WO2002050307A1 - Procede de detection de polymorphisme dans l'adn au moyen d'une spectroscopie de masse - Google Patents

Procede de detection de polymorphisme dans l'adn au moyen d'une spectroscopie de masse Download PDF

Info

Publication number
WO2002050307A1
WO2002050307A1 PCT/JP2001/010892 JP0110892W WO0250307A1 WO 2002050307 A1 WO2002050307 A1 WO 2002050307A1 JP 0110892 W JP0110892 W JP 0110892W WO 0250307 A1 WO0250307 A1 WO 0250307A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
dna
polymorphism
oligonucleotide
site
Prior art date
Application number
PCT/JP2001/010892
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Inoko
Gen Tamiya
Kenji Nakajima
Naoki Kimura
Renpei Nagashima
Minoru Morikawa
Kouichi Okamoto
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to AU2002222614A priority Critical patent/AU2002222614A1/en
Priority to JP2002551186A priority patent/JPWO2002050307A1/ja
Priority to US10/450,761 priority patent/US20040248098A1/en
Priority to EP01271113A priority patent/EP1350851A4/en
Publication of WO2002050307A1 publication Critical patent/WO2002050307A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6872Methods for sequencing involving mass spectrometry

Definitions

  • the present invention relates to a system for efficiently identifying a polymorphism on a genome using mass spectrometry.
  • genomic base sequence information With the development of genome analysis technology, the nucleotide sequence of the entire human genome is now being determined. Furthermore, determination of differences in genomic base sequences of individuals, that is, genetic polymorphisms, using the determined genomic base sequence information has been actively performed. Genetic polymorphism determination has become one of the most important issues in the medical and diagnostic fields in recent years because it enables the identification of disease-related genes, disease-causing genes, and eventually drug discovery target genes.
  • PCR-RFLP Restriction Fragment Length Polymorphism
  • This method is based on the principle that after a reaction amplified by PCR with a base sequence-specific restriction enzyme, the presence or absence of cleavage due to a difference in base sequence is detected as a difference in molecular weight by electrophoresis.
  • restriction enzyme that specifically recognizes the polymorphic site, and the restriction enzyme used differs depending on the target SNPs. There is a problem that is not.
  • PCR-Single-Strand Conformation Polymorphism has also been used to detect genetic polymorphisms.
  • SSPC PCR-Single-Strand Conformation Polymorphism
  • SNP single nucleotide polymorphism
  • the present inventors have conducted intensive research to solve the above-mentioned problems.
  • an oligonucleotide capable of hybridizing with genomic DNA containing the target polymorphism is bound to a substrate, and a genomic DNA sample is applied to the substrate. It has been found that genomic DNA containing the target polymorphism can be selected from the DNA sample on the substrate and can be complemented to the substrate, and thereby the target polymorphism can be detected efficiently.
  • genomic DNA containing the target polymorphism was selected in advance, and this was directly applied to a substrate to detect the polymorphism. Needed.
  • the oligonucleotide capable of hybridizing with the genomic DNA containing the target polymorphism is bound to the substrate, DNA other than the genomic MA containing the target polymorphism in the DNA sample is used. Even if the DNA is contained, the target DNA can be selected on the substrate by the hybridization reaction, and at the same time, the DN is added to the substrate. A can be supplemented.
  • the method of the present invention it is not necessary to select genomic DNA containing the polymorphism in advance and apply it to the substrate, and it is possible to efficiently detect the polymorphism. This is especially true when detecting polymorphisms in a large number of samples, for example, when determining genetic polymorphism variations comprehensively in a sample population of several hundred people to several thousand people, or for certain disease groups. This is effective when identifying one genetic marker (for example, polymorphic microsatellite) required for disease correlation analysis.
  • one genetic marker for example, polymorphic microsatellite
  • DNAs containing the target polymorphisms are selected by utilizing a hybridization reaction on a substrate. Provides a way to make supplements.
  • the present invention provides
  • the DNA sample in step (a) is: (i) a pair of primers designed to sandwich a polymorphic site, at least one of which is a primer pair containing a site that can be specifically cleaved; (Ii) cleaving the amplified product obtained at the site where it can be specifically cleaved, using (iii) ) Adding any DNA to the amplified product after the cleavage, and obtaining the oligonucleotide in step (b).
  • the method according to (1), wherein the peptide is an oligonucleotide capable of specifically hybridizing to the arbitrary DNA.
  • a DNA sample containing a polymorphic site and its neighboring region has been prepared targeting polymorphic sites at a plurality of different loci of the same person, and the DNA sample has been immobilized on the same substrate.
  • a DNA sample containing a polymorphic site and its neighboring region is prepared by targeting a polymorphic site at the same locus of a plurality of persons, and the DNA sample is transferred to an oligo- immobilized on the same substrate.
  • a DNA sample containing a polymorphic site and its neighboring region which is a substrate for use in the method according to (7) and is prepared by targeting a polymorphic site in the same gene locus of a plurality of persons.
  • Substrate on which an oligonucleotide fragment capable of hybridizing to the substrate is immobilized,
  • the present invention in the method of the c the present invention to provide a method for detecting a polymorphism of MA using a mass spectrometer effectively, firstly, a polymorphic site from the subject a DNA specimen including the neighboring region Prepare (step (a)).
  • the polymorphism that can be detected in the method of the present invention.
  • examples of the polymorphism include single nucleotide substitution polymorphism (SNP) and microsatellite, but microsatellite is particularly suitable for correlation analysis targeting a large genome region. If microsatellite is used to perform correlation analysis covering the entire human genomic region, the purpose can be achieved if approximately 30,000 microsatellites can be used. In the case of, about several hundred thousand places are considered necessary. Therefore, when performing a correlation analysis targeting a vast genomic region using the method of the present invention, targeting microsatellite is more effective in reducing the number of polymorphisms required for detection. This is preferable because the reduction can be achieved.
  • SNP single nucleotide substitution polymorphism
  • microsatellite is particularly suitable for correlation analysis targeting a large genome region. If microsatellite is used to perform correlation analysis covering the entire human genomic region, the purpose can be achieved if approximately 30,000 microsatellites can be used. In the case of
  • the ⁇ A sample containing the polymorphic site and its neighboring region can be prepared from a subject, for example, as follows. That is, first, a microsatellite repetitive sequence is detected from a human genome sequence by a computer, and a primer is set so that the chain length of the unit duplication sequence (amp 1 icon) is 200 bp to 300 bp across the repetitive sequence. Then, a genomic DNA of the subject is subjected to PCR using the primers set as described above to obtain a DNA sample of a desired size.
  • near region of the polymorphic site in the present invention you adjacent to the polymorphic site on the genomic DNA polymorphism of 5 5 and 3 refers to a DNA region side.
  • the size of a DNA fragment that can be analyzed using a mass spectrometer generally ranges from 200 bp to 300 bp. Therefore, in the present invention, The “region near the polymorphic site” to be subjected to gene amplification by setting a marker is usually within 300 bp, preferably within 200 bp from the polymorphic site.
  • the DNA sample is hybridized to an oligonucleotide fragment immobilized on a substrate, the oligonucleotide fragment being capable of specifically hybridizing with the DNA containing the target polymorphism (step ( b)) c
  • DNA containing the target polymorphism is selected from the DNA sample and is simultaneously captured on the substrate. Therefore, labor and time are remarkably reduced as compared with the conventional method in which DNA containing the target polymorphism is prepared and applied in advance. This is particularly remarkable when detecting polymorphism in a large amount of sample.
  • DNAs corresponding to respective oligonucleotides are sorted on a substrate. Therefore, it is possible to distinguish which polymorphism the DNA corresponds to, based on the hybridizing position. This makes it possible to rapidly and comprehensively detect polymorphisms in a large number of samples.
  • the “substrate” is not particularly limited as long as it can immobilize an oligonucleotide, but is preferably a plate-like material.
  • a substrate having conductivity for ionizing the DNA to be detected is used as the substrate to which the oligonucleotide is bound.
  • the substrate is not particularly limited as long as it has conductivity.
  • a glass plate fixed to a conductive plate can be suitably used in the present invention.
  • a preferred conductive plate for example, a stainless steel plate can be exemplified.
  • the glass plate is preferably a glass plate coated with a polycarbonate substrate or the like.
  • the oligonucleotide immobilized on the substrate is not particularly limited as long as it is an oligonucleotide fragment capable of specifically hybridizing with the DNA containing the target polymorphism.
  • “specifically hybridizing I” refers to the DNA containing the target polymorphism in the DNA sample. It means that it hybridizes substantially and does not substantially hybridize with other DNA.
  • the oligonucleotide preferably has a base sequence capable of specifically hybridizing with the base sequence in the vicinity region of the polymorphism to be detected. If specific hybridization is possible, it does not need to be completely complementary to the nucleotide sequence in the vicinity of the polymorphism to be detected.
