WO2002050814A1 - Systeme et procede d'interpolation de signaux - Google Patents

Systeme et procede d'interpolation de signaux Download PDF

Info

Publication number
WO2002050814A1
WO2002050814A1 PCT/JP2001/005264 JP0105264W WO0250814A1 WO 2002050814 A1 WO2002050814 A1 WO 2002050814A1 JP 0105264 W JP0105264 W JP 0105264W WO 0250814 A1 WO0250814 A1 WO 0250814A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interpolation
spectrum
band
envelope
Prior art date
Application number
PCT/JP2001/005264
Other languages
English (en)
French (fr)
Inventor
Yasushi Sato
Original Assignee
Kabushiki Kaisha Kenwood
Kenwood Geobit Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kenwood, Kenwood Geobit Corporation filed Critical Kabushiki Kaisha Kenwood
Priority to AU2001274567A priority Critical patent/AU2001274567A1/en
Publication of WO2002050814A1 publication Critical patent/WO2002050814A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1876Interpolating methods

Definitions

  • the present invention relates to a signal interpolation device and a signal interpolation method for improving a spectrum distribution of a band-limited signal.
  • the method disclosed in Japanese Patent Application Laid-Open No. 7-93900 multiplies an output audio signal obtained by passing a PCM digital audio signal through a low-pass filter by a signal including an absolute value component of the output signal. This is the method of causing distortion.
  • the technique disclosed in Japanese Patent Application Laid-Open No. 6-85607 extracts an audio component in which a fundamental tone and a harmonic exist as a pair from an original audio signal, and uses the extracted audio component to increase the frequency above the band of the original audio signal. This method predicts the overtone components in the frequency range and extrapolates them to the original audio signal.
  • the audio signal reproducing device disclosed in Japanese Patent Application Laid-Open No. 7-93900 The harmonics are only generated by distorting the waveform of the chao-dio signal using an absolute value circuit or the like, and these harmonics are similar to those contained in the original audio signal. I don't know if it can.
  • the present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances.
  • a signal interpolation device configured to approximately restore an original signal from a band-limited signal by removing a frequency component of a specific frequency band in the original signal.
  • a spectrum analysis is performed on the band-limited signal to generate a complex spectrum signal representing a real part and a false part of the spectrum.
  • Based on the complex spectrum signal a frequency component of the removed specific band is generated. And synthesizing the signal having
  • the signal interpolation apparatus of the present invention performs a Fourier transform on an input signal to be interpolated to generate a signal representing a real part and an imaginary part of a complex spectrum.
  • a step means for specifying an interpolation band included in a band in which the spectrum exists, and means for specifying an interpolated band in which the spectrum does not substantially exist, and a complex spectrum of the interpolation band.
  • a component in which the distribution of the real part and the imaginary part of the spectrum is substantially the same as a part of the spectrum of the interpolated signal is included in the band-limited input signal. It is added and the bandwidth is extended. Since the added component can be regarded as a harmonic component of a part of the input signal, if the input signal is a band-limited signal, the input signal after the band is expanded is the signal before the band is limited. It is close to the original signal. In addition, since the real part and the imaginary part of the complex form spectrum are both added, the phase of the added component is close to the phase of the component removed by the band limitation.
  • the audio signal is restored with low distortion and high sound quality by restoring the audio signal using the input signal whose band has been expanded.
  • the upper limit of the interpolation band is substantially equal to the upper limit of the spectrum distribution of the input signal, the component added to the input signal is particularly well approximated to a harmonic component of a part of the input signal. It is likely to be possible. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
  • the means for generating the interpolation signal includes, for example, means for extracting envelope information representing an envelope of the absolute value of the spectrum of the input signal, and the intensity of the spectrum of the interpolation signal. Means for changing the intensity of the absolute value of the spectrum so as to be substantially equal to the intensity represented by the envelope indicated by the envelope information, and supplying the same to the adder.
  • the adding means only needs to generate an output signal representing the sum of the input signal and the interpolation signal whose spectrum intensity has been changed.
  • the signal interpolation device of the present invention The component to be added to the input signal is added to the input signal such that the absolute value of the spectrum is along the envelope of the spectrum of the input signal. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
  • the means for generating the interpolation signal may include, for example, first envelope information representing an envelope of a real part of a spectrum of the input signal, and an imaginary part of a spectrum of the input signal.
  • the intensity is substantially equal to the intensity indicated by the envelope indicated by the information, and the intensity of the imaginary part of the spectrum of the interpolation signal is indicated by the envelope indicated by the second envelope information.
  • the adding means only needs to generate an output signal representing the sum of the input signal and the interpolation signal whose spectrum intensity has been changed.
  • the signal interpolation apparatus of the present invention provides a component to be added to an input signal to be interpolated, in which the real part of the spectrum is the real number of the spectrum of the input signal.
  • the imaginary part is added to the input signal so that the imaginary part is along the envelope of the imaginary part of the spectrum of the input signal. Therefore, the input signal after the band is extended is closer to the original signal before the band is limited.
  • the adding unit includes a delay unit that delays the input signal so that the input signal is substantially in phase with the interpolation signal, and a sum of the interpolation signal and the input signal delayed by the delay unit.
  • the adding unit can accurately determine the bandwidth of the input signal. Perform the extension.
  • FIG. 1 is a diagram showing a configuration of a signal interpolator according to an embodiment of the present invention.
  • Figure 2 shows, in order, an example of the distribution of the real part of the spectrum before interpolation (a), an example of the distribution of the imaginary part of the vector before interpolation (b), and the distribution of the real part of the spectrum of the reference band. (c), the distribution of the imaginary part of the spectrum of the reference band (d), an example of the distribution of the real part of the spectrum after interpolation (e), and the example of the distribution of the imaginary part of the spectrum after interpolation
  • FIG. 1 is a diagram showing a configuration of a signal interpolator according to an embodiment of the present invention.
  • this signal interpolator includes a Fourier transform unit 1, an interpolation band analysis unit 3, a signal interpolation processing unit 4, an inverse Fourier transform unit 5, an interpolation band addition unit 6, a delay unit 2, It is composed of
  • the Fourier transform unit 1 is composed of DSP (DigitalSlignalProcesssor), CPU (Central1ProcessIngUnIt), and the like.
  • the Fourier transform unit 1 is supplied with a digital signal (for example, a PCM signal) to be interpolated by the signal interpolator. Then, using a discrete Fourier transform or a fast Fourier transform technique, the discrete distribution of the spectrum of the signal supplied to itself is set to a set of complex numbers (specifically, the real and imaginary parts of the complex number are represented by 2 A signal represented as a set of sets of values is generated, and the generated signal is supplied to the interpolation band analysis unit 3 and the signal interpolation processing unit 4.
  • ⁇ and / 3 are real numbers and j is an imaginary unit, the real part of a complex number (+ ji3) is a real number ⁇ and the imaginary part is a real number.
  • the above-described PCM signal is a typical digital signal obtained by sampling and quantizing an analog audio signal representing a voice or the like as a change in voltage or current.
  • the spectrum distribution of the audio signal represented by the PCM signal corresponds to the spectrum of the original audio signal from which the frequency components of 16 kilohertz or more have been removed.
  • the delay unit 2 supplies the same PCM signal as that supplied to the Fourier transform unit 1 together with the Fourier transform unit 1. And delays the input signal supplied to itself. Then, the signal is supplied to the interpolation band adder 6.
  • the length of time for which the delay unit 2 delays the signal is determined by the fact that the signal component supplied to the Fourier transform unit 1 is supplied to the interpolation band adding unit 6 via the signal interpolation processing unit 4 and the inverse Fourier transform unit 5. To be substantially equal to the length of time that elapses.
  • phase of the delayed input signal supplied from the delay unit 2 to the interpolation band addition unit 6 and the phase of the signal supplied from the inverse Fourier transform unit 5 to the interpolation band addition unit 6 are represented by interpolation band It is assumed that the components supplied to the adder 6 at the same time have substantially the same phase.
  • the interpolation band analyzer 3 is composed of DSP, CPU, and the like.
  • the interpolation band analysis unit 3 first specifies the band to be interpolated.
  • the band to be interpolated is a continuous band that exceeds the upper limit of the frequency of the component added to the PCM signal to be subjected to interpolation by this signal interpolator, and is a band represented by the signal supplied from the Fourier transform unit 1.
  • This is a band that does not substantially contain a vector (specifically, for example, a band that does not include a spectrum whose absolute value exceeds a predetermined value in the spectrum).
  • the absolute value of a complex number ( ⁇ + j ⁇ ) is a real number ⁇ ( ⁇ 2 + ⁇ 2) 1/2 ⁇ .
  • the interpolation band analysis unit 3 sets the upper limit of the band occupied by the spectrum represented by the signal supplied from the Fourier transform unit 1 as an upper limit, and sets the bandwidth to the bandwidth of the interpolated band specified in the above processing. Identify substantially equal bands as reference bands. Then, information specifying the specified reference band range is supplied to the signal interpolation processing unit 4. Note that if the range of the reference band is specified, the range of the band to be interpolated is also specified.
  • the signal interpolation processing unit 4 includes DSP, CPU, and the like. When the signal representing the spectrum distribution is supplied from the Fourier transform unit 1 to the signal interpolation processing unit 4, the signal interpolation processing unit 4 performs a regression calculation based on the distribution of the absolute values of the spectrum, and so on. Specify the function that forms the envelope of the absolute value of the vector.
  • the signal interpolation processing unit 4 converts the spectrum in the specified reference band into the band to be interpolated. Then, the spectrum distribution after interpolation of the band to be interpolated is obtained. That is, the frequency of the spectrum in the specified reference band is changed to the original value obtained by adding the difference between the highest frequency and the lowest frequency of the reference band, and the value of the specified function is changed to the value of the specified function. Multiply the complex values of these spectra by real numbers whose absolute values match.
  • the signal interpolation processing unit 4 generates a signal representing the obtained spectrum distribution of the band to be interpolated after interpolation, and supplies the generated signal to the inverse Fourier transform unit 5.
  • the inverse Fourier transform unit 5 includes a DSP, a CPU, and the like, and is supplied with the signal output from the signal interpolation processing unit 4 and representing the interpolated spectrum distribution of the band to be interpolated, as described above. Then, by using the method of discrete inverse Fourier transform or fast inverse Fourier transform, a PCM signal having a spectrum distribution represented by the signal supplied thereto is generated and supplied to the interpolation band adding unit 6.
  • the interpolation band adder 6 is composed of a DSP, a CPU, and the like.
  • the value of the delayed PCM signal supplied to itself from the delay unit 2 and the value of the PCM signal supplied from the inverse Fourier transform unit 5 And generates a PCM signal representing the sum of the above and outputs it as the output signal of this signal interpolator.
  • the spectrum of the output signal of this signal interpolator (the spectrum after interpolation) is substantially equal to the spectrum obtained by adding the spectrum after interpolation of the band to be interpolated to the spectrum of the original PCM signal.
  • FIG. 2 (a) shows an example of the distribution of the real part of the spectrum before interpolation
  • FIG. 2 (b) shows an example of the distribution of the imaginary part of the spectrum before interpolation.
  • FIGS. 2 (a) and 2 (b) show the spectra of the same PCM signal. As shown, this PCM signal contains substantially no frequency components of 16 kilohertz or more. '
  • Fig. 2 (c) shows the distribution of the real part of the spectrum of the reference band specified from the spectra shown in Figs. 2 (a) and (b), and Fig. 2 (d) shows the distribution.
  • the reference band specified from the back of the spectrum shown in (a) and (b) It is a figure showing distribution of the imaginary part of a vector. It is assumed that the upper limit of the frequency of the component added to the PCM signal indicating the spectrum shown in FIGS. 2 (a) and (b) is 20 kilohertz.
  • the frequency of the component added to the PCM signal is 20 kilohertz and the PCM signal does not substantially include a frequency component of 16 kilohertz or more, the frequency is 16 kilohertz.
  • the band from Hertz to 20 km is identified as the interpolated band, and the band from 12 km to less than 16 km is identified as the reference band.
  • Figure 2 (e) shows an example of the distribution of the real part of the spectrum of the PCM signal (interpolated spectrum) obtained by interpolating the PCM signal whose spectra are shown in Figures 2 (a) and (b).
  • FIG. 2 (f) is a diagram illustrating an example of the distribution of the imaginary part of the spectrum after interpolation.
  • the distribution of the real part of the spectrum after interpolation corresponds to the sum of the distribution shown in Fig. 2 (a) and the distribution shown in Fig. 2 (c).
  • the distribution of the imaginary part of the spectrum after interpolation corresponds to the sum of the distribution shown in Fig. 2 (b) and the distribution shown in Fig. 2 (d).
  • the spectrum distribution of the portion of the band to be interpolated added by the interpolation band adding unit 6 in the spectrum distribution after interpolation is a continuous band having the upper limit of the band occupied by the spectrum before interpolation. Since this corresponds to the spectrum distribution of a certain reference band, the part of the band to be interpolated can be regarded as a harmonic component of this reference band.
  • the phase of the added interpolated band is the phase of the audio signal removed by the band limitation. It is close to the phase of the component.
  • the output signal output by the signal interpolator becomes a PCM signal obtained by performing a PCM modulation on an audio signal close to the audio signal before the band is limited, and the audio signal is output using the output signal. By restoring the signal, the audio signal is restored with high sound quality.
  • the configuration of this signal interpolator is not limited to the above.
  • the signal interpolation processing unit 4 when the signal representing the spectrum distribution is supplied from the Fourier transform unit 1 to the signal interpolation processing unit 4, the signal interpolation processing unit 4 performs a recursive calculation on the distribution of the real part and the imaginary part of the spectrum. Two functions forming the envelope of the real and imaginary parts of this spectrum may be specified.
  • the signal interpolation processing unit 4 matches the value of the real part of the spectrum in the reference band specified by the interpolation band analysis unit 3 with the value of the function forming the envelope of the real part of the spectrum. And extrapolates the value of the imaginary part of the spectrum in the reference band into the interpolated band so as to match the value of the function forming the envelope of the imaginary part of the spectrum.
  • the distribution of the real part of the spectrum after interpolation of the band to be interpolated and the distribution of the imaginary part of the spectrum after interpolation of the band to be interpolated are the distribution of the spectrum after interpolation of the band to be interpolated. Represent.
  • the upper limit of the reference band does not necessarily have to substantially match the upper limit of the band occupied by the spectrum before interpolation.
  • the upper limit of the reference band matches the upper limit of the band occupied by the spectrum before interpolation, the highest frequency of the reference band includes the highest frequency of the spectrum of the original PCM signal. It is highly possible that the spectrum in the reference band itself can be regarded as a harmonic component of a part of the spectrum before interpolation. Therefore, if the upper limit of the reference band matches the upper limit of the band occupied by the spectrum before interpolation, an audio signal that is closer to the audio signal before the band is limited is represented than if it does not match. It will be.
  • the signal to be interpolated by this signal interpolator does not necessarily have to be a PCM signal, and a signal obtained by encoding an analog audio signal by various methods can be processed.
  • the signal interpolation processing unit 4 does not necessarily need to specify the envelope of the spectrum represented by the signal supplied from the Fourier transform unit 1, and changes the intensity of the spectrum in the interpolated band after interpolation. You don't have to.
  • the embodiment of the present invention has been described. It can be realized using a general computer system without using a dedicated system (for example, a personal computer or microcomputer can be implemented by the above-described Fourier transform unit 1, delay unit 2, interpolation band analysis unit 3, signal interpolation processing).
  • a program for executing the operations of the unit 4, the inverse Fourier transform unit 5, and the interpolation band adding unit 6,
  • a signal interpolator that performs the above-described processing may be configured.
  • the program may be posted on a bulletin board (BBS) of a communication line and distributed via the communication line.
  • BBS bulletin board
  • a carrier wave is modulated by a signal representing the program, the obtained modulated wave is transmitted, and a device receiving the modulated wave demodulates the modulated wave and restores the program.
  • Unishi may be.
  • the above-described processing can be executed. If the OS shares part of the processing, or if the OS constitutes a part of one component of the present invention, the program excluding the part is recorded on the recording medium. It may be stored. Also in this case, in the present invention, it is assumed that the recording medium stores a program for executing each function or step executed by the computer.
  • a signal interpolation device for restoring a signal close to the original signal from a band limited signal obtained by restricting a specific frequency band of the original signal, and A signal interpolation method is realized.
  • a signal interpolation device and a signal interpolation method for restoring an audio signal with high sound quality are realized.

Description

明細書 信号を補間する装置および方法 技術分野
この発明は、 帯域制限された信号のスぺクトル分布を改善する信号補間装置及 び信号補間方法に関する。
背景技術 .
MP 3 (MPEG 1 a u d i o l ay e r 3) 形式のデータの配信、 及 び、 FM (F r e qu e n c y Mo du l a t i on) 放送やテレビジョン音 声多重放送等の手法による音楽などの供給が近年盛んになっている。 これらの手 法では、 帯域が過度に広くなることによるデータ量の増大や占有帯域幅の広がり を避けるため、 一般に、 供給する対象の音楽等のうち約 1 5 kHz以上の周波数 成分が除去されている。
このように、 一定値以上の周波数成分が除去された音楽等は通常、 音質が劣る。 そこで、 除去された周波数成分に代わる信号を加算することが考えられる。 この ための手法としては、 特開平 7— 93 900号公報に開示されている手法や、 特 開平 6— 85607号公報に開示されている手法がある。
特開平 7 _ 93900号公報に開示されている手法は、 P CMディジタルォ一 ディォ信号をローパスフィル夕に通して得られる出力オーディオ信号を、 当該出 力信号の絶対値成分を含む信号を乗算することにより歪みを生じさせる、 という 手法である。
特開平 6— 85607号公報に開示されている手法は、 原オーディオ信号から 基音と倍音が組で存在する音声成分を抽出して、 抽出した音声成分を用い、 原ォ 一ディォ信号の帯域より高域側の倍音成分を予測して原オーディォ信号に外挿す る、 という手法である。
しかしながら、 特開平 7— 93900号公報のオーディオ信号再生装置は、 出 カオ一ディォ信号の波形を絶対値回路等を用いて歪ませることにより高調波を発 生させるに過ぎないものであって、 この高調波は元のォ一ディォ信号に含まれて いるものに近似し得るものであるかは分からない。
また、 元の音声等の帯域を制限して得られる原オーディオ信号に特開平 6— 8 5 6 0 7の手法を適用した場合、 純音の音色成分について倍音成分を予測して外 揷することができず、 同様に、 帯域が制限された結果倍音成分を除去された音色 成分についても、 除去された倍音成分を推測して外揷することができない。
この発明は、 上記実状に鑑みてなされたものであり、 原信号の特定の周波数帯 域を制限して得られる帯域制限信号から原信号に近い信号を適切に復元できるよ うにするための信号補間装置及び信号補間方法を提供することを目的とする。 また、 この発明は、 オーディオ信号を高音質で復元するための信号補間装置及 び信号補間方法を提供することを目的とする。
発明の開示
上記目的を達成するために、 本発明の信号補間装置は、 原信号における特定の 周波数帯域の周波数成分を除去することにより帯域制限された信号から、 原信号 を近似的に復元するために、 該帯域制限された信号をスペクトル分析して、 スぺ クトルの実数部および虚偽部を表わす複素スぺクトル信号を生成し、 該複素スぺ クトル信号に基づいて、 該除去された特定帯域の周波数成分を有する信号を合成 して、 該帯域制限された信号に加算するよう動作する。
より具体的には、 本発明の信号補間装置は、 補間の対象とされる入力信号をフ 一リエ変換して複素スぺクトルの実数部及び虚数部を表す信号を生成するスぺク トル生成竽段と、 前記スぺクトルが存在する帯域に含まれる補間用帯域を特定す るとともに、 前記スぺクトルが実質的に存在しない被補間帯域を特定する手段と、 該補間用帯域の複素スぺクトルと実数部および虚数部が実質的に同一であるよう な複素スぺクトルを該被補間帯域に有する補間用信号を生成する手段と、 該生成 された補間用信号を、 該入力信号に加算して出力信号を生成する加算手段とから 構成される。 このような信号補間装置によれば、 スぺクトルの実数部及び虚数部の分布が被 補間信号のスぺクトルの一部と実質的に同一であるような成分が帯域制限された 入力信号に追加され、 帯域が拡張される。 追加された成分は、 入力信号の一部分 の高調波成分とみなし得るので、 入力信号が帯域を制限された信号である場合、 帯域が拡張された後の入力信号は、 帯域が制限される前の原信号に近いものとな る。 また、 複素形式のスペクトルの実数部及び虚数部が共に追加されるので、 追 加された成分の位相は、 帯域の制限により除去された成分の位相に近いものとな る。
従って、 入力信号がオーディオ信号を表すものであれば、 帯域が拡張された後 の入力信号を用いてオーディォ信号を復元することにより、 オーディォ信号が低 歪み、 高音質で復元される。
前記補間用帯域の上限は、 前記入力信号のスぺクトルの分布の上限に実質的に 等しいものであれば、 入力信号に追加される成分は、 入力信号の一部分の高調波 成分に特によく近似し得る可能性が高い。 従って、 帯域が拡張された後の入力信 号は、 帯域が制限される前の原信号により近いものとなる。
また、 前記被補間帯域の下限は、 前記入力信号のスぺクトルの分布の上限に実 質的に等しいものであれば、 入力信号に追加される成分のスペクトルは、 入力信 号のスペクトルと、 高周波側で隙間なく隣接するものとなる。 従って、 帯域が拡 張された後の入力信号は、 帯域が制限される前の原信号により近いものとなる。 前記補間用信号を生成する手段は、 例えば、 前記入力信号のスペクトルの絶対 値の包絡線を表す包絡線情報を抽出する手段と、 前記補間用信号のスぺクトルの 強度を、 当該補間用信号のスぺクトルの絶対値の強度が前記包絡線情報が示す包 絡線により表される強度に実質的に等しくなるように変更して前記加算部に供給 する手段とを備えていてもよい。
この場合、 前記加算手段は、 前記入力信号とスペクトルの強度が変更された前 記補間用信号との和を表す出力信号を生成するものであればよい。
このような構成を有することにより、 本発明の信号補間装置は、 補間の対象と しての入力信号に追加されるべき成分を、 そのスぺクトルの絶対値が入力信号の スペクトルの包絡線に沿うようにして入力信号に追加する。 従って、 帯域が拡張 された後の入力信号は、 帯域が制限される前の原信号により近いものとなる。 さらに、 前記補間用信号と生成する手段は、 例えば、 前記入力信号のスぺクト ルの実数部の包絡線を表す第 1の包絡線情報と、 前記入力信号のスぺクトルの虚 数部の包絡線を表す第 2の包絡線情報とを抽出する手段と、 前記補間用信号のス ぺクトルの強度を、 当該補間用信号のスぺクトルの実数部の強度が前記第 1の包 絡線情報が示す包絡線により表される強度に実質的に等しくなり、 且つ、 当該補 間用信号のスぺクトルの虚数部の強度が前記第 2の包絡線情報が示す包絡線によ り表される強度に実質的に等しくなるように変更して前記加算手段に供給する手 段とを備えていてもよい。
この場合、 前記加算手段は、 前記入力信号とスペクトルの強度が変更された前 記補間用信号との和を表す出力信号を生成するものであればよい。
このような構成を有することにより、 本発明の信号補間装置は、 補間の対象で ある入力信号に追加されるべき成分を、 そのスぺク卜ルの実数部が入力信号のス ぺクトルの実数部の包絡線に沿い、 虚数部が入力信号のスぺクトルの虚数部の包 絡線に沿うようにして入力信号に追加する。 従って、 帯域が拡張された後の入力 信号は、 帯域が制限される前の原信号により近いものとなる。
好ましくは、 前記加算部手段は、 前記補間用信号と実質的に同相になるように 前記入力信号を遅延させる遅延部を備え、 前記補間用信号及び前記遅延部が遅延 させた前記入力信号の和を表す前記出力信号を生成するものであれば、 スぺクト ル分布生成手段及び補間手段のうちいずれかが信号の遅延を発生させるものであ つても、 加算部が正確に入力信号の帯域の拡張を行う。
図面の簡単な説明
図 1は、 この発明の実施の形態に係る信号補間器の構成を示す図である。' 図 2は、 順に、 補間前のスペクトルの実数部の分布の一例 (a ) 、 補間前のス ベクトルの虚数部の分布の一例 (b ) 、 基準バンドのスペクトルの実数部の分布 (c) , 基準バンドのスペクトルの虚数部の分布 (d) 、 補間後のスペクトルの 実数部の分布の一例 (e) 、 及び補間後のスペクトルの虚数部の分布の一例
( f ) をそれぞれ示す図である。
発明の実施の形態
以下に、 図面を参照して、 この発明の実施の形態に係る信号補間装置を、 信号 補間器を例にとって説明する。
図 1は、 この発明の実施の形態に係る信号補間器の構成を示す図である。 図示するように、 この信号補間器は、 フーリエ変換部 1と、 補間バンド解析部 3と、 信号補間処理部 4と、 逆フーリエ変換部 5と、 補間バンド加算部 6と、 遅 延部 2とより構成されている。
フーリェ変換部 1は、 DS P (D i g i t a l S i gn a l P r o c e s s o r ) や C PU (C e n t r a 1 P r o c e s s i n g Un i t) 等より 構成されている。
フーリェ変換部 1は、 この信号補間器により補間の対象となるデジ夕ル信号 (例えば、 PCM信号) が供給される。 そして、 離散フーリエ変換あるいは高速 フーリエ変換の手法を用い、 自己に供給されたこの信号のスぺクトルの離散的な 分布を複素数の集合 (具体的には、 この複素数の実数及び虚数部を表す 2個の値 からなる組の集合) として表す信号を生成し、 生成した信号を、 補間バンド解析 部 3及び信号補間処理部 4へと供給する。 なお、 α及び /3を実数、 jを虚数単位 とした場合、 複素数 ( + j i3) の実数部は実数 α、 虚数部は実数 である。 なお、 上述の P CM信号は、 音声等を電圧あるいは電流の変化として表すアナ 口グオーディォ信号をサンプリングし、 かつ量子化することにより得られるデジ タル信号の典型的な信号である。 以下では、 この P CM信号が表すオーディオ信 号のスぺクトル分布は、 元のオーディオ信号のスぺクトルのうち 16キロへルツ 以上の周波数成分が除去されたものに相当するものとする。
遅延部 2は、 フーリエ変換部 1に供給されたものと同一の PCM信号を、 フ一 リエ変換部 1と同時に供給される。 そして、 自己に供給された入力信号を遅延さ せて、 補間バンド加算部 6に供給する。
遅延部 2が信号を遅延させる時間の長さは、 フ一リェ変換部 1に供給された信 号の成分が信号補間処理部 4及び逆フーリェ変換部 5を経て補間バンド加算部 6 に供給されるまでに経過する時間の長さに実質的に等しいものとする。
また、 遅延部 2から補間バンド加算部 6に供給される遅延された入力信号の位 相と、 逆フ一リェ変換部 5から補間バンド加算部 6に供給される信号の位相とは、 補間バンド加算部 6に同時に供給されるもの同士の間では、 実質的に同相である ものとする。
補間バンド解析部 3は、 D S Pや C P U等より構成されている。
補間バンド解析部 3は、 スぺクトルの分布を表す上述の信号をフーリエ変換部 1 より供給されると、 まず、 被補間バンドを特定する。 被補間バンドは、 この信号 補間器により補間を.受ける対象の P C M信号に追加する成分の周波数の上限を上 限する連続した帯域であって、 フーリエ変換部 1から供給された信号が表すスぺ クトルが実質的に含まれていない帯域 (具体的には、 例えば、 当該スペクトルの うち絶対値が所定値を超えるスペクトルが含まれていない帯域) である。 なお、 複素数 (α + j β ) の絶対値は、 実数 { ( α 2 + β 2 ) 1 /2 } である。
次に、 補間バンド解析部 3は、 フーリエ変換部 1から供給された信号が表すス ベクトルが占める帯域の上限を上限とし、 帯域幅が、 上述の処理で特定された被 補間バンドの帯域幅に実質的に等しい帯域を、 基準バンドとして特定する。 そし て、 特定した基準バンドの範囲を指定する情報を、 信号補間処理部 4へと供給す る。 なお、 基準バンドの範囲が指定されれば、 被補間バンドの範囲も特定される 信号補間処理部 4は、 D S Pや C P U等より構成されている。 信号補間処理部 4は、 スぺクトルの分布を表す上述の信号をフーリエ変換部 1より供給されると、 このスぺクトルの絶対値の分布に基づき回帰計算を行う等して、 このスぺクトル の絶対値の包絡線をなす関数を特定する。
そして、 信号補間処理部 4は、 補間バンド解析部 3より、 基準バンドを特定す る情報を供給されると、 特定された基準バンド内のスぺクトルを被補間バンド内 に外揷することにより被補間バンドの補間後のスぺクトル分布を求める。 すなわ ち、 特定された基準バンド内のスペクトルの周波数を、 その元来の値に基準バン ドの最高周波数と最低周波数との差を加算した値へと変更し、 特定した関数の値 にこれらのスぺクトルの絶対値が合致するような実数を、 これらのスぺクトルの 複素数の値に乗じる。
そして、 信号補間処理部 4は、 求められた被補間バンドの補間後のスペクトル 分布を表す信号を生成し、 生成した信号を逆フーリエ変換部 5へと供給する。 逆フーリエ変換部 5は、 DSPや CPU等より構成されており、 上述の通り、 信 号補間処理部 4が出力する、 被補間バンドの補間後のスぺクトル分布を表す信号 を供給される。 そして、 離散逆フーリエ変換あるいは高速逆フーリエ変換の手法 を用い、 自己に供給された信号が表すスぺクトル分布を有する P CM信号を生成 して、 補間バンド加算部 6に供給する。
補間バンド加算部 6は、 DS Pや CPU等より構成されており、 遅延部 2から 自己に供給される遅延された P CM信号の値と逆フーリエ変換部 5から供給され る P CM信号の値との和を表す P CM信号を生成し、 この信号補間器の出力信号 として出力する。
従って、 この信号補間器の出力信号のスペクトル (補間後のスペクトル) は、 元の P CM信号のスぺクトルに被補間バンドの補間後のスぺクトルが加算されて 得られるスぺクトルに実質的に等しいものとなる。
なお、 図 2 (a) は、 補間前のスペクトルの実数部の分布の一例を示す図であ り、 図 2 (b) は、 補間前のスペクトルの虚数部の分布の一例を示す図である。 なお、 図 2 (a) 及び (b) は、 同一の P CM信号のスペクトルを表している。 図示するように、 この PCM信号は、 1 6キロへルツ以上の周波数成分を実質的 に含んでいない。 '
また、 図 2 (c) は、 図 2 (a) 及び (b) に示すスペクトルのうちから特定 された基準バンドのスペクトルの実数部の分布を示す図であり、 図 2 (d) は、 図 2 (a) 及び (b) に示すスペクトルのうらから特定された基準パンドのスぺ クトルの虚数部の分布を示す図である。 なお、 図 2 (a) 及び (b) にスぺクト ルを示す P CM信号に追加する成分の周波数の上限は、 20キロへルツであるも のとする。
図示するように、 この P CM信号に追加する成分の周波数の上限が 20キロへ ルツであって、 この PCM信号が 16キロへルツ以上の周波数成分を実質的に含 んでいないときは、 16キロへルツ以上 20キロへルツ以下の帯域が被補間バン ドとして特定され、 12キロへルツ以上 16キロへルツ未満の帯域が、 基準バン ドとして特定される。
また、 図 2 (e) は、 図 2 (a) 及び (b) にスペクトルを示す P C M信号を 補間して得られる P CM信号のスペクトル (補間後のスペクトル) の実数部の分 布の一例を示す図であり、 図 2 ( f ) は、 補間後のスペクトルの虚数部の分布の 一例を示す図である。
図示するように、 補間後のスペクトルの実数部の分布は、 図 2 (a) に示す分 布と図 2 (c) に示す分布とを加算したものに相当する。 また、 補間後のスぺク トルの虚数部の分布は、 図 2 (b) に示す分布と図 2 (d) に示す分布とを加算 したものに相当する。
補間後のスぺクトル分布のうち補間バンド加算部 6により加算された被補間バ ンドの部分のスぺクトル分布は、 補間前のスぺクトルが占める帯域の上限を上限 とする連続した帯域である基準バンドのスぺクトル分布に相当するので、 被補間 バンドの部分は、 この基準バンドの高調波成分とみなし得る。
また、 被補間パンドの複素形式のスぺクトルの実数部及び虚数部が共に補間前 のスペクトルに追加されるので、 追加された被補間バンドの位相は、 帯域の制限 により除去されたオーディオ信号の成分の位相に近いものとなる。
従って、 この信号補間器が出力する出力信号は、 帯域が制限される前のオーデ ィォ信号に近いオーディオ信号を P CM変調して得られる P CM信号となり、 こ .の出力信号を用いてオーディォ信号を復元することにより、 オーディォ信号が高 音質で復元される。 なお、 この信号補間器の構成は上述のものに限られない。
例えば、 信号補間処理部 4は、 スペクトルの分布を表す上述の信号をフーリエ 変換部 1より供給されると、 このスぺクトルの実数部及び虚数部の分布につき回 帰計算を行う等して、 このスぺクトルの実数部及び虚数部の包絡線をなす 2個の 関数を特定してもよい。
この場合、 信号補間処理部 4は、 補間バンド解析部 3が特定して基準バンド内 のスぺクトルの実数部の値を、 スぺクトルの実数部の包絡線をなす関数の値に合 致するよう被補間バンド内に外挿し、 基準バンド内のスぺクトルの虚数部の値を、 スぺクトルの虚数部の包絡線をなす関数の値に合致するよう被補間パンド内に外 揷するものとする。 この結果得られる、 被補間パンドの補間後のスペクトルの実 数部の分布と、 被補間バンドの補間後のスペクトルの虚数部の分布とが、 被補間 バンドの補間後のスぺクトルの分布を表す。
また、 基準バンドの上限は、 必ずしも補間前のスペクトルが占める帯域の上限 と実質的に一致していなくてもよい。
ただし、 基準バンドの上限が補間前のスぺクトルが占める帯域の上限に一致す るようにすれば、 基準バンドの最高周波数は元の P C M信号のスぺクトルの最高 周波数を含んでいるので、 基準バンド内のスペクトル自体が、 補間前のスぺクト ルの一部分の高調波成分とみなし得る可能性が高い。 従って、 基準パンドの上限 が補間前のスぺクトルが占める帯域の上限に一致していれば、 一致していない場 合に比べ、 帯域が制限される前のオーディォ信号により近いオーディォ信号を表 すものとなる。
また、 この信号補間器が補間を行う対象の信号は必ずしも P C M信号である必 要はなく、 アナログオーディオ信号を種々の方式にて符号化した信号を処理の対 象とすることができる。 また、 信号補間処理部 4は、 必ずしもフーリエ変換部 1 から供給された信号が表すスぺクトルの包絡線を特定しなくてもよく、 補間後の 被補間パンド内のスぺクトルの強度を変更しなくてもよい。
以上、 この発明の実施の形態を説明したが、 この発明にかかる信号補間装置は、 専用のシステムによらず、 通常のコンピュータシステムを用いて実現可能である ( 例えば、 パーソナルコンピュータやマイクロコンピュータに上述のフ一リエ変 換部 1、 遅延部 2、 補間バンド解析部 3、 信号補間処理部 4、 逆フ一リエ変換部 5及び補間バンド加算部 6の動作を実行するためのプログラムを格納した媒体 ( C D - R O M, M O、 フロッピ一ディスク等) から該プログラムをインスト一 ルすることにより、 上述の処理を実行する信号補間器を構成することができる。 また、 例えば、 通信回線の掲示板 (B B S ) に該プログラムを掲示し、 これを 通信回線を介して配信してもよく、 また、 該プログラムを表す信号により搬送波 を変調し、 得られた変調波を伝送し、 この変調波を受信した装置が変調波を復調 して該プログラムを復元するようにしてもよい。
そして、 このプログラムを起動し、 O Sの制御下に、 他のアプリケーションプ 口グラムと同様に実行することにより、 上述の処理を実行することができる。 なお、 O Sが処理の一部を分担する場合、 あるいは、 O Sが本願発明の 1つの構 成要素の一部を構成するような場合には、 記録媒体には、 その部分をのぞいたプ ログラムを格納してもよい。 この場合も、 この発明では、 その記録媒体には、 コ ンピュータが実行する各機能又はステップを実行するためのプログラムが格納さ れているものとする。
産業上の利用可能性
以上の説明のように、 この発明によれば、 原信号の特定の周波数帯域を制限す ることにより得られる帯域制限信号から原信号に近い信号を復元できるようにす るための信号補間装置及び信号補間方法が実現される。
また、 この発明によれば、 オーディオ信号を高音質で復元するための信号補間 装置及び信号補間方法が実現される。

