WO2002051540A1 - Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid - Google Patents

Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid Download PDF

Info

Publication number
WO2002051540A1
WO2002051540A1 PCT/EP2000/013159 EP0013159W WO02051540A1 WO 2002051540 A1 WO2002051540 A1 WO 2002051540A1 EP 0013159 W EP0013159 W EP 0013159W WO 02051540 A1 WO02051540 A1 WO 02051540A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
catalysts
subgroup
acid
dioxide
Prior art date
Application number
PCT/EP2000/013159
Other languages
English (en)
French (fr)
Inventor
Daniel Heineke
Klaus Harth
Uwe Stabel
Otto Hofstadt
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to PCT/EP2000/013159 priority Critical patent/WO2002051540A1/de
Publication of WO2002051540A1 publication Critical patent/WO2002051540A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum

Definitions

  • the present invention relates to catalysts which a) zirconium dioxide and / or titanium dioxide and b) silicon dioxide and c) optionally aluminum oxide and d) at least one element of the first or second main group, an element of the third subgroup, an element of the eighth subgroup of the periodic table the elements and / or tin included.
  • Pt / Sn / Cs / Al 2 0 3 catalysts for the dehydrogenation of hydrocarbons in the presence of water vapor are known from US Pat. No. 4,788,371. Despite the high degree of dilution, only low sales of 21% are achieved.
  • WO-A-94/29021 describes catalysts based on mixed oxides of magnesium and aluminum with a noble metal from group VIII, a metal from group IVa and possibly an alkali metal from group Ia of the periodic table of the elements for dehydrogenation, for example a gas mixture H0 / Propane / H / N 2 in the ratio 8: 7: 1: 5 known.
  • a disadvantage for the industrial application of these catalysts is their low hardness, which makes industrial use difficult. Furthermore, the performance of these catalysts needs to be improved, especially at low reaction temperatures.
  • Another disadvantage is the complex procedure, which requires the addition of hydrogen to the feed and the admixture of nitrogen for further dilution in order to maintain performance.
  • the object of the present invention was therefore to remedy the disadvantages mentioned above.
  • the catalysts of the invention contain, preferably consist of
  • the content of a noble metal as a dehydrogenation-active component in the catalysts according to the invention is generally 0 to 5% by weight, preferably 0.1 to 1% by weight, particularly preferably 0.2 to 0.5% by weight.
  • Precursors of the oxides of zirconium, titanium, silicon and aluminum, which can be converted into the oxides by calcining, can be used to produce the catalysts according to the invention. These can be prepared by known processes, for example by the sol-gel process, precipitation of the salts, dewatering of the corresponding acids, dry mixing, slurrying or spray drying.
  • a water-rich zirconium oxide of the general formula Zr0 • H 2 0 can first be produced by precipitation of a suitable zirconium-containing precursor.
  • suitable zirconium precursors are, for example, Zr (N0 3 ), ZrOCl, or ZrCl 4 .
  • the precipitation itself is carried out by adding a base such as NaOH, KOH, NaC0 3 and NH 3 and is described for example in EP-A-849 224.
  • the Zr precursor obtained previously can be mixed with an Si-containing precursor.
  • Si-containing precursors are, for example, water-containing brines of Si0 2 such as Ludox TM.
  • the two components can be mixed, for example, by simple mechanical mixing or by spray drying in a spray tower.
  • the Si0 2 • Zr0 powder mixture obtained as described above can be mixed with an Al-containing precursor. This can be done, for example, by simple mechanical mixing in a kneader. However, a Zr0 • xSi0 • xAl0 3 mixed oxide can also be produced in a single step by dry mixing the individual precursors.
  • the mixed oxides Compared to pure Zr0, the mixed oxides have the advantage, among other things, that they can be easily deformed.
  • the powder mixture obtained is optionally mixed with a concentrated acid in the kneader and can then be introduced into a shaped body, e.g. be transferred by means of an extruder or an extruder.
  • An advantage according to the invention is the targeted influencing of the pore structure by using mixed oxides.
  • the grain size of the different precursors influence the pore structure.
  • the use of A10 3 can create macropores in the structure with a low loss on ignition and a defined grain size composition.
  • Puralox A10 3 with a loss on ignition of about 3%) has proven itself.
  • the mixed oxide supports of the catalysts according to the invention generally have higher BET surface areas than pure ZrO 2 supports.
  • the BET surface areas of the mixed oxide supports are generally between 40 and 300 m / g, preferably between 50 and 200 m 2 / g, particularly preferably between 80 and 150 m 2 / g.
  • the pore volume of the catalysts according to the invention is usually 0.1 to 0.8 ml / g, preferably 0.2 to 0.6 ml / g.
  • the average pore diameter of the catalysts according to the invention which can be determined by mercury porosimetry is between 5 and 20 nm, preferably between 8 and 18 nm.
  • the calcination of the mixed oxide supports expediently takes place after the application of the active components and is carried out at temperatures from 400 to 700 ° C., preferably from 500 to 650 ° C., particularly preferably at 560 to 620 ° C.
  • the calcination temperature should usually be at least as high as the reaction temperature of the dehydrogenation for which the catalysts according to the invention are used.
  • the doping of the mixed oxide carriers with a basic compound can be carried out either during the preparation of the carrier, for example by co-precipitation or subsequently, for example by impregnating the mixed oxide with an alkali or alkaline earth metal compound or a compound of the 3rd subgroup or a rare earth metal Connection.
  • K, Cs and lanthanum are particularly suitable for doping.
  • the dehydrogenation-active component which is usually a metal of VIII., Is generally applied by impregnation with a suitable metal salt precursor which can be converted into the corresponding metal oxide by calcination. Instead of impregnation, the dehydrogenation-active component can also be carried out by other methods such as, for example, spraying on the metal salt precursor.
  • Suitable metal salt precursors are, for example, the nitrates, acetates and chlorides of the corresponding metals; complex anions of the metals used are also possible.
  • Platinum is preferably used as H 2 PtCl 6 or Pt (N0 3 ).
  • Water as well as organic solvents are suitable as solvents for the metal salt precursors. Lower alcohols such as methanol and ethanol are particularly suitable.
  • the catalyst is produced in the following steps:
  • Suitable compounds are, for example, hydrous Zr0 2 • xH 2 0, which was obtained by precipitation from precursors such as Zr (N0 3 ), ZrOCl 2 or Zr (0R) and, for example, Si0-Sol (Ludox TM ). Subsequent calcination at temperatures in the range from 400 to 700 ° C, preferably 550 to 650 ° C.
  • step b) Mixing the composition obtained from step a) with a compound of aluminum, for example A1 2 0 3 or AIO (OH) (boehmite) with the addition of an acid such as conc. HN0 3 or conc. HCOOH.
  • a compound of aluminum for example A1 2 0 3 or AIO (OH) (boehmite) with the addition of an acid such as conc. HN0 3 or conc. HCOOH.