  • the number of oligonucleotides immobilized on the substrate need not be limited to one, but may be a mixture of a plurality of types of oligonucleotides having complementarity in the region of the genomic fragment to be identified.
  • the oligonucleotide immobilized on the substrate can be designed so as to obtain genetic information from the same individual. For example, to identify polymorphisms in the same person's microsatellite, oligonucleotides targeting one or more polymorphic sites (for example, 10,000 to 30,000 sites) can be identified by one or more substrates. Can be fixed on top and used as one set.
  • oligonucleotides By simultaneously applying and hybridizing a DNA sample prepared from a subject to multiple types of oligonucleotides on the same substrate, it is possible to rapidly and comprehensively detect multiple polymorphisms of the same person. It becomes possible. Therefore, for example, by binding oligonucleotides targeting multiple polymorphisms related to multiple diseases on a substrate, it is possible to easily detect a disease that may or may cause a subject to become ill. Such substrates are particularly useful in genetic diagnostics because they can be identified.
  • the same oligonucleotide is bound to the substrate as a plurality of dots, whereby the genetic information of a plurality of sample populations relating to a specific polymorphism can be obtained quickly and comprehensively. it can.
  • Such an embodiment is particularly effective for performing disease correlation analysis using genetic polymorphism (for example, microsatellite II SNP).
  • the DNA sample is prepared by using (I) a primer pair designed to sandwich the polymorphic site, wherein at least one of the primer pairs contains a site that can be specifically cleaved. Subjecting the subject's genomic DNA to a type I polymerase chain reaction, (ii) cutting the resulting amplification product at the site that can be specifically cleaved, and (iii) It can be obtained by adding any DNA to the amplification product.
  • the site that can be specifically cleaved in the DNA sample is preferably a restriction enzyme site.
  • the restriction enzyme site those having a low frequency on the genome, for example, a Notl site are preferable.
  • the arbitrary DNA to be added to the amplified product after the cleavage is not particularly limited, and for example, a polyA sequence can be suitably used.
  • the length of the oligonucleotide bound to the substrate is generally from 5 bases to 200 bases, preferably from 10 bases to 130 bases, and more preferably from 15 bases to 100 bases.
  • the immobilization of the oligonucleotide on the substrate can be performed chemically or non-chemically.
  • An example of the chemical immobilization method is the carpoimide method (Japanese Patent Laid-Open No. 2000-146978), and a non-scientific immobilization method is the polylysine method (P. 0. Brown 5 s Lab .: http: : // cmgm.
  • the hybridization reaction between the oligonucleotide on the substrate and the DNA sample should be performed, for example, under the conditions described in the Examples. It should be understood, however, that hybridization conditions are well known to those skilled in the art, and may vary with factors such as the length of the oligonucleotide.
  • DNA hybridized to the oligonucleotide fragment immobilized on the substrate is detected by mass spectrometry (step (c)).
  • the method of mass spectrometry is not particularly limited as long as the method can obtain an absolute molecular weight.
  • MALDI-T0F MS is preferable.
  • MALDI Microx Assisted Laser Desorption on Ionization
  • the sample is placed in a state of being uniformly mixed with a large amount of matrix.
  • TOF MS Time of Flight Mass Spectrometry
  • MALDI-TOF MS is an ion flight based on the difference in the mass-to-charge ratio m / z when the ion charge is z and the ion mass is m. Mass spectrometry is performed using the difference in time.
  • MALDI-TOF MS differs from other mass spectrometry methods such as GPC and LALLS, which determine the relative molecular weight, in that it has the characteristic of obtaining an absolute molecular weight.
  • DNA samples for detection by MALDI-TOF MS do not necessarily require high-temperature (eg, 90 ° C) and quenching treatment of the duplex due to non-chemical bonding as a pretreatment. However, these pretreatments are preferred because they can increase sample sensitivity.
  • an appropriate matrix solution is added to the DNA-hybridized substrate, and the DNA on the substrate is dried.
  • the flight time differs depending on the molecular weight of the ionized sample (DNA hybridized to the oligonucleotide on the substrate), and the different flight times are detected as different peak positions.
  • FIG. 1 is a diagram showing the results of 200 bp dsDNA (P (product) MALDI-TOFMS measurement using a gas plate.
  • FIG. 2 is a diagram showing a hybridization signal when the oligonucleotide of SEQ ID NO: 1 was immobilized on a stainless steel plate as a substrate.
  • FIG. 3 shows an oligonucleotide of SEQ ID NO: 2 immobilized on a stainless steel plate as a substrate.
  • FIG. 4 is a diagram showing a hybridization signal when
  • FIG. 4 is a diagram showing fixing of a cover glass to a sample slide which is a stainless steel plate.
  • FIG. 5 is a diagram showing a hybridization signal when the oligonucleotide of SEQ ID NO: 4 or 5 (negative control) was immobilized on a glass plate.
  • Example 1 200 bp dsDNA (PCR product) MALDI-T0FMS measurement using a glass plate
  • reaction mixture (xl) used for PCR is as follows (() is for xlOO). ⁇ type ring A 10ng 1.
  • PCR was performed using a Thermal cycler Cycle PE9700 (Applied Biosystems), followed by ⁇ 9 minutes at 95 ° C '', followed by ⁇ 45 seconds at 96 ° C, 45 seconds at 60 ° C, 1 minute at 72 ° C ''. Cycle, then "7 5 minutes at 2 ° C, termination at 4 ° C ”.
  • the resulting PCR product was purified according to the QIAGEN MinElute PCR Purification kit protocol. 300 1 PCR product was passed through one column to elute d3 ⁇ 4010 il.
  • Quantification was performed according to the PicoGreen dsDNA Quantitation kit (Molecular Probes) protocol.
  • a slide glass (Code. # 000: 0.04 mm thick) was fixed on a stainless steel plate (sample slide) with double-sided tape.
  • the matrix and sample were mixed 1: 1 and spotted 0.5-1 onto glass.
  • the sample slide was air dried (crystallized) and then introduced into a mass spectrometer for measurement.
  • KRAT0S K0MPACT MALDI 4 The measurement was performed using KRAT0S K0MPACT MALDI 4 (Shimadzu). The measurement conditions of K0MPACT MALDI 4 are shown below. Three
  • a stainless steel plate (stainless steel plate; manufactured by KRATOS ANALYTICAL Co., Ltd.) was calposimidated according to the method of JP-A-2000-146978.
  • An oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 1 (calculated value; molecular weight: 7583) and SEQ ID NO: 2 (calculated value: molecular weight: 7638) was dissolved in a buffer to give 100 pmol / zl to prepare an MA solution. .
  • the DNA solution was spotted at a predetermined position on a stainless steel plate for carpoimidization.
  • buffer A 0.2 M sodium chloride, 0.1 M Tris-HCl (pH 7.5) containing 3% BSA (pserum albumin), 0.05% X-100
  • BSA pserum albumin
  • X-100 0.05% X-100
  • a hybridization solution [5 X SSC (SSC: 1.5 M NaCl, 0.15 M sodium citrate), 10% dextran, SEQ ID NO: 3 (calculated value; molecular weight) 6190) Probe] 25 ⁇ 1 was placed and heated 1 ⁇ in a 40 ° C water bath.
  • the hybridization solution was lightly sucked from the carbodiimidated stainless steel plate, and subjected to post-hybridization washing to remove non-specifically adsorbed probes.
  • the post-hybridization washing conditions were as follows: (I) 2 x SSC 0.1% SDS; 5 minutes at room temperature twice, (ii) 0.2 X SSC, 0.1% SDS; 40 ° C, 5 minutes twice, (Iii) 2 ⁇ SSC; room temperature, 5 minutes, (iv) 0.3 M aqueous ammonium citrate solution; room temperature, 15 seconds.
  • the obtained carbodimidized stainless steel plate was measured using KOMPACT MALDI2 (manufactured by Shimadzu Corporation). The results are shown in FIGS. 2 and 3.
  • the probe nucleic acid can be specifically obtained as a very clear signal (actually measured value; at a position of molecular weight 6185). On the other hand, no signal could be detected from the spot of SEQ ID NO: 2.
  • Cover glass # 000 (manufactured by Matsunami Glass Co., Ltd.) was carbodimidated according to the method of JP-A-2000-146978. Oligonucleotides having the nucleotide sequences shown in SEQ ID NO: 4 (Capture oligomer) and SEQ ID NO: 5 (negative control) were dissolved in a buffer to lZOpmol / 1 to obtain a DNA solution. The DNA solution and the buffer were spotted at predetermined positions on a carbodimidated cover glass using a Pittman at a predetermined position.
  • the cells were immersed in buffer A (0.2 M sodium chloride, 0.1 M and sulphate hydrochloride (pH 7.5), 0.05% Triton X-100) containing 3% BSA (pserum albumin). And dried at 37 ° C for 15 minutes.
  • buffer A 0.2 M sodium chloride, 0.1 M and sulphate hydrochloride (pH 7.5), 0.05% Triton X-100
  • BSA pserum albumin
  • the calposimidated cover glass was washed with a TE buffer (10 mM and ris hydrochloric acid (pH 7.2) / lmM EDTA), and dried at 37 ° C. for 15 minutes. No oligonucleotide (DNA (-)) was also used as a control.
  • a probe of the hybridization solution [5 X SSC (SSC: 1.5 M NaCK 0.15 M sodium citrate), 10% dextran, SEQ ID NO: 6 or SEQ ID NO: 7] was placed on the DNA-fixed portion of the carbodimidated cover glass. ] Place 10 ⁇ 1 and heat it for 1 ⁇ with a dryer at 30 ° C.
  • the hybridization solution was gently sucked from the carbodimidated cover glass, and subjected to post-hybridization washing under the following conditions.
  • the washing conditions for the post hybridization were (I) 2 ⁇ SSC; room temperature for 5 minutes, (ii) 0.3 M aqueous ammonium citrate solution; room temperature for 15 seconds.
  • Pridine-2-carboxylic acid (3-Hydroxy-2-pico 1 inic acid): Mw.139.11 0.7M3 ⁇ 40.0974g
  • Di ammonium Hydrogen citrate Mw.226.2 0.07M was dissolved in 0.010583g and prepared.
  • KOMPACT MALDI 4 The measurement conditions of KOMPACT MALDI 4 are shown below.
  • Laser power 150 50mer
  • 180 180 (lOOmer)
  • the present invention provides a method capable of efficiently detecting a genetic polymorphism using a mass spectrometer, thereby enabling rapid and comprehensive detection of a genetic polymorphism in multiple samples.
  • the method of the present invention can greatly contribute to disease correlation analysis ⁇ gene diagnosis for determining a polymorphism that causes a specific disease.

Description

質量分析を利用して DNAの多型を検出する方法 技術分野
本発明は、 質量分析を利用してゲノム上の多型を効率的に同定するためのシス テムに関する。 背景技術
ゲノム解析技術の発展に伴い、 現在では、 ヒト全ゲノム塩基配列が決定されつ つある。 さらに、 決定されたゲノム塩基配列情報を利用して、 個々人のゲノム塩 基配列の差異、 即ち、 遺伝多型の決定も盛んに行なわれるようになつてきた。 遺 伝多型の決定は、 疾患関連遺伝子、 疾患原因遺伝子、 ひいては創薬標的遺伝子の 特定を可能とするため、 近年、 医療 ·診断分野における最も重要な課題の一つと なっている。
これまで遺伝多型を決定する手法としては、 例えば、 PCR-RFLP (Restriction F ragment Length Polymorphism) 法が用いられてきた。 この方法は、 PCRにて増幅 した産物に塩基配列特異的な制限酵素を反応させた後、 電気泳動にて塩基配列の 違いによる切断の有無を分子量の違いとして検出することを原理とする。 しかし ながら、 この方法においては、 多型部位を特異的に認識する制限酵素が必ずしも 存在するとは限らず、 また、 対象とする SNPsにより用いる制限酵素が異なるため、 大量のサンプルを扱うにはあまり適していないという問題点が存在する。
また、 PCR- SSPC (Single-Strand Conformation Polymorphism) 法も遺伝多型の 検出に利用されてきた。 1本鎖に変性させた MAを非変性条件に戻すと、 ヘアピン ループなどの分子高次構造を形成し、 この分子内構造は 1塩基の変異によっても大 きく影響を受け大きく変化する。 この方法は、 この構造の違いを非変性条件のポ リアクリルァミ ドゲル電気泳動で移動度の違いとして検出することを原理とする しかしながら、 この方法においては、 その変異のすべてを検出することは困難で あり、 多型の取りこぼしは避けられず、 また、 電気泳動時の条件により移動度が 変化し、 再現性のあるデ一夕を得ることは容易ではないなどの問題点が存在する c また、 自動蛍光シークェンサ一を用いた遺伝多型の解析も行なわれてきた。 こ の方法においては、 まず、 多型マイクロサテライ ト繰り返し配列を挟んでプライ マ一を設定し、 さらにそのプライマ一に蛍光修飾を行なう。 次いで、 このプライ マーを用いて PCRを行ない、 得られた産物を自動蛍光シークェンサ一にて泳動し、 その鎖長を標準 MAを指標として計測することにより、 繰り返し配列の多型を検出 する。 この方法は、 近年、 大量のサンプルを処理可能なシークェンサ一が開発さ れて汎用されるに至り、 マイクロサテライ ト多型を検出する有効な手段となって いる。 しかしながら、 この方法では、 サンプルの正確な鎖長を特定することは不 可能であり、 マイクロサテライ ト繰り返し単位が 1塩基、 2塩基のものでは多型判 定が困難である場合があるなどの問題点が存在する。
—方、 質量分析を利用した多型の検出も行なわれるようになった。 これまで質 量分析は、 多数のサンプルが迅速に解析できない、 検出される DNAの分子量の大き さに検出限界があると考えられていたなどの理由により、 多型の検出に利用され ておらず、 主として合成ォリゴヌクレオチドの純度検定のために利用されてきた ( 質量分析を利用した純度検定においては、 検体である合成ォリゴヌクレオチドを ステンレス基板または同等の伝導性を保持する基板に直接マトリヅクス溶液と共 に塗布し乾燥させた上で、 マトリックス支援レーザー脱離イオン化飛行時間型質 量分析法 matrix-assisted laser desorption ionization time - of -flight mass spectrometry; MALDI-TOF MS) によりピ一クを検出していた。
最近になり、 ようやく質量分析器を利用した、 一塩基置換多型 (single nucleo tide polymorphism; SNP) の検出も行なわれるようになった。 この方法は、 検出 したいゲノムフラグメントを silicone dioxide derivertization reactionにより 基板に固定化した上で、 Primer- Oligo Based Extentionプライマーによりポリメ ラ一ゼ連鎖反応を行い、 反応物を質量分析器を用いて検出し、 一塩基置換多型を 決定するものである (Kai Tang et al, Proc. Natl . Acad. Sci . USA Vol.96, p p.10016-10020, ( 1999)) 。
しかしながら、 質量分析器を利用した従来の遺伝多型の検出法では、 検出した い多型を有する DNA試料を調製した上で、 これを直接基板に塗布させ、 分子量の測 定を行なうため、 これら手法を利用して多くの検体の測定を行なう場合には、 多 大の時間と労力を必要となるという問題が存在した。 発明の開示
本発明は、 このような状況に鑑みてなされたものであり、 その目的は質量分析 器を利用して遺伝多型を効率的に検出し得る方法を提供することにある。 本発明 は、 また、 多量の検体の遺伝多型を迅速かつ網羅的に検出しうる方法を提供する ことをも目的とする。
本発明者らは、 上記課題を解決すべく鋭意研究を行った。 その結果、 質量分析 器を利用した遺伝多型の検出において、 目的の多型を含むゲノム DNAとハイブリダ ィズしうるオリゴヌクレオチドを基板に結合させ、 この基板にゲノム DNA試料を適 用することにより、 基板上で該 DNA試料から目的の多型を含むゲノム DNAを選別す ると共に基板に補足することができ、 これにより効率的に標的多型を検出し得る ことを見出した。
即ち、 従来法においては、 予め目的の多型を含むゲノム DNAを選別した上で、 こ れを直接基板に塗布してその多型を検出していたため、 多型の検出に多大な時間 と労力を必要とした。 一方、 本発明の方法によれば、 基板に目的の多型を含むゲ ノム DNAとハイブリダイズしうるオリゴヌクレオチドを結合させているため、 DNA 試料中に目的の多型を含むゲノム MA以外の DNAが含まれていても、 ハイプリダイ ゼーシヨン反応により、 基板上で目的の DNAを選別でき、 それと同時に基板に該 DN Aを補足することができる。 このため、 本発明の方法においては、 予め多型を含む ゲノム DNAを選別して基盤に塗布する必要がなく、 多型の検出を効率的に行うこと が可能である。 このことは特に多くの検体の多型の検出を行う場合、 例えば、 数 1 00人—数 1, 000人のサンプル集団について遺伝多型のバリエーションを網羅的に決 める場合やある疾患群の疾患相関解析に必要な遺伝マーカ一 (例えば多型マイク ロサテライ ト) を同定する場合などにおいて有効である。
本発明は、 上記知見を基に完成されたものであり、 質量分析を利用した DNAの多 型の検出において、 基板上でのハイブリダイゼーション反応を利用して目的の多 型を含む DNAの選別および補足を行なう方法を提供する。
より詳しくは、 本発明は、
( 1 ) DNAの多型を検出する方法であって、
( a ) 被験者から多型部位とその近傍領域を含む DNA試料を調製する工程、
( b ) 基板に固定したオリゴヌクレオチドフラグメントであって標的多型を含む D NAと特異的にハイプリダイズすることが可能なォリゴヌクレオチドフラグメント に対し、 上記 DNA試料をハイブリダィズさせる工程、 および .
( c ) 基板に固定したォリゴヌクレオチドフラグメントにハイブリダイズされた]) NAを質量分析により検出する工程、 を含む方法、
( 2 ) 基板に固定したオリゴヌクレオチドフラグメントが、 検出する多型の近 傍領域の塩基配列と特異的にハイブリダイズすることが可能な塩基配列を有して いる、 ( 1 ) に記載の方法、 '
( 3 ) 工程 (a ) における DNA試料が、 (i) 多型部位を挟みこむように設計さ れたブラィマー対であつて、 少なくともその一方が特異的に切断することが可能 な部位を含むプライマー対を利用して、 被験者由来のゲノム DNAを鎢型にポリメラ —ゼ連鎖反応を行ない、 (ii) これにより得られる増幅産物を、 該特異的に切断 することが可能な部位で切断し、 (iii) 切断後の該増幅産物に対し、 任意の DNA を付加する、 ことにより得られるものであり、 工程 (b ) におけるオリゴヌクレ ォチドが、 該任意の DNAに特異的にハイブリダイズすることが可能なォリゴヌクレ ォチドである、 ( 1) に記載の方法、
(4) 特異的に切断することが可能な部位が制限酵素部位である、 (3) に記 載の方法、
(5) 多型がマイクロサテライ トである、 (1) から (4) のいずれかに記載 の方法、
(6) 多型部位とその近傍領域を含む DNA試料が、 同一人の複数の異なる遺伝子 座の多型部位を標的として調製されており、 該 DNA試料を、 同一の基板上に固定さ れたオリゴヌクレオチドに同時にハイブリダィズさせる、 (1) から (5) のい ずれかに記載の方法、
(7) 多型部位とその近傍領域を含む DNA試料が、 複数人の同一の遺伝子座の多 型部位を標的として調製されており、 該 DNA試料を、 同一の基板上に固定されたォ リゴヌクレオチドに同時にハイプリダイズさせる、 (1) から (5) のいずれか に記載の方法、
(8) (3) に記載の方法に用いるための基板であって、 該任意の DNAに特異的 にハイプリダイズすることが可能なォリゴヌクレオチドが固定された基板、
(9) (6) に記載の方法に用いるための基板であって、 同一人の複数の異な る遺伝子座の多型部位を標的として調製された、 多型部位とその近傍領域を含む]) NA試料に対し、 ハイブリダイズすることが可能なォリゴヌクレオチドフラグメン トが固定された基板、
( 10) (7) に記載の方法に用いるための基板であって、 複数人の同一の遺 伝子座の多型部位を標的として調製された、 多型部位とその近傍領域を含む DNA試 料に対し、 ハイブリダイズすることが可能なォリゴヌクレオチドフラグメントが 固定された基板、
( 11) オリゴヌクレオチドフラグメントが、 多型の近傍領域の配列と特異的 にハイブリダィズすることが可能な配列を有している、 (9) または (10) に 記載の基板、
( 1 2 ) 多型がマイクロサテライ トである、 (8 ) から ( 1 1 ) のいずれかに 記載の基板、 および
( 1 3 ) 基板がガラス板である、 ( 8 ) から ( 1 2 ) のいずれかに記載の基板、 を提供するものである。
本発明は、 質量分析器を利用して MAの多型を効率的に検出する方法を提供する c 本発明の方法においては、 まず、 被験者から多型部位とその近傍領域を含む DNA試 料を調製する (工程(a )) 。 ·
本発明の方法において検出し得る多型としては特に制限はない。 多型としては、 例えば、 一塩基置換多型 (SNP) やマイクロサテライ トなどが挙げられるが、 広大 なゲノム領域を標的とした相関解析においては、 特にマイクロサテライ トが好適 である。 マイクロサテライ トを利用してヒトの全ゲノム領域をカバーする相関解 析を行なう場合には、 約 3万箇所のマイクロサテライ トを利用することができれば 目的を達成し得るが、 一塩基置換多型の場合には、 約数 10万箇所が必要であると 考えられる。 従って、 本発明の方法を利用して広大なゲノム領域を檫的とした相 関解析を行なう場合には、 マイクロサテライ トを標的とする方が、 検出対象とし て必要となる多型の数の減少を図ることができるため好適である。
多型部位とその近傍領域を含む丽 A試料は、 例えば、 以下のようにして被験者か ら調製することができる。 即ち、 まず、 ヒトゲノム配列からマイクロサテライ ト 繰り返し配列をコンピュータ一により検出し、 その繰り返し配列を挟んで単位複 製配列 ( amp 1 icon) の鎖長が 200bpから 300bpとなるようにプライマ一を設定する, 次いで、 このように設定したプライマーを用いて被験者のゲノム DNAを錶型に PCR を行なうことにより、 目的サイズの DNA試料を得る。
本発明において多型部位の 「近傍領域」 とは、 ゲノム DNA上で多型部位と隣接す る該多型の 55側および 3,側の DNA領域を指す。 質量分析器を利用して分析可能な DN A断片のサイズは、 一般に 200bpから 300bpである。 従って、 本発明においてプライ マーを設定して遺伝子増幅を行なう対象とする 「多型部位の近傍領域」 は、 通常、 多型部位から 300bp以内であり、 好ましくは 200bp以内である。
本発明の方法においては、 次いで、 基板に固定したオリゴヌクレオチドフラグ メントであって、 標的多型を含む DNAと特異的にハイプリダイズ可能なォリゴヌク レオチドフラグメントに対し、 上記 DNA試料をハイブリダィズさせる (工程(b )) c この工程においては、 目的の多型を含む DNAが、 DNA試料から選別されると同時 に基板に補足される。 このため目的の多型を含む DNAを予め調製して塗布していた 従来法と比較して、 格段に労力と時間が削減される。 このことは特に多量の検体 の多型を検出する場合に顕著である。 例えば、 複数の多型を標的とする複数のォ リゴヌクレオチドがそれそれ異なるドットとして結合された基板に対し、 それそ れの多型を含む DNAの混合物からなる DNA試料を適用した場合においても、 本発明 によれば、 基板上でそれそれのォリゴヌクレオチドに対応する DNAが振り分けられ る。 従って、 ハイブリダィズする位置により、 該 DNAがどの多型に対応するかを区 別することができる。 これにより多量の検体の多型を迅速かつ網羅的に検出する ことが可能となる。
本発明の方法において 「基板」 とは、 オリゴヌクレオチドを固定することが可 能な材料であれば特に制限され ¾いが、 好ましくは板状の材料である。 オリゴヌ クレオチドを結合させる基板としては、 検出対象となる DNAをイオン化させるため 電導性を有するものを用いる。 基板としては電導性を有するものであれば特に制 限はないが、 例えば、 電導性の板に固定したガラス板を本発明において好適に用 いることができる。 好ましい伝導性の板としては、 例えば、 ステンレス板を例示 することができる。 ガラス板はポリカルポジイミ ド等によりコートされているガ ラス板であることが好ましい。
基板に固定するオリゴヌクレオチドは、 標的多型を含む DNAと特異的にハイプリ ダイズすることが可能なォリゴヌクレオチドフラグメン卜であれば特に制限はな い。 ここで 「特異的にハイプリダイズ I とは、 DNA試料中の標的多型を含む DNAと 実質的にハイプリダイズし、 他の DNAとは実質的にハイプリダイズしないことを意 味する。 オリゴヌクレオチドは、 好ましくは検出する多型の近傍領域の塩基配列 と特異的にハイプリダイズすることが可能な塩基配列を有する。 特異的なハイプ リダィズが可能であれば、 検出する多型の近傍領域の塩基配列に対し、 完全に相 補的である必要はない。
基板に固定するオリゴヌクレオチドは 1種類に限定する必要はなく、 同定したい ゲノムフラグメントの領域で相補性を有する複数種のォリゴヌクレオチドの混合 物でもよい。 本発明の好ましい態様において、 基板に固定するオリゴヌクレオチ ドは、 同一人からの遺伝情報を得るように設計することができる。 例えば、 同一 人のマイクロサテライ 卜の多型を同定できるように、 多くの多型部位 (例えば、 1 0,000— 30,000部位) を標的としたオリゴヌクレオチドを 1枚もしくは複数枚の基 板上に固定して 1セットとして用いることができる。 このような同一基板上の複数 種のオリゴヌクレオチドに対し、 被験者から調製した DNA試料を同時に適用し、 ハ ィブリダイズさせることにより、 同一人の複数の多型を迅速かつ網羅的に検出す ることが可能となる。 従って、 基板上に、 例えば、 複数の疾患に関係する複数の 多型を標的としたォリゴヌクレオチドを結合しておけば、 被験者が発病するおそ れのある、 あるいは発病している疾患を簡便に同定することができるため、 この ような基板は遺伝子診断において特に有用である。
また、 本発明の他の好ましい態様において、 基板に同一のオリゴヌクレオチド を複数のドットとして結合させることにより、 特定の多型に関する複数人のサン プル集団の遺伝情報を迅速かつ網羅的に得ることができる。 このような態様は、 特に、 遺伝多型 (例えば、 マイクロサテライ トゃ SNP) を利用して疾患相関解析を 行なう上で有効である。
被験者から DNA試料を調製する際に、 多型およびその近傍領域を含む DNAの末端 に任意の を付加した場合には、 該任意の DNAに特異的にハイブリダイズするこ とが可能なォリゴヌクレオチドが固定された基板を利用して目的の DNAの多型を検 出することも可能である。 この場合、 DNA試料は、 (I) 多型部位を挟みこむよう に設計されたプライマー対であって、 少なくともその一方が特異的に切断するこ とが可能な部位を含むプライマー対を利用して、 被験者由来のゲノム DNAを錶型に ポリメラ一ゼ連鎖反応を行ない、 (ii) これにより得られる増幅産物を、 該特異 的に切断することが可能な部位で切断し、 (iii) 切断後の該増幅産物に対し、 任 意の DNAを付加する、 ことにより得ることができる。 DNA試料における特異的に切 断することが可能な部位は、 好ましくは制限酵素部位である。 制限酵素部位とし ては、 ゲノム上で頻度の低いもの、 例えば、 Notl部位などが好ましい。 切断処理 後の増幅産物に付加する任意の DNAとしては、 特に制限はないが、 例えば、 polyA 配列を好適に用いることができる。
基板に結合するオリゴヌクレオチドの長さは、 一般的には、 5塩基から 200塩基 であり、 好ましくは 10塩基から 130塩基であり、 さらに好ましくは 15塩基から 100 塩基である。 オリゴヌクレオチドの基板への固定は、 化学的または非化学的に行 なうことができる。 化学的な固定の手法としてはカルポジイミ ド法 (特開 2000-14 6978号) を例示することができ、 非科学的な固定の手法としてはポリリジン法 (P. 0. Brown5 s Lab.: http://cmgm. Stanford, edu/pbrown/) を例示することができる ( 基板上のォリゴヌクレオチドと DNA試料とのハイブリダイゼーシ 3ン反応は、 例 えば、 実施例記載の条件により行なうことができる。 但し、 ハイブリダィゼーシ ョン条件は、 オリゴヌクレオチドの長さなどの諸要因により変動し得ることは当 業者に周知であることを理解されたい。
本発明の方法においては、 次いで、 基板に固定したオリゴヌクレオチドフラグ メントにハイプリダイズされた DNAを質量分析により検出する (工程(c )) 。
質量分析の方法としては、 絶対分子量が得られる方法であれば特に制限はない が、 例えば、 MALDI-T0F MSが好ましい。 MALDI (Matrix Assisted Laser Desorpti on I Ionization (マトリックス支援レーザ一脱離イオン化法) ) における試料は、 多量のマトリックスと均一に混合された状態におかれる。 マトリックスは、 紫外 光である窒素レーザー光 (波長 =337 nm) を吸収し、 熱エネルギーに変換する。 こ の時、 マトリックスのごく一部が急速に加熱され、 試料と共に気化される。 また、 TOF MS (Time of Flight Mass Spectrometry (飛行時間型質量分析法) ) は、 ィ オンの電荷量を z、 イオンの質量を mとした時に質量電荷比 m/z値の違いでイオンの 飛行時間が異なることを利用して質量分析を行う。 MALDI- TOF MSは、 GPCや LALLS などの相対分子量を求める他の質量分析法と異なり、 絶対分子量が得られるとい う特徴を持つ。
MALDI-TOF MSで検出するための DNA試料は、 事前処理として、 非化学的結合によ る二重鎖を高温 (例えば、 90°C) 処理および急冷処理を必ずしもする必要性はな . い。 しかしながら、 これらの事前処理は検体感度を高め得るために好ましい。 質 量分析を行なう際には、 DNAがハイプリダイズした基板に対し適当なマトリックス 溶液を加え、 基板上の DNAを乾固する。
質量分析においては、 イオン化された検体 (基板上のオリゴヌクレオチドにハ イブリダィズした DNA) の分子量に応じて、 その飛行時間が異なり、 この異なる飛 行時間が異なるピーク位置として検出される。 分子量が大きいほど飛行時間は短 くなり、 逆に分子量が小さいほど飛行時間は長くなる。 従って、 検出されたピー ク位置により、 検体の分子量を判定することができ、 これにより検体の多型 (マ イクロサテライ トの繰り返し数や一塩基置換多型における塩基の種類) を特定す ることができる。 図面の簡単な説明
図 1は、 ガ^ス板を用いた 200 bp dsDNA(P(¾産物) MALDI- T0FMS測定の結果を示 す図である。
図 2は、 ステンレス板を基板として配列番号: 1のオリゴヌクレオチドを固定 したときのハイプリダイゼーションシグナルを示す図である。
図 3は、 ステンレス板を基板として配列番号: 2のオリゴヌクレオチドを固定 したときのハイブリダイゼーションシグナルを示す図である
図 4は、 ステンレス版であるサンプルスライ ドへのカバーガラスの固定を示す 図である。
図 5は、 ガラス板を基 として配列番号: 4または 5 (陰性対照) のオリゴヌ クレオチドを固定したときのハイブリダイゼーシヨンシグナルを示す図である。 発明を実施するための最良の形態
以下、 本発明を実施例によりさらに詳細に説明するが、 本発明はこれら実施例 に制限されるものではない。
[実施例 1 ] ガラス板を用いた 200bp dsDNA(PCR産物) MALDI- T0FMS測定
( 1 ) PCR反応
PCRに用いた反応混合液 (xl)は以下の通りである (()内は xlOOの場合) 。 鎢型環 A 10ng 1.
(pBluescript II SK (+) plasmid DNA)
d¾0 13.4 il(1340.0 /l)
10 X PCR Reactionバッファ一 2.0 zl(200.0 l)
(Applid Biosystems)
dNTP (各 2.0mM) (Applid Biosystems) 2.5^1(250.0 /1)
Forwardおよび Reverseプライマ一 Mix 1.0 zl(100.0 il)
(各 20 M)
AmpliTaqGold( Applied Biosystems) 0.1 iKlO.O il)
全量 20.0^1(2000.0 il)
PCRは、 Thermal cycler Cycle PE9700(Applied Biosystems)を用いて、 「95°Cで 9分」 の後、 「96°Cで 45秒、 60°Cで 45秒、 72°Cで 1分」 を 40サイクル、 その後 「7 2°Cで 5分、 4°Cでの終結」 で実施した。
( 2 ) MinElute PCR Purification kitによる精製
得られた PCR産物を、 QIAGEN MinElute PCR Purification kitプロトコールに従 つて精製を行った。 1本のカラムに対し 300 1の PCR産物を通し、 d¾0 10 ilを溶 出した。
(3) エタノール沈殿
上記 QIAGEN精製物 (6セット分(60 /l)+d¾0240〃1) 300.0 /1に、 10M Ammoni um acetate 46.9 iK 100% ェ夕ノ一ル 750.0〃1、 グリコ一ゲン 0.5〃1を添加し、 エタノール沈殿を行った。 - 20°Cで 20分静置し、 12,000rpmで 15分遠心し、 得られ た沈殿を 70%エタノールでリンスし、 さらに 12,000rpmで 15分遠心し、 10分乾燥を 行い、 最終的に d¾0 15〃1にて溶出した。
(4) PicoGreen dsDNA Quantitation kitによる疋量
PicoGreen dsDNA Quantitation kit(Molecular Probes)プロトコ一ルに従って 定量を行った。
(5) マトリックスと昆合
ステンレス板 (サンプルスライ ド) にスライ ドガラス (Code. #000:厚さ 0.04m m) を両面テープで固定した。
また、 50% ァセトニトリル 1ml中に、 3-Hydroxypr idine-2-carboxyl ic acid(3- Hydroxy-2-picolinic acid): Mw.139.11 0.7Mを 0.097 、 Diammonium Hydrogen c itrate:Mw.226.20.07Mを 0.010583gを溶かし、 マトリックスを調製した。
マトリックスとサンプルを 1 : 1で混合し、 ガラス上へ 0.5〃1スポットした。 サンプルスライ ドは、 自然乾燥後 (結晶化) 、 質量分析器に導入し測定した。
( 6 ) MALDI-T0F質量分析
測定は、 KRAT0S K0MPACT MALDI 4 (島津) を用いて行った。 K0MPACT MALDI 4の 測定条件を以下に示す。 3
Flight path (イオン飛行経路) : Linear
Polarity (イオン極性) : Negative
Mass (イオン加速電圧) : 0kV
Profiles ( 1イオンサンプル当たりの測定回数) : 50
Aim (サンプル全域照射: 1-1000) : 1-1000
power (レーザーパワー) : 140-170(200bp測定時)
Accumulate : 10
Average : 1 測定の結果、 200bpという高分子量の DNA分子について、 顕著な高分解能を示す ピークが得られた (図 1 ) 。 このことは、 一般的に不適と考えられていた、 絶縁 体であるガラス板を用いた質量分析が十分に適用可能であることを示している。 それと同時に、 ガラス板上でハイブリダィズさせた DNAサンプルについて、 その状 態のままで直接質量分析を行うことが可能であることを示唆するものである。
[実施例 2 ] ステンレス板上でハイブリダイゼーションした DNA分子の質量分析 ( 1 ) 核酸の固定
ステンレス板 (ステンレス板; KRATOS ANALYTICAL (株) 社製) を、 特開 2000-1 46978の方法に準じてカルポジイミ ド化した。
配列番号: 1 (計算値;分子量 7583) 及び配列番号: 2 (計算値;分子量 763 8) に示す塩基配列を有するオリゴヌクレオチドを、 100pmol/ z lになるようにバ ヅファーに溶解し MA溶液とした。 ピペットマンを用いて、 カルポジイミ ド化ステ ンレス板の所定の位置に、 前記 DNA溶液を スポヅトした。
次いで、 37°Cにて 30分間乾燥を行なった後、 3%BSA (ゥシ血清アルブミン) を 含む緩衝液 A (0.2M塩化ナトリウム、 0.1Mトリス塩酸 (pH7.5) 、 0.05%トライ ト ン X— 100) に浸し、 37°Cにて 15分間乾燥した。 次に、 このカルポジイミ ド化ステ ンレス板を TE緩衝液 (lOmMトリス塩酸 (pH7.2) / EDTA) で洗浄後、 37°Cにて 1 5分間乾燥した。
( 2 ) ハイブリダィゼ一シヨン
上記カルポジイミド化ステンレス板の DNAを固定した部分に、 ハイプリダイゼー シヨン溶液 [5 X SSC (SSC: 1.5M NaCl, 0.15Mクェン酸ナトリウム) 、 10%デキス トラン、 配列番号: 3 (計算値;分子量 6190) のプローブ ]25〃 1をのせ、 40°Cの ウォー夕一バスで 1晚加熱した。
( 3 ) ポストハイプリダイゼーション
ハイブリダィゼーシヨンの後、 カルボジイミ ド化ステンレス板からハイブリダ ィゼ一シヨン溶液を軽く吸い取り、 ボストハイプリダイゼーシヨン洗浄を行ない、 非特異的に吸着したプローブを除去した。
ポストハイブリダィゼ一シヨン洗浄条件は、 (I) 2 x SSC 0.1%SDS;室温 5分 間、 2回、 (ii) 0.2 X SSC, 0.1 %SDS; 40°C, 5分間、 2回、 (iii) 2 x SSC ;室温、 5分間、 (iv) 0.3Mクェン酸アンモニゥム水溶液;室温、 15秒を採用した。
( 4 ) ハイブリダイゼ一ションの検出
得られたカルボジィミ ド化ステンレス板を KOMPACT MALDI2 ( (株) 島津製作所 社製) を用いて測定した。 その結果を図 2及び図 3に示す。
図 2及び図 3の結果から、 本発明の核酸の検出方法によれば、 プローブ核酸を (実測値;分子量 6185の位置に) 非常に明瞭なシグナルとして特異的に得ること ができる。 一方、 配列番号: 2のスポットからは、 シグナルを検出できなかった。
[実施例 3 ] カバーガラス上でハイブリダイゼーションした DNA分子の質量分析 ( 1 ) 核酸の固定 (図 4 )
カバーガラス #000 (松浪ガラス (株) 社製) を、 特開 2000-146978の方法に準 じてカルボジィミ ド化した。 配列番号: 4 (Captureオリゴマー) 及び配列番号: 5 (陰性対照) に示す塩基 配列を有するオリゴヌクレオチドを、 lZOpmol/ 1になるようにノ ヅファーに溶 解し DNA溶液とした。 ピぺヅトマンを用いて、 カルボジィミ ド化カバ一ガラスの所 定の位置に、 前記 DNA溶液及びバッファーを 0.5〃 1スポヅトした。
次いで、 固定操作を行なった後、 3%BSA (ゥシ血清アルブミン) を含む緩衝液 A (0.2M塩化ナトリウム、 0.1Mとリス塩酸 (pH7.5)、 0.05%トライ トン X- 100) に浸し、 37°Cにて 15分間乾燥した。 次に、 このカルポジイミ ド化カバーガラスを T E緩衝液 (10mMとリス塩酸 (pH7.2) /lmM EDTA) で洗浄後、 37°Cにて 15分間乾 燥した。 オリゴヌクレオチド無添加 (DNA( -)) も対照として用いた。
( 2 ) ハイプリダイゼーシヨン
上記カルボジィミ ド化カバーガラスの DNAを固定した部分に、 ハイブリダィゼー シヨン溶液 [5 X SSC (SSC: 1.5M NaCK 0.15Mクェン酸ナトリウム) 、 10%デキス トラン、 配列番号: 6または配列番号: 7のプローブ ] 10〃 1をのせ、 30°Cの乾燥機 で 1晚加熱した。
( 3 ) ポストハイブリダイゼ一ション
ハイブリダイゼ一シヨンの後、 カルボジィミ ド化カバーガラスからハイブリダ ィゼーション溶液を軽く吸い取り、 以下の条件でボストハイブリダイゼーション 洗浄を行なった。
ボストハイブリダィゼ一シヨン洗浄条件は、 (I) 2 X SSC ;室温 5分間、 (ii) 0. 3Mクェン酸アンモニゥム水溶液;室温、 15秒を採用した。
( 4 ) ハイプリダイゼーションの検出
得られたカルボジィミ ド化ガラス板を 「K0MPACT MALDI4 ( (株) 島津製作所社 製) 」 を用いて測定した。 質量分析の結果を図 5に示す。 相補的配列をもつ試料 ではピークが観察された。 このことからガラス板上でハイプリダイズさせた試料 でも MALDI- TOF MSで測定可能であることが判明した。
なお、 測定におけるマトリックスは、 50% ァセトニトリル 1ml中に、 3- Hydroxy pridine-2-carboxylic ac i d ( 3-Hydr oxy-2-ρ i c o 1 i n i c acid) : Mw.139.11 0.7M¾0. 0974g、 Di ammonium Hydrogen citrate :Mw.226.2 0.07Mを 0.010583gを溶かし、 調 製した。
また、 KOMPACT MALDI 4の測定条件を以下に示す。
Flight path (イオン飛行経路) : Linear
Polarity (イオン極性) : Negative
Mass (イオン加速電圧) : 20kV
Profiles ( 1イオンサンプル当たりの測定回数) : 50
Aim (サンプル全域照射: 1-1000) 1-1000
Laser power (レーザーノ ヮーリ 150 (50mer) 180 (lOOmer)
Accumulate 10
Average 1
Store profile never
産業上の利用の可能性
本発明により質量分析器を利用して遺伝多型を効率的検出し得る方法が提供さ れ、 これにより多検体の遺伝多型を迅速かつ網羅的に検出することが可能となつ た。 本発明の方法は、 特定の病気の原因となる多型を決定するための疾患相関解 析ゃ遺伝子診断に大きく貢献しうるものである。

Claims

請求の範囲 DNAの多型を検出する方法であって、
( a ) 被験者から多型部位とその近傍領域を含む DNA試料を調製する工程、 ( b ) 基板に固定したオリゴヌクレオチドフラグメントであって標的多型を 含む DNAと特異的にハイプリダイズすることが可能なォリゴヌクレオチドフラ グメントに対し、 上記 DNA試料をハイブリダィズさせる工程、 および
( c ) 基板に固定したォリゴヌクレオチドフラグメントにハイプリダイズさ れた DNAを質量分析により検出する工程、 を含む方法。
基板に固定したオリゴヌクレオチドフラグメントが、 検出する多型の近傍 領域の塩基配列と特異的にハイプリダイズすることが可能な塩基配列を有し ている、 請求項 1に記載の方法。
工程 (a ) における DNA試料が、 (i) 多型部位を挟みこむように設計され たプライマー対であって、 少なくともその一方が特異的に切断することが可 能な部位を含むプライマ一対を利用して、 被験者由来のゲノム DNAを錶型にポ リメラーゼ連鎖反応を行ない、 (ii) これにより得られる増幅産物を、 該特 異的に切断することが可能な部位で切断し、 (iii) 切断後の該増幅産物に対 し、 任意の DNAを付加する、 ことにより得られるものであり、 工程 (b ) にお けるオリゴヌクレオチドが、 該任意の DNAに特異的にハイブリダイズすること が可能なォリゴヌクレオチドである、 請求項 1に記載の方法。
特異的に切断することが可能な部位が制限酵素部位である、 請求項 3に記 載の方法。
多型がマイクロサテライ トである、 請求項 1から 4のいずれかに記載の方 法。
多型部位とその近傍領域を含む厦 A試料が、 同一人の複数の異なる造伝子座 の多型部位を標的として調製されており、 該 DNA試料を、 同一の基板上に固定 されたォリゴヌクレオチドに同時にハイプリダイズさせる、 請求項 1から 5 のいずれかに記載の方法。
7 . 多型部位とその近傍領域を含む DNA試料が、 複数人の同一の遺伝子座の多型 部位を標的として調製されており、 該 DNA試料を、 同一の基板上に固定された オリゴヌクレオチドに同時にハイブリダィズさせる、 請求項 1から 5のいず れかに記載の方法。
8 . 請求項 3に記載の方法に用いるための基板であって、 該任意の DNAに特異的 にハイプリダイズすることが可能なォリゴヌクレオチドが固定された基板。
9 . 請求項 6に記載の方法に用いるための基板であって、 同一人の複数の異な る遺伝子座の多型部位を標的として調製された、 多型部位とその近傍領域を 含む DNA試料に対し、 ハイプリダイズすることが可能なォリゴヌクレオチドフ ラグメン卜が固定された基板。
10. 請求項 7に記載の方法に用いるための基板であって、 複数人の同一の遺伝 子座の多型部位を標的として調製された、 多型部位とその近傍領域を含む DNA 試料に対し、 ハイプリダイズすることが可能なォリゴヌクレオチドフラグメ ントが固定された基板。
11. オリゴヌクレオチドフラグメントが、 多型の近傍領域の配列と特異的にハ イブリダィズすることが可能な配列を有している、 請求項 9または 1 0に記 載の基板。
12. 多型がマイクロサテライ トである、 請求項 8から 1 1のいずれかに記載の 基板。
13. 基板がガラス板である、 請求項 8から 1 2のいずれかに記載の基板。
PCT/JP2001/010892 2000-12-12 2001-12-12 Procede de detection de polymorphisme dans l'adn au moyen d'une spectroscopie de masse WO2002050307A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002222614A AU2002222614A1 (en) 2000-12-12 2001-12-12 Method of detecting polymorphism in dna by using mass spectroscopy
JP2002551186A JPWO2002050307A1 (ja) 2000-12-12 2001-12-12 質量分析を利用してdnaの多型を検出する方法
US10/450,761 US20040248098A1 (en) 2000-12-12 2001-12-12 Method of detecting polymorphisms in dna by using mass spectroscopy
EP01271113A EP1350851A4 (en) 2000-12-12 2001-12-12 METHOD FOR DETECTION OF POLYMORPHISM IN DNA BY MEANS OF MASS SPECTROSCOPY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-378091 2000-12-12
JP2000378091 2000-12-12

Publications (1)

Publication Number Publication Date
WO2002050307A1 true WO2002050307A1 (fr) 2002-06-27

Family

ID=18846720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010892 WO2002050307A1 (fr) 2000-12-12 2001-12-12 Procede de detection de polymorphisme dans l'adn au moyen d'une spectroscopie de masse

Country Status (5)

Country Link
US (1) US20040248098A1 (ja)
EP (1) EP1350851A4 (ja)
JP (1) JPWO2002050307A1 (ja)
AU (1) AU2002222614A1 (ja)
WO (1) WO2002050307A1 (ja)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405923A2 (en) * 2002-09-28 2004-04-07 Hidetoshi Dr. Inoko Gene mapping method using microsatellite genetic polymorphism markers
JP2005245362A (ja) * 2004-03-05 2005-09-15 Kyowa Medex Co Ltd 肺癌および頭頸部癌の発症危険率を予測する方法
JP2006521812A (ja) * 2003-03-18 2006-09-28 アプレラ コーポレイション 慢性関節リウマチに関連する遺伝的多型、その検出方法および使用
US7510834B2 (en) 2000-04-13 2009-03-31 Hidetoshi Inoko Gene mapping method using microsatellite genetic polymorphism markers
JP2009520460A (ja) * 2003-03-10 2009-05-28 アプレラ コーポレイション 心筋梗塞に関連する遺伝的多型、その検出方法および使用
JP2009521904A (ja) * 2003-03-10 2009-06-11 アプレラ コーポレイション 狭窄に関連する一塩基多型、その検出方法および使用
JP2009523404A (ja) * 2003-01-30 2009-06-25 アプレラ コーポレイション 慢性関節リウマチに関連する遺伝的多型、その検出方法および使用
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US8265878B2 (en) 2001-03-02 2012-09-11 Ibis Bioscience, Inc. Method for rapid detection and identification of bioagents
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9080209B2 (en) 2009-08-06 2015-07-14 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US9719083B2 (en) 2009-03-08 2017-08-01 Ibis Biosciences, Inc. Bioagent detection methods
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652514A (zh) * 2019-02-25 2019-04-19 北京市理化分析测试中心 一种CYP3A5基因rs776746位点多态性核酸质谱检测方法
CN114317680A (zh) * 2021-12-25 2022-04-12 广州禾信康源医疗科技有限公司 基质溶液和基质辅助激光解吸电离飞行时间质谱检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029431A2 (en) * 1995-03-17 1996-09-26 Sequenom, Inc. Dna diagnostics based on mass spectrometry
EP1026259A1 (en) * 1999-02-08 2000-08-09 Fuji Photo Film Co., Ltd. Dna chip and its preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821060A (en) * 1996-08-02 1998-10-13 Atom Sciences, Inc. DNA sequencing, mapping, and diagnostic processes using hybridization chips and unlabeled DNA
ATE374836T1 (de) * 1997-01-15 2007-10-15 Xzillion Gmbh & Co Kg Massenmarkierte hybridisierungssonden
WO1999014375A2 (en) * 1997-09-19 1999-03-25 Genetrace Systems, Inc. Dna typing by mass spectrometry with polymorphic dna repeat markers
US7014994B1 (en) * 1999-03-19 2006-03-21 Cornell Research Foundation,Inc. Coupled polymerase chain reaction-restriction-endonuclease digestion-ligase detection reaction process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029431A2 (en) * 1995-03-17 1996-09-26 Sequenom, Inc. Dna diagnostics based on mass spectrometry
EP1026259A1 (en) * 1999-02-08 2000-08-09 Fuji Photo Film Co., Ltd. Dna chip and its preparation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAVID G. WANG ET AL.: "Large scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome", SCIENCE, vol. 280, no. 5366, May 1998 (1998-05-01), pages 1077 - 1082, XP002089398 *
KAI TANG ET AL.: "Chip-based genotyping by mass spectrometry", PROC. NATL. ACAD. SCI. USA, vol. 96, no. 18, August 1999 (1999-08-01), pages 10016 - 10020, XP002909309 *
OSAMU NOMURA ET AL.: "Genome kinou kenkyu", YODOSHA CO., LTD., 10 April 2000 (2000-04-10), pages 138 - 149, XP002909310 *
See also references of EP1350851A4 *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510834B2 (en) 2000-04-13 2009-03-31 Hidetoshi Inoko Gene mapping method using microsatellite genetic polymorphism markers
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US9416424B2 (en) 2001-03-02 2016-08-16 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US9752184B2 (en) 2001-03-02 2017-09-05 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8265878B2 (en) 2001-03-02 2012-09-11 Ibis Bioscience, Inc. Method for rapid detection and identification of bioagents
US8815513B2 (en) 2001-03-02 2014-08-26 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents in epidemiological and forensic investigations
US8802372B2 (en) 2001-03-02 2014-08-12 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8921047B2 (en) 2001-06-26 2014-12-30 Ibis Biosciences, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8380442B2 (en) 2001-06-26 2013-02-19 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
EP2019148A1 (en) * 2002-09-28 2009-01-28 Inoko, Hidetoshi, Dr. Gene mapping method using microsatellite genetic polymorphism markers
EP1405923A2 (en) * 2002-09-28 2004-04-07 Hidetoshi Dr. Inoko Gene mapping method using microsatellite genetic polymorphism markers
EP1405923A3 (en) * 2002-09-28 2004-06-30 Hidetoshi Dr. Inoko Gene mapping method using microsatellite genetic polymorphism markers
US9725771B2 (en) 2002-12-06 2017-08-08 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
JP2009523404A (ja) * 2003-01-30 2009-06-25 アプレラ コーポレイション 慢性関節リウマチに関連する遺伝的多型、その検出方法および使用
JP2009520460A (ja) * 2003-03-10 2009-05-28 アプレラ コーポレイション 心筋梗塞に関連する遺伝的多型、その検出方法および使用
JP2009521904A (ja) * 2003-03-10 2009-06-11 アプレラ コーポレイション 狭窄に関連する一塩基多型、その検出方法および使用
JP2006521812A (ja) * 2003-03-18 2006-09-28 アプレラ コーポレイション 慢性関節リウマチに関連する遺伝的多型、その検出方法および使用
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8476415B2 (en) 2003-05-13 2013-07-02 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8242254B2 (en) 2003-09-11 2012-08-14 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8013142B2 (en) 2003-09-11 2011-09-06 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8288523B2 (en) 2003-09-11 2012-10-16 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8394945B2 (en) 2003-09-11 2013-03-12 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US9447462B2 (en) 2004-02-18 2016-09-20 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
JP2005245362A (ja) * 2004-03-05 2005-09-15 Kyowa Medex Co Ltd 肺癌および頭頸部癌の発症危険率を予測する方法
US8987660B2 (en) 2004-05-24 2015-03-24 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US9449802B2 (en) 2004-05-24 2016-09-20 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US9027730B2 (en) 2008-09-16 2015-05-12 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8252599B2 (en) 2008-09-16 2012-08-28 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US9023655B2 (en) 2008-09-16 2015-05-05 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8609430B2 (en) 2008-09-16 2013-12-17 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8796617B2 (en) 2009-02-12 2014-08-05 Ibis Biosciences, Inc. Ionization probe assemblies
US9165740B2 (en) 2009-02-12 2015-10-20 Ibis Biosciences, Inc. Ionization probe assemblies
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US9719083B2 (en) 2009-03-08 2017-08-01 Ibis Biosciences, Inc. Bioagent detection methods
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US10119164B2 (en) 2009-07-31 2018-11-06 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US9080209B2 (en) 2009-08-06 2015-07-14 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection

Also Published As

Publication number Publication date
US20040248098A1 (en) 2004-12-09
EP1350851A4 (en) 2007-07-11
EP1350851A1 (en) 2003-10-08
JPWO2002050307A1 (ja) 2004-04-22
AU2002222614A1 (en) 2002-07-01

Similar Documents

Publication Publication Date Title
WO2002050307A1 (fr) Procede de detection de polymorphisme dans l'adn au moyen d'une spectroscopie de masse
Griffin et al. Single-nucleotide polymorphism analysis by MALDI–TOF mass spectrometry
JP4498657B2 (ja) Dnaサンプル中のシトシン−メチル化とsnp又は突然変異の同時検出方法
Hartmer et al. RNase T1 mediated base‐specific cleavage and MALDI‐TOF MS for high‐throughput comparative sequence analysis
JP5382802B2 (ja) 質量分析法を用いた生体分子の検出および定量
JP2003523752A (ja) Dnaプローブにおいてシトシンのメチル化を検出するリガーゼ/ポリメラーゼ法
JP2001505045A (ja) 質量決定による核酸検出方法
JP2004535815A (ja) ニック形成剤を用いた核酸フラグメントの増幅
EP1885890A2 (en) Quantification of nucleic acids and proteins using oligonucleotide mass tags
WO2009073251A1 (en) Detection and quantification of biomolecules using mass spectrometry
JP4564219B2 (ja) Dna−プローブの中のシトシン−メチル化の検出方法
AU757473B2 (en) Method for identifying cytosine methylation patterns in genomic DNA
EP1047794A2 (en) Method for the detection or nucleic acid of nucleic acid sequences
US20070161036A1 (en) Method for distinguishing 5-position methylation changes of cytosine bases and cytosine-to-thymine mutations and for detecting single nucleotide polymorphisms (SNPs) or point mutations in genomic DNA
WO2002018659A2 (en) Method for determining alleles
US7008770B1 (en) Method for the controlled implementation of complex PCR amplifications
EP1488003A1 (en) Method for the analysis of methylation patterns within nucleic acids by means of mass spectrometry
JP2007532120A (ja) 核酸分子のサブセットを選択的に検出するための方法
EP1303638B1 (en) Method for haplotyping by mass spectrometry
US20050202420A1 (en) Oligonucleotides or pna oligomers and a method for detecting the methylation state of genomic dna in a parallel manner
US20060166201A1 (en) Method for the detection of nucleic acid sequences by means of crackable probe molecules
JP4550416B2 (ja) 核酸の配列決定方法
JP2003093075A (ja) 電気抵抗を利用した核酸変異検出法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002551186

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001271113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001271113

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10450761

Country of ref document: US