WO2002049780A1 - Procede et appareil permettant le traitement d'atomes en decomposition dans des cendres d'incineration par diffusion en vue de leur detoxification - Google Patents

Procede et appareil permettant le traitement d'atomes en decomposition dans des cendres d'incineration par diffusion en vue de leur detoxification Download PDF

Info

Publication number
WO2002049780A1
WO2002049780A1 PCT/JP2001/011085 JP0111085W WO0249780A1 WO 2002049780 A1 WO2002049780 A1 WO 2002049780A1 JP 0111085 W JP0111085 W JP 0111085W WO 0249780 A1 WO0249780 A1 WO 0249780A1
Authority
WO
WIPO (PCT)
Prior art keywords
ash
treatment
atoms
incinerated ash
diffusion
Prior art date
Application number
PCT/JP2001/011085
Other languages
English (en)
French (fr)
Inventor
Kazuko Iwasaki
Toru Kubota
Original Assignee
Kazuko Iwasaki
Toru Kubota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuko Iwasaki, Toru Kubota filed Critical Kazuko Iwasaki
Priority to KR10-2003-7006512A priority Critical patent/KR20030065513A/ko
Priority to AU2002222684A priority patent/AU2002222684A1/en
Publication of WO2002049780A1 publication Critical patent/WO2002049780A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/37Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by reduction, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/08Toxic combustion residues, e.g. toxic substances contained in fly ash from waste incineration
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/10Apparatus specially adapted for treating harmful chemical agents; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/20Dewatering by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/80Shredding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/30Solid combustion residues, e.g. bottom or flyash

Definitions

  • the present invention aims to use general incinerated ash (fly ash and main ash) and generated exhaust gas as a recycled resource in a safe, stable and effective form while detoxifying it from the viewpoint of environmental pollution.
  • the present invention relates to a treatment method for decomposing incineration ash by diffusion to render it harmless, and an apparatus therefor.
  • waste has been disposed of by landfill or incineration, but it has become a social problem due to the increase in waste due to the spread of mass production and mass consumption in the last 10 years, and the accompanying disposal and disposal problems. Therefore, incineration by municipalities is dominant in waste disposal, and 70% of the waste is now incinerated.
  • the incineration ash discharged from the furnaces of conventional incineration facilities is generally landfilled, but the incineration ash contains a large amount of unburned matter. This unburned matter contains many precursors that can produce harmful substances, such as unburned carbon and hydrocarbons.
  • Fly ash collected by the dust collector at the incineration facility contains a large amount of organochlorine compounds, heavy metals and dioxins.
  • the primary purpose of introducing this high-temperature melting furnace is to reduce the amount of waste and reduce the amount of waste.
  • this method is only a method of considering a dump in the atmosphere.
  • a substance can be in one of three states: solid, liquid, or gas. Therefore, if there is no solid, it means that it has been converted into a gas and released into the atmosphere, and the reduction of waste by high-temperature melting is not an environmentally friendly treatment method.
  • the incineration ash has a composition close to that of the soil component, It contains six items such as lead, mercury, cadmium, hexavalent chromium, arsenic, and selenium, which are designated as harmful substances.
  • Detoxifying and recycling the incinerated ash which comprises treating the incinerated ash pulverized in the pulverizing process in a low oxygen state space insulated from the outside air at a constant temperature and for a fixed time.
  • harmful substances such as dioxins contained in the incinerated ash (specially, by utilizing the diffusion phenomenon of atoms contained in the crushed incinerated ash). Dehalogenating and decomposing and decomposing heavy metals contained in the incineration ash into stable and harmless compounds.
  • the dehydration and drying step is performed by heating the furnace temperature to 500 to 700 ° C. (Claim 2). According to such a configuration, the water contained in the incineration ash is removed, thereby facilitating the pulverization in the next pulverization step.
  • a crushing / sorting step is provided before the crushing step (Claim 3).
  • impurities such as iron mixed in the incineration ash are removed, and the glass is pulverized, so that it becomes a pretreatment in the pulverizing treatment step.
  • an impact with an inertial force of 5 G is applied (claim 4).
  • the impact generated by the inertia force of 5 G effectively adjusts the incinerated ash to a particle diameter suitable for the next reduction reaction treatment step, and the metal crystal lattice of the metal contained in the incinerated ash It removes atoms from within, creating a state that promotes the release of chlorine and other impurity atoms in the next reduction process.
  • the process of maintaining a constant temperature and a constant time in a low oxygen state space insulated from the outside air includes a reduction reaction treatment step and a stabilization treatment step.
  • This reduction reaction treatment step is characterized in that the reduction reaction treatment is carried out at an oxygen concentration of 3% or less (claim 5). According to such a configuration, generation of harmful substances due to an oxidation reaction in the furnace in the pulverizing process is suppressed.
  • a dehydration / drying treatment device for dehydration / drying of water contained in the incinerated ash A crushing and sorting device that sorts the glass contained in the dehydrated and dried incinerated ash and crushes the sorted glass;
  • a reduction reaction treatment device that renders harmful substances harmless by utilizing the diffusion reaction of atoms contained in the incinerated ash after pulverization
  • a processing device provided with a processing device (Claim 6).
  • the dioxins contained in the incineration ash are detoxified, and at the same time, the heavy metals contained in the incineration ash are converted into stable compounds.
  • FIG. 1 is a flowchart of a treatment method of the present invention for decomposing incinerated ash atoms by diffusion to render them harmless.
  • FIG. 1 is a flow chart of a treatment method of the present invention for decomposing incinerated ash atoms by diffusion to render them harmless.
  • all incinerated ash hereinafter referred to as bottom ash (main ash), fly ash (fly ash), or a mixture of these ash (incineration residue), and other industrial wastes) generated after incineration (hereinafter referred to as ash)
  • Raw ash (Raw ash recovery). This raw ash generally contains close to 40% of moisture, and is heated with hot air to make it easier to process in the post-process; the internal temperature is set at 500 to 700 ° C, more preferably Is dried at 600 ° C. (dehydration drying step).
  • the exhaust gas generated in the drying step is treated with a catalyst or the like to treat the harmful substances contained in the exhaust gas. It is released into the atmosphere through the flue gas treatment process (smoke exhaust treatment process).
  • this flue gas treatment is also performed on the smoke gas generated from the reduction reaction treatment step and the stabilization treatment step described later.
  • the metals contained in the dried ash are magnetically attached to a magnet or the like to remove the metals, and then the glass and coarse impurities are separated through a vibration sieve or the like.
  • the sorted glass is finely ground by a glass grinder and then mixed with the raw ash that has passed through a sieve (crushing and sorting process).
  • the raw ash from which metals and impurities have been removed in the pulverization / sorting step is pulverized by a pulverizer and sized using a cyclone or the like.
  • the raw ash after the sizing which has a predetermined particle size or more, is returned to the pulverizer again to reduce the particle size of the raw ash to a predetermined particle size or less (a pulverizing process).
  • the raw ash contains various metals such as iron, lead, copper, cadmium, and mercury, and these metals are used as a catalyst in the next reduction step.
  • a metal catalyst having a small surface area has a small capacity as a catalyst. Therefore, it is necessary to pulverize the raw ash to increase the surface area as a fine powder and to increase the catalytic activity. Therefore, the predetermined particle size here is preferably 50 to 200 because of a difference in activity or the like in the subsequent reduction treatment step. It is a mesh, and more preferably 100 to 150 mesh.
  • the present invention is carried out using a minimum amount of heat and impact force and a catalyst in order to pulverize the powder by pulverization and to remove atoms from the crystal of the metal contained in the raw ash. Therefore, the pulverization treatment in this pulverization step is preferably performed under an impact condition in which the inertia force is 3 G or more, preferably 5 G.
  • the pulverizer used in the pulverization process is not particularly limited, and examples thereof include a hammer mill.
  • a catalyst and an additive such as an inorganic substance
  • Pt are added to the raw ash that has undergone the above-mentioned pulverization process, and the raw ash is charged into a reduction reaction furnace.
  • the raw ash is heated to 600 ° C. and reduced for 40 minutes. (Reduction reaction step).
  • This reduction reactor is adjusted to a low oxygen concentration by introducing an inert gas such as nitrogen gas.
  • the raw ash contains oxides of metals and nonmetallic elements, and in some cases, toxic substances may be generated using these as catalysts. Therefore, it is desirable that the oxygen concentration in this furnace be 6% or less in order to suppress the generation of harmful substances (for example, dioxins) in which oxygen becomes a medium, among these toxic substances. More preferably, in order to more effectively prevent the generation of harmful substances, the oxygen concentration is preferably 3% or less.
  • the raw ash is pulverized in the above-mentioned pulverization treatment step, and is activated by the deficiency of metal atoms in the metal crystal lattice and the diffusion phenomenon of atoms. Decomposition at temperatures as low as 00 to 600 ° C is possible.
  • dioxins are dechlorinated by activation due to diffusion phenomena, catalysts, and added chemicals (inorganic) by maintaining a constant temperature and a constant time in a low oxygen concentration atmosphere insulated from the outside air. Z hydrogenated and decomposed.
  • the raw ash that has undergone the reduction reaction step is adjusted to a temperature in the furnace of 300 to 600, more preferably 400 to 500 ° C. in this low oxygen concentration atmosphere. Heat treatment for 20 to 30 minutes (stabilization treatment step).
  • raw ash which is a mixture of dissimilar metals, including heavy metals, is efficiently decomposed using the diffusion phenomenon of atoms, and heavy metal salts, metal oxides, and simple metals are used as catalysts to dissociate metal salts. It is stabilized by crystallization.
  • diffusion refers to the movement of atoms in a solid metal (crystal), that is, the movement of atoms freely in a crystal.
  • the metal becomes a compound and is stabilized.
  • it can take various forms such as oxides, hydroxides, sulfates, sulfides, phosphates, phosphides and the like.
  • many metals other than alkali metals and alkaline earth metals are stabilized as water-insoluble hydroxides.
  • Pb and the like are stabilized by [Pb (OH) 2 ] as a hydroxide, but since this hydroxide is water-soluble under strongly acidic conditions, it is stable as a sulfide.
  • As and P react with CaO to be stabilized.
  • metal elements are dense, mainly metals belonging to transition metals and their ions. Some of the raw ash-containing components are present in relatively small amounts in ordinary soil. However, some of these also act as trace elements indispensable for plant growth.
  • trace elements that are non-metallic and not included in hazardous substances may sometimes be involved in pollution problems.
  • Anions such as C 1 — and S 0 4 2 — are also adsorbed by the partial positive charge of the humic clay.
  • Most of the stabilized metal compounds are present in the primary minerals, clay minerals, and humus internal structures, and are in the form of ions or in the ion exchange sites on the surface of clay or humus. It is held by suction.
  • Harahai basicity C 8 0 / S i ⁇ 2 is high, has the property of crystallizing Ri by the slow cooling, the glassy when rapidly cooled .. That is, as a substance that is hardly soluble in water This will produce a stable and safe substance.
  • an inorganic additive may be added in order to change the properties of the compound as an insoluble metal.
  • calcium-based and phosphorus-based additives are non-toxic and can be cited as main additives.
  • the chlorine content in the raw ash is fixed as calcium chloride. This calcium chloride is a non-polluting substance and has no danger of pollution.
  • raw ash after treatment the product obtained from the raw ash using the method according to the present invention.
  • raw ash has a high water content and is a mixture of organic components and heavy metals, so that it is most difficult to solidify when used for hydraulic cement.
  • the raw ash after the treatment of the present invention uses a diffuse effect of atomization by atomization, a synergistic effect of a catalytic reaction and a reduction reaction.
  • the obstructive factors have been removed.
  • cement reacts with water to precipitate hydrate crystals, which solidify and solidify.
  • the hydrate crystals are stable at room temperature.
  • the elements that make up the cement have the largest composition of calcium, followed by oxygen, silicon, aluminum, iron, sulfur, magnesium, sodium, etc.
  • Te is, C a O, present as S i ⁇ 2, a l 2 0 3, F e 2 O 3, SO 3, oxides of M g O, while occupying 92% of the total, after treatment Harahai is quality has not constant, 2 5-2 7% more calcium C a O is most, then alumina A 1 2 0 3 is 2 2-2 4% silica S i O 2, 1 5 Up to 17%, iron Fe 2 O 3 is 9-11%, sulfate SO 3 is 2%, magnesium MgO is 2%, etc. It contains lime, silica, and alumina, which are the three cementites of cement, but does not have the power of hydraulic cement.
  • the advantage of raw ash after treatment compared to cement is that it does not react by water vapor or carbon dioxide gas, so it is not weathered and solidified.
  • the raw ash after treatment contains a large amount of highly reactive alumina, magnesium, and calcium, and its content is higher than that in the cement component. It has the characteristic that the expansion coefficient increases quickly.
  • the cement is concreted and the structure is easily broken because the sulfate combines with Ca (OH) 2 in the concrete to form calcium sulfate CaS Ri tell a ⁇ 4, further combined with aluminate tricalcium hydrate 3 C a O ⁇ a 1 2 0 3. n H 2 0, Ru der to become a cementite down Tobachirusu.
  • the apparatus according to the present invention performs dehydration and drying treatment of moisture contained in raw ash such as incinerated ash by hot air and dehydration for simultaneously burning unburned components contained in raw ash at high temperature.
  • a drying treatment device ;
  • Iron mixed in the raw ash such as dehydrated incinerated ash is magnetically magnetized to separate it from the raw ash, and it is further screened through a vibrating sieve to separate the glass and coarse impurities contained in the raw ash.
  • Crushing ⁇ Inertia force of 5 G is applied to the raw ash such as incinerated ash after sorting to reduce the particle size of the raw ash to a specified particle size, and to reduce chlorine and other chlorine in the next reduction process.
  • Pt is added to raw ash such as incinerated ash after crushing, and the metal and Pt contained in the raw ash are used as catalysts at a specified temperature and in an inert gas atmosphere such as nitrogen gas.
  • a reduction reaction processing device for processing for a predetermined time and reducing the harmful substances contained in the raw ash,
  • It has a flue gas treatment device for detoxifying harmful substances contained in flue gas generated during dehydration drying, reduction reaction treatment, and stabilization treatment using a catalyst or the like.
  • the incinerated ash treated using the apparatus according to the present invention can be reused as an aggregate such as concrete as a resource.
  • each of these devices is not limited to a configuration provided alone, and a configuration in which a plurality of the same devices are provided in parallel in order to increase the throughput of incinerated ash may be used.
  • the incineration ash was collected from a stoker type incineration plant and a fluidized bed type incineration plant, and was used for three years at a daily tonnage of 30 tons.
  • the specifications and setting conditions for the crushing, crushing, reducing, stabilizing, and flue gas reactions of the incinerated ash recycling blunt system are as follows.
  • Sorting machine Magnetic separator excluding iron
  • Additives (Calcium 3%) Oxygen concentration about 6% or less
  • Phosphorus or sulfide is added by adding 0.33% of phosphorus ore and sulfide or iron sulfide is added by 0.3%.
  • a filter-type dust collector (bag filter) is used in consideration of comprehensive exhaust gas treatment.
  • This filter layer detects the pressure loss of the filter cloth and controls it at a constant pressure (60 to 15 OmmAg).
  • the incineration residue which is a mixture of incinerated ash and fly ash, was detoxified with this facility. New hard was kneaded with 20% cement and solidified. The reference values were cleared as shown in Table 1. ⁇ Table 1>
  • each weighing object is as follows: JISK 01025.5 for cadmium, JISK01025.4.4 for lead, and JISK011 for hexavalent chromium. 0 2 6 5.2.1, JISK 0 1 0 2 6.1.2 for arsenic, JISK 0 10 for selenium Performed according to 26.7.2.
  • Table 2 shows the results of measuring the concentration of dioxins in the exhaust gas from the incinerator. As a result, as shown in Table 2, it was found that the concentration of each gas in the exhaust gas was below the reference value, and the concentration of dioxins was below the ND value (lower limit of quantification). Therefore, the harmful substances contained in the exhaust gas discharged from the apparatus according to the present invention are below the reference value. ⁇ Table 2>
  • the concentration of dioxins was determined in accordance with the Ministry of Health, Labor and Welfare Announcement No. 234 (19997) “Method for calculating the concentration of dioxins”, and the dust concentration was determined in accordance with JISZ 88 0 8 (1995) ⁇ Measurement method of dust concentration in exhaust gas '', JIs K 0104 (1994) ⁇ Analysis of nitrogen oxide in exhaust gas '' JISK 0103 (1995) for sulfur oxide concentration, and JISK 0107 (19995) for hydrogen chloride concentration. ) The carbon monoxide concentration was measured in accordance with “Method for analyzing hydrogen chloride in exhaust gas”, and the carbon monoxide concentration was measured in accordance with “Method for analyzing carbon monoxide in exhaust gas”. Industrial applicability
  • atoms are deleted from the crystal lattice, and thermal energy is added to incinerated ash containing metal atoms in an activated state to add thermal energy to the incinerated ash. It is possible to create a state (diffusion state) where atoms can freely move around in the crystal by activating them, so that new atoms (such as halogen atoms) are missing from the crystal lattice to eliminate distortion of the crystal lattice. Damage can render harmful substances such as dioxins contained in the incineration ash harmless.
  • the fluidity of the incinerated ash that is wet and has poor fluidity is improved. Therefore, sorting and pulverizing in the pulverizing / sorting step following the dehydration and drying step can be easily performed.
  • the unburned components contained in the incineration ash can be completely burned at a high temperature in the presence of oxygen. Therefore, generation of dioxins from unburned components can be prevented.
  • irons such as nails mixed in the raw ash such as dehydrated and dried incinerated ash can be magnetically magnetized by a magnet and separated from the raw ash. it can.
  • coarse impurities contained in the raw ash can be sorted by vibrating sieve, and the sorted glass can be mixed into the raw ash after sieving by pulverizing. .
  • impurities that are difficult to be processed such as nails can be removed, and the crushing of the incinerated ash in the crushing process, which is a subsequent process, can be facilitated.
  • the raw ash such as the incinerated ash after crushing and sorting is subjected to an inertia force of 5 G to reduce the particle size to a predetermined particle size or less.
  • This raw ash contains metals that can serve as catalysts in the subsequent reduction process.
  • these are miniaturized and activated as a catalyst, so that the reaction in the reduction treatment step can be promoted.
  • the reduction reaction is carried out by an inert gas.
  • inert gas By introducing gas, it can be performed under low oxygen conditions. As a result, the generation of harmful substances mediated by oxygen can be suppressed.
  • the raw ash after treatment becomes a soil component, and can be used as a hydrated solidified material in combination with Portland cement and the like.
  • the processing apparatus of the present invention when used to treat refuse discharged every day, the cost is reduced to one third as compared with the case where the high-temperature melting method is used.

Description

焼却灰の原子を拡散により分解して無害化する処理方法、 およびその装
技惯分野
本発明は、 環境汚染の観点か明ら、 一般焼却灰 (飛灰、 主灰) と発生す る排ガスとを無害化処理しながら、細安全 · 安定した形で有効に再生資源 として利用するための焼却灰を拡散により分解して無害化する処理方法 、 およびその装置に関するものである。 背景技術
従来、 ごみは埋立または焼却により処分されていたが、 ここ 10 年余 りの大量生産、 大量消費の広がりによるごみの增加と、 それに伴う処理 処分の問題により社会問題化している。 したがって、 ごみの処理は、 自 治体による焼却処理が主流を占めることになり、 現在ではごみの 70 % が焼却処理されている。
しかし、 ごみの焼却処理の増加に伴って、 ダイォキシン発生問題や、 ごみ焼却灰中に含まれる重金属問題など、 多くの環境汚染問題が生じて いる。
従来の焼却施設の炉から排出される焼却灰は、 一般に埋め立て処理さ れるが、 焼却灰には未燃分が多く含まれている。 この未燃分には、 未燃 炭素分や炭化水素など、 有害物質を生じ得る前駆体が数多く含まれてい る。 また、 焼却施設の集塵機によって捕集された飛灰中には、 有機塩素 化合物や、 重金属類、 ダイォキシン類が多量に含まれている。
これら有害物質の前駆体、 有機塩素化合物および、 ダイォキシンは、 ごみが不完全燃焼した結果生成されるといわれている。 従って、 ごみを 完全燃焼させることができれば、 有害物質は生じないことになる。 しか し、 従来の焼却施設はごみを完全燃焼させる能力のないものが多く、 有 害物質や、 ダイォキシン類を大量に含んだ焼却灰をそのまま埋め立てて いるのが現状であった。
また、 近年の埋め立て処分場の不足により、 焼却灰を不法投棄に近い 状態で処理、 保管する地方自治体が增ぇ、 ごみによる環境汚染問題は一 層深刻さを増している。
このため、 厚生省は、 高温溶融炉により、 ごみの完全焼却、 焼却残渣 物の再資源化を奨励している。
この高温溶融炉導入の第一義的な目的は、 ごみの減溶、 減量化である 。 しかし、 この方法は大気中に捨て場を考えた方法に過ぎない。
物質は固体、 液体、 気体の三態のいずれかである。 よって、 固体と し てあるものがなくなれば、 それは気体に変わって大気中に放出されたこ とを意味し、 高温溶融によるごみの減量化は決して環境に優しい処理方 法ではない。
また、 設備費、 処理費を考えても莫大な資金となるので、 毎日出るご みに対してこのよ うな処理を行う ことは、 税金の無駄使いとなる。
高温溶融方式、 ガス化溶融方式等の高温による溶融方式を用いると、 ごみは完全に焼却できる。 しかし、 最も良い条件でごみを燃焼させても 、 燃焼時に塩素を含有する物質、 すなわち、 ハロゲン供給源が存在する と、 ごみは酸化と同時に塩素化され、 有害な塩素化化合物として焼却灰 中に含有されることになる。 そして、 この塩素化化合物が前駆体となつ てダイォキシン類など有害物質を生ずることになる。
また、 この高温溶融方式を利用しても、 焼却後に約 2 0 %の焼却灰と 飛灰が発生する。 ここで、 焼却灰は土壌成分に近い組成となっているが 、 有害物質として指定されている鉛や水銀、 カ ドミ ウム、 六価ク ロム、 ヒ素、 セレンなど 6品目が含有されている。
そのため、 これら焼却灰をそのまま埋め立てることは、 土壌汚染や地 下水汚染の原因となるので、 埋め立て前にー且無害化処理する、 もしく は、 焼却灰を資源として二次利用する方法の開発が望まれていた。
本発明の目的は、 発生する排ガスを無害化処理しながら都市ごみ、 一 般焼却灰から将来にわたり重金属類や、 ダイォキシン類で環境を汚染す ることがない、 焼却灰の処理方法及び、 その装置を提供しょう とするも のである。 発明の開示
本発明者らは、 鋭意検討を重ねた結果、 次のよ うに構成することで上 記課題を解決するに至った。 すなわち、
焼却灰の含水率を低減させる脱水乾燥工程と、
前記脱水乾燥工程より生ずる排ガスを遷移金属触媒の存在下に加熱処 理する排煙処理工程と、
前記脱水乾燥工程で乾燥処理された焼却灰を粉碎処理する粉砕処理ェ 程と、
前記粉砕処理工程で粉碎された焼却灰を、 外気と絶縁された低酸素状 態の空間で、 一定温度及び、 一定'時間維持して処理する工程とからなる 焼却灰の無害化、 再資源化のための処理方法において、
前記外気と絶縁された低酸素状態の空間で、 一定温度及び、 一定時間 維持して処理する工程が、 原子の拡散現象を利用して、 焼却灰中の有害 物質を無害化し、 安定化する構成と した (請求の範囲第 1項) 。
かかる構成によると、 粉砕処理された焼却灰に含まれる原子の拡散現 象を利用して、 焼却灰中に含まれるダイォキシン類などの有害物質 (特 に塩素などのハロゲン類を含有する物質) を脱ハロゲン化して分解する と共に、 焼却灰中に含まれる重金属類を安定で無害な化合物に組み替え ることができる。
また、 前記脱水乾燥工程は、 炉内温度を 5 0 0〜 7 0 0 °Cに加熱して 行う構成と した (請求の範囲第 2項) 。 かかる構成によると、 焼却灰中 に含まれる水分を除去することで、 次の粉砕工程における粉砕処理を容 易にする。
また、 前記粉砕処理工程の前に、 破碎 · 選別工程を設けた構成と した (請求の範囲第 3項) 。 かかる構成によると、 焼却灰中に混入した鉄な どの不純物が取り除かれ、 また、 ガラス類は微粉化されるので、 粉砕処 理工程の前処理となる。
また、 前記粉砕処理工程において、 慣性力 5 Gがかかる衝撃を与える 構成と した (請求の範囲第 4項) 。 かかる構成によると、 慣性力 5 Gが かかる衝撃を与えることで、 焼却灰を次の還元反応処理工程に適した粒 子径に効率よく調整するとともに、 焼却灰に含まれる金属の金属結晶格 子内から原子を欠損させて、 次の還元処理工程における塩素その他の不 純物原子の遊離を促進する状態を作り出す。
また、 外気と絶縁された低 ¾素状態の空間で、 一定温度及び、 一定時 間維持して処理する工程は、 還元反応処理工程と安定化処理工程とから なり、
この還元反応処理工程は、 酸素濃度が 3 %以下で還元反応処理を行う ことを特徴とする構成とした (請求の範囲第 5項) 。 かかる構成による と、 前記粉砕処理工程において炉内での酸化反応による有害物質の発生 を抑止する。
また、 焼却灰に含まれる水分の脱水乾燥処理を行う脱水乾燥処理装置 と、 脱水乾燥された焼却灰に含まれるガラス類を選別し、 選別したガラス 類を破砕する破砕 ·選別装置と、
破砕選別後の焼却灰の微粉化と、 焼却灰に含まれる原子の結晶格子内 から原子を欠損させるために破砕処理する粉砕処理装置と、
粉砕処理後の焼却灰に含まれる原子の拡散反応を利用して、 有害物質 を無害化する還元反応処理装置と、
還元反応処理後の焼却灰に含まれる原子の拡散反応を利用して、 焼却 灰に含まれる金属類を安定な化合物に変換させる安定化処理装置と、 脱水乾燥装置、 還元反応処理装置、 および、 安定化処理装置より生ず る排煙の無害化処理を行う排煙処理装置と
を備えた処理装置処理装置と した (請求の範囲第 6項) 。
かかる構成によると、 焼却灰中に含まれるダイォキシン類を無害化処 理しつつ、 同時に焼却灰中に含まれる重金属類を安定な化合物へと変換 する。 図面の簡単な説明
第 1図は、 本発明の焼却灰の原子を拡散により分解して無害化する処 理方法のフローチヤ一トである。
発明を実施するための最良の形態
次に、 本発明の一実施の形態を図面を用いて説明する。 なお、 第 1図 は本発明の焼却灰の原子を拡散により分解して無害化する処理方法のフ ローチャー トである。 本発明の焼却灰の処理方法では、 ボトムアッシュ (主灰) 、 フライア ッシュ (飛灰) または、 これらの混合灰 (焼却残渣) 、 その他産業廃棄 物など、 焼却の後に出る全ての焼却灰 (以降、 原灰という) を原料と し て用いることが出来る (原灰回収) 。 この原灰には一般に水分が 4 0 % 近く含まれており、 後工程での処理を行い易くするために、 熱風を用い て;^内温度を 5 0 0〜 7 0 0 °C、 より好ましく は 6 0 0 °Cにして乾燥処 理を行う (脱水乾燥工程) 。
この乾燥工程は空気の存在下で行うので、 原灰中に含まれている未燃 焼物を完全に燃焼させることができる。
なお、 原灰に含まれる有害物質が熱風乾燥時に気化して大気中に放出 されるのを防ぐために、 前記乾燥工程において生ずる排ガスは、 触媒な どを用いて排ガス中に含まれる有害物質を処理する排煙処理工程をへて 、 大気中に放出される (排煙処理工程) 。
ここで、 この排煙処理は、 後記する還元反応処理工程、 安定化処理工 程から生じる排煙についても行う。
つぎに、 乾燥処理した原灰に含まれる金属類を磁石などに磁着させて 取り除き、 そして、 振動ふるいなどにかけてガラス類および粗大不純物 を選別する。 なお、 選別したガラス類はガラス粉砕機で細かく粉砕した 後、 ふるいを通した後の原灰と混合する (粉砕 ·選別工程) 。
前記粉砕 · 選別工程において金属類、 不純物を取り除いた原灰を、 粉 砕機で粉砕処理し、 サイクロンなどを用いて分粒する。 なお分粒後の原 灰のうち所定の粒径以上のものは再び粉砕機に戻し、 原灰の粒径を所定 の粒径以下にする (粉砕処理工程) 。
この、 原灰中には種々の金属類、 たとえば、 鉄、 鉛、 銅、 カ ドミ ウム 、 水銀などが含まれており、 これら金属類はつぎの還元工程において触 媒として利用される。 一般に金属触媒は表面積が小さいと触媒と しての 能力が小さいので、 原灰を粉砕処理して微粉末として表面積を広げ、 触 媒活性を高める必要がある。 そのため、 ここでいう所定の粒径とは、 後 の還元処理工程における活性などの差から、 好ましくは、 5 0〜 2 0 0 メッシュであり、 よ り好ましくは、 1 0 0〜 1 5 0メ ッシュである。 また、 粉砕処理して微粉化すると共に、 原灰中に含まれる金属の結晶 中から原子を欠損させるために、 本発明は最小限の熱と衝撃の力と触媒 を使用して行う。 したがって、 この粉砕処理工程における粉砕処理は、 慣性力が 3 G以上、 好ましく は 5 Gかかる衝撃条件で行うのが良い。 こ こで、 粉碎処理工程に用いる粉砕処理機は特に限定されるものではない が、 たとえば、 ハンマーミルが挙げられる。
前記粉砕処理工程を経た原灰に Pt などの触媒や添加剤 (無機質など ) を加え、 還元反応炉に投入し、 原灰を 6 0 0 °Cに加熱し、 4 0分間か けて還元反応を行う (還元反応工程) 。
この還元反応炉は、 窒素ガスなどの不活性ガスを導入することで低酸 素濃度に調節されている。 なお、 原灰中には、 金属や非金属元素の酸化 物が含有されており、 場合によってはこれらを触媒と して毒性物質の発 生もあり得る。 よって、 これら毒性物質のなかで特に酸素が媒体となる 有害物質 (たとえば、 ダイォキシン類) の生成を押さえるために、 この 炉内の酸素濃度は 6 %以下であることが望ましい。 さらに好ましく は、 より効果的に有害物質の生成を防止するために、 酸素濃度は 3 %以下が よい。
ここで、 触媒になる物質は、 気体、 液体、 固体を問わず多種多様であ る。
一般に、 ダイォキシン類は 9 5 0 °C以下の焼成温度では分解しないと 言われている。 しかし、 本発明の方法を用いると、 原灰は前記粉碎処理 工程において微粉化、 かつ、 金属結晶格子中の金属原子の欠損、 および 、 原子の拡散現象によ り活性化されているので、 5 0 0〜 6 0 0 °Cとい う低温度での分解が可能になる。
また、 ここに酸化カルシウムなど混入すると、 より低い温度でダイォ キシンの分解が始まり塩化カルシウムなどが生成される。
よって、 ダイォキシン類は、 外気と絶縁された低酸素濃度雰囲気の空 間で、 一定温度及び、 一定時間維持することにより、 拡散現象による活 性化、 触媒、 および、 添加薬剤 (無機質) により脱塩素 Z水素化され、 分解される。
次に、 還元反応工程を経た後の原灰を、 この低酸素濃度雰囲気下で炉 内温度を 3 0 0〜 6 0 0で、 より好ましくは、 4 0 0〜 5 0 0 °Cに調節 し、 2 0〜 3 0分間加熱処理を行う (安定化処理工程) 。
この工程では、 重金属を含む、 異種金属の混合物である原灰を原子の 拡散現象を利用して効率よく相互分解させ、 重金属塩類や金属酸化物、 金属単体を触媒として利用し、 金属塩を解離し、 結晶化させることによ り安定化する。
ここで、 拡散とは、 固体金属 (結晶) 中の原子の移動、 すなわち、 結 晶の中で原子が自由に動き回ることを言う。
物質の存在様式の一つである固体の状態では、 大部分の物質が結晶を 形成しており、 この結晶では、 多数の原子が三次元に規則正しく配列し 結晶格子を作っている。 本発明では、 粉砕処理工程において慣性力が 5 Gかかる衝撃を与えて結晶格子中から金属原子を欠損させているので、 金属はその結晶格子中に空孔ゃ歪みを生じ、 不安定な状態にされている 。
したがって、 熱エネルギーを加えて原子の熱振動を活発にし、 結晶の 中で原子が自由に動き回れる状態 (拡散状態) を作り出すと、 結晶格子 中から新たな原子が欠損して結晶格子の歪みを解消する (脱ハロゲン化 ) 、 または、 容易に結晶中の空孔に原子が収まり結晶格子の歪みを解消 すると共に、 金属を安定な化合物へ変換 (安定化) する。
なお、 この安定化工程において金属は化合物となり安定化するが、 金 属の種類によって、 酸化物、 水酸化物、 硫酸化物、 硫化物、 リン酸化物 、 リン化物等、 など様々な形態をと り得る。 たとえば、 アルカリ金属と 、 アルカリ土類金属以外の金属の多くは、 水に不溶な水酸化物と して安 定化する。 また、 P b等は、 水酸化物と して [ P b ( O H ) 2 ] で安定 化されるが、 この水酸化物は、 強酸性条件下では水溶性を示すので、 硫 化物にして安定化させる。 また、 A sや Pは C a Oと反応して、 安定化 される。
これらの金属元素は密度が高く、 主に遷移金属に属する金属とそれら のイオンである。 原灰含有成分のうちいくつかの元素は、 普通の土壌中 には比較的少量しか存在しないものがある。 しかし、 これらの中には植 物生育に不可欠な微量元素と して作用するものも含まれている。
また、 非金属であり有害指定物質に含まれていない微量元素も時と し て汚染問題に関係すると思われるものもある。
金属化合物は地下に埋蔵されると、 土壌中の微生物が構成元素の大半 を徐々に無機化して、 C 0 2、 H 2 0、 N 2などの形で大気中に還元する また、 C a 2 +, M g 2 + , K +などの無機陽イオンは腐食や粘土に吸 着される。 腐食では、 その有機酸と しての官能基が、 粘土では粘土鉱物 の層間位置や、 格子破端の陰電荷がこれらの陽イオンを吸着する。
C 1 —, S 0 4 2—などの陰イオンも腐植ゃ粘土の部分的陽電荷によ り 吸着される。 安定化された金属化合物は、 大部分が一次鉱物、 粘土鉱物 及び腐植の内部構造に組み込まれた形で存在するようになり、 イオンの 形で溶液中あるいは、 粘土や腐植の表面のィオン交換部位に吸着保持さ れる。
また、 原灰は塩基度 C 8 0 / S i 〇 2が高く 、 徐冷によ り結晶化する 性質があり、 急冷するとガラス質になる.。 即ち水に溶け難い物質と して 安定、 且つ安全な物質を生成することになる。
なお、 この安定化工程において、 不溶性金属と して化合物の性質を変 えるために無機系の添加剤を加えてもよレ、。 たとえば、 カルシウム系、 リ ン系の添加剤は毒性がないので主な添加剤と してあげられる。 なお、 カルシウム系の添加剤を使用した場合、 原灰中の塩素分はカルシウム塩 化物として固定される。 このカルシウム塩化物は、 無公害物質であり公 害の恐れはないものである。
つぎに、 本発明にかかる方法を用いて、 原灰から得た生成物 (以降、 処理後の原灰という) について説明する。 一般に、 原灰は含水率が高く 、 有機成分や重金属類の混合物であるため、 水硬性セメントに用いた場 合、 固化が最も難しいものである。
この固化阻害要因をもつ金属の無害化、 並びに有機質化合物の硬化を 促進させるために、 本発明の処理後の原灰は、 微粒子化による原子の拡 散分解と、 触媒反応と還元反応の相乗効果で阻害要因を取り除いている 。
一般に、 セメン トは水と反応して、 水和物の結晶を析出し、 これが凝 結し固化するもので、 その水和物結晶は常温で安定である。 セメ ン トを 構成している元素は、 組成と してはカルシウム分が最も多く、 次いで酸 素、 珪素、 アルミニウム、 鉄、 硫黄、 マグネシウム、 ナトリ ウムなど、 となっているが、 化学組成と しては、 C a O, S i 〇 2, A l 2 0 3, F e 2 O 3 , S O 3, M g Oの酸化物と して存在し、 全体の 92 %を占める 一方、 処理後の原灰は品質が一定されないが、 カルシウム C a Oが最 も多く 2 5〜 2 7 %, 次いで、 アルミナ A 1 2 0 3が、 2 2〜 2 4 %, シリカ S i O 2が、 1 5〜 1 7 %, 鉄分 F e 2 O 3が、 9〜 1 1 %, 硫酸 根 S O 3が、 2 %, マグネシウム M g Oが、 2 %など、 となっており、 セメ ン トの三成文系である石灰、 シリカ、 アルミナが含まれているが、 水硬性のセメン ト と しての力はもっていない。
しかし、 潜在的に水硬性を有しており、 アルカ リ または、 硫酸塩など 中性以外の刺激作用によつて水硬性を徐々に、 経年的に発揮する。
また、 化学成分で示される塩基度の値 (C a O+A l 203+M g O) / S i O 2が、 処理後の原灰の場合 1 . 3 5〜: L . 4 5位で、 セメン ト に比べると 1. 0 0 %ほど塩基度が低い。
セメ ン ト と比べた場合、 処理後の原灰の長所は、 水蒸気や炭酸ガスに よる反応がないので風化されて固結しないという点である。
さ らに、 処理後の原灰には、 反応の激しいアルミナやマグネシウム、 カルシウム分が大量に含有されており、 その含有量は、 セメン ト成分中 における含有量に比べて多いので、 反応速度が早く膨張係数が高く なる という特徴を有している。
また、 一般にセメ ン トがコンク リー ト化され、 その構造物が破壊し易 く なるのは、 硫酸塩がコンク リー ト中の C a (OH) 2と化合して、 硫 酸カルシウム C a S〇 4をつく り 、 更にアルミ ン酸三石灰水和物 3 C a O · A 1 203. n H 20 と結合して、 セメ ン トバチルスになるためであ る。
本発明の処理後の焼却灰は、 反応速度が早く 、 膨張係数が高いので、 反応が初期に始ま り 、 C a (OH) 2が早く生成され、 硬化物中に C a (OH) 2が少なく C 3 Aも少なく なるため、 構造物の抵抗性は大とな る。
これらの性質から、 セメ ン ト と併用するこ とで固化に必要な気泡能力 と、 分散能力に優れ、 流動性があり、 粘性度の強い土質を砂質に化学変 化させること も出来る。
更に、 地盤改良など透水性に優れ、 強度の維持が出来ることに特性が ある。
次に本発明の方法の実施に用いる装置について説明する。
本発明にかかる装置は、 焼却灰などの原灰に含まれる水分を、 熱風に より脱水乾燥処理を行う と ともに、 原灰中に含まれる未燃分を同時に高 温で完全燃焼させるための脱水乾燥処理装置と、
脱水乾燥された焼却灰などの原灰中に混入している鉄類を磁石により 磁着して原灰から選別し、 さらに振動ふるいにかけて原灰中に含まれて いるガラス類および粗大不純物を選別、 選別されたガラス類を、 ふるい にかけた後の原灰に混入するために粉砕する、 破砕 · 選別を行うための 破砕 ·選別装置と、
破砕 ·選別後の焼却灰などの原灰に、 慣性力 5 Gがかかる力をかけて 原灰の粒径を所定の粒径以下にするとともに、 次の還元処理工程におけ る塩素やその他の不純物原子の遊離を促進する破砕処理装置と、
破砕処理後の焼却灰などの原灰に P t を加え、 原灰中に含まれている 金属類や P t を触媒と して、 窒素ガスなどの不活性ガス雰囲気下で、 所 定温度、 所定時間処理し、 原灰中に含まれている有害物質を還元処理す るための還元反応処理装置と、
還元反応処理後の焼却灰などの原灰中に含まれる金属類を、 無害な化 合物に変換する安定化処理装置と、
脱水乾燥、 還元反応処理、 および、 安定化処理時に生ずる排煙中に含ま れる有害物質を触媒などを利用して無害化処理するための排煙処理装置 とを備えている。
この装置を用いることで、 焼却灰などの原灰に含まれているダイォキ シン類などの有害物質は、 還元処理により無害化され、 金属類は、 安定 化処理により無害化され、 また、 排出ガス中に含まれる有害物質は排煙 処理装置により無害化される。 よって、 本発明にかかる装置を利用して処理した焼却灰を、 従来の焼 却灰のように埋め立て処理してもなんら土壌を汚染することがない。
また、 本発明にかかる装置を利用して処理した焼却灰は、 コ ンク リー トなどの骨材として再び資源として利用することができる。
なお、 これら各装置は単独で設置されている構成に限定されるもので はなく、 焼却灰の処理量を増やすために同一の装置を複数台並列に備え た構成であつても良い。
く実施例 1 >
次に、 実際に本発明にかかる方法を用いて、 焼却灰の処理を行った結 果を以下に示す。
焼却灰はス トーカ炉方式の焼却場及び、 流動床炉方式の焼却場より採 取したものを用い、 毎日の実証トン数、 30 tで、 3年間行った。
なお、 焼却灰再資源化ブラントシステムの破砕 ·粉砕反応 · 還元反応 •安定化反応 ·排煙反応それぞれの設備の仕様、 設定条件は以下の通り である。
( 1 ) 原灰受入れピッ ト : 5 0 m 3
供給灰クレーン 1 3 t / h
受入れホッパー 1 0 m 3
フィーダ 1 5 t / h
( 2 ) 選別 ·破砕装置
振動篩 (スク リ ーン 5 0 mm)
選別機 (鉄分除外磁選機)
( 3 ) 乾燥設備 3 t / h X 2
乾燥温度 5 0 0 °C
処理時間 3 0分
添加剤 (カルシウム系 3 % ) 酸素濃度 約 6 %以下
(4) 粉砕装置
微粉末 (微粒子) にして 5 Gの衝擊を与える。
リ ン鉱石を 0. 0 3 %添加して、 リ ン化物若しく は硫化鉄を 0 0 3 %添加して硫化物をつく る。
(5 ) 還元反応処理装置
炉処理量 : 3 t / h X2
反応温度 : 5 0 0〜 4 0 0 °C
反応時間 : 2 0〜 3 0分
酸性濃度 : 3 0 ° /。以下
(6 ) 安定化反応処理装置
炉処理量 3 t / h X2
反応温度 2 0 0〜 3 0 0。C
反応時間 1 0分
(7) 製品ホッパー 撹拌機 : 30m3
(8 ) 排煙処理装置
総合排ガス処理を考慮し、 ろ過式集塵器 (バグフィルタ) を使用。 こ のろ過層はろ布の圧力損出を検知し、 一定圧(6 0〜 1 5 O mmA g )に 制御する。
<処理後の原灰中の有害物質量 >
焼却灰及び、 飛灰の混合物である焼却残渣を、 本設備で無害化した生 成物(ニューハード)をセメ ン ト 20%混練し固化物と して有害指定金属 の溶出検査をした結果、 表 1 に示すよ うに基準値をク リアした。 <表 1 >
Figure imgf000017_0001
なお、 溶出検査は、 p H= 4 と p H= 7の 2水準で行った。 また、 各 計量対象の計量は、 カ ドミ ウムについては J I S K 0 1 0 2 5 5 . 1に、 鉛については、 J I S K 0 1 0 2 5 1 . 4に、 六価クロ ムについては、 J I S K 0 1 0 2 6 5. 2. 1に、 ヒ素について は、 J I S K 0 1 0 2 6 1. 2に総水銀については、 昭 4 6環告 第 5 9号付表 1に、 セレンについては、 J I S K 0 1 0 2 6 7. 2に、 それぞれ準拠して行った。
また、 焼却炉排ガス中のダイォキシン類の濃度を測定した結果を表 2 に示す。 その結果、 表 2に示すように、 排ガス中の各ガス濃度は基準値 以下であることが判明し、 さ らにダイォキシン類の濃度も ND 値 (定量 下限値) 未満の値を示した。 よって、 本発明にかかる装置より排出され る排ガス中に含まれる有害物質は基準値以下である。 <表 2 >
Figure imgf000018_0001
なお、 各測定対象の濃度測定法は、 ダイォキシン類濃度については、 厚生省公示第 2 3 4号 ( 1 9 9 7 ) 「ダイォキシン類の濃度の算出方法 」 に、 ダス ト濃度については、 J I S Z 8 8 0 8 ( 1 9 9 5 ) 「排 ガス中のダス ト濃度の測定法」 に、 窒素酸化物濃度については、 J I s K 0 1 0 4 ( 1 9 8 4 ) 「排ガス中の窒素酸化物分析方法」 に、 硫黄 酸化物濃度については、 J I S K 0 1 0 3 ( 1 9 9 5 ) 「排ガス中 の硫黄酸化物分析方法」 に、 塩化水素濃度については、 J I S K 0 1 0 7 ( 1 9 9 5 ) 「排ガス中の塩化水素分析方法」 に、 一酸化炭素濃 度については、 J I S K 0 0 9 8 ( 1 9 8 8 ) 「排ガス中の一酸化 炭素分析方法」 にそれぞれ準拠して行った。 産業上の利用可能性
請求の範囲第 1項に記載の発明によると、 結晶格子中から原子を欠損 させられて、 活性化れた状態にある金属原子を含む焼却灰に、 熱ェネル ギーを加えて原子の熱振動を活発にし、 結晶の中で原子が自由に動き回 れる状態 (拡散状態) を作り出すことができるので、 結晶格子の歪みを 解消するために、 結晶格子中から新たな原子 (ハロゲン原子など) が欠 損することで、 焼却灰中に含まれるダイォキシン類などの有害物質が無 害化できる。
また、 結晶格子の歪みを解消するために、 容易に結晶中の空孔に原子 が収まる際には原子の組み替えが起こることにより、 焼却灰中に含まれ る重金属類などが安定で無害な化合物へ変換される。
請求の範囲第 2項に記載の発明によると、 焼却灰中に含まれている水 分を除去できるので、 湿潤して流動性の悪い焼却灰の流動性が良く なる 。 よって、 脱水乾燥工程の次に来る粉砕 ·選別工程における選別、 粉砕 を容易に行うことができる。 また、 焼却灰中に含まれる未燃分を、 酸素 の存在下で高温により完全に燃焼させることができる。 よって、 未燃分 からのダイォキシン類の発生を防止することができる。
また、 請求の範囲第 3項に記載の発明によると、 脱水乾燥された焼却 灰などの原灰中に混入している釘などの鉄類を磁石により磁着して原灰 から選別することができる。 また、 振動ふるいにかけて原灰中に含まれ ているガラス類おょぴ粗大不純物を選別でき、 選別されたガラス類を粉 砕処理することで、 ふるいにかけた後の原灰に混入することができる。 その結果、 釘などの処理されづらい不純物を除去することができ、 また 、 後工程である粉砕処理工程での、 焼却灰の粉砕処理を容易にすること ができる。
また、 請求の範囲第 4項に記載の発明によると、 破砕 ' 選別後の焼却 灰などの原灰に、 慣性力 5 Gかかる力をかけて所定の粒径以下にする。 この原灰中には、 後工程である還元処理工程で触媒となり うる金属類が 含まれている。 これらが、 慣性力をかけて破砕処理をした結果、 微細化 され、 触媒として活性化されるので、 還元処理工程での反応を促進する ことができる。
また、 請求の範囲第 5項に記載の発明によると、 還元反応を不活性ガ スを導入することで、 低酸素条件下で行う こ とができる。 その結果、 酸 素が媒介となる有害物質の生成を抑えることができる。
また、 請求の範囲第 6項に記載の発明の装置を用いると、 焼却灰に含 まれる有害指定物質を還元反応処理装置により無害化する。 さらに、 原 灰中に含まれる水溶性物質を化学的処理と、 物理的処理を併用すること で安定させ、 不溶性物質 (自然埋蔵鉱物資源) にしているので、 処理後 の原灰は将来にわたり、 重金属類やダイォキシン類で環境を汚染するこ とがない安全なものとなる。
さらに、 処理後の原灰は土壌成分となり、 ポルトランドセメ ン ト等と の併用により、 水和固化資材と しても使用できる。
よって、 最終処分場に埋め立てる必要がなく、 新素材と して再資化で きること、 即ち循環型社会の構成となる。
また、 毎日排出されるごみの処理に、 本発明の処理装置を用いると、 高温溶融方式を用いた場合に比べ、 3分の 1の費用で済む。

Claims

請 求 の 範 囲
1 - 焼却灰の含水率を低減させる脱水乾燥工程と、
前記脱水乾燥工程より生ずる排ガスを遷移金属触媒の存在下に加熱処 理する排煙処理工程と、
前記脱水乾燥工程で乾燥処理された焼却灰を粉砕処理する粉砕処理ェ 程と、
前記粉砕処理工程で粉砕された焼却灰を、 外気と絶縁された低酸素状 態の空間で、 一定温度及ぴ、 一定時間維持して処理する工程とからなる 焼却灰の無害化、 再資源化のための処理方法において、
前記外気と絶縁された低酸素状態の空間で、 一定温度及び、 一定時間 維持して処理する工程が、 原子の拡散現象を利用して、 焼却灰中の有害 物質を無害化し、 安定化すること
を特徴とする焼却灰の原子を拡散により分解して無害化する処理方法。
2 . 前記脱水乾燥工程は、 炉内温度を 5 0 0〜 7 0 0 °Cに加熱して行う ことを特徴とする請求の範囲第 1項に記載の焼却灰の原子を拡散により 分解して無害化する処理方法。
3 . 前記粉砕処理工程の前に、 破砕 ·選別工程を設けたことを特徴とす る請求の範囲第 1項に記載の焼却灰の原子を拡散により分解して無害化 する処理方法。
4 . 前記粉砕処理工程において、 慣性力 5 Gがかかる衝撃を与えること を特徴とする請求の範囲第 1項に記載の焼却灰の原子を拡散により分解 して無害化する処理方法。
5 . 外気と絶縁された低酸素状態の空間で、 一定温度及び、 一定時間維 持して処理する工程は、 還元反応処理工程と安定化処理工程とからなり この還元反応処理工程は、 酸素濃度が 3 %以下で還元反応処理を行う ことを特徴とする請求の範囲第 1項に記載の焼却灰の原子を拡散により 分解して無害化する処理方法。
6 . 請求の範囲第 1項の方法を実施するための装置であって、 焼却灰に 含まれる水分の脱水乾燥処理を行う脱水乾燥処理装置と、
脱水乾燥された焼却灰に含まれるガラス類を選別し、 選別したガラス 類を破砕する破砕選別装置と、
破砕選別後の焼却灰の微粉化と、 焼却灰に含まれる原子の結晶格子內 から原子を欠損させる破砕処理する粉碎処理装置と、
粉砕処理後の焼却灰に含まれる原子の拡散反応を利用して、 有害物質 を無害化する還元反応処理装置と、
還元反応処理後の焼却灰に含まれる原子の拡散反応を利用して、 焼却 灰に含まれる金属類を安定な化合物に変換させる安定化処理装置と、 脱水乾燥装置、 還元反応処理装置、 および、 安定化処理装置より生ずる 排煙の無害化処理を行う排煙処理装置と
を備えたことを特徴とする焼却灰の原子を拡散により分解して無害化す る処理装置。
PCT/JP2001/011085 2000-12-18 2001-12-18 Procede et appareil permettant le traitement d'atomes en decomposition dans des cendres d'incineration par diffusion en vue de leur detoxification WO2002049780A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2003-7006512A KR20030065513A (ko) 2000-12-18 2001-12-18 소각재의 원자를 확산에 의해 분해하여 무해화하는처리방법 및 그의 장치
AU2002222684A AU2002222684A1 (en) 2000-12-18 2001-12-18 Method and apparatus for treatment of decomposing atoms in incineration ash by diffusion to detoxify them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000383337A JP2002177924A (ja) 2000-12-18 2000-12-18 焼却灰の原子を拡散により分解して無害化する処理方法、およびその装置
JP2000-383337 2000-12-18

Publications (1)

Publication Number Publication Date
WO2002049780A1 true WO2002049780A1 (fr) 2002-06-27

Family

ID=18851010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011085 WO2002049780A1 (fr) 2000-12-18 2001-12-18 Procede et appareil permettant le traitement d'atomes en decomposition dans des cendres d'incineration par diffusion en vue de leur detoxification

Country Status (6)

Country Link
JP (1) JP2002177924A (ja)
KR (1) KR20030065513A (ja)
CN (1) CN1478000A (ja)
AU (1) AU2002222684A1 (ja)
TW (1) TW512077B (ja)
WO (1) WO2002049780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359136A (zh) * 2020-04-03 2020-07-03 连云港新江环保材料有限公司 一种用于飞灰的二噁英解毒螯合剂及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053215B1 (ko) * 2009-08-28 2011-08-01 한국지질자원연구원 화력발전소 바닥재에 포함된 산화철의 효율적 선별방법
CN102657925B (zh) * 2012-04-12 2018-01-05 广东省生态环境技术研究所 基于粘土的重金属热固化剂及其固化重金属的方法
CN103042022B (zh) * 2012-12-05 2015-11-25 广东德诚环保科技有限公司 一种飞灰处理方法
JP5983849B2 (ja) * 2014-12-10 2016-09-06 栗田工業株式会社 飛灰の自動サンプリング装置及び自動サンプリング方法
CN107413815A (zh) * 2017-05-11 2017-12-01 深圳泛科环保产业发展有限公司 一种含氯物料的脱氯方法
CN108526200B (zh) * 2018-04-08 2021-07-23 成都中节能再生能源有限公司 分步式飞灰固化工艺
CN109570185B (zh) * 2018-10-19 2020-11-27 同济大学 一种基于水蒸汽诱导的垃圾焚烧飞灰还原脱氯方法及装置
CN111495520A (zh) * 2019-07-19 2020-08-07 河北燕岛环保科技股份有限公司 一种垃圾焚烧烟气处理装置
CN114074107A (zh) * 2020-08-07 2022-02-22 朱清华 废弃物的处理装置及其方法
KR102318504B1 (ko) 2021-02-02 2021-10-29 (주)현대에스엔티 무해화 처리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151430A (ja) * 1996-11-22 1998-06-09 Pollution Sci Kenkyusho:Kk 焼却炉から排出される灰中の有害物質の無害化処理方法
JP2000005730A (ja) * 1998-04-24 2000-01-11 Sato Tsutomu 焼却灰の無害化・再資源化のための処理方法および装置
JP2000024625A (ja) * 1998-04-24 2000-01-25 Kazuko Iwasaki 焼却灰の無害化・再資源化のための処理方法および装置
JP2000051816A (ja) * 1998-08-07 2000-02-22 Mitsui Eng & Shipbuild Co Ltd 飛灰の処理方法および処理装置
JP2000079381A (ja) * 1998-06-24 2000-03-21 Nippon Kankyo System:Kk 焼却灰の処理方法及び処理装置
JP2000126716A (ja) * 1998-10-28 2000-05-09 Mitsubishi Heavy Ind Ltd ダイオキシン分解装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151430A (ja) * 1996-11-22 1998-06-09 Pollution Sci Kenkyusho:Kk 焼却炉から排出される灰中の有害物質の無害化処理方法
JP2000005730A (ja) * 1998-04-24 2000-01-11 Sato Tsutomu 焼却灰の無害化・再資源化のための処理方法および装置
JP2000024625A (ja) * 1998-04-24 2000-01-25 Kazuko Iwasaki 焼却灰の無害化・再資源化のための処理方法および装置
JP2000079381A (ja) * 1998-06-24 2000-03-21 Nippon Kankyo System:Kk 焼却灰の処理方法及び処理装置
JP2000051816A (ja) * 1998-08-07 2000-02-22 Mitsui Eng & Shipbuild Co Ltd 飛灰の処理方法および処理装置
JP2000126716A (ja) * 1998-10-28 2000-05-09 Mitsubishi Heavy Ind Ltd ダイオキシン分解装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359136A (zh) * 2020-04-03 2020-07-03 连云港新江环保材料有限公司 一种用于飞灰的二噁英解毒螯合剂及其制备方法

Also Published As

Publication number Publication date
CN1478000A (zh) 2004-02-25
AU2002222684A1 (en) 2002-07-01
JP2002177924A (ja) 2002-06-25
KR20030065513A (ko) 2003-08-06
TW512077B (en) 2002-12-01

Similar Documents

Publication Publication Date Title
Assi et al. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash
Wang et al. Comparative study on the mobility and speciation of heavy metals in ashes from co-combustion of sewage sludge/dredged sludge and rice husk
Fan et al. A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash
Coutand et al. Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications
Ajorloo et al. Heavy metals removal/stabilization from municipal solid waste incineration fly ash: a review and recent trends
JP3706618B2 (ja) 土壌、焼却灰、石炭灰、及び石膏ボードくず用固化・不溶化剤及び固化・不溶化方法
WO2002049780A1 (fr) Procede et appareil permettant le traitement d&#39;atomes en decomposition dans des cendres d&#39;incineration par diffusion en vue de leur detoxification
JP4572048B2 (ja) 有機塩素系有害物に汚染された物質の無害化処理方法
JP4150801B2 (ja) 焼却灰の無害化・再資源化のための処理方法および装置
JP4150800B2 (ja) 低温度における焼却灰の無害化・再資源化のための処理方法および装置
JP5583360B2 (ja) 汚染土壌の浄化処理装置
JP4874880B2 (ja) 土工資材の製造方法
JP4209224B2 (ja) 硫化カルシウム系重金属固定化剤の製造方法
JP2014004514A (ja) 有害物質の溶出防止剤およびそれを用いた溶出防止方法
EP3140055A1 (en) A method of disposal and utilisation of dusts from an incineration installation and sludge from flotation enrichment of non-ferrous metal ores containing hazardous substances in the process of light aggregate production for the construction industry
Chiang et al. Fly ash, bottom ash, and dust
JP4283701B2 (ja) 硫化カルシウムの製造方法、地盤改良材の製造方法、及び処理対象物の処理方法
JP3963003B2 (ja) 低温度における焼却灰の重金属類及びダイオキシン類の処理方法
JP3337941B2 (ja) 焼却残渣処理方法
JP5599574B2 (ja) 焼却灰からの土壌改良材およびその製造方法
JP5583359B2 (ja) アスベスト製品の無害化処理装置
CN114790095B (zh) 一种焚烧垃圾飞灰再利用工艺技术
KR20110091162A (ko) 생활폐기물 소각 바닥재에서 유해물질을 제거하는 방법
JP5378901B2 (ja) アスベストの無害化処理物を原料にした耐火煉瓦の製造法および耐火煉瓦
JP2010247047A (ja) 汚染土壌の浄化処理方法および装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037006512

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018199666

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037006512

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020037006512

Country of ref document: KR