Figur 7 gezeigten Position verlängert das Flächenelement 24 wiederum die aerodynamisch wirksame Oberfläche des Rotorblattes 10.
Zur Verringerung dieser Oberfläche wird nun die Schwenkachse 22 mit dem daran befestigten Flächenelement 24 um ihre Längsachse derart gedreht, dass sich das äußere Ende des Flächenelementes 24 in einer der beiden durch den Doppelpfeil gezeigten Richtungen bewegt. Dies führt wiederum zu einer Verringerung der aerodynamisch wirksamen Oberfläche des Rotorblattes 10 und damit einhergehend zu einer Veränderung der Windlast auf das Rotorblatt 10 und alle nachfolgenden Komponenten der Windenergieanlage.
Eine Variante der in Figur 7 gezeigten Ausführungsform ist in den Figuren 8a und 8b dargestellt. Dabei ist das in Figur 7 mit 24 bezeichnete Flächenelement in Figur 8a in drei lamellenartige Elemente 26 aufgeteilt. Diese sind in Figur 8a absichtlich mit einem Abstand dargestellt, um diese Aufteilung zu verdeutlichen. In einer tatsächlichen Ausführungsform sind diese drei Elemente natürlich so angeordnet, dass sie eine möglichst geschlossene Fläche bilden, die wiederum möglichst glatt an den vorderen Bereich 1 1 des Rotorblattes 10 anschließt. Jede der Lamellen 26 ist auf einer eigenen Schwenkachse angeordnet. Jede dieser Schwenkachsen 28 ist um ihre eigene Längsachse drehbar und gestattet so durch ein Drehen der Schwenkachse 28 um die Längsachse ein Verschwenken der Lamellen 26.
Figur 8b zeigt die erfindungsgemäße Vorrichtung in der Situation, in welcher diese Lamellen so geschwenkt sind, dass die aerodynamisch wirksame Oberfläche des Rotorblattes 10 verringert ist. Dabei sind die Lamellen 26 in den Strömungsschatten des vorderen Bereiches 1 1 geschwenkt. Dadurch wirken sie einerseits nicht mehr als Rotorblatt-Oberfläche, sind andererseits aber auch dem Angriff des Windes entzogen und damit keinen erhöhten Belastungen ausgesetzt.
Eine solche Anordnung wird erreicht, indem neben einer Drehung der Schwenkachsen 28 um ihre Längsachsen außerdem der Abstand zwischen der in der Figur linken Schwenkachse 28 und dem vorderen Bereich 1 1 des Rotorblattes 10 einerseits und zwischen den Schwenkachsen 28 untereinander andererseits verringert wird.
Sofern in den Figuren nur eine Verlängerung der Saugseite der Oberfläche dargestellt ist, kann natürlich alternativ oder ergänzend die Oberfläche der Druckseite entsprechend verändert werden.
Wird eine Windenergieanlage mitden vorbeschriebenen Rotorblättern ausgestattet, so ist es möglich, dass bei Auftreten einer Extremwind-Situation nicht nur die große Windstärke festgestellt wird, was mittels Windgeschwindigkeitsmessgeräten erfolgen kann, sondern dass auch durch eine entsprechende Steuerung die Größe der Oberfläche des Rotorblattes dann deutlich verringert wird. Wie in Figur 1 und 2 zu erkennen, ist beispielsweise die Fläche des Rotorblattes nach Figur 1 um mehr als 10% größer als die Oberfläche des Rotorblattes nach Figur 2. Während die Normalgröße des Rotorblattes im Nennbetrieb der Windenergieanlage eingestellt wird, beispielsweise bei einer Windgeschwindigkeit im Bereich von 2-20 m/s Windgeschwindigkeit, kann die Oberflächengröße bei einer Windgeschwindigkeit von oberhalb von 20 m/s verringert werden, so dass die Oberflächengröße deutlich - wie in Figur 2 dargestellt - abnimmt.
Die Steuerung ist bevorzugt computergestützt und sorgt im Bedarfsfall für die jeweils optimal eingestellte Oberflächengröße des Rotorblattes.
Figur 14 zeigt eine weitere Konstruktionsvariante eines erfindungsgemäßen Rotorblattes. Dabei wird die Struktur durch verschwenkbare Bügel 32 aufgebaut, die mit einer wiederum verformbaren Folie bespannt sein können und in Lagepunkten 34 schwenkbar gelagert sind. Durch eine Bewegung in Richtung der Rotorblattspitze (Pfeil) können diese Schwenkbügel nun beispielsweise um die Lagerpunkte 34 herumgeschwenkt werden und somit das Hinterkasten-Profil verändern.
Die weiteren Figuren 9a bis 14b zeigen weitere alternative bzw. ergänzende Ausführungsformen zu den bisherigen Figuren 3 bis 8b.
Figur 1 1 b (Figur 1 1 a entspricht im Wesentlichen Figur 6) ist in Ergänzung zu Figur 6 ein Element 25 an der Druckseite dargestellt. Da der Angriffspunkt für die Feder 28 nicht gegenüber der Darstellung in Figur 6 bzw. 1 1 a geändert wurde, müssen die Elemente 24 und 25 an der Blatthinterkante zusammenhängen, so dass sie um einen Anlenkpunkt 26 schwenkbar sind. Unter Umständen bietet es sich bei dieser Lösung an, eine Überlappung von dem Rotorblattkasten 1 1 über das Element 25 entlang der Rotorblattlänge auszubilden.
Figur 1 2b (Erweiterung von dem, was in Figur 7 bzw. Figur 1 2a dargestellt ist) ist ebenfalls ein druckseitiges Element 25 dargestellt, dass in dem dargestellten Fall über eine mechanische Verbindung ebenso wie das saugseitige Element 24 an einer gemeinsamen Welle 1 2 befestigt ist.
Die Figuren 13a und 13b zeigen eine Weiterentwicklung dessen, was bereits in den Figuren 8a und 8b dargestellt ist. Dabei sind für entsprechende Elemente an der Druckseite teils eigene Wellen 28 dargestellt. Figur 13a zeigt analog zu Figur 8a ein Rotorblatt im Normalbetrieb, Figur 1 3b zeigt eine Situation, in der der Hinterkasten durch eine entsprechende Rotation bzw. durch Verfahren der Wellen 28 nicht mehr wirksam ist.

Claims

A N S P R Ü C H E
1 . Rotorblatt einer Windenergieanlage, wobei das Rotorblatt eine bestimmte Oberfläche aufweist, die im Betrieb des Rotorblattes dem Wind ausgesetzt ist, gekennzeichnet durch Mittel zur Veränderung der Größe der Oberfläche des Rotorblattes.
2. Rotorblatt nach Anspruch 1 , dadurch gekennzeichnet, dass das Rotorblatt eine erste Tragstruktur und eine diese erste Tragstruktur umhüllende, aerodynamisch günstig ausgebildete Oberfläche aufweist, wobei die Größe der Oberfläche des Rotorblattes bei Extremwind-Situationen und/oder beim Transport in bestimmten Abschnitten des Rotorblattes deutlich geringer ist als bei dem Normalbetrieb des Rotorblattes und wobei die Mittel zur Veränderung der Größe der Oberfläche des Rotorblattes so ausgebildet sind, dass mit ihnen der Querschnitt des Rotorblattes veränderbar, verformbar und/oder bewegbar ist.
3. Rotorblatt nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Mittel zur Veränderung der Größe der Oberfläche durch einen verformbaren Teil der Oberfläche (14) gebildet werden, welcher Teil eines geschlossenen Behälters (1 6) ist.
4. Rotorblatt nach einem der Ansprüche 1 , 2 oder 3, dadurch gekennzeichnet, dass die Mittel zur Veränderung der Größe der Oberfläche durch eine an sich und/oder in sich bewegbare zweite Tragstruktur in einem vorgegebenen Bereich der Oberfläche (14) des Rotorblattes gebildet werden.
5. Rotorblatt nach Anspruch 4, gekennzeichnet durch eine wenigstens punktweise Befestigung des verformbaren Materials (1 8) an vorgegebenen Stellen der zweiten Tragstruktur (30).
6. Rotorblatt nach Anspruch 4, dadurch gekennzeichnet, dass das verformbare Material (1 8) mit einer Seite an einem drehbaren Wickelkern (21 ) befestigt ist.
7. Rotorblatt nach Anspruch 4, gekennzeichnet durch wenigstens eine um die eigene Längsachse schwenkbare Tragschiene (22, 28), wobei an jeder Tragschiene (22, 28) ein flächenartiges Element (24, 26) angeordnet ist.
8. Rotorblatt nach Anspruch 7, gekennzeichnet durch mehrere um die eigene Längsachse schwenkbare Tragschienen (28) und an den Tragschienen (28) angeordnete, flächenartige Elemente (26), wobei der Abstand zwischen den Tragschienen in radialer Richtung veränderbar ist.
9. Rotorblatt nach Anspruch 4, gekennzeichnet durch ein Flächenelement (24), welches an der ersten Tragstruktur einseitig schwenkbar angelenkt ist.
1 0. Rotorblatt nach einem der Ansprüche 1 oder 2, gekennzeichnet durch einen in Richtung der Tiefe des Rotorblattes (10) bewegbaren Teil der Oberfläche.
1 1 . Rotorblatt nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Mittel zur Veränderung der Größe der Oberfläche insbesondere der Teil der Oberfläche des Rotorblattes verändert werden kann, welcher im Bereich der Rotorblattwurzel bzw. dem Rotorblatt nahen Teil (14; Figur 1 ) liegt.
1 2. Windenergieanlage mit wenigstens einem Rotorblatt nach einem der vorstehenden Ansprüche.
13. Windenergieanlage nach Anspruch 12, dadurch gekennzeichnet, dass eine Steuerung vorgesehen ist, durch die die Mittel zur Veränderung der Größe der Oberfläche eingestellt werden.
14. Windenergieanlage nach Anspruch 1 3, dadurch gekennzeichnet, dass Mittel ausgebildet sind, mittels denen eine Extremwind-Situation erfassbar ist und dass diese Mittel der Steuerung der Mittel zur Veränderung der Größe der Oberfläche gekoppelt sind und dass bei einer Extremwind-Situation, z.B. bei einer Windstärke von mehr als 20 m/s die Größe der Oberfläche des Rotorblattes oder der Rotorblätter geringer ist als bei einer Windgeschwindigkeit unterhalb von 20 m/s.
1 5. Rotorblatt einer Windenergieanlage, mit einer ersten Tragstruktur und einer diese erste Tragstruktur umhüllenden, aerodynamisch günstig ausgebildeten Oberfläche, gekennzeichnet durch Mittel zur Veränderung der Größe der Oberfläche (1 1 , 14).
PCT/EP2001/015106 2000-12-23 2001-12-20 Rotorblatt für eine windenergieanlage WO2002051730A2 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002552837A JP4020783B2 (ja) 2000-12-23 2001-12-20 風力発電のための回転翼
DK01985915.6T DK1350027T3 (da) 2000-12-23 2001-12-20 Rotorblad til et vindenergianlæg
KR1020037008305A KR100614102B1 (ko) 2000-12-23 2001-12-20 풍력 발전 설비를 위한 회전자 날개
BRPI0116502-0A BR0116502B1 (pt) 2000-12-23 2001-12-20 lámina de rotor para uma instalação de energia eólica, e, instalação de energia eólica.
CA002432556A CA2432556C (en) 2000-12-23 2001-12-20 Rotor blade for a wind power installation
ES01985915T ES2397263T3 (es) 2000-12-23 2001-12-20 Pala de rotor para una instalación de energía eólica
EP01985915A EP1350027B1 (de) 2000-12-23 2001-12-20 Rotorblatt für eine windenergieanlage
US10/451,753 US7204674B2 (en) 2000-12-23 2001-12-20 Rotor blade for a wind power installation
NZ526588A NZ526588A (en) 2000-12-23 2001-12-20 Rotor blade for a wind power installation
AU2002235802A AU2002235802B2 (en) 2000-12-23 2001-12-20 Rotor blade for a wind power installation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10064912.2 2000-12-23
DE10064912.2A DE10064912B4 (de) 2000-12-23 2000-12-23 Rotorblatt für eine Windenergieanlage
DE10152449.8 2001-10-26
DE10152449A DE10152449A1 (de) 2001-10-26 2001-10-26 Rotorblatt für eine Windenergieanlage

Publications (2)

Publication Number Publication Date
WO2002051730A2 true WO2002051730A2 (de) 2002-07-04
WO2002051730A3 WO2002051730A3 (de) 2002-11-07

Family

ID=26008086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/015106 WO2002051730A2 (de) 2000-12-23 2001-12-20 Rotorblatt für eine windenergieanlage

Country Status (15)

Country Link
US (1) US7204674B2 (de)
EP (1) EP1350027B1 (de)
JP (1) JP4020783B2 (de)
KR (1) KR100614102B1 (de)
CN (1) CN100365271C (de)
AU (1) AU2002235802B2 (de)
BR (1) BR0116502B1 (de)
CA (1) CA2432556C (de)
CY (1) CY1113626T1 (de)
DK (1) DK1350027T3 (de)
ES (1) ES2397263T3 (de)
NZ (1) NZ526588A (de)
PT (1) PT1350027E (de)
TR (1) TR200700949A2 (de)
WO (1) WO2002051730A2 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097215A1 (de) * 2003-04-28 2004-11-11 Aloys Wobben Rotorblatt einer windenergieanlage
WO2007105174A1 (en) * 2006-03-14 2007-09-20 Tecsis Tecnologia E Sistemas Avançados Ltda Multi-element blade with aerodynamic profiles
WO2008003330A1 (en) * 2006-07-07 2008-01-10 Danmarks Tekniske Universitet (Technical University Of Denmark) Variable trailing edge section geometry for wind turbine blade
WO2008035149A2 (en) * 2006-02-23 2008-03-27 Stichting Nationaal Lucht- En Ruimtevaart Laboratorium Rotor blade for a wind turbine
EP2085609A1 (de) * 2007-09-14 2009-08-05 Gamesa Innovation & Technology, S.L. Windturbinenschaufel mit Biegklappen, die von Oberflächendruckänderungen gesteuert werden
WO2009130500A2 (en) * 2008-04-21 2009-10-29 Brm Power Limited Energy output limiter for wind turbine rotor(s)
US7708530B2 (en) 2002-06-05 2010-05-04 Aloys Wobben Rotor blade for a wind power plant
NL2003896C2 (nl) * 2009-12-02 2011-06-06 Emergya Wind Technologies Holdings N V Windturbineblad met variabel oppervlak en daarmee uitgeruste windturbine.
WO2011026495A3 (en) * 2009-09-04 2011-07-14 Vestas Wind Systems A/S Wind turbine rotor blade
EP2405129A1 (de) * 2010-07-06 2012-01-11 Lm Glasfiber A/S Windturbinenschaufel mit variabler Austrittskante
US8317479B2 (en) 2008-08-01 2012-11-27 Vestas Wind Systems A/S Segmented rotor blade extension portion
US8393865B2 (en) 2008-08-01 2013-03-12 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
WO2013045601A1 (en) * 2011-09-29 2013-04-04 Lm Wind Power A/S A wind turbine blade
US8517682B2 (en) 2007-04-30 2013-08-27 Vestas Wind Systems A/S Wind turbine blade
US9039372B2 (en) 2007-04-30 2015-05-26 Vestas Wind Systems A/S Wind turbine blade
WO2018162102A1 (en) * 2017-03-07 2018-09-13 Siemens Wind Power A/S Pressure supply system for a pneumatically activatable aerodynamic device of a rotor blade of a wind turbine
WO2018162100A1 (en) * 2017-03-07 2018-09-13 Siemens Wind Power A/S Safety system for an aerodynamic device of a wind turbine rotor blade
EP2350452B2 (de) 2008-10-14 2020-08-19 Vestas Wind Systems A/S Windturbinenblatt mit einer Vorrichtung zur Änderung der aerodynamischen Fläche oder Form
US11428204B2 (en) 2017-10-24 2022-08-30 Wobben Properties Gmbh Rotor blade of a wind turbine and method for designing same

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004225883B2 (en) * 2003-03-31 2010-06-17 Technical University Of Denmark Control of power, loads and/or stability of a horizontal axis wind turbine by use of variable blade geometry control
US8157533B2 (en) * 2005-10-17 2012-04-17 Vestas Wind Systems A/S Wind turbine blade with variable aerodynamic profile
DE102006022279B4 (de) * 2006-05-11 2016-05-12 Aloys Wobben Rotorblatt für eine Windenergieanlage
KR100809620B1 (ko) * 2007-01-31 2008-03-05 장길훈 풍력 발전용 풍차
ES2324002B1 (es) * 2007-06-22 2010-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. Pala de aerogenerador con alerones deflectables.
KR100915623B1 (ko) * 2007-11-30 2009-09-07 이종배 날개의 폭 조절이 가능한 풍차
US8192161B2 (en) 2008-05-16 2012-06-05 Frontier Wind, Llc. Wind turbine with deployable air deflectors
US8267654B2 (en) * 2008-05-16 2012-09-18 Frontier Wind, Llc Wind turbine with gust compensating air deflector
DE102009009272B4 (de) * 2009-02-17 2013-02-28 Siemens Aktiengesellschaft Qualitätsprüfung für Rotorblätter einer Windenergieanlage
DK2404055T3 (en) * 2009-03-06 2016-12-12 Vestas Wind Sys As The wind turbine which provides increased power
GB2475694A (en) * 2009-11-25 2011-06-01 Vestas Wind Sys As Flap control for wind turbine blades
CN101737270B (zh) * 2010-02-05 2011-09-07 济南高新开发区中泰环保技术开发中心 特大型垂直轴风力发电装置
US20110223021A1 (en) * 2010-03-10 2011-09-15 Vestas Wind Systems A/S Wind turbine rotor blade
US8011887B2 (en) * 2010-07-21 2011-09-06 General Electric Company Rotor blade assembly
EP2612023B1 (de) * 2010-09-01 2015-10-14 Vestas Wind Systems A/S Rotorschaufel für eine windturbine mit beweglicher steuerfläche
US20110268557A1 (en) * 2010-09-29 2011-11-03 General Electric Company System and method for attenuating the noise of airfoils
GB201109412D0 (en) * 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
US20130067798A1 (en) * 2011-09-19 2013-03-21 Steve KELTNER Fly repeller
CN109113924B (zh) * 2011-12-22 2021-04-20 Lm Wp 专利控股有限公司 由具有不同类型的负载支承结构的内侧部分和外侧部分组装的风力涡轮机叶片
US9816384B2 (en) * 2011-12-28 2017-11-14 Orville J. Birkestrand Power generation apparatus
US9816383B2 (en) * 2011-12-28 2017-11-14 Orville J. Birkestrand Power generation apparatus
US10677217B2 (en) * 2012-10-03 2020-06-09 General Electric Company Wind turbine and method of operating the same
KR101434469B1 (ko) * 2013-04-29 2014-08-26 삼성중공업 주식회사 풍력 발전장치용 블레이드
CN104234941A (zh) * 2013-06-24 2014-12-24 王智勇 一种可折叠的风力发电机桨叶
KR101497343B1 (ko) * 2013-10-10 2015-03-02 삼성중공업 주식회사 블레이드
DK2908001T3 (da) * 2014-02-12 2017-01-02 Siemens Ag Midler til dæmpning af belastning på en vindmøllerotorvinge
EP2998571B1 (de) * 2014-09-19 2017-11-01 Siemens Aktiengesellschaft Aufzugbeeinflussungsvorrichtung für ein Rotorblatt einer Windenergieanlage
DE102015206430A1 (de) * 2015-04-10 2016-10-13 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage
US10507902B2 (en) 2015-04-21 2019-12-17 General Electric Company Wind turbine dome and method of assembly
DE102015116634A1 (de) * 2015-10-01 2017-04-06 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt und Windenergieanlage
KR101628308B1 (ko) * 2016-04-01 2016-06-08 손기태 수평축 풍력발전기용 가변 단면형 블레이드
US11384734B1 (en) 2017-04-07 2022-07-12 Orville J. Birkestrand Wind turbine
EP3667077A1 (de) * 2018-12-13 2020-06-17 Siemens Gamesa Renewable Energy A/S Schnelle anpassung der windturbinenschaufeldurchflussregulierung
AU2021227962A1 (en) 2020-02-27 2022-08-18 Orville J. Birkestrand Toroidal lift force engine
GB202010416D0 (en) * 2020-07-07 2020-08-19 General Electric Renovables Espana Sl Rotor blade assembly for mitigating stall induced vibrations
EP4403767A1 (de) 2023-01-20 2024-07-24 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Strömungsveränderndes element für eine windturbinenschaufel
EP4403765A1 (de) 2023-01-20 2024-07-24 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Strömungsveränderndes element für windturbinenschaufel
EP4403766A1 (de) 2023-01-20 2024-07-24 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Strömungsveränderndes element für windturbinenschaufel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126677A1 (de) * 1981-07-07 1983-01-20 Erno-Raumfahrttechnik Gmbh, 2800 Bremen "rotorblattausbildung fue schnellaufende rotoren"
FR2587675A1 (fr) * 1985-09-24 1987-03-27 Dumortier Paul Ailerons a profils reversibles par autodeformation
EP0283730A1 (de) * 1987-03-14 1988-09-28 Mtb Manövriertechnisches Büro Von Luft oder Wasser umströmter Strömungskörper
EP0375382A2 (de) * 1988-12-21 1990-06-27 British Aerospace Public Limited Company Aerodynamische Geräuschunterdrückung für Tragflächenklappen
DE4428731A1 (de) * 1994-08-15 1996-02-22 Infan Gmbh Ingenieurgesellscha Längenvariables Rotorblatt für Windkraftanlagen, insbesondere für Windkraftanlagen an Binnenlandstandorten
US5527151A (en) * 1992-03-04 1996-06-18 Northern Power Systems, Inc. Advanced wind turbine with lift-destroying aileron for shutdown
GB2311978A (en) * 1996-04-10 1997-10-15 Robert Pyatt Adjustable wing

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1403069A (en) * 1921-08-12 1922-01-10 Burne Edward Lancaster Means for regulating the speed of wind motors
US2622686A (en) * 1942-07-21 1952-12-23 Chevreau Rene Louis Pier Marie Wind motor
US2428936A (en) * 1943-09-10 1947-10-14 Goodrich Co B F Aerodynamic brake
US2400388A (en) * 1944-03-17 1946-05-14 Goodrich Co B F Aerodynamic brake
US2442783A (en) * 1944-07-01 1948-06-08 Us Sec War Turbine rotor
US2453403A (en) * 1946-07-03 1948-11-09 Charles E Bogardus Windbreaker for parked aircraft
US2616509A (en) * 1946-11-29 1952-11-04 Thomas Wilfred Pneumatic airfoil
US3184187A (en) * 1963-05-10 1965-05-18 Isaac Peter Retractable airfoils and hydrofoils
US3463420A (en) * 1968-02-28 1969-08-26 North American Rockwell Inflatable wing
US3987984A (en) * 1973-04-09 1976-10-26 Albert George Fischer Semi-rigid aircraft wing
US3874816A (en) * 1973-10-23 1975-04-01 Thomas E Sweeney Windmill blade
FR2290585A1 (fr) * 1974-11-07 1976-06-04 Morin Bernard Aile de rotor a profil variable, notamment pour eolienne
SU577300A1 (ru) * 1975-12-09 1977-10-25 Свердловский Ордена Трудового Красного Знамени Горный Институт Им. В.В.Вахрушева Лопатка турбомашины
DE2829716A1 (de) * 1977-07-07 1979-01-25 Univ Gakko Hojin Tokai Windkraftmaschine mit vertikaler achse
JPS5928754B2 (ja) * 1979-05-18 1984-07-16 富治 高山 垂直軸風車の翼体
US4274011A (en) * 1980-03-14 1981-06-16 Marvin Garfinkle Wind turbine for marine propulsion
US4498017A (en) 1982-12-16 1985-02-05 Parkins William E Generating power from wind
US4692095A (en) * 1984-04-26 1987-09-08 Sir Henry Lawson-Tancred, Sons & Co. Ltd. Wind turbine blades
US4613760A (en) 1984-09-12 1986-09-23 The English Electric Company Limited Power generating equipment
JP2604349B2 (ja) 1984-12-12 1997-04-30 日本電気株式会社 半導体装置
SU1539378A1 (ru) * 1988-03-29 1990-01-30 Институт Электродинамики Ан Усср Лопасть ветроколеса
GB2227286A (en) * 1989-01-17 1990-07-25 Howden Wind Turbines Limited Control of a wind turbine and adjustable blade therefor
DE3913505A1 (de) * 1989-04-25 1989-11-16 Astrid Holzem Fluegel mit aerodynamischer bremse fuer windkraftmaschinen
DE4002972C2 (de) 1990-02-01 1994-06-16 Guenter Waldherr Tragflügel mit veränderbarem Profil, insbesondere zur Verwendung als Segel
JPH05180146A (ja) 1991-12-27 1993-07-20 Mitsubishi Heavy Ind Ltd 風車過負荷防止装置
US5320491A (en) * 1992-07-09 1994-06-14 Northern Power Systems, Inc. Wind turbine rotor aileron
DE4435606A1 (de) 1994-10-06 1996-04-11 Manfred Dipl Ing Maibom Flügel mit veränderbarer Form bezüglich der Wechselwirkung mit dem strömenden Medium
US5570859A (en) * 1995-01-09 1996-11-05 Quandt; Gene A. Aerodynamic braking device
US5570997A (en) * 1995-07-17 1996-11-05 Pratt; Charles W. Horizontal windmill with folding blades
DE19719221C1 (de) 1997-05-07 1998-10-29 Roland Stelzer Rotorblatt, insbesondere für Windkraftanlagen
US6420795B1 (en) 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator
US6015115A (en) * 1998-03-25 2000-01-18 Lockheed Martin Corporation Inflatable structures to control aircraft
US6133716A (en) 1998-10-23 2000-10-17 Statordyne, Inc. High-efficiency high-power uninterrupted power system
US6523781B2 (en) * 2000-08-30 2003-02-25 Gary Dean Ragner Axial-mode linear wind-turbine
US6682302B2 (en) * 2001-03-20 2004-01-27 James D. Noble Turbine apparatus and method
US6465902B1 (en) 2001-04-18 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Controllable camber windmill blades

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126677A1 (de) * 1981-07-07 1983-01-20 Erno-Raumfahrttechnik Gmbh, 2800 Bremen "rotorblattausbildung fue schnellaufende rotoren"
FR2587675A1 (fr) * 1985-09-24 1987-03-27 Dumortier Paul Ailerons a profils reversibles par autodeformation
EP0283730A1 (de) * 1987-03-14 1988-09-28 Mtb Manövriertechnisches Büro Von Luft oder Wasser umströmter Strömungskörper
EP0375382A2 (de) * 1988-12-21 1990-06-27 British Aerospace Public Limited Company Aerodynamische Geräuschunterdrückung für Tragflächenklappen
US5527151A (en) * 1992-03-04 1996-06-18 Northern Power Systems, Inc. Advanced wind turbine with lift-destroying aileron for shutdown
DE4428731A1 (de) * 1994-08-15 1996-02-22 Infan Gmbh Ingenieurgesellscha Längenvariables Rotorblatt für Windkraftanlagen, insbesondere für Windkraftanlagen an Binnenlandstandorten
GB2311978A (en) * 1996-04-10 1997-10-15 Robert Pyatt Adjustable wing

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100663B2 (en) 2002-06-05 2012-01-24 Aloys Wobben Rotor blade for a wind power plant
US7914261B2 (en) 2002-06-05 2011-03-29 Aloys Wobben Rotor blade for a wind power plant
US7708530B2 (en) 2002-06-05 2010-05-04 Aloys Wobben Rotor blade for a wind power plant
AU2004234487B2 (en) * 2003-04-28 2009-02-19 Aloys Wobben Rotor blade of a wind energy facility
JP2010043650A (ja) * 2003-04-28 2010-02-25 Aloys Wobben 風力発電設備のローターブレード
KR100812796B1 (ko) 2003-04-28 2008-03-12 알로이즈 워벤 풍력 발전 장치용 로터 블레이드
US7946803B2 (en) 2003-04-28 2011-05-24 Aloys Wobben Rotor blade for a wind power system
CN100366893C (zh) * 2003-04-28 2008-02-06 艾劳埃斯·乌本 一种风力发电设备的转子叶片
JP2006524772A (ja) * 2003-04-28 2006-11-02 アロイス・ヴォベン 風力発電設備のローターブレード
WO2004097215A1 (de) * 2003-04-28 2004-11-11 Aloys Wobben Rotorblatt einer windenergieanlage
EP2258943A3 (de) * 2003-04-28 2013-10-02 Aloys Wobben Profil eines Rotorsblatts einer Windenergieanlage
WO2008035149A3 (en) * 2006-02-23 2009-02-19 Stichting Nationaal Lucht En R Rotor blade for a wind turbine
WO2008035149A2 (en) * 2006-02-23 2008-03-27 Stichting Nationaal Lucht- En Ruimtevaart Laboratorium Rotor blade for a wind turbine
WO2007105174A1 (en) * 2006-03-14 2007-09-20 Tecsis Tecnologia E Sistemas Avançados Ltda Multi-element blade with aerodynamic profiles
WO2008003330A1 (en) * 2006-07-07 2008-01-10 Danmarks Tekniske Universitet (Technical University Of Denmark) Variable trailing edge section geometry for wind turbine blade
US8419363B2 (en) 2006-07-07 2013-04-16 Danmarks Tekniske Universitet Variable trailing edge section geometry for wind turbine blade
US9039372B2 (en) 2007-04-30 2015-05-26 Vestas Wind Systems A/S Wind turbine blade
EP2153059B2 (de) 2007-04-30 2019-02-13 Vestas Wind Systems A/S Windturbinenschaufel
US8517682B2 (en) 2007-04-30 2013-08-27 Vestas Wind Systems A/S Wind turbine blade
EP2085609A1 (de) * 2007-09-14 2009-08-05 Gamesa Innovation & Technology, S.L. Windturbinenschaufel mit Biegklappen, die von Oberflächendruckänderungen gesteuert werden
ES2326352A1 (es) * 2007-09-14 2009-10-07 GAMESA INNOVATION & TECHNOLOGY, S.L. Pala de aerogenerador con alerones deflectables controlados por cambios de la presion en la superficie.
WO2009130500A2 (en) * 2008-04-21 2009-10-29 Brm Power Limited Energy output limiter for wind turbine rotor(s)
WO2009130500A3 (en) * 2008-04-21 2010-03-11 Brm Power Limited Energy output limiter for wind turbine rotor(s)
US8317479B2 (en) 2008-08-01 2012-11-27 Vestas Wind Systems A/S Segmented rotor blade extension portion
US8393865B2 (en) 2008-08-01 2013-03-12 Vestas Wind Systems A/S Rotor blade extension portion having a skin located over a framework
EP2350452B2 (de) 2008-10-14 2020-08-19 Vestas Wind Systems A/S Windturbinenblatt mit einer Vorrichtung zur Änderung der aerodynamischen Fläche oder Form
WO2011026495A3 (en) * 2009-09-04 2011-07-14 Vestas Wind Systems A/S Wind turbine rotor blade
WO2011068405A1 (en) 2009-12-02 2011-06-09 Ewt Ip B.V. Wind turbine blade with variable surface area and wind turbine equipped therewith
NL2003896C2 (nl) * 2009-12-02 2011-06-06 Emergya Wind Technologies Holdings N V Windturbineblad met variabel oppervlak en daarmee uitgeruste windturbine.
US8794919B2 (en) 2010-07-06 2014-08-05 Lm Glasfiber A/S Wind turbine blade with variable trailing edge
EP2405129A1 (de) * 2010-07-06 2012-01-11 Lm Glasfiber A/S Windturbinenschaufel mit variabler Austrittskante
WO2013045601A1 (en) * 2011-09-29 2013-04-04 Lm Wind Power A/S A wind turbine blade
WO2018162102A1 (en) * 2017-03-07 2018-09-13 Siemens Wind Power A/S Pressure supply system for a pneumatically activatable aerodynamic device of a rotor blade of a wind turbine
WO2018162100A1 (en) * 2017-03-07 2018-09-13 Siemens Wind Power A/S Safety system for an aerodynamic device of a wind turbine rotor blade
US11231009B2 (en) 2017-03-07 2022-01-25 Siemens Gamesa Renewable Energy A/S Safety system for an aerodynamic device of a wind turbine rotor blade
US11274649B2 (en) 2017-03-07 2022-03-15 Siemens Gamesa Renewable Energy A/S Pressure supply system for a pneumatically activatable aerodynamic device of a rotor blade of a wind turbine
US11428204B2 (en) 2017-10-24 2022-08-30 Wobben Properties Gmbh Rotor blade of a wind turbine and method for designing same

Also Published As

Publication number Publication date
EP1350027B1 (de) 2012-11-07
NZ526588A (en) 2006-02-24
ES2397263T3 (es) 2013-03-05
US20040105752A1 (en) 2004-06-03
CA2432556C (en) 2008-07-08
WO2002051730A3 (de) 2002-11-07
EP1350027A2 (de) 2003-10-08
DK1350027T3 (da) 2013-02-04
CY1113626T1 (el) 2016-06-22
CN100365271C (zh) 2008-01-30
PT1350027E (pt) 2013-01-24
JP2004520521A (ja) 2004-07-08
BR0116502B1 (pt) 2009-12-01
TR200700949A2 (tr) 2007-10-22
CN1511231A (zh) 2004-07-07
US7204674B2 (en) 2007-04-17
AU2002235802B2 (en) 2006-06-22
CA2432556A1 (en) 2002-07-04
BR0116502A (pt) 2004-02-03
KR100614102B1 (ko) 2006-08-22
KR20030064848A (ko) 2003-08-02
JP4020783B2 (ja) 2007-12-12

Similar Documents

Publication Publication Date Title
EP1350027B1 (de) Rotorblatt für eine windenergieanlage
EP1620646B1 (de) Rotorblatt einer windenergieanlage
DE102005034078B4 (de) Windkraftanlagen-Rotorblatt mit in der Ebene liegender Pfeilung und Vorrichtungen welche dasselbe verwenden, und Verfahren für dessen Herstellung
DE102011053404B4 (de) Windkraftanlagen-Rotorflügel mit aerodynamischem Winglet
EP2274200B1 (de) Landeklappenkinematik angetrieben über ritzelantrieb
EP1514023B1 (de) Windenergieanlage
DE60110098T2 (de) Regelungsmethode für eine windturbine und regeleinrichtung dafür
DE19741326C2 (de) Anströmprofil mit variabler Profiladaption
EP2085610B1 (de) Vertikalachsen-Windturbine mit Steuerungsvorrichtung sowie Verfahren zum aerodynamischen Bremsen
DE2632697A1 (de) Windkraftmaschine
DE3013774C2 (de)
DE10348060B4 (de) Rotorblatt eines Rotors einer Windenergieanlage
DE102007020870A1 (de) Hochauftriebssystem am Tragflügel eines Flugzeugs
EP2280163B1 (de) Windenergieanlage sowie Rotorblatt für eine Windenergieanlage
WO2009086648A2 (de) Windkraftanlage
DE102009052641A1 (de) Hinterkantenklappensystem
EP3377759A1 (de) Steuerung einer windenergieanlage mit verstellbaren rotorblättern
DE10152449A1 (de) Rotorblatt für eine Windenergieanlage
EP1010616B1 (de) Adaptiver Flugzeugtragflügel
EP3737856B1 (de) Windenergieanlage mit endkantenströmungsklappe
EP3677771A1 (de) Vertikale windenergieanlage
DE10064912B4 (de) Rotorblatt für eine Windenergieanlage
EP2976524A1 (de) Rotorblatt einer windenergieanlage, windenergieanlage und verfahren zum betreiben einer windenergieanlage
EP3698041B1 (de) Rotorblatt und rotor für eine windenergieanlage, mit einer lagerlosen pitchverstellung und windenergieanlage
DE29808047U1 (de) Windturbine mit vertikaler oder geneigter Achse und Auftriebsausnutzung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2432556

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002235802

Country of ref document: AU

Ref document number: 526588

Country of ref document: NZ

Ref document number: 972/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020037008305

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002552837

Country of ref document: JP

Ref document number: 2001985915

Country of ref document: EP

Ref document number: 2003/00970

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 018216803

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037008305

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001985915

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10451753

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 1020037008305

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 526588

Country of ref document: NZ