  • Suitable precursors when noble metals are used as the dehydrogenation-active component are also the corresponding noble metal sols, which can be prepared by one of the known processes, for example by reducing a metal salt in the presence of a stabilizer such as PVP with a reducing agent.
  • a stabilizer such as PVP with a reducing agent.
  • the manufacturing technique is dealt with in detail in German patent application DE-A-195 00 366.
  • the catalyst can be fixed in the reactor or e.g. be used in the form of a fluidized bed and have a corresponding shape. Suitable are e.g. Forms such as grit, tablets, monoliths, balls, or extrudates (strands, wagon wheels, stars, rings).
  • alkali and alkaline earth metal precursors use is generally made of compounds which can be converted into the corresponding oxides by calcination.
  • hydroxides, carbonates, oxalates, acetates or mixed hydroxycarbonates of the alkali and alkaline earth metals are suitable.
  • the mixed oxide support is additionally or exclusively doped with a metal of the third subgroup, then one should also start from compounds that can be converted into the corresponding oxides by calcining.
  • Will Lan- than used for example, lanthanum oxide carbonate, La (OH), La 3 (C0 3 ) 2 , La (N0 3 ) 3 or lanthanum compounds which contain organic anions, such as La acetate, La formate, or La Suitable for oxalate.
  • the propane dehydrogenation is generally carried out at a reaction temperature of 300 to 800 ° C., preferably 450 to 700 ° C., and a pressure of 0.1 to 100 bar, preferably 0.1 to 40 bar with a GHSV (Gas Hourly Space Velocity ) from 100 to 10,000 ⁇ r 1 , preferably 500 to 2,000 h " 1.
  • diluents such as CO, N, noble gases and / or steam (water vapor), preferably N and / or steam, can be present in the feed, steam is particularly preferred.
  • a special feature of the catalysts according to the invention is that the catalysts are active in the dehydrogenation of hydrocarbons in the presence of water vapor and the advantages associated therewith, such as abolishing the equilibrium limitation, reducing coking and extending the service life, can be used.
  • hydrogen can be added to the hydrocarbon feed, the ratio of hydrogen to hydrocarbon flow generally being 0.1: 1 to 100: 1, preferably 1: 1 to 20: 1.
  • the dehydrogenation of hydrocarbons can preferably be carried out with the catalysts according to the invention without the addition of hydrogen.
  • a gas in particular steam (water vapor)
  • a gas in particular steam (water vapor)
  • the regeneration itself takes place at temperatures in the range from 300 to 900 ° C., preferably 400 to 800 ° C., using a free oxidizing agent, preferably using air or in a reducing atmosphere, preferably using hydrogen.
  • the regeneration can be operated at negative pressure, normal pressure (atmospheric pressure) or positive pressure. Pressures in the range from 0.5 to 100 bar are preferred.
  • hydrocarbons are suitable, for example C 6 -C 6 -hydrocarbons, such as ethane, n-propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, n-heptane, n Octane, n-nonane, n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, preferably C - to Cs -hydrocarbons such as ethane, n-propane, n -Butane, iso-butane, n-pentane, iso-pentane, n-hexane, n-heptane, n-octane, particularly preferably
  • Propylene is a popular product, especially for the synthesis of polypropylene or for the synthesis of functionalized monomers and their polymerization products.
  • An alternative to the production of propylene by steam cracking light naphtha is the dehydrogenation of propane.
  • Isobutene is an important product, especially for the production of MTBE (methyl tert-butyl ether). It is used primarily in the United States as a fuel additive to increase the octane number. Analogously to propylene, isobutene can be prepared by dehydrogenating isobutane.
  • the catalyst had a crushed tamped weight of 1.18 g / ml.
  • the BET surface area was 84 m 2 / g.
  • a pore volume of 0.26 ml / g was determined by mercury porosimetry measurements and a pore area of 88 m 2 / g and an average pore radius of 11.0 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • the catalyst had a crushed tamped weight of 0.963 g / ml.
  • the BET surface area was 103 m 2 / g.
  • a pore volume of 0.35 ml / g was determined by means of mercury porosimetry measurements and a pore area of 100 m 2 / g and an average pore radius of 15.5 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • Example 2 The procedure was analogous to Example 1, with the differences that 353.36 g of the spray powder obtained in the first step, 266.66 g of Pural TM SCF (boehmite, loss on ignition 25%) and 31 g of conc. HN0 3 (65%) were used.
  • the catalyst had a crushed tamped weight of 0.858 g / ml.
  • the BET surface area was 124 m 2 / g.
  • a pore volume of 0.42 ml / g was determined by mercury porosimetry measurements and a pore area of 131 m 2 / g and an average pore radius of 10.1 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • Example 2 The procedure was analogous to Example 2 with the differences that when kneading 235.57 g of the spray powder obtained in the first step, 400 g of Pural TM SCF (boehmite, loss on ignition 25%) and 12.71 g conc. HCOOH were used.
  • the catalyst had a crushed tamped weight of 0.75 g / ml.
  • the BET surface area was 148 m 2 / g.
  • a pore volume of 0.49 ml / g was determined by mercury porosimetry measurements and a pore area of 169 m 2 / g and an average pore radius of 10.2 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • Example 2 The procedure was analogous to Example 2 with the differences that 471.14 g of the spray powder obtained in the first step, 72.16 g of Puralox TM SCF (A1 2 0 3 , loss on ignition 3%), 40 g of Pural TM SB (boehmite, Loss on ignition 25%) and 29.17 g conc. HN0 3 were used.
  • the catalyst had a crushed tamped weight of 0.908 g / ml.
  • the BET surface area was 103 m 2 / g.
  • a pore volume of 0.39 ml / g was determined by mercury porosimetry measurements and a pore area of 99 m 2 / g and an average pore radius of 17.2 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • Example 2 The procedure was analogous to Example 2, with the differences that 500 g of the spray powder obtained in the first step and 50 g of conc. HN0 3 were used without further additives.
  • the catalyst had a crushed tamped weight of 1.369 g / ml.
  • the BET surface area was 51 m 2 / g.
  • a pore volume of 0.17 ml / g was determined by mercury porosimetry measurements and a pore area of 88 m 2 / g and an average pore radius of 10.8 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • the mixture was then soaked in 154 ml of water with a solution of 0.5218 g of CsN0 3 and 0.9204 g of KN0 3 , the catalyst was dried at 100 ° C. for 15 h and then calcined at 560 ° C. for 3 h.
  • the catalyst had a crushed tamped weight of 1.139 g / ml.
  • the BET surface area was 81 m 2 / g.
  • a pore volume of 0.29 ml / g was determined by means of mercury porosimetry measurements and a pore area of 69 m 2 / g and an average pore radius of 12.1 nm were calculated.
  • composition of the catalyst is shown in Table 1.
  • a catalyst was prepared for comparison according to the specification of WO-A-94/29021, Example 1 (Pt / Sn / Cs / Mg (Al) O).
  • Example 1 The catalyst prepared in Example 1 was tested for isobutane dehydrogenation. The procedure was as described in Example 1, with the difference that isobutane was used instead of propane.

Abstract

Katalysatoren, die a) 10 bis 99,9 Gew. -% Zirkondioxid und/oder Titandioxid und b) 0,1 bis 30 Gew. -% Siliciumdioxid und c) 0 bis 60 Gew. -% Aluminiumoxid und d) 0,1 bis 10 Gew. -% mindestens eines Elementes der ersten oder zweiten Hauptgruppe, eines Elementes der dritten Neben-gruppe, eines Elementes der achten Nebengruppe des Periodensystems der Elemente und/oder Zinn enthalten, mit der Maßgabe, daß die Summe der Gewihtsprozente 100 ergibt, ein Verfahren zur Dehydrierung von C2- bis C16-Kohlenwasserstoffen und die Verwendung dieser Katalysatoren dazu sowie ein Verfahren zur Herstellung dieser Katalysatoren.

Description

OXIDKATALYSATOREN ENTHALTEND ZUMINEST SILIKA UND GRUPPE IVB OXID
Beschreibung
Die vorliegende Erfindung betrifft Katalysatoren, die a) Zirkon- dioxid und/oder Titandioxid und b) Siliciumdioxid und c) gegebenenfalls Aluminiumoxid und d) mindestens ein Element der ersten oder zweiten Hauptgruppe, ein Element der dritten Nebengruppe, ein Element der achten Nebengruppe des Periodensystems der Elemente und/oder Zinn enthalten.
Aus der US-A-5, 220, 091 sind Katalysatoren bestehend aus Pt/Sn als Aktivkomponente auf einem Zn-Spinell-Träger zur Dehydrierung von kleinen Kohlenwasserstoffmolekülen wie Isobutan mit Wasser- dampf als Verdünnungsmittel bekannt. Hinsichtlich ihrer Performance sind diese Katalysatoren verbesserungsbedürftig, denn es werden trotz hoher Verdünnung des Feed mit Wasserdampf (Verhältnis 4:1) bei hohen Reaktionstemperaturen von 600°C nur relativ geringe Umsätze und Selektivitäten erzielt. Ebenfalls verbesserungswürdig ist die Standzeit der Katalysatoren, denn es muß nach einer Betriebszeit von nur 7 h regeneriert werden.
Aus der US-A-4, 788, 371 sind Pt/Sn/Cs/Al203-Katalysatoren zur Dehydrierung von Kohlenwasserstoffen in Gegenwart von Wasser - dampf (z.B. Wasserdampf/Propan 10:1) bekannt. Trotz des hohen Verdünnungsgrades werden nur geringe Umsätze von 21% erreicht.
Aus der WO-A- 94/29021 sind Katalysatoren auf der Basis von Mischoxiden von Magnesium und Aluminium mit einem Edelmetall der Gruppe VIII, einem Metall der Gruppe IVa und gegebenenf lls einem Alkalimetall der Gruppe Ia des Periodensystems der Elemente zur Dehydrierung z.B. eines Gasgemisches aus H0/Propan/H/N2 im Verhältnis 8:7:1:5 bekannt. Nachteilig für eine technische Anwendung dieser Katalysatoren ist ihre geringe Härte, die einen technischen Einsatz schwierig macht. Weiterhin sind diese Katalysatoren in ihrer Performance, insbesondere bei niedrigen Reaktionstemperaturen verbesserungsbedürftig. Ein weiterer Nachteil ist die aufwendige Fahrweise, die zur Erhaltung der Performance den Zusatz von Wasserstoff zum Feed und die Zumischung von Stickstoff zur weiteren Verdünnung erfordert.
Der vorliegenden Erfindung lag deshalb die Aufgabe zugrunde, den zuvor genannten Nachteilen abzuhelfen.
Demgemäß wurden neue und verbesserte Katalysatoren gefunden, die a) 10 bis 99,9 Gew. -% Zirkondioxid und/oder Titandioxid und
b) 0,1 bis 30 Gew.-% Siliciumdioxid und
c) 0 bis 60 Gew. -% Aluminiumoxid und
d) 0,1 bis 10 Gew.-% mindestens eines Elementes der ersten oder zweiten Hauptgruppe, eines Elementes der dritten Neben- gruppe, eines Elementes der achten Nebengruppe des Perioden- Systems der Elemente und/oder Zinn enthalten,
mit der Maßgabe, daß die Summe der Gewichtsprozente 100 ergibt, ein Verfahren zur Dehydrierung von C - bis Cι6- Kohlenwasserstoffen und die Verwendung dieser Katalysatoren dazu sowie ein Ver- fahren zur Herstellung dieser Katalysatoren.
Die erfindungsgemäßen Katalysatoren enthalten, bevorzugt bestehen aus
a) 10 bis 99,9 Gew. -%, bevorzugt 20 bis 98 Gew. -%, besonders bevorzugt 30 bis 95 Gew. -% Zirkondioxid und/oder Titandioxid, bevorzugt in Form von Rutil oder Anatas oder deren Gemische, besonders bevorzugt Zirkondioxid und/oder Titan - dioxid, insbesondere Zirkondioxid und
b) 0,1 bis 30 Gew. -%, bevorzugt 0,5 bis 25 Gew. -%, besonders bevorzugt 2 bis 10 Gew. -% Siliciumdioxid und
c) 0 bis 60 Gew. -%, bevorzugt 0,1 bis 50 Gew.-%, besonders bevorzugt 1 bis 40 Gew.-%, insbesondere 5 bis 30 Gew.-%
Aluminiumoxid und
d) 0,1 bis 10 Gew. -%, bevorzugt 0,15 bis 8 Gew. -%, besonders bevorzugt 0,2 bis 5 Gew. -%, mindestens eines Elementes der ersten oder zweiten Hauptgruppe, eines Elementes der dritten Nebengruppe, eines Element der achten Nebengruppe des Periodensystems der Elemente und/oder Zinn enthalten,
wobei sich die Summe der Gewichtsprozente zu 100 ergibt.
Der Gehalt der erfindungsgemäßen Katalysatoren an einem Edelmetall als dehydrieraktive Komponente beträgt in der Regel 0 bis 5 Gew.-%, bevorzugt 0,1 bis 1 Gew.-%, besonders bevorzugt 0,2 bis 0,5 Gew.-%. Zur Herstellung der erfindungsgemäßen Katalysatoren können Pre- cursoren der Oxide des Zirkons, Titans, Siliciums und Aluminiums, die sich durch Calcinieren in die Oxide umwandeln lassen, eingesetzt werden. Diese können nach bekannten Verfahren, zum Beispiel nach dem Sol-Gel-Verfahren, Fällung der Salze, Entwässern der entsprechenden Säuren, Trockenmischen, Aufschlämmen oder Sprühtrocknen hergestellt werden. Zum Beispiel kann zur Herstellung eines Zr02 • xAl203 • xSi0-Mischoxides zunächst ein wasserreiches Zirkonoxid der allgemeinen Formel Zr0 • H20 durch Fällung eines geeigneten Zirkon-haltigen Precursors hergestellt werden. Geeignete Precursoren des Zirkons sind zum Beispiel Zr(N03) , ZrOCl , oder ZrCl4. Die Fällung selbst erfolgt durch Zugabe einer Base wie zum Beispiel NaOH, KOH, NaC03 und NH3 und ist beispielsweise in der EP-A-849 224 beschrieben.
Zur Herstellung eines Zr02 • xSi0-Mischoxides kann der zuvor erhaltene Zr-Precursor mit einem Si-haltigen Precursor gemischt werden. Gut geeignete Precursoren des Si0 sind zum Beispiel wasserhaltige Sole des Si02 wie Ludox™ . Die Mischung der beiden Komponenten kann beispielsweise durch einfaches mechanisches Vermischen oder durch Sprühtrocknen in einem Sprühturm erfolgen.
Zur Herstellung eines Zr0 • xSi0 • xAl03-Mischoxides kann die wie oben beschrieben erhaltene Si02 • Zr0-Pulvermischung mit einem Al-haltigen Precursor versetzt werden. Dies kann zum Beispiel durch einfaches mechanisches Mischen in einem Kneter erfolgen. Die Herstellung eines Zr0 • xSi0 • xAl03-Mischoxides kann aber auch in einem einzigen Schritt durch Trockenmischung der einzelnen Precursoren erfolgen.
Die Mischoxide haben gegenüber reinem Zr0 unter anderem den Vorteil, daß sie sich leicht verformen lassen. Dazu wird die erhaltene Pulvermischung im Kneter gegebenenfalls mit einer konzentrierten Säure versetzt und kann dann in einen Formkörper, z.B. mittels einer Strangpresse oder eines Extruders überführt werden .
Ein erfindungsgemäßer Vorteil ist die gezielte Beeinflussung der Porenstruktur durch die Verwendung von Mischoxiden. Die Korn- große der verschiedenen Precursoren beeinflussen das Porenge- füge. So lassen sich beispielsweise über die Verwendung von A103 mit einem geringen Glühverlust und einer definierten Korngrößenzusammensetzung Makroporen im Gefüge erzeugen. Bewährt hat sich in diesem Zusammenhang die Verwendung von Puralox (A103 mit einem Glühverlust von etwa 3 %) . Die Mischoxid-Träger der erfindungsgemäßen Katalysatoren weisen nach der Calcinierung im allgemeinen höhere BET-Oberflachen als reine Zr02-Träger auf. Die BET-Oberflachen der Mischoxid-Träger liegen im allgemeinen zwischen 40 und 300 m/g, bevorzugt zwi- sehen 50 und 200 m2/g, besonders bevorzugt zwischen 80 und 150 m2/g. Das Porenvolumen der erfindungsgemäßen Katalysatoren beträgt üblicherweise 0,1 bis 0,8 ml/g, bevorzugt 0,2 bis 0,6 ml/g. Der durch Hg-Porosimetrie bestimmbare mittlere Poren- durchmesser der erfindungsgemäßen Katalysatoren liegt zwischen 5 und 20 nm, bevorzugt zwischen 8 und 18 nm.
Die Calcinierung der Mischoxid-Träger erfolgt zweckmäßigerweise nach dem Aufbringen der Aktivkomponenten und wird bei Temperaturen von 400 bis 700°C, bevorzugt von 500 bis 650°C, besonders bevorzugt bei 560 bis 620°C durchgeführt. Die Calciniertempera- tur sollte dabei üblicherweise mindestens so hoch sein wie die Reaktionstemperatur der Dehydrierung für die die erfindungsgemäßen Katalysatoren eingesetzt werden.
Die Dotierung der Mischoxid-Träger mit einer basischen Verbindung kann entweder während der Träger-Herstellung, zum Beispiel durch gemeinsame Fällung oder nachträglich zum Beispiel durch Tränken des Mischoxides mit einer Alkali- oder Erdalkalimetall - Verbindung oder einer Verbindung der 3. Nebengruppe oder einer Seltenerdmetall-Verbindung erfolgen. Besonders geeignet zur Dotierung sind K, Cs und Lanthan.
Die Aufbringung der dehydrieraktiven Komponente, das üblicherweise ein Metall der VIII. ist, erfolgt in der Regel durch Trän- kung mit einem geeignetem Metallsalzprecursor, der sich durch Calcinieren in das entsprechende Metalloxid umwandeln läßt. Statt durch Tränkung kann die dehydrieraktive Komponente aber auch durch andere Verfahren wie beispielsweise Aufsprühen des Metallsalzprecursors erfolgen. Geeignete Metallsalzprecursoren sind z.B. die Nitrate, Acetate und Chloride der entsprechenden Metalle, möglich sind auch komplexe Anionen der verwendeten Metalle. Bevorzugt werden Platin als H2PtCl6 oder Pt(N03) eingesetzt. Als Lösungsmittel für die Metallsalzprecursoren eignen sich Wasser genauso wie organische Lösungsmittel. Besonders geeignet sind niedere Alkohole wie Methanol und Ethanol.
In einer bevorzugten Ausführungsform wird der Katalysator nach folgenden Schritten hergestellt:
a) Versprühen oder Trockenmischen geeigneter Verbindungen der Elemente des Zirkons und/oder Titans und Siliciums. Geeignete Verbindungen sind zum Beispiel wasserhaltiges Zr02 • xH20, welches durch Fällung aus Precursoren wie Zr(N03) , ZrOCl2 oder Zr(0R) erhalten wurde und zum Beispiel Si0-Sol (Ludox). Anschließendes Calcinieren bei Temperaturen im Bereich von 400 bis 700°C, bevorzugt 550 bis 650°C.
b) Vermischen der aus Schritt a) erhaltenen Zusammensetzung mit einer Verbindung des Aluminiums, z.B. A1203 oder AIO(OH) (Böhmit) unter Zusatz einer Säure wie konz . HN03 oder konz . HCOOH.
c) Überführung der aus b erhaltenen Masse in einen Formkörper, z.B. durch Verstrangen, Tablettieren oder Extrudieren.
d) Tränkung des erhaltenen Formkörpers mit einer Platin- und Zinn-haltigen Lösung, Trocknung und Calcinierung bei Temperaturen von 400 bis 650°C. Bevorzugt eignet sich eine gemeinsame Lösung von HPtCl6 und SnCl in Ethanol.
e) Tränkung mit einer Kalium- und Cäsium-haltigen wäßrigen Lösung, die weitere basische Elemente wie Lanthan enthalten kann. Trocknung und Calcinierung bei Temperaturen von 400 bis 650°C.
Geeignete Precursoren bei der Verwendung von Edelmetallen als dehydrieraktive Komponente sind auch die entsprechenden Edelmetallsole, die nach einem der bekannten Verfahren, zum Beispiel durch Reduktion eines Metallsalzes in Gegenwart eines Stabilisators wie PVP mit einem Reduktionsmittel hergestellt werden können. Die Herstelltechnik wird in der deutschen Patentanmeldung DE-A-195 00 366 ausführlich behandelt.
Der Katalysator kann im Reaktor fest angeordnet oder z.B. in Form eines Wirbelbettes verwendet werden und eine entsprechende Gestalt haben. Geeignet sind z.B. Formen wie Splitt, Tabletten, Monolithen, Kugeln, oder Extrudate (Stränge, Wagenräder, Sterne, Ringe) .
Als Alkali- und Erdalkalimetallprecursor verwendet man in der Regel Verbindungen, die sich durch Calcinieren in die entspre- chenden Oxide umwandeln lassen. Geeignet sind zum Beispiel Hydroxide, Carbonate, Oxalate, Acetate oder gemischte Hydroxy- carbonate der Alkali- und Erdalkalimetalle.
Wird der Mischoxid-Träger zusätzlich oder ausschließlich mit einem Metall der dritten Nebengruppe dotiert, so sollte man auch in diesem Fall von Verbindungen ausgehen, die sich durch Calcinieren in die entsprechenden Oxide umwandeln lassen. Wird Lan- than verwendet, so sind beispielsweise Lanthan-Oxid-Carbonat, La(OH) , La3(C03)2, La(N03)3 oder Lanthanverbindungen die organische Anionen enthalten, wie La-Acetat, La-Formiat, oder La-Oxa- lat geeignet.
Die Propan-Dehydrierung wird in der Regel bei Reaktionstemperaturen von 300 bis 800°C, bevorzugt 450 bis 700°C, und einem Druck von 0,1 bis 100 bar, bevorzugt 0,1 bis 40 bar mit einer GHSV (Gas Hourly Space Velocity) von 100 bis 10.000 ϊr1, bevor- zugt 500 bis 2.000 h"1 durchgeführt. Neben dem zu dehydrierenden Kohlenwasserstoff können im Feed Verdünnungsmittel wie beispielsweise C0 , N , Edelgase und/oder Dampf (Wasserdampf), bevorzugt N und/oder Dampf, besonders bevorzugt Dampf zugegen sein.
Ein spezielles Merkmal der erfindungsgemäßen Katalysatoren ist, daß die Katalysatoren bei der Dehydrierung von Kohlenwasserstoffen in Gegenwart von Wasserdampf aktiv sind und die damit verbundenen Vorteile wie Aufhebung der Gleichgewichtslimitierung, Verringerung der Verkokung und Verlängerung der Standzeiten genutzt werden können.
Gegebenenfalls kann zum Kohlenwasserstoff-Feed Wasserstoff zugegeben werden, wobei das Verhältnis von Wasserstoff zu Kohlenwas- serstoffström in der Regel 0,1:1 bis 100:1, bevorzugt 1:1 bis 20:1 beträgt. Bevorzugt kann die Dehydrierung von Kohlenwasserstoffen mit den erfindungsgemäßen Katalysatoren ohne den Zusatz von Wasserstoff betrieben werden.
Neben der kontinuierlichen Zugabe eines Gases, insbesondere von Dampf (Wasserdampf), gibt es die Möglichkeit, den Katalysator durch Überleiten von Wasserstoff oder Luft von Zeit zu Zeit zu regenerieren. Die Regenerierung selbst findet bei Temperaturen im Bereich 300 bis 900°C, bevorzugt 400 bis 800°C mit einem freien Oxidationsmittel, vorzugsweise mit Luft oder in reduk- tiver Atmosphäre, vorzugsweise mit Wasserstoff statt. Die Regenerierung kann bei Unterdruck, Normaldruck (Atmosphärendruck) oder Überdruck betrieben werden. Bevorzugt sind Drücke im Bereich 0,5 bis 100 bar.
Für die Dehydrierung mit den erfindungsgemäßen Katalysatoren eignen sich Kohlenwasserstoffe beispielsweise C - bis Cχ6 -Kohlenwasserstoffe wie Ethan, n-Propan, n-Butan, iso-Butan, n-Pentan, iso-Pentan, n-Hexan, n-Heptan, n-Octan, n-Nonan, n-Decan, n-Undecan, n-Dodecan, n-Tridecan, n-Tetradecan, n-Pentadecan, n-Hexadecan, bevorzugt C - bis Cs -Kohlenwasserstoffe wie Ethan, n-Propan, n-Butan, iso-Butan, n-Pentan, iso-Pentan, n-Hexan, n-Heptan, n-Octan, besonders bevorzugt C2- bis C4 -Kohlenwasserstoffe wie Ethan, n-Propan, n-Butan und iso-Butan, insbesondere Propan und iso-Butan.
Propylen ist ein gefragtes Produkt, insbesondere zur Synthese von Polypropylen oder zur Synthese von funktionalisierten Monomeren und deren Polymerisationsprodukten. Eine Alternative zur Herstellung von Propylen durch Steamcracking von leichtem Naph- tha ist die Dehydrierung von Propan.
Isobuten ist ein wichtiges Produkt, insbesondere zur Herstellung von MTBE (Methyl-tert .-butyl-ether) . Es wird vor allem in den USA als Kraftstoffadditiv zur Erhöhung der Oktanzahl verwendet. Isobuten läßt sich analog zu Propylen durch Dehydrierung von Isobutan herstellen.
Beispiele
Katalysatorherstellung
Beispiel 1
537,31 g Zr (OH) • xH20 mit einem Zr0-Gehalt von 89,8% wurden in 2000 ml Wasser aufgeschlämmt und mit einem ULTRA-TURRAX™ T 50 (Firma Ika) zerkleinert. Zu dieser Suspension wurde ein Si02-Sol (Ludox™ ) mit einem Si0-Gehalt von 47,6% gegeben. Die Sprühmaische wurde bei einem Feststoff/Wasser-Verhältnis von 1 : 3,7 in einem NIRO-Atomizer mit einer Kopf-Temperatur von 350°C, einer Ausgangstemperatur von 105 bis 110°C, einem Sprühdruck von 5,2 bar bei 28000 U/min versprüht, so daß ein weißes Pulver entstand. Das Sprühpulver wurde 2 h bei 600°C calciniert. 400 g des Sprühpulvers wurden mit 133,3 g Pural™ SCF (Böhmit mit einem Glühverlust von 25 %) unter Zugabe von 25 g konz. HN03 (65 %ig) gemischt und 2,5 h verknetet. Der Knetansatz wurde mittels einer Strangpresse zu 3 mm Vollsträngen bei 70 bar verarbeitet. Die Schnitthärte betrug 37 N/Strang (SA = 11 N) .
62 g des zuvor zu 1,6 bis 2 mm gesplitteten Trägers wurden mit einer Lösung, die 0,7208 g SnCl2 • 2 H20 und 0,474 g H2PtCl6 • 6 H20 in 369 ml Ethanol enthielt, getränkt. Die überstehende Lösung wurde i. Vak. entfernt und der Rückstand 15 h bei 100°C getrocknet und anschließend 3 h bei 560°C calciniert. Anschließend wurde mit einer Lösung von 0,465 g CsN03 und 0,8172 g KN03 in 154 ml Wasser getränkt und der Katalysator 15 h bei 100°C getrocknet und anschließend 3 h bei 560°C calciniert. Der Katalysator wies ein Splitt-Stampfgewicht von 1,18 g/ml auf. Die BET-Oberflache betrug 84 m2/g. Durch Quecksilber-Porosime- trie-Messungen wurde ein Porenvolumen von 0,26 ml/g ermittelt und eine Porenfläche von 88 m2/g und ein mittlerer Porenradius von 11,0 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Beispiel 2
Es wurde analog Beispiel 1 verfahren mit den Unterschieden, daß zur Herstellung des Mischoxid Trägers 521,3 g Zr(OH) • xH0 und 73;53 g Si02-Sol (Ludox ) eingesetzt wurden. Das Feststoff/Wasser-Verhältnis betrug beim Versprühen 1 : 4,5 und beim Verkneten wurden 30,22 g konz. HN03 (65% ig) eingesetzt. Die Schnitthärte betrug 61 N (SA = 19 N) .
Der Katalysator wies ein Splitt-Stampfgewicht von 0,963 g/ml auf. Die BET-Oberflache betrug 103 m2/g. Durch Quecksilber-Poro- simetrie -Messungen wurde ein Porenvolumen von 0,35 ml/g ermittelt und eine Porenfläche von 100 m2/g und ein mittlerer Porenradius von 15,5 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Beispiel 3
Es wurde analog Beispiel 1 verfahren mit den Unterschieden, daß beim Verkneten 353,36 g des im ersten Schritt erhaltenen Sprüh- pulvers, 266,66 g Pural™ SCF (Böhmit, Glühverlust 25 %) und 31 g konz. HN03 (65% ig) eingesetzt wurden. Die Schnitthärte betrug 39 N (SA = 13 N) .
Der Katalysator wies ein Splitt-Stampfgewicht von 0,858 g/ml auf. Die BET-Oberflache betrug 124 m2/g. Durch Quecksilber-Poro- simetrie-Messungen wurde ein Porenvolumen von 0,42 ml/g ermittelt und eine Porenfläche von 131 m2/g und ein mittlerer Porenradius von 10,1 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Beispiel 4
Es wurde analog Beispiel 2 verfahren mit den Unterschieden, daß beim Verkneten 235,57 g des im ersten Schritt erhaltenen Sprühpulvers, 400 g Pural™ SCF (Böhmit, Glühverlust 25 %) und 12,71 g konz. HCOOH eingesetzt wurden. Die Schnitthärte betrug 27 N (SA = 12 N) .
Der Katalysator wies ein Splitt-Stampfgewicht von 0,75 g/ml auf. Die BET-Oberflache betrug 148 m2/g. Durch Quecksilber-Porosime- trie -Messungen wurde ein Porenvolumen von 0,49 ml/g ermittelt und eine Porenfläche von 169 m2/g und ein mittlerer Porenradius von 10,2 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Beispiel 5
Es wurde analog Beispiel 2 verfahren mit den Unterschieden, daß beim Verkneten 471,14 g des im ersten Schritt erhaltenen Sprühpulvers, 72,16 g Puralox SCF (A1203, Glühverlust 3 %) , 40 g Pural™ SB (Böhmit, Glühverlust 25 %) und 29,17 g konz. HN03 eingesetzt wurden. Die Schnitthärte betrug 28 N (SA = 9 N) .
Der Katalysator wies ein Splitt-Stampfgewicht von 0,908 g/ml auf. Die BET-Oberflache betrug 103 m2/g. Durch Quecksilber-Poro- simetrie-Messungen wurde ein Porenvolumen von 0,39 ml/g ermittelt und eine Porenfläche von 99 m2/g und ein mittlerer Porenradius von 17,2 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Beispiel 6
Es wurde analog Beispiel 2 verfahren mit den Unterschieden, daß beim Verkneten 500 g des im ersten Schritt erhaltenen Sprühpulvers und 50 g konz. HN03 ohne weitere Zusätze eingesetzt wurden. Die Schnitthärte betrug 27 N (SA = 9 N) .
Der Katalysator wies ein Splitt-Stampfgewicht von 1,369 g/ml auf. Die BET-Oberflache betrug 51 m2/g. Durch Quecksilber-Poro- simetrie -Messungen wurde ein Porenvolumen von 0,17 ml/g ermittelt und eine Porenfläche von 88 m2/g und ein mittlerer Porenradius von 10,8 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Beispiel 7
69,84 g eines zu 1,6 bis 2 mm gesplitteten Zr0 • xSi02-Trägers der Firma Norton (Si02-Gehalt 4,7%, Nr. 9816590) wurden mit einer Lösung, die 0,81196 g SnCl2 • 2 H0 und 0,5338 g H2PtCl6 • 6 H20 in 412 ml Ethanol enthielt, getränkt. Die überstehende Lösung wurde i. Vak. entfernt und der Rückstand 15 h bei 100°C getrocknet und anschließend 3 h bei 560°C calciniert. Anschließend wurde mit einer Lösung von 0,5218 g CsN03 und 0,9204 g KN03 in 154 ml Wasser getränkt, der Katalysator 15 h bei 100°C getrocknet und anschließend 3 h bei 560°C calciniert.
Der Katalysator wies ein Splitt-Stampfgewicht von 1,139 g/ml auf. Die BET-Oberflache betrug 81 m2/g. Durch Quecksilber-Poro- simetrie -Messungen wurde ein Porenvolumen von 0,29 ml/g ermittelt und eine Porenfläche von 69 m2/g und ein mittlerer Porenradius von 12,1 nm errechnet.
Die Zusammensetzung des Katalysators ist Tabelle 1 zu entnehmen.
Vergleichsbeispiel
Es wurde ein Katalysator nach der Vorschrift der WO-A- 94/29021 , Beispiel 1 zum Vergleich präpariert (Pt/Sn/Cs/Mg (Al)O) .
Katalysatortest
20 ml des Katalysators wurden in einen Rohrreaktor mit einem Innendurchmesser von 22 mm eingebaut. Der Katalysator wurde bei einer Temperatur von 580°C 30 min mit Wasserstoff versetzt, danach einem Gemisch aus 80% Stickstoff und 20% Luft (Magerluft) ausgesetzt, anschließend 15 min mit reinem Stickstoff versetzt, 30 min mit Wasserstoff reduziert und mit 20 Nl/h Propan (99,5 %ig) und H20 im Molverhältnis Propan/Wasserdampf von 1 : 1 beaufschlagt. Der Druck betrug 1,5 bar, die GHSV betrug 1000 h"1. Die Reaktionsprodukte wurden gaschromatographisch erfaßt.
Die Ergebnisse mit den Katalysatoren der Beispiele 1 bis 7 und des Vergleichsbeispiels sind in Tabelle 1 aufgeführt.
Tabelle 1: Performance der Katalysatoren der Beispiele 1 bis 7 und des Vergleichsbeispiels in der Propan-Dehydrierung*
Figure imgf000012_0001
*) Versuchsbedingungen: 20 ml Katalysator, Splittgröße 1,6 bis 2 mm; 580°C; Propan/H20 1 : 1 (mol/mol); 20 Nl/h Propan; GHSV = 1000 h'1; 1,5 bar.
**) Vergleichskatalysator Pt/Sn/Cs/Mg (AI) 0 aus WO-A-94/29021 Beispiel 1.
Beispiel 8
Der in Beispiel 1 hergestellte Katalysator wurde für die Isobu- tan-Dehydrierung getestet. Es wurde dabei vorgegangen wie in Beispiel 1 beschrieben, mit dem Unterschied, daß statt Propan Isobutan eingesetzt wurde.
Tabelle 2: Performance des Katalysators gemäß Beispiel 1 in der Isobutan-Dehydrierung*
Figure imgf000012_0002
*) Versuchsbedingungen: 20 ml Katalysator, Splittgröße 1,6 bis 2 mm,- 580°C; Isobutan/H0 1 : 1 (mol/mol); 20 Nl/h Isobutan; GHSV = 1000 h"1; 1,5 bar.

Claims

Patentansprüche
1. Katalysatoren enthaltend
a) 10 bis 99,9 Gew. -% Zirkondioxid und/oder Titandioxid und
b) 0,1 bis 30 Gew. -% Siliciumdioxid und
c) 0 bis 60 Gew. -% Aluminiumoxid und
d) 0,1 bis 10 Gew. -% mindestens eines Elementes der ersten oder zweiten Hauptgruppe, eines Elementes der dritten Nebengruppe, eines Elementes der achten Nebengruppe des Periodensystems der Elemente und/oder Zinn,
mit der Maßgabe, daß die Summe der Gewichtsprozente 100 ergibt.
2. Katalysatoren bestehend im Wesentlichen aus
a) 10 bis 99,9 Gew. -% Zirkondioxid und/oder Titandioxid und
b) 0,1 bis 30 Gew. -% Siliciumdioxid und
c) 0 bis 60 Gew. -% Aluminiumoxid und
d) 0,1 bis 10 Gew. -% mindestens eines Elementes der ersten oder zweiten Hauptgruppe, eines Elementes der dritten Nebengruppe, eines Elementes der achten Nebengruppe des Periodensystems der Elemente und/oder Zinn,
mit der Maßgabe, daß die Summe der Gewichtsprozente 100 ergibt.
3. Katalysatoren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß diese 0,1 bis 5 Gew.-% Kalium und/oder Cäsium enthalten.
4. Katalysatoren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß diese 0,05 bis 1 Gew.-% Platin und 0,05 bis 2 Gew.-% Zinn enthalten.
5. Katalysatoren nach einem der Ansprüche 1 bis 4, gekennzeichnet dadurch, daß diese eine BET-Oberflache zwischen 40 und 250 m2/g, ein Porenvolumen zwischen 0,2 und 0,5 ml/g und einen mittleren Porenradius zwischen 8 und 20 nm aufweisen.
5
6. Verwendung der Katalysatoren nach einem der Ansprüche 1 bis 5 zur Dehydrierung von C2- bis Cι6 -Kohlenwasserstoffen.
7. Verfahren zur Dehydrierung von C2- bis Ci6-Kohlenwasserstof - 10 fen gegebenenfalls in Gegenwart von Wasserdampf und eines
Katalysators nach einem der Ansprüche 1 bis 5.
8. Verfahren zur Herstellung von Katalysatoren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man
15 geeignete Verbindungen der Elemente Zirkon und/oder Titan und Aluminium und/oder Silicium
a) trocken mischt oder
20 b) gemeinsame versprüht
und anschließend calciniert und gegebenenfalls unter Zusatz von Säure zu einem Formkörper verarbeitet.
25 9. Verfahren zur Herstellung der Katalysatoren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man
a) geeignete Verbindungen der Elemente Zirkon und/oder Titan und Silicium versprüht oder trocken mischt und
30 anschließend calciniert,
b) mit geeigneten Verbindungen des Aluminiums unter Zusatz einer Säure vermischt,
35 c) unter Zusatz von Säure in einen Formkörper überführt,
d) mit einer Platin- und Zinn-haltigen Lösung tränkt, trocknet und bei Temperaturen von 400 bis 650°C calciniert,
40 e) mit einer Kalium- und Cäsium-haltigen wäßrigen Lösung tränkt, trocknet und bei Temperaturen von 400 bis 650°C calciniert.
45 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß man als Säure Salpetersäure oder Ameisensäure zusetzt.
PCT/EP2000/013159 2000-12-22 2000-12-22 Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid WO2002051540A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2000/013159 WO2002051540A1 (de) 2000-12-22 2000-12-22 Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2000/013159 WO2002051540A1 (de) 2000-12-22 2000-12-22 Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid

Publications (1)

Publication Number Publication Date
WO2002051540A1 true WO2002051540A1 (de) 2002-07-04

Family

ID=8164220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/013159 WO2002051540A1 (de) 2000-12-22 2000-12-22 Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid

Country Status (1)

Country Link
WO (1) WO2002051540A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006107A1 (de) * 2014-10-02 2016-04-13 Evonik Degussa GmbH Katalysatorsystem zur herstellung von ketonen aus epoxiden

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951868A (en) * 1974-03-04 1976-04-20 Universal Oil Products Company Hydrocarbon conversion catalyst
US3960710A (en) * 1974-11-08 1976-06-01 Universal Oil Products Company Hydrocarbon conversion with an acidic multimetallic catalytic composite
US4102822A (en) * 1976-07-26 1978-07-25 Chevron Research Company Hydrocarbon hydroconversion catalyst and the method for its preparation
JPS58210847A (ja) * 1982-06-03 1983-12-08 Res Assoc Residual Oil Process<Rarop> 重質炭化水素油の水素化処理用触媒及びその使用方法
EP0585065A1 (de) * 1992-08-27 1994-03-02 Exxon Research And Engineering Company Isomerisierungskatalysator, bestehend aus einem Metall der Gruppe VIII/Zr02/W03 und Isomerisierungsverfahren unter Verwendung derselben
EP0826410A2 (de) * 1996-08-30 1998-03-04 Cataler Industrial Co., Ltd. Katalysator zur Reinigung von Abgasen
EP0920913A1 (de) * 1997-12-04 1999-06-09 Degussa Aktiengesellschaft Verfahren zur Herstellung eines beschichteten Katalysators
EP0950702A2 (de) * 1998-04-15 1999-10-20 Nippon Mitsubishi Oil Corporation Hydrokrackkatalysator und Hydrokrackverfahren von Kohlenwasserstoffölen
EP0963781A2 (de) * 1998-06-03 1999-12-15 Toyota Jidosha Kabushiki Kaisha Abgasreinigungskatalysator und Verfahren zu dessen Herstellung
EP1074298A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Oxidkatalysatoren enthaltend zumindest Silika und Gruppe IVB Oxid
EP1074301A1 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Katalysator mit bimodaler Porenradienverteilung
EP1074299A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Multikomponenten-Dehydrierungskatalysatoren

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951868A (en) * 1974-03-04 1976-04-20 Universal Oil Products Company Hydrocarbon conversion catalyst
US3960710A (en) * 1974-11-08 1976-06-01 Universal Oil Products Company Hydrocarbon conversion with an acidic multimetallic catalytic composite
US4102822A (en) * 1976-07-26 1978-07-25 Chevron Research Company Hydrocarbon hydroconversion catalyst and the method for its preparation
JPS58210847A (ja) * 1982-06-03 1983-12-08 Res Assoc Residual Oil Process<Rarop> 重質炭化水素油の水素化処理用触媒及びその使用方法
EP0585065A1 (de) * 1992-08-27 1994-03-02 Exxon Research And Engineering Company Isomerisierungskatalysator, bestehend aus einem Metall der Gruppe VIII/Zr02/W03 und Isomerisierungsverfahren unter Verwendung derselben
EP0826410A2 (de) * 1996-08-30 1998-03-04 Cataler Industrial Co., Ltd. Katalysator zur Reinigung von Abgasen
EP0920913A1 (de) * 1997-12-04 1999-06-09 Degussa Aktiengesellschaft Verfahren zur Herstellung eines beschichteten Katalysators
EP0950702A2 (de) * 1998-04-15 1999-10-20 Nippon Mitsubishi Oil Corporation Hydrokrackkatalysator und Hydrokrackverfahren von Kohlenwasserstoffölen
EP0963781A2 (de) * 1998-06-03 1999-12-15 Toyota Jidosha Kabushiki Kaisha Abgasreinigungskatalysator und Verfahren zu dessen Herstellung
EP1074298A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Oxidkatalysatoren enthaltend zumindest Silika und Gruppe IVB Oxid
EP1074301A1 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Katalysator mit bimodaler Porenradienverteilung
EP1074299A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Multikomponenten-Dehydrierungskatalysatoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 056 (C - 214) 14 March 1984 (1984-03-14) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006107A1 (de) * 2014-10-02 2016-04-13 Evonik Degussa GmbH Katalysatorsystem zur herstellung von ketonen aus epoxiden
EP3012021A3 (de) * 2014-10-02 2016-08-10 Evonik Degussa GmbH Verfahren zur herstellung einer katalysatorzusammensetzung, die mindestens ein edelmetall und mindestens ein si-zr-mischoxid umfasst
US9637436B2 (en) 2014-10-02 2017-05-02 Evonik Degussa Gmbh Catalyst system for producing ketones from epoxides

Similar Documents

Publication Publication Date Title
EP1074301B1 (de) Katalysator mit bimodaler Porenradienverteilung
EP1074299A2 (de) Multikomponenten-Dehydrierungskatalysatoren
EP0948475B1 (de) Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung
EP1322578B1 (de) Verfahren zur dehydrierung von kohlenwasserstoffen
DE10060099A1 (de) Regenerierung eines Dehydrierkatalysators
DE19937105A1 (de) Oxidkatalysatoren
JP3844493B2 (ja) ニッケル含有水素化触媒
WO2005009937A1 (de) Verfahren zur dehydrierung von carbonylverbindungen
JPH05161847A (ja) 触媒および触媒プレカーサの製造方法
EP1351765B1 (de) Katalysator mit bimodaler porenradienverteilung
EP1694433A1 (de) Katalysator und verfahren zur herstellung von 1-olefinen aus 2-hydroxyalkanen
WO2008135582A1 (de) Iridium-palladium-katalysatoren für umsetzung von kohlenwasserstoffen in gegenwart von wasserdampf und insbesondere für die dampfdealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen
EP0900127A1 (de) Katalysator zur selektiven aromatisierung
WO2023134779A1 (zh) 加氢催化剂及其制备方法和制备异己二醇和甲基异丁基甲醇的方法
DE2030364C3 (de) Verfahren zum Reformieren von Erdölkohlenwasserstoffen
WO2002051543A1 (de) Multikomponenten-katalysatoren
WO2002051540A1 (de) Oxidkatalysatoren enthaltend zuminest silika und gruppe ivp oxid
WO2006048180A1 (de) Poröser niobsäurekatalysator
JP3730792B2 (ja) 炭化水素の異性化方法
DE102007059129A1 (de) Katalysator mit erhöhter Olefinselektivität zur Umsetzung von Oxygenaten zu Olefinen
JP3922681B2 (ja) 炭化水素の異性化方法および異性化用固体酸触媒
DE1271870B (de) Verfahren zur katalytischen Umwandlung einer Kohlenwasserstoffbeschickung
DE2344564A1 (de) Verfahren zur herstellung aromatischer verbindungen
WO1997041192A1 (de) Katalysator und seine verwendung zur dehydrierung von paraffinischen/naphthenischen kohlenwasserstoffen
DE102014203877A1 (de) Katalysator für die Fischer-Tropsch-Synthese und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DK DM DZ EE FI GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP