WO2002049751A1 - Procede d'oxydation de type oxydation par voie humide ou ozonation - Google Patents

Procede d'oxydation de type oxydation par voie humide ou ozonation Download PDF

Info

Publication number
WO2002049751A1
WO2002049751A1 PCT/FR2001/004038 FR0104038W WO0249751A1 WO 2002049751 A1 WO2002049751 A1 WO 2002049751A1 FR 0104038 W FR0104038 W FR 0104038W WO 0249751 A1 WO0249751 A1 WO 0249751A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
reactor
oxidation
bars
Prior art date
Application number
PCT/FR2001/004038
Other languages
English (en)
Inventor
Philippe Campo
Vincent Boisdon
Alain Trichet
Patrice Cognart
Florent Bouquet
Original Assignee
L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Robin Industries S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude, Robin Industries S.A. filed Critical L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to AU2002226459A priority Critical patent/AU2002226459A1/en
Priority to AT01995732T priority patent/ATE280637T1/de
Priority to EP01995732A priority patent/EP1345680B1/fr
Priority to CA002431942A priority patent/CA2431942C/fr
Priority to DE60106785T priority patent/DE60106785D1/de
Publication of WO2002049751A1 publication Critical patent/WO2002049751A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23312Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a conduit surrounding the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2366Parts; Accessories
    • B01F23/2368Mixing receptacles, e.g. tanks, vessels or reactors, being completely closed, e.g. hermetically closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2335Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer
    • B01F23/23352Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer the gas moving perpendicular to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23363Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced above the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal

Definitions

  • Oxidation process such as wet oxidation or ozonation.
  • the present invention relates to an oxidation process of the wet oxidation or ozonation type.
  • It relates more particularly to an oxidation process using a gas for oxidizing a liquid contained in a reactor comprising at least one means for introducing the gas into the reactor and at least one means for introduction of the liquid into the reactor, at least one means for discharging the liquid, at least one means for agitating the liquid, at least one conduit allowing the suction of the gas present in the reactor and opening into the liquid contained in the reactor , process in which the liquid and the gas are introduced into the reactor in quantities such that a gaseous sky is formed above the liquid contained in the reactor, in which, in a step of mixing the gas and the liquid, the gas of the gaseous air is sucked into the conduit and introduced into the liquid present in the reactor at the level of the liquid stirring means so as to dissolve at least part of the gas in the liquid, and in which in a recovery step, the part of the gas which is introduced into the liquid present in the reactor and which is not dissolved in the liquid is recovered in the gas overhead.
  • the invention relates in particular to the technology of Oxidation
  • OHP Wet Way
  • Wet oxidation which is conventionally implemented in different types of gas / liquid reactors, and in particular, bubble columns, tubular reactors, but also conventional or unstirred reactors.
  • An OVH type process is described in particular in an article presented at the JIE (International Water Days) in Poitiers in 1998 and entitled: "ATHOS, an innovative solution for sludge removal” (Proceedings JIE Poitiers 23-25 September 1998, Volume 2, p 69).
  • OVH processes generally work as follows: the treatment is carried out with air as an oxidant, at 250-270 ° C and at 85-120 bars, in reactors with a ratio height / diameter between 5 and 20.
  • bubble column type reactors are used for these installations in which the oxidizing gas is injected at the base co-current or counter-current to the liquid.
  • the column height is a function of the gas / liquid transfer yields.
  • the transfer coefficients are low (generally from 10 "4 to 10 " 2 s "1 ), which makes them reactors particularly suitable for reactions with slow kinetics (chemical regime).
  • the reaction volumes are large and the residence times long (usually several hours).
  • the article cited above also describes a process known as the “Aqueous Phase Oxidation process” which consists in treating sludge from biological stations with pure oxygen, in a tubular reactor, placed in a 1,200 m deep borehole, consisting of two concentric main tubes, one for injecting the thickened mud and oxygen, and the other used for raising the treated mud.
  • Aqueous Phase Oxidation process which consists in treating sludge from biological stations with pure oxygen, in a tubular reactor, placed in a 1,200 m deep borehole, consisting of two concentric main tubes, one for injecting the thickened mud and oxygen, and the other used for raising the treated mud.
  • a conventional stirred reactor (Stirred Tank Reactor or STR) is described in the article by M. Lawrence M. Litz, in CEP, Nov. 1985, pp 36-39, entitled: "A Novel Gas-Liquid Stirred Tank Reactor" .
  • STR Stirred Tank Reactor
  • the distribution of gases is generally ensured by a pierced torus placed at the base of the reactor, below the mechanical stirrer designed, in principle, so as to disperse the gas throughout the medium reaction.
  • This type of reactor makes it possible to obtain higher transfer coefficients, as a function inter alia of the speed of agitation and the nature of the mobile, leading to shorter residence times than for the two types of reactors mentioned above. above.
  • the devices involving communication between the gaseous sky and the core of the liquid phase ensure gas recirculation in the reactor; in this type of device, the flow of recirculated gas can be correlated with a dimensionless number called "modified Froude number" (Fr *), defined by the formula below:
  • Fr - -; with: gxl N: agitation speed in revolutions / second, d: diameter of the agitation mobile in m, g: acceleration of gravity in m / s 2 , I: immersion height of the turbine in m.
  • the process of the invention is a process of oxidation by an oxidation gas of compounds dissolved or dispersed in a liquid medium. It is an oxidation process which can just as easily be implemented on solutions as on dispersions. It is particularly suitable for the oxidation of sludge from biological treatment plants, the oxidation of ores containing sulfur in hydrometallurgy, the oxidation of sulphides in stationery liquors, it also allows, for example among other applications, d '' improving the biodegradability of dissolved compounds used in a reactor with a gaseous sky, it is particularly applicable to OVH or ozonation.
  • gaseous sky is used interchangeably to designate the space situated above the liquid phase in the reactor and the gas contained in this space; the context clearly allows the skilled person to know the meaning to be given to this term when the distinction is necessary.
  • oxidation gas used in the description means a gas containing alone or as a mixture an oxidizing gas, the oxidizing gas being oxygen or ozone.
  • oxidizing gas used in the description means oxygen or ozone.
  • the first consisting in bringing the oxidant into contact with the compound to be oxidized
  • the second is the chemical reaction.
  • the overall kinetics of the gas / liquid reaction will therefore depend on the slowest step.
  • the invention is particularly suitable for, oxidation reactions in a liquid medium with oxygen or ozone, in the case where the second step is very fast compared to the first.
  • the determining factor for the reaction rate is the transfer of the gas and the contacting of the oxidizing and oxidizing compounds.
  • the process according to the invention allows a particularly rapid and effective contacting of a very large quantity of compounds to be oxidized with the oxidizing compounds by a massive supply of the compounds to be oxidized from the liquid to the gas, in a zone of the reactor and according to a judiciously chosen mode, thus forming a liquid gas dispersion.
  • This contacting makes it possible to transfer gas into the liquid and to begin oxidation; it is followed by an ejection of the gas / liquid dispersion formed during this first step towards a second zone of the reactor containing the largest part of the mass of liquid contained in the reactor in order to mix there the first dispersion with the whole of the liquid of the reactor in order to continue the transfer as well as the oxidation started there.
  • the transfer speeds of oxidizing gas are no longer a limiting factor with respect to the reaction rates of rapidly oxidizable compounds.
  • the process of the invention is very particularly suitable for oxidation reactions which require high mass flows of oxidizing gas.
  • the method according to the invention is characterized in that during the step of mixing the gas and the liquid, the means for stirring the liquid creates a flow of liquid in the space in the immediate vicinity from the end of the conduit opening into the liquid and generating a gas / liquid dispersion in the zone in the vicinity of said space, called the pre-reaction zone, within which the liquid reacts with the gas, then conveys and ejects at its periphery said gas / liquid dispersion in a substantially horizontal direction, so that the gas dissolves in the liquid in the zone extending from the stirring means to the surface of the liquid, called the mixing zone.
  • the method according to the invention thus ensures a high flux of oxidizing gas transferred to the liquid contained in the reactor.
  • the process of the invention therefore ensures very rapid consumption of the oxidizing gas, and this, by its mode of recirculation of the gaseous sky towards the liquid, but also and above all by its mode of joint circulation of liquid towards the point of supply of the sucked gas, so that a first zone advantageously supplied by oxidation gas from the overhead gas and by a liquid flow is created at the base of the gas supply pipe. Compounds, oxidizing and oxidizing, will meet in this first zone and react immediately, this is the reason why this zone is called pre-reaction zone.
  • the part of the unreacted oxidation gas forms with the liquid a dispersion which is conveyed by the stirring means towards the periphery thereof to be ejected into the mass of the liquid contained in the reactor, substantially parallel on the surface, to perfect its dispersion and its transfer within the liquid.
  • the ejection mode of the gas / liquid dispersion makes it possible to limit the height between the place of ejection in the liquid mass and the point of discharge of the liquid, the transfer of the gas taking place essentially, and this in the absence of an axial mixing member, in a zone of the liquid phase delimited in its lower part by the stirring means, vertically, by the walls of the reactor and in its upper part by the surface of the liquid.
  • this second zone called the mixing zone
  • the contacting of the oxidizing gas and of the compounds to be oxidized, and therefore the oxidation continues.
  • the part of the undissolved oxidation gas at the end of its ascent to the surface is recovered in the sky.
  • the method according to the invention by its mode of contacting and circulation of the gas in the liquid thus ensures a high mass flow of oxidizing gas per unit of volume of liquid contained in the reactor, and per unit of time.
  • the method of the invention allows a transfer of oxidizing gas per m 3 of reaction volume, per hour and per bar of partial pressure of oxidizing gas such as, with:
  • F mass of oxidizing gas / m 3 of liquid reaction volume / h
  • This type of oxidation uses masses of oxidizing gas per unit volume of treated liquids which can be very large.
  • Those skilled in the art traditionally use reactors such as bubble columns with high residence times for their implementation to allow a significant transfer of gas per unit volume of liquid. It can also use recirculation systems by external loop according to the prior art.
  • the process of the invention makes it possible to obtain within the reactor high mass flows of oxidizing gas, per unit of volume of liquid treated, by improving the transfer thanks in particular to the pre-reaction zone provided and to the internal recirculation of the gas. of oxidation according to the invention.
  • the flow of recirculated gas is at least equal to the flow of gas introduced and advantageously at least equal to three or four times this flow.
  • the recirculation flow is optimized, improved, compared to that of the technologies of the prior art.
  • the liquid is introduced and discharged continuously.
  • the liquid is introduced and discharged discontinuously.
  • At least one means for introducing the liquid into the reactor introduces the liquid near the stirring means so that at least part of the liquid flow in the space comes directly from said means for introducing the liquid into the reactor.
  • the oxidation reaction in the pre-reaction zone will be all the more efficient as the liquid brought to the arrival of the aspirated gas will contain more elements to be oxidized. It is therefore a privileged location for the introduction of liquid rich in compounds to be oxidized in the reactor.
  • the liquid is drawn off in a third zone of the reactor, known as the withdrawal zone situated in the lower part of the reactor, and the withdrawn liquid has an undissolved gas content of less than 5% by volume of gas / volume of liquid.
  • the liquid thus withdrawn under the stirring means, and under the oxidation gas supply when this is done in the liquid will generally not need subsequent degassing, it will not be necessary to add in downstream, a degassing reactor.
  • the reactor useful for implementing the process of the invention can be optimized from the point of view of its size.
  • the recirculation of the oxidation gas and its dispersion in the liquid associated with adequate stirring of the latter (without having to manage there the maintenance of a vortex) create in the whole of the reactor a perfect mixture of the gas and liquid, while allowing a withdrawal of treated gas-poor liquid in the lower part of the reactor, in the withdrawal zone.
  • the excellent gas / liquid mixture within the reactor can be appreciated by the level of gas retention (or gas holdup in English) obtained within the reactor which can reach 50% or more.
  • the oxidation gas contains at least 20% of oxygen, preferably at least 80% of oxygen, preferably still more than 98% of oxygen.
  • the oxidation gas contains ozone.
  • the reactor defines a closed volume.
  • the process of the invention if it can be implemented - in the case of reaction carried out at a pressure close to atmospheric pressure - in a reactor whose sky is a protected, but not enclosed, space provided above a liquid phase, it is more advantageously implemented in a reactor delimiting a closed volume.
  • the liquid is an aqueous liquid.
  • the oxidation gas is supplied continuously from an external source.
  • the supply of oxidation gas takes place at a controlled flow rate of introduced gas.
  • the supply of oxidation gas takes place at a pressure of oxidizing gas in the controlled gaseous space.
  • the oxidation gas is introduced into the liquid and / or the gas: - directly, in the gaseous atmosphere; and / or - directly within the liquid contained in the reactor, advantageously by means of a torus pierced with suitable orifices; and or - In a space provided in the gaseous sky, totally or partially isolated from said sky, so that it is directly sucked up to be dispersed in the liquid.
  • a purge of the gaseous sky is carried out at a point located at a sufficient distance from the place of introduction of the oxidation gas so as not to disturb the operation of the reactor.
  • the purging is carried out at a point sufficiently distant from the place of introduction of the oxidation gas.
  • the stirring means comprise a self-aspirating turbine connected by a shaft to a drive system.
  • a self-aspirating turbine having a high modified Froude number is used, (the definition of the modified Froude number (Fr * ) having been recalled in the introduction to the present text); thus, preferably said self-aspirating turbine has a number of
  • a self-aspirating turbine the Froude number of which was approximately 1.5, made it possible to obtain a gas recirculation flow rate between the gaseous sky and the liquid equal to 4 times the gas flow rate introduced into the reactor.
  • the Applicant has obtained, under such conditions, transfer coefficients between 1 and 10 s "1 , ie approximately 1000 times greater than those of bubble columns, 10 times greater than those of conventional stirred reactors of STR type or those of agitated reactors fitted with a recirculation loop.
  • the self-aspirating turbine (pump turbine), advantageously used within the framework of the implementation of the method of the invention, can be of different types, in any event, said turbine is of a type generating a flow radial, substantially parallel to the surface of the liquid.
  • the shaft of the turbine is a hollow shaft, comprising at the level of the gaseous sky at least one light; the gas being sucked into the light in the hollow shaft.
  • the turbine shaft is a solid shaft coaxially wrapped by a jacket, advantageously cylindrical, a space being provided between the solid shaft and the jacket, which communicates at its upper end with the gaseous sky and opens out into its lower end at the level of the pre-reaction zone in the self-aspirating turbine, the gas being sucked at the level of the gaseous sky in the space formed between the shaft and the jacket.
  • the self-aspirating turbine comprises at least two horizontal discs, an upper disc and a lower disc, connected to each other by fins (or radial blades); a space is provided between the upper disc and the shaft of the turbine, space ensuring the contribution of liquid flow in the immediate vicinity of the end of the pipe (gas suction) to the pre-reaction zone located at the base of the shaft between the turbine discs.
  • the use of such a disc turbine ensures excellent radial dispersion of the gas in the liquid in the "mixing zone". .
  • the solid materials present are suspended.
  • the reactor in which the method of the invention is implemented is equipped on its internal walls with anti-vortex blades. These are intended to prevent the appearance of a vortex detrimental to the correct gas / liquid mixture.
  • the oxidation process of the invention generally involves exothermic reactions.
  • at least partial removal of the calories released is advantageously achieved by means of cooling arranged inside and / or outside the reactor.
  • Such cooling means and their different modes of arrangement are known to those skilled in the art. They operate in a conventional manner: a heat transfer fluid generally circulates within them.
  • the oxidation process of the invention may also require, for its start-up, heating of the charge (liquid charged with compounds to be oxidized,). Independently of the start-up step, it may prove necessary to supply calories to the load treated, in particular in the event that the oxidation process involved would not allow the self-thermal conditions to be reached. In that case, advantageously, the liquid is heated. For this, conventional means are used.
  • the oxidation implemented according to the process of the invention can be a catalytic oxidation.
  • the catalyst can intervene in the gaseous sky (heterogeneous catalysis, generally) and / or in the liquid (heterogeneous and / or homogeneous catalysis), and / or in or around the tree, depending on whether it s 'acts of a hollow shaft, or a solid shaft, in the context of the use of a self-aspirating turbine, (heterogeneous catalysis, generally), and / or in the turbine.
  • the process of the invention is advantageously implemented with:
  • Applicant recommends the implementation of the oxidation, according to the invention, under the following temperature ( ⁇ ) and pressure in the gaseous sky (P) conditions: a) 20 ° C ⁇ ⁇ 200 ° C and 10 5 Pa ⁇ P ⁇ 10 7 Pa (between 1 and 100 bars); advantageously:
  • the oxidation is advantageously carried out in the presence of at least one initiator of radical reactions, in particular chosen from hydrogen peroxide, ultraviolet, metals or metallic compounds type catalysts, OH ions "and quinones ..
  • the implementation of the method of the invention makes it possible, under mild conditions of temperature and pressure (see in particular the advantageous and preferred ranges stated above) to minimize the residence time of the liquid in the reactor.
  • the results obtained during the implementation of the oxidation of sulphides or the oxidation of effluents with a view to improving their biodegradability, according to the invention, are particularly remarkable.
  • Figures 1 to 3 schematically show, in section, a reactor equipped with means for the implementation of three variants of the process d oxidation according to the invention.
  • the three figures show: - in L, the liquid to be treated contained in the reactor; the liquid is introduced into the upper part of the reactor and drawn off at the bottom, continuously or not.
  • the oxidation gas (containing non-oxidizing gas G'which is not consumed is purged from the gaseous head 20),
  • the closed reactor equipped with a self-aspirating turbine 2.
  • the self-aspirating turbine 2 is a disc turbine. It comprises an upper disc 2 'and a lower disc 2 ", secured by means of fins or radial blades 2".
  • a central space 8 is formed, into which the gas supply device penetrates (hollow shaft 3a or solid shaft 3b). Liquid is drawn into the turbine 2 via the space 8 for a gas / liquid mixture.
  • Turbine 2 is driven in rotation, via the shaft (3a, 3b), thanks to the drive system (motor) 4.
  • Reactor 1 is also equipped with: - anti-vortex counter-blades 6, on its internal walls; - A cooling circuit 10, in said internal walls, a circuit in which water, as refrigerant, circulates.
  • the oxidation gas G (oxygen VSA, for example) is introduced, into the liquid in the lower part of the reactor 1, through a torus 9a, pierced with suitable orifices .
  • the gas G after a first crossing of the agitated liquid, is found in part in the gaseous sky 20, it is then sucked through lights 5a, in the hollow shaft 3a.
  • the hollow shaft 3a Including in its lower part, at and in the self-aspirating turbine, at least one slot (not referenced), the hollow shaft 3a delivers the aspirated gas into the liquid via a first step of mixing the gas with liquid L, present within the turbine, this first mixing step taking place in the pre-reaction zone 15 located in the turbine, around the shaft.
  • a part of the compounds reacts, at the same time as a first gas / liquid dispersion takes place.
  • This step is followed by a radial ejection of the dispersion in L.
  • the quality of the gas / liquid mixture within the reactor can result in a gas retention greater than 50%.
  • This mixing takes place in the mixing zone 16 in the reactor.
  • the gas is, in part, recirculated several times.
  • a device for purging G ' is provided on the upper wall of the reactor 1.
  • the treated liquid is discharged by drawing it off at the bottom of the reactor. This withdrawal is carried out in particular in the withdrawal zone 17 arranged below the turbine and below the gas supply torus G.
  • the oxidation gas G is introduced into the gaseous head 20, in the upper part of the reactor 1, through an injection device 9b. It is then directly sucked into the space provided around the solid shaft 3b, space provided between the solid shaft 3b and a cylindrical jacket 12 arranged around the latter at the orifice 5b, drilled in the jacket 12, to be delivered at and in the self-aspirating turbine 2.
  • the jacket 12 has an adequate height (variant shown) or suitable orifices, for the delivery of gas in the immediate vicinity of the space 8 for the arrival of the liquid.
  • the gas is thus perfectly mixed with the liquid, and recirculates, according to a variant of the mode previously described.
  • the oxidation gas G oxygen ozone, for example
  • the gaseous sky 20 into a space 13. It is introduced by means 9c into said space 13, where it is sucked into the space provided between the solid shaft 3b and the jacket 12 (suction through the orifice 5b formed in the jacket 12) to be delivered to, and in the self-aspirating turbine 2, in accordance to the previous variants.
  • Such a mode of introduction of the gas G which one could qualify as protected introduction, limits the direct withdrawal of the gas G by the purge system.
  • the space 13 formed in the gaseous sky 20 is only partially isolated from the gaseous sky 20; which authorizes the recycling of the gas through the orifices 5b inside this space 13.
  • Example 1 In a first series of tests, the Applicant oxidized (by oxygen), according to the process of the invention, white stationery liquors, having the following characteristics: - sulfur concentration 18 g / l (44 g / l Na 2 S)
  • the liquors, after oxidation, are used as a source of alkali in the papermaking process.
  • the non-oxidized liquor is continuously introduced into the top of a reactor equipped with a self-aspirating turbine.
  • the output of oxidized liquor is regulated by a level probe.
  • the withdrawal is carried out in the lower part of the reactor.
  • Oxidation is carried out at constant pressure, a pressure regulator making it possible to maintain the pressure by adding oxidation gas as and when oxygen is consumed.
  • the rise in temperature is only due to the calories released by the reaction.
  • the reaction temperature is regulated by the intervention of an external cooling coil.
  • an oxidation gas containing inert gases case of test 2
  • a purge proportional to the flow of incoming gas is carried out. This purge is carried out on the gases contained in the headspace of the reactor. It mainly eliminates the inert gases introduced while maintaining oxygen consumption very close to stoichiometry.
  • the reactor used is of the type shown in FIG. 1.
  • the reactor used and the self-aspirating turbine with which it is equipped are made of 316L stainless steel.
  • the reactor and its turbine have the following characteristics: Internal diameter of the tank: 0.8 m
  • Useful reactor volume 300 to 450 I Height of the assembly (engine + tank): 2.7 m
  • the residence times of the liquor L in the reactor are particularly short for the temperatures chosen. This makes it possible to obtain very compact installations (time ⁇ 13 min with non-pure gas). For all of the tests, oxygen consumption remains close to stoichiometry.
  • Example 2 The Applicant has oxidized, wet, according to the process of the invention, spent soda from refineries, having the following characteristics:
  • the effluent is continuously introduced into the top of a reactor equipped with a self-aspirating turbine; its output after oxidation is regulated by a level probe.
  • the withdrawal is carried out in the lower part of the reactor.
  • a pressure regulator keeps the pressure by supplying oxygen as it is consumed.
  • the reactor used is identical to that of Example 1.
  • the parameters of the oxidation process (using oxygen) used are indicated in Table 3 below. Table 3
  • the Applicant has oxidized (with oxygen, 99.9 mol% pure), by the wet route, according to the process of the invention, an effluent from the chemical industry.
  • the effluent considered is mainly composed of organo-nitrogen molecules, which are very difficult to biodegrade. It has the following main characteristics:
  • the reactor used for this test is also here of the type shown in FIG. 1. It is made of stainless steel, equipped with a self-aspirating turbine made of Hastelloy C22.
  • the reactor and the turbine have the following characteristics: Internal diameter of the tank: 12 cm
  • the absolute pressure of the reactor is 20 bars. After 45 minutes of residence time of the effluent in question in the reactor, we observe:
  • the oxidizing treatment always carried out under mild conditions of pressure and temperature, allows a discharge of the effluent to an appropriate biological treatment station which will eliminate the rest of the organic and nitrogen pollution.
  • the Applicant has evaluated the performance of the process of the invention in the context of ozone discoloration. It implemented, on a laboratory scale, on the same colored effluent, containing 100 ppm of soluble COD, fading tests: a) in a stirred reactor, equipped with a self-aspirating turbine (reactor identical to that of Example 3); b) in a bubble column type reactor. In each of the two cases, a color reduction of 66%, measured according to the Pt / Co index, for a wavelength of 455 nm, was obtained. The test conditions are shown in Table 4 below.
  • the kinetics of ozonation of dyes are much faster than the kinetics of oxidation of COD.
  • part of the oxidant ozone
  • the supply of oxidant is no longer limiting, with respect to the discoloration kinetics, an excellent homogeneity of the medium is obtained, it is under these conditions possible, by controlling the time of stay, to implement rapid fading reactions, while the reduction in COD remains below the detection limit.
  • a gain of around 40% on ozone consumption and a factor of 3 on reactor volumes was obtained by applying the process of the invention to discoloration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)
  • Saccharide Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention a pour objet un procédé d'oxydation de type oxydation par voie humide ou ozonation d'un liquide contenu dans un réacteur. Le gaz du ciel gazeux (20) est aspiré dans le liquide, la partie non dissoute dans le liquide est récupérée dans le ciel gazeux. Le moyen d'agitation (2) crée un flux de liquide à proximité immédiate de l'extrémité du conduit (3) débouchant dans le liquide et génère une dispersion gaz/liquide dans la zone (15), au sein de laquelle le liquide réagit avec le gaz, puis véhicule et éjecte en sa périphérie ladite dispersion, de telle sorte que le gaz se dissout dans le liquide dans la zone (16) s'étendant du moyen d'agitation (2) à la surface du liquide. Ledit procédé convient tout particulièrement pour les oxydations mettant en oeuvre des quantités d'oxygène ou d'ozone importantes. Il est notamment appliqué pour l'oxydation de liqueurs de papeterie.

Description

Procédé d'oxydation de type oxydation par voie humide ou ozonation. La présente invention concerne un procédé d'oxydation de type oxydation par voie humide ou ozonation.
Elle se rapporte plus particulièrement à un procédé d'oxydation à l'aide d'un gaz d'oxydation d'un liquide contenu dans un réacteur comprenant au moins un moyen d'introduction du gaz dans le réacteur et au moins un moyen d'introduction du liquide dans le réacteur, au moins un moyen d'évacuation du liquide, au moins un moyen d'agitation du liquide, au moins un conduit permettant l'aspiration du gaz présent dans le réacteur et débouchant dans le liquide contenu dans le réacteur, procédé dans lequel le liquide et le gaz sont introduits dans le réacteur en quantités telles qu'un ciel gazeux est formé au dessus du liquide contenu dans le réacteur, dans lequel, dans une étape de mélange du gaz et du liquide, le gaz du ciel gazeux est aspiré dans le conduit et introduit dans le liquide présent dans le réacteur au niveau du moyen d'agitation du liquide de manière à dissoudre au moins une partie du gaz dans le liquide, et dans lequel dans une étape de récupération, la partie du gaz qui est introduite dans le liquide présent dans le réacteur et qui n'est pas dissoute dans le liquide est récupérée dans le ciel gazeux. L'invention concerne notamment la technologie d'Oxydation par
Voie Humide (OVH) ou « wet oxydation », laquelle est de façon classique mise en œuvre dans différents types de réacteurs gaz/liquide, et notamment, les colonnes à bulles, les réacteurs tubulaires, mais aussi les réacteurs agités conventionnels ou non. Un procédé de type OVH est notamment décrit dans un article présenté aux JIE (Journées Internationales de l'Eau) de Poitiers en 1998 et intitulé : "ATHOS, une solution innovante pour l'élimination des boues" (Proceedings JIE Poitiers 23-25 septembre 1998, Tome 2, p 69).
Les procédés OVH fonctionnent généralement de la manière suivante : le traitement s'effectue avec de l'air en tant qu'oxydant, à 250- 270°C et sous 85-120 bars, dans des réacteurs présentant un ratio hauteur/diamètre compris entre 5 et 20. On utilise en général, pour ces installations des réacteurs de type colonne à bulle où le gaz oxydant est injecté à la base à co-courant ou à contre-courant du liquide. La hauteur de colonne est fonction des rendements de transfert gaz/liquide. Les coefficients de transfert sont faibles (généralement de 10"4 à 10"2 s"1), ce qui en fait des réacteurs particulièrement adaptés pour les réactions à cinétiques lentes (régime chimique). Les volumes réactionnels sont importants et les temps de séjour longs (généralement plusieurs heures). L'article cité ci-dessus décrit également un procédé connu sous le nom de « Aqueous Phase Oxydation process »qui consiste à traiter des boues de stations biologiques avec de l'oxygène pur, dans un réacteur tubulaire, placé dans un forage profond de 1 200 m, constitué de deux tubes principaux concentriques, un pour l'injection de la boue épaissie et de l'oxygène, et l'autre servant à la remontée de la boue traitée.
Un réacteur agité conventionnel (Stirred Tank Reactor ou STR) est décrit dans l'article de M. Lawrence M. Litz, dans CEP, Nov. 1985, pp 36- 39, intitulé : "A Novel Gas-Liquid Stirred Tank Reactor"). Au sein d'un tel réacteur agité, la distribution des gaz est assurée généralement par un tore percé placé à la base du réacteur, en dessous de l'agitateur mécanique conçu, en principe, de manière à disperser le gaz dans la totalité du milieu réactionnel. Ce type de réacteur permet d'obtenir des coefficients de transfert plus élevés, en fonction entre autres de la vitesse d'agitation et de la nature du mobile, conduisant à des temps de séjour plus faibles que pour les deux types de réacteurs cités ci-dessus.
Il est connu de WO-A-99/04088, un procédé d'oxydation de liqueurs blanches ou noires mis en œuvre sous pression, à haute température, dans un réacteur agité équipé d'un agitateur multi-pales, permettant un mélange gaz/liquide, axial et radial. En aval dudit réacteur, est disposé un séparateur gaz/liquide destiné à séparer les gaz non dissous de la liqueur oxydée. Il est connu de WO-A-96/13463, un procédé d'oxydation d'effluents, dans un réacteur non conventionnel en présence d'un catalyseur hétérogène, lequel intervient dans la phase gazeuse, ménagée au-dessus de la phase liquide. Le liquide est agité, par recirculation, au moyen d'une pompe extérieure . Disposé dans la boucle de recirculation, un mélangeur en ligne mélange intimement du gaz avec la phase liquide.
Il est connu de US-A-4328 175 et US-A- 4454077, des réacteurs équipés de moyen de mélange gaz/liquide à flux descendant, constitué d'une turbine hélicoïdale qui crée en surface de la phase liquide un vortex. Le gaz est injecté dans le ciel gazeux du réacteur - le ciel gazeux étant l'espace ménagé au dessus de la surface du liquide - et est entraîné, mélangé au liquide par effet vortex, au sein de la phase liquide. Le débit de pompage créé par l'hélice permet de disperser le mélange gaz/liquide dans l'ensemble du volume du réacteur. II est connu de US-A-4 919 849 et EP-A-0 579 251 un réacteur agité équipé d'une turbine hélicoïdale, dans lequel, au dessus des moyens d'agitation de la turbine - agitateur à flux axial descendant - sont prévus des tubes d'injection du gaz oxydant agencés horizontalement sous lé niveau minimal de liquide, autour d'une portion creuse de l'arbre d'agitation. Le gaz, délivré à l'extrémité desdits tubes, est repris par le débit de pompage descendant créé par la turbine hélicoïdale (agitateur à flux axial), placée à l'intérieur d'un cylindre creux. La turbine dont la rotation assure la formation du vortex désiré disperse le mélange gaz/liquide vers le fond du réacteur. II est connu de EP-A-0 754489 un réacteur agité mettant en jeu une communication entre le ciel gazeux et le cœur de la phase liquide. Injecté dans le ciel gazeux, le gaz est aspiré dans la phase liquide par l'intermédiaire de canalisations en forme de « L ». Elles sont disposées autour de l'arbre de l'agitateur, leurs extrémités supérieures se situant dans le ciel gazeux, tandis que leurs extrémités inférieures débouchent derrière les pales dudit agitateur, en périphérie de celui-ci. L'agitateur est une turbine radiale à pales plates qui assure à la fois l'aspiration en générant une dépression dans la phase liquide et le mélange du gaz dans le liquide.
Les dispositifs mettant en jeu une communication entre le ciel gazeux et le cœur de la phase liquide assurent une recirculation du gaz dans le réacteur ; dans ce type de dispositifs, le débit de gaz recirculé peut être corrélé à un nombre sans dimension dit « nombre de Froude modifié » (Fr*), défini par la formule ci-après :
_ . N2 x d2
Fr = — - ; avec : g x l N : vitesse d'agitation en tours/seconde, d : diamètre du mobile d'agitation en m, g : accélération de la pesanteur en m/s2, I : hauteur d'immersion de la turbine en m.
L'appareil décrit dans EP-A-0 754 489, permet d'atteindre une valeur du « nombre de Froude modifié » de 0,64 (voir l'exemple).
Le procédé de l'invention est un procédé d'oxydation par un gaz d'oxydation de composés dissous ou dispersés dans un milieu liquide. Il s'agit d'un procédé d'oxydation qui peut tout aussi bien être mis en œuvre sur des solutions que sur des dispersions. Il convient notamment pour l'oxydation des boues de stations d'épuration par voie biologique, l'oxydation de minerais contenant du soufre en hydrométallurgie, l'oxydation de sulfures dans les liqueurs de papeteries, il permet aussi par exemple entre autres applications, d'améliorer la biodégradabilité de composés dissous mis en œuvre dans un réacteur disposant d'un ciel gazeux, il s'applique tout particulièrement à l'OVH ou à l'ozonation.
Le terme ciel gazeux est utilisé indifféremment pour désigner l'espace situé au-dessus de la phase liquide dans le réacteur et le gaz contenu dans cet espace ; le contexte permet sans ambiguïté à l'homme du métier de savoir la signification à accorder à ce terme lorsque la distinction s'avère nécessaire . Le terme gaz d'oxydation utilisé dans la description signifie un gaz contenant seul ou en mélange un gaz oxydant, le gaz oxydant étant l'oxygène ou l'ozone. Ainsi, le terme gaz oxydant utilisé dans la description signifie oxygène ou ozone. Le procédé selon l'invention permet notamment d'augmenter les performances des procédés d'oxydation considérés par rapport à l'art antérieur.
Il permet aussi grâce à un recyclage poussé du gaz d'oxydation d'améliorer la consommation du gaz oxydant contenu dans le gaz d'oxydation, permettant ainsi notamment d'utiliser des gaz contenant des quantités importantes de gaz inertes tout en limitant les temps de réaction et les volumes réactionnels.
Dans le cas des réactions en milieu liquide, mettant en œuvre des gaz, il est en effet possible de considérer schématiquement deux étapes : la première consistant à mettre I' oxydant au contact du composé à oxyder, c'est, dans le contexte qui nous intéresse ici l'étape de transfert ou transport du gaz, la seconde est la réaction chimique. La cinétique globale de la réaction gaz/liquide sera donc dépendante de l'étape la plus lente. L'invention est particulièrement adaptée pour, les réactions d'oxydation en milieu liquide par l'oxygène ou l'ozone, dans le cas où la seconde étape est très rapide par rapport à la première. L'élément déterminant pour la vitesse de réaction est le transfert du gaz et la mise en contact des composés oxydants et à oxyder.
Le procédé selon l'invention permet une mise au contact particulièrement rapide et efficace d'une quantité très importante de composés à oxyder avec les composés oxydants par un apport massif des composés à oxyder du liquide vers le gaz, en une zone du réacteur et selon un mode judicieusement choisis, formant ainsi une dispersion gaz liquide. Cette mise en contact permet de transférer du gaz dans le liquide et de commencer l'oxydation ; elle est suivie d'une éjection de la dispersion gaz/liquide formée lors de cette première étape vers une secondé zone du réacteur contenant la plus grande part de la masse de liquide contenue dans le réacteur afin d'y mélanger la première dispersion à l'ensemble du liquide du réacteur afin d'y poursuivre le transfert ainsi que l'oxydation commencés. La partie du gaz d'oxydation non dissoute dans la phase liquide à l'issue de ces deux étapes est récupérée dans le ciel gazeux. Dans une troisième zone, située en dessous du mobile d'agitation, et en dessous de l'alimentation en gaz d'oxydation (si celle-ci se fait dans la phase liquide), on peut procéder au soutirage du liquide traité, celui-ci étant soutiré sous les moyens d'agitation et en dehors de la zone ou s 'effectue la remontée du gaz non dissous vers la surface, il ne contient pas ou peu de gaz non dissous, ce qui permettra en générai son utilisation sans dégazage ultérieur.
Grâce au procédé de l'invention, les vitesses de transfert de gaz oxydant ne sont plus un facteur limitant vis-à-vis des vitesses réactionnelles de composés rapidement oxydables. Ainsi, quoique sans se limiter à ce contexte, on notera que le procédé de l'invention est tout particulièrement adapté aux réactions d'oxydation qui nécessitent des flux massiques élevés en gaz oxydant.
Selon une de ses caractéristiques essentielles, le procédé selon l'invention est caractérisé en ce que lors de l'étape de mélange du gaz et du liquide, le moyen d 'agitation du liquide crée un flux de liquide dans l'espace à proximité immédiate de l'extrémité du conduit débouchant dans le liquide et génère une dispersion gaz/liquide dans la zone au voisinage dudit espace, dite zone pré-réactionnelle, au sein de laquelle le liquide réagit avec le gaz, puis véhicule et éjecte en sa périphérie ladite dispersion gaz/liquide selon une direction sensiblement horizontale, de telle sorte que le gaz se dissout dans le liquide dans la zone s'étendant du moyen d'agitation à la surface du liquide, dite zone de mélange.
Le procédé selon l'invention assure ainsi un flux élevé en gaz d'oxydation transféré vers le liquide contenu dans le réacteur. Le procédé de l'invention assure donc une consommation très rapide du gaz oxydant, et ceci, de par son mode de re-circulation du ciel gazeux vers le liquide, mais aussi et surtout de par son mode de circulation conjoint de liquide vers le point d'amenée du gaz aspiré, de telle sorte qu'une première zone avantageusement alimentée par du gaz d'oxydation en provenance du ciel gazeux et par un flux de liquide se crée à la base du conduit d'amenée du gaz. Des composés, oxydants et à oxyder, vont se rencontrer dans cette première zone et réagir immédiatement, c'est la raison pour laquelle cette zone est appelée zone pré-réactionnelle. La partie du gaz d'oxydation n'ayant pas réagi, forme avec le liquide une dispersion qui est véhiculée par les moyens d'agitation vers la périphérie de ceux-ci pour être éjectée dans la masse du liquide contenu dans le réacteur, sensiblement parallèlement à la surface, pour y parfaire sa dispersion et son transfert au sein du liquide.
Le mode d'éjection de la dispersion gaz/liquide ( parallèlement à la surface) permet de limiter la hauteur entre le lieu d'éjection dans la masse liquide et le point d'évacuation du liquide, le transfert du gaz s'effectuant en effet pour l'essentiel, et ceci en l'absence d'organe de mélange axial, dans une zone de la phase liquide délimitée en sa partie inférieure par les moyens d'agitation, verticalement, par les parois du réacteur et en sa partie supérieure par la surface du liquide. Dans cette deuxième zone, dite zone de mélange, la mise en contact du gaz oxydant et des composés à oxyder, et par conséquent l'oxydation se poursuivent. La partie du gaz d'oxydation non dissoute à l'issue de sa remontée vers la surface est récupérée dans le ciel. Le procédé selon l'invention de par son mode de mise en contact et de circulation du gaz dans le liquide assure ainsi un flux massique élevé en gaz oxydant par unité de volume de liquide contenu dans le réacteur, et par unité de temps.
En effet, si on considère le flux massique de gaz oxydant, intervenant par unité de volume du liquide et par unité de temps, le procédé de l'invention, permet un transfert de gaz oxydant par m3 de volume réactionnel, par heure et par bar de pression partielle de gaz oxydant tel que, avec :
F = masse de gaz oxydant/m3 de volume réactionnel liquide/h On a F > 0,1 kg/m3/h et pouvant atteindre 750 kg/m3/h, si le gaz oxydant est l'oxygène (kg d'oxygène pur), avec une pression partielle d'oxygène comprise entre 1 et 10 bar. On a F > 0,2 kg/m3/h, et pouvant dépasser 40 kg/m3/!., si le gaz oxydant est l'ozone (kg d'ozone pur), avec une pression partielle
«_ d'ozone comprise entre 0,05 et 0,5 bar En fonction des applications envisagées, les flux de gaz mis en œuvre pourront notamment être (sans que cela constitue une limitation du procédé de l'invention).
- Dans le cas de l'oxydation par l'oxygène de composés soufrés :
0,1 kg 02/m3/h < F < 750 kg O2/m3/h; - Dans le cas de l'oxydation par l'oxygène de boues de station biologique :
1 kg O2/m3/h < F < 200 kg O2/m3/h ;
- Dans le cas de l'oxydation par l'oxygène d'effluents peu biodégradables : 2 kg O2/m3/h < F < 100 kg O2/m3/h
- Dans le cas de l'oxydation par l'ozone:
0,01 kg O3/m3/h < F < 40 kg O3/m3/h ; plus généralement : 0,2 kg 03/m3/h < F < 40 kg O3/m3/h.
Ce type d'oxydation met en œuvre des masses de gaz oxydant par unité de volume de liquides traités pouvant être très importantes. L'homme du métier fait traditionnellement appel pour leur mise en œuvre à des réacteurs tels des colonnes à bulles avec des temps de séjour élevés pour permettre un transfert de gaz important par unité de volume de liquide. Il peut aussi faire appel à des systèmes de recirculation par boucle externe selon l'art antérieur. Le procédé de l'invention permet d'obtenir au sein du réacteur des flux massiques élevés de gaz oxydant, par unité de volume de liquide traité, par amélioration du transfert grâce notamment à la zone pré- réactionnelle ménagée et à la recirculation interne du gaz d'oxydation selon l'invention.
Le débit de gaz recirculé est au moins égal au débit de gaz introduit et avantageusement au moins égal à trois ou quatre fois ce débit. Le débit de recirculation est optimisé, amélioré, par rapport à celui des technologies de l'art antérieur. Selon un mode de réalisation particulier de l'invention, le liquide est introduit et évacué en continu.
Selon un autre mode de réalisation particulier de l'invention, le liquide est introduit et évacué en discontinu.
Selon un mode de réalisation particulièrement avantageux de l'invention, au moins un moyen d'introduction du liquide dans le réacteur introduit le liquide à proximité du moyen d'agitation de manière à ce qu'au moins une partie du flux de liquide dans l'espace provienne directement dudit moyen d'introduction du liquide dans le réacteur. La réaction d'oxydation dans la zone pré-réactionnelle sera en effet d'autant plus efficace que le liquide amené à l'arrivée du gaz aspiré contiendra plus d'éléments à oxyder. Il s'agit donc d'une localisation privilégiée pour l'introduction de liquide riche en composés à oxyder dans le réacteur.
Avantageusement, on soutire le liquide dans une troisième zone du réacteur dite zone de soutirage située en partie basse du réacteur et le liquide soutiré présente une teneur en gaz non dissous inférieure à 5% en volume de gaz / volume de liquide. Le liquide ainsi soutiré sous les moyens d'agitation, et sous l'alimentation en gaz d'oxydation lorsque celle-ci se fait dans le liquide n'aura en général pas besoin de dégazage ultérieur, il ne sera pas nécessaire d'ajouter en aval, un réacteur de dégazage. Le réacteur utile à la mise en œuvre du procédé de l'invention pourra être optimisé du point de vue de son encombrement. Ainsi, la recirculation du gaz d'oxydation et sa dispersion dans le liquide , associées à une agitation adéquate de ce dernier (sans avoir à y gérer le maintien d'un vortex) créent dans l'ensemble du réacteur un parfait mélange du gaz et du liquide, tout en permettant un soutirage de liquide traité pauvre en gaz en partie basse du réacteur, dans la zone de soutirage . L'excellent mélange gaz/liquide au sein du réacteur peut être apprécié par le niveau de la rétention gazeuse (ou gas holdup en anglais) obtenue au sein du réacteur qui peut atteindre 50 % ou plus.
Selon un mode d'application particulier de l'invention, le gaz d'oxydation contient au moins 20% d'oxygène, de préférence au moins 80% d'oxygène, de préférence encore plus de 98% d'oxygène.
Selon un mode d'application particulier de l'invention, le gaz d'oxydation contient de i'ozone.
De préférence, le réacteur délimite un volume clos. En effet, le procédé de l'invention, s'il peut être mis en œuvre - dans le cas de réaction réalisée à une pression proche de la pression atmosphérique - dans un réacteur dont le ciel est un espace protégé, mais non clos, ménagé au dessus d'une phase liquide, il est plus avantageusement mis en œuvre dans un réacteur délimitant un volume clos. De préférence, le liquide est un liquide aqueux.
Avantageusement, le gaz d'oxydation est alimenté en continu à partir d'une source extérieure.
Selon un mode de réalisation particulier de l'invention, l'alimentation en gaz d'oxydation se fait à débit de gaz introduit contrôlé. Avantageusement, l'alimentation en gaz d'oxydation se fait à pression de gaz oxydant dans le ciel gazeux contrôlée.
De manière préférentielle, lors de son alimentation dans le réacteur, le gaz d'oxydation est introduit dans le liquide et/ou le gaz: - directement, dans le ciel gazeux ; et/ou - directement au sein du liquide contenu dans le réacteur, avantageusement au moyen d'un tore percé d'orifices adéquats ; et/ou - dans un espace ménagé dans le ciel gazeux, isolé totalement ou partiellement dudit ciel, de sorte qu'il soit directement aspiré pour être dispersé dans le liquide.
Il sera généralement délivré dans le liquide contenu dans le réacteur par l'intermédiaire d'un tore, ou dans le ciel gazeux.
Avantageusement, durant la mise en œuvre du procédé, une purge du ciel gazeux est réalisée en un point situé à une distance suffisante du lieu d'introduction du gaz d'oxydation pour ne pas perturber le fonctionnement du réacteur. En effet, lorsque des gaz non oxydants sont présents dans le ciel gazeux, leur accumulation nuit au déroulement de la réaction d'oxydation, pouvant même conduire à son arrêt ; il est donc nécessaire de purger le ciel gazeux pour diminuer la concentration en ces gaz. Afin d'éviter de capter directement le gaz d'oxydation avant qu'il n'ait circulé dans le réacteur, la purge est réalisée en un point suffisamment distant du lieu d'introduction du gaz d'oxydation.
Selon un mode de réalisation particulièrement avantageux de l'invention, les moyens d'agitation comprennent une turbine auto-aspirante reliée par un arbre à un système d'entraînement. Ces moyens d'agitation assurent la mise en oeuvre du procédé de l'invention, mise en œuvre qui comprend :
- l'agitation de la phase liquide,
- l'aspiration de gaz dans le ciel gazeux et son amenée dans le liquide agité au niveau des moyens d'agitation, la formation de la dispersion gaz/liquide dans la zone pré-réactionnelle , son éjection en périphérie des moyens d'agitation dans la zone de mélange, et le recyclage du gaz dans le ciel gazeux .
De préférence, on utilise une turbine auto-aspirante présentant un nombre de Froude modifié élevé, (la définition du nombre de Froude modifié (Fr*) ayant été rappelée dans l'introduction du présent texte) ; ainsi, de préférence ladite turbine auto-aspirante présente un nombre de
Froude modifié d'au moins 1, avantageusement compris entre 1,5 et 4. Dans le cadre d'essais, une turbine auto-aspirante dont le nombre de Froude était d'environ 1,5 a permis d'obtenir un débit de recirculation du gaz entre le ciel gazeux et le liquide égal à 4 fois le débit de gaz introduit dans le réacteur. La Demanderesse a obtenu, dans de telles conditions, des coefficients de transfert compris entre 1 et 10 s"1, soit environ 1 000 fois supérieurs à ceux de colonnes à bulles, 10 fois supérieurs à ceux de réacteurs agités conventionnels de type STR ou à ceux de réacteurs agités équipés d'une boucle de recirculation.
La turbine auto-aspirante (turbine-pompe), avantageusement utilisée dans le cadre de la mise en œuvre du procédé de l'invention, peut être de différents types, en tout état de cause, ladite turbine est d'un type générant un flux radial, sensiblement parallèle à la surface du liquide.
Selon une première variante, l'arbre de la turbine est un arbre creux, comportant au niveau du ciel gazeux au moins une lumière ; le gaz étant aspiré au niveau de la lumière dans l'arbre creux.
Selon une seconde variante, l'arbre de la turbine est un arbre plein enveloppé coaxialement par une chemise, avantageusement cylindrique, un espace étant ménagé entre l'arbre plein et la chemise, laquelle communique en son extrémité supérieure avec le ciel gazeux et débouche en son extrémité inférieure au niveau de la zone pré- réactionnelle dans la turbine auto-aspirante, le gaz étant aspiré au niveau du ciel gazeux dans l'espace ménagé entre l'arbre et la chemise.
Il est également possible d'agencer autour de l'arbre, plein ou creux, de préférence plein, des canalisations pour le transfert du gaz du ciel gazeux vers la turbine.
Quel que soit le type d'arbre mis en œuvre, celui-ci peut être associé à des turbines auto-aspirantes de différents types. Avantageusement, la turbine auto-aspirante comporte au moins deux disques horizontaux, un disque supérieur et un disque inférieur, reliés l'un à l'autre par des ailettes (ou aubes radiales) ; un espace est ménagé entre le disque supérieur et l'arbre de la turbine, espace assurant l'apport du flux de liquide à proximité immédiate de l'extrémité du conduit (d'aspiration de gaz) vers la zone pré-réactionnelle située à la base de l'arbre entre les disques de la turbine. L'utilisation d'une telle turbine à disques assure une excellente dispersion radiale du gaz dans le liquide dans la "zone de mélange". .
Quelle que soit la géométrie exacte de la turbine, et l'agencement permettant à son arbre de transférer du gaz du ciel gazeux vers la turbine, il est avantageusement prévu de délivrer ledit gaz dans une zone de turbulence maximale (généré avantageusement par l'espace prévu dans le disque supérieur de la turbine à disques).
Dans le but d'éviter toute décantation des matières solides dans le fond du réacteur, de manière avantageuse, les matières solides présentes sont mises en suspension.
Avantageusement, le réacteur au sein duquel le procédé de l'invention est mis en œuvre, est équipé sur ses parois internes de contre- pales anti-vortex. Celles-ci sont destinées à prévenir l'apparition d'un vortex préjudiciable au bon mélange gaz/liquide.
Le procédé d'oxydation de l'invention met généralement en jeu des réactions exothermiques. Dans une telle hypothèse, une évacuation au moins partielle des calories dégagées est avantageusement réalisée grâce à des moyens de refroidissement disposés à l'intérieur et/ou à l'extérieur du réacteur. De tels moyens de refroidissement ainsi que leurs différents modes d'agencement sont connus de l'homme du métier. Ils interviennent de façon classique : un fluide caloporteur circule généralement en leur sein.
Le procédé d'oxydation de l'invention peut par ailleurs nécessiter, pour son démarrage, un chauffage de la charge (liquide chargé en composés à oxyder,). Indépendamment de l'étape de démarrage, il peut s'avérer nécessaire de fournir des calories à la charge traitée, notamment dans l'hypothèse où le procédé d'oxydation en jeu ne permettrait pas d'atteindre les conditions d'auto-thermie. Dans ce cas, avantageusement, le liquide est chauffé. On fait pour cela intervenir des moyens classiques.
En particulier, l'oxydation mise en oeuvre selon le procédé de l'invention peut être une oxydation catalytique. Dans une telle hypothèse, le catalyseur peut intervenir dans le ciel gazeux (catalyse hétérogène, généralement) et/ou dans