Claims

請求の範囲
1 . 原信号における特定の周波数帯域の周波数成分を除去することにより帯 域制限された信号から、 原信号を近似的に復元するための信号補間装置であって、 該帯域制限された信号をスぺクトル分析して、 スぺクトルの実数部および虚数 部を表わす複素スペクトル信号を生成し、 該複素スペクトル信号に基づいて、 該 除去された特定帯域の周波数成分を有する信号を合成して、 該帯域制限された信 号に加算するようにしたことを特徴とする信号補間装置。
2 . 補間の対象とされる入力信号をフーリエ変換して複素スぺクトルの実数 部及び虚数部を表す信号を生成するスぺクトル生成手段と、
前記スぺクトルが存在する帯域に含まれる補間用帯域を特定するとともに、 前記スぺクトルが実質的に存在しない被補間帯域を特定する手段と、
該補間用帯域の複素スぺクトルと実数部および虚数部が実質的に同一であるよ うな複素スぺクトルを該被補間帯域に有する補間用信号を生成する手段と、 該生成された補間用信号を、 該入力信号に加算して出力信号を生成する加算手 段とを含む信号補間装置。
3 . 請求項 2に記載の信号補間装置において、
前記補間用帯域の上限は、 前記入力信号のスぺクトル分布の上限に実質的に等 しい信号補間装置。
4 . 請求項 2又は 3に記載の信号補間装置において、
前記被補間帯域の下限は、 前記入力信号のスぺクトル分布の上限に実質的に等 しい信号補間装置。
5 . 請求項 2、 3又は 4に記載の信号補間装置において、
前記補間用信号を生成する手段が、
前記入力信号のスぺクトルの絶対値の包絡線を表す包絡線情報を抽出する手段 と、 前記補間用信号のスぺクトルの強度を、 当該補間用信号のスぺクトルの絶対値 の強度が前記包絡線情報が示す包絡線により表される強度に実質的に等しくなる ように変更する手段とを備え、
前記加算手段が、 前記入力信号と、 スペクトルの強度が変更された前記補間用 信号との和を生成するものである信号補間装置。
6 . 請求項 2、 3、 又は 4に記載の信号補間装置において、
前記補間用信号を生成する手段が、
前記入力信号のスぺクトルの実数部の包絡線を表す第 1の包絡線情報と、 前記 入力信号のスぺクトルの虚数部の包絡線を表す第 2の包絡線情報とを抽出する手 段と、
前記補間用信号のスぺクトルの強度を、 当該補間用信号のスぺクトルの実数部 の強度が前記第 1の包絡線情報が示す包絡線により表される強度に実質的に等し くなり、 且つ、 当該補間用信号のスペクトルの虚数部の強度が前記第 2の包絡線 情報が示す包絡線により表される強度に実質的に等しくなるように変更して前記 加算手段に供給する手段とを備えるものである信号補間装置。
7 . 請求項 2ないし 6のいずれかに記載の信号補間装置において、
前記加算手段が、 前記補間用信号と実質的に同相になるように、 前記入力信号 を遅延させる遅延部を備え、 前記補間用信号と、 前記遅延部が遅延させた前記入 力信号との和を生成するものである信号補間装置。
8 . 原信号における特定の周波数帯域の周波数成分を除去することにより帯 域制限された信号から、 原信号を近似的に復元するための信号補間方法であって、 該帯域制限された信号をスぺクトル分析して、 スぺクトルの実数部および虚数 部を表わす複素スペクトル信号を生成し、 該複素スペクトル信号に基づいて、 該 除去された特定帯域の周波数成分を有する信号を合成して、 該帯域制限された信 号に加算するようにしたことを特徴とする信号補間方法。
9 . 補間の対象とされる入力信号をフーリエ変換して複素スぺクトルの実数 部及び虚数部を表す信号を生成するステップと、 前記スぺクトルが存在する帯域に含まれる補間用帯域を特定するとともに、 前記スぺクトルが実質的に存在しない被補間帯域を特定するステップと、 該補間用帯域の複素スぺクトルと実数部および虚数部が実質的に同一であるよ うな複素スぺクトルを該被補間帯域に有する補間用信号を生成するステップと、 該生成された補間用信号を、 該入力信号に加算して出力信号を生成するステツ プとを含む信号補間方法。
1 0 . 請求項 9に記載の信号補間方法において、
前記補間用帯域の上限は、 前記入力信号のスぺクトル分布の上限に実質的に等 しい信号補間方法。
1 1 . 請求項 9又は 1 0に記載の信号補間方法において、
前記被補間帯域の下限が、 前記入力信号のスぺクトル分布の上限に実質的に等 しい信号補間方法。
1 2 . 請求項 9、 1 0、 又は 1 1に記載の信号補間方法において、 前記補間用信号を生成するステツプが、
前記入力信号のスぺクトルの絶対値の包絡線を表す包絡線情報を抽出するステ ップと、
前記補間用信号のスぺクトルの強度を、 当該補間用信号のスぺクトル 絶対値 の強度が前記包絡線情報が示す包絡線により表される強度に実質的に等しくなる ように変更するステップとを含み、
前記出力信号を生成するステップが、 前記入力信号と、 スペクトルの強度が変 更された前記補間用信号との和を生成するものである信号補間方法。
1 3 . 請求項 9、 1 0又は 1 1に記載の信号補間方法において、
前記補間用信号を生成するステップが、
前記入力信号のスぺクトルの実数部の包絡線を表す第 1の包絡線情報と、 前記 入力信号のスぺクトルの虚数部の包絡線を表す第 2の包絡線情報とを抽出するス テツプと、
前記補間用信号のスぺクトルの強度を、 当該補間用信号のスぺクトルの実数部 の強度が前記第 1の包絡線情報が示す包絡線により表される強度に実質的に等し くなり、 且つ、 当該補間用信号のスペクトルの虚数部の強度が前記第 2の包絡線 情報が示す包絡線により表される強度に実質的に等しくなるように変更するステ ップとを含む信号補間方法。
1 . 請求項 9ないし 1 3のいずれかに記載の信号補間方法において、 前記出力信号を生成するステップが、 前記補間用信号と実質的に同相になるよ うに前記入力信号を遅延させ、 前記補間用信号と及び遅延した前記入力信号との 和を生成するものである信号補間方法。
1 5 . コンピュータを
補間の対象とされる入力信号をフーリエ変換して複素スぺクトルの虚数部及び 実数部を表す信号を生成するスぺク卜ル生成手段と、
前記スぺクトルが存在する帯域に含まれる補間用帯域を特定するとともに、 前記スぺクトルが実質的に存在しない被補間帯域を特定する手段と、 該被補間帯域における複素スぺクトルであって、 該補間用帯域の複素スぺクトル と実数部および虚数部が実質的に同一であるような複素スぺクトルを有する補間 用信号を生成する手段と、
該生成された補間用信号を、 該入力信号に加算して出力信号を生成する加算手 段と、
して機能させるためのプログラムを記録したコンピュータ読み取り可能な記録 媒体。
PCT/JP2001/005264 2000-12-07 2001-06-20 Systeme et procede d'interpolation de signaux WO2002050814A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001274567A AU2001274567A1 (en) 2000-12-07 2001-06-20 System and method for signal interpolation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000372594A JP3887531B2 (ja) 2000-12-07 2000-12-07 信号補間装置、信号補間方法及び記録媒体
JP2000-372594 2000-12-07

Publications (1)

Publication Number Publication Date
WO2002050814A1 true WO2002050814A1 (fr) 2002-06-27

Family

ID=18842116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005264 WO2002050814A1 (fr) 2000-12-07 2001-06-20 Systeme et procede d'interpolation de signaux

Country Status (3)

Country Link
JP (1) JP3887531B2 (ja)
AU (1) AU2001274567A1 (ja)
WO (1) WO2002050814A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577259B2 (en) 2003-05-20 2009-08-18 Panasonic Corporation Method and apparatus for extending band of audio signal using higher harmonic wave generator
CN101540043B (zh) * 2009-04-30 2012-05-23 南京理工大学 单幅图像复原的解析迭代快速频谱外推方法
WO2016152742A1 (ja) * 2015-03-23 2016-09-29 国立大学法人九州工業大学 生体信号検出装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926726B2 (ja) * 2001-11-14 2007-06-06 松下電器産業株式会社 符号化装置および復号化装置
US7240001B2 (en) 2001-12-14 2007-07-03 Microsoft Corporation Quality improvement techniques in an audio encoder
JP4227772B2 (ja) * 2002-07-19 2009-02-18 日本電気株式会社 オーディオ復号装置と復号方法およびプログラム
JP2005010621A (ja) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd 音声帯域拡張装置及び帯域拡張方法
WO2005027095A1 (ja) * 2003-09-16 2005-03-24 Matsushita Electric Industrial Co., Ltd. 符号化装置および復号化装置
KR20060090995A (ko) * 2003-10-23 2006-08-17 마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드 스펙트럼 부호화 장치, 스펙트럼 복호화 장치, 음향 신호송신 장치, 음향 신호 수신장치 및 이들의 방법
US7460990B2 (en) 2004-01-23 2008-12-02 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
JP4701392B2 (ja) * 2005-07-20 2011-06-15 国立大学法人九州工業大学 高域信号補間方法及び高域信号補間装置
WO2007086380A1 (ja) * 2006-01-26 2007-08-02 Pioneer Corporation 高音質化装置及び方法、並びにコンピュータプログラム
JP2007310296A (ja) * 2006-05-22 2007-11-29 Oki Electric Ind Co Ltd 帯域拡張装置及び方法
JP2007310298A (ja) * 2006-05-22 2007-11-29 Oki Electric Ind Co Ltd 帯域外信号生成装置及び周波数帯域拡張装置
US8295507B2 (en) 2006-11-09 2012-10-23 Sony Corporation Frequency band extending apparatus, frequency band extending method, player apparatus, playing method, program and recording medium
US8046214B2 (en) 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US7885819B2 (en) 2007-06-29 2011-02-08 Microsoft Corporation Bitstream syntax for multi-process audio decoding
JP4992621B2 (ja) * 2007-09-13 2012-08-08 株式会社Jvcケンウッド オーディオ再生装置、方法及びプログラム
WO2009054228A1 (ja) 2007-10-26 2009-04-30 D & M Holdings Inc. オーディオ信号補間装置及びオーディオ信号補間方法
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
JP4733727B2 (ja) * 2007-10-30 2011-07-27 日本電信電話株式会社 音声楽音擬似広帯域化装置と音声楽音擬似広帯域化方法、及びそのプログラムとその記録媒体
KR101897455B1 (ko) 2012-04-16 2018-10-04 삼성전자주식회사 음질 향상 장치 및 방법
WO2020157888A1 (ja) 2019-01-31 2020-08-06 三菱電機株式会社 周波数帯域拡張装置、周波数帯域拡張方法、及び周波数帯域拡張プログラム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254223A (ja) * 1990-03-02 1991-11-13 Eastman Kodak Japan Kk アナログデータ伝送方式
JPH04249300A (ja) * 1991-02-05 1992-09-04 Kokusai Electric Co Ltd 音声符復号化方法及びその装置
JPH0651800A (ja) * 1992-07-30 1994-02-25 Sony Corp データ数変換方法
JPH0685607A (ja) * 1992-08-31 1994-03-25 Alpine Electron Inc 高域成分復元装置
JPH06222799A (ja) * 1992-10-09 1994-08-12 American Teleph & Telegr Co <Att> 音声信号の符号化方法と符号化音声信号の復号化方法およびそのシステム
JPH06294830A (ja) * 1993-01-22 1994-10-21 Hewlett Packard Co <Hp> 周波数領域の解析を強化するための方法と装置
JPH06301383A (ja) * 1993-04-16 1994-10-28 Casio Comput Co Ltd デジタル音響波形の作成装置、デジタル音響波形の作成方法、楽音波形生成装置におけるデジタル音響波形均一化方法、及び楽音波形生成装置
JPH0793900A (ja) * 1993-09-21 1995-04-07 Pioneer Electron Corp オーディオ信号再生装置
JPH0990992A (ja) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 広帯域音声信号復元方法
JPH09258787A (ja) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd 狭帯域音声信号の周波数帯域拡張回路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254223A (ja) * 1990-03-02 1991-11-13 Eastman Kodak Japan Kk アナログデータ伝送方式
JPH04249300A (ja) * 1991-02-05 1992-09-04 Kokusai Electric Co Ltd 音声符復号化方法及びその装置
JPH0651800A (ja) * 1992-07-30 1994-02-25 Sony Corp データ数変換方法
JPH0685607A (ja) * 1992-08-31 1994-03-25 Alpine Electron Inc 高域成分復元装置
JPH06222799A (ja) * 1992-10-09 1994-08-12 American Teleph & Telegr Co <Att> 音声信号の符号化方法と符号化音声信号の復号化方法およびそのシステム
JPH06294830A (ja) * 1993-01-22 1994-10-21 Hewlett Packard Co <Hp> 周波数領域の解析を強化するための方法と装置
JPH06301383A (ja) * 1993-04-16 1994-10-28 Casio Comput Co Ltd デジタル音響波形の作成装置、デジタル音響波形の作成方法、楽音波形生成装置におけるデジタル音響波形均一化方法、及び楽音波形生成装置
JPH0793900A (ja) * 1993-09-21 1995-04-07 Pioneer Electron Corp オーディオ信号再生装置
JPH0990992A (ja) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 広帯域音声信号復元方法
JPH09258787A (ja) * 1996-03-21 1997-10-03 Kokusai Electric Co Ltd 狭帯域音声信号の周波数帯域拡張回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577259B2 (en) 2003-05-20 2009-08-18 Panasonic Corporation Method and apparatus for extending band of audio signal using higher harmonic wave generator
CN101540043B (zh) * 2009-04-30 2012-05-23 南京理工大学 单幅图像复原的解析迭代快速频谱外推方法
WO2016152742A1 (ja) * 2015-03-23 2016-09-29 国立大学法人九州工業大学 生体信号検出装置
JP2016174869A (ja) * 2015-03-23 2016-10-06 国立大学法人九州工業大学 生体信号検出装置
US10058304B2 (en) 2015-03-23 2018-08-28 Kyushu Institute Of Technology Biological signal detection device

Also Published As

Publication number Publication date
AU2001274567A1 (en) 2002-07-01
JP3887531B2 (ja) 2007-02-28
JP2002175092A (ja) 2002-06-21

Similar Documents

Publication Publication Date Title
WO2002050814A1 (fr) Systeme et procede d&#39;interpolation de signaux
JP5098569B2 (ja) 帯域拡張再生装置
JP4286510B2 (ja) 音響信号処理装置及びその方法
US6836739B2 (en) Frequency interpolating device and frequency interpolating method
US20070299655A1 (en) Method, Apparatus and Computer Program Product for Providing Low Frequency Expansion of Speech
JP4254479B2 (ja) オーディオ帯域拡張再生装置
JP3538122B2 (ja) 周波数補間装置、周波数補間方法及び記録媒体
JPH07160299A (ja) 音声信号帯域圧縮伸張装置並びに音声信号の帯域圧縮伝送方式及び再生方式
JP3810257B2 (ja) 音声帯域拡張装置及び音声帯域拡張方法
US20100023333A1 (en) High frequency signal interpolating method and high frequency signal interpolating
JP3576942B2 (ja) 周波数補間システム、周波数補間装置、周波数補間方法及び記録媒体
JP3881836B2 (ja) 周波数補間装置、周波数補間方法及び記録媒体
WO2004107319A1 (ja) 既知音響信号除去方法及び装置
JP4303026B2 (ja) 音響信号処理装置及びその方法
US8352054B2 (en) Method and apparatus for processing digital audio signal
JP3713200B2 (ja) 信号補間装置、信号補間方法及び記録媒体
JP2002189498A (ja) デジタル音声処理装置及びコンピュータプログラム記録媒体
JP3888239B2 (ja) デジタル音声処理方法及び装置、並びにコンピュータプログラム
JP4787316B2 (ja) デジタル信号処理装置及び倍音生成方法
JP2002175099A (ja) 雑音抑制方法および雑音抑制装置
KR101412117B1 (ko) 재생 속도 또는 피치를 변경할 때 오디오 신호에서 과도 사운드 이벤트를 처리하기 위한 장치 및 방법
JP2005309464A (ja) 雑音除去方法、雑音除去装置およびプログラム
JP6506424B2 (ja) 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置
JP6371376B2 (ja) 音響装置及び信号処理方法
JP6685443B2 (ja) 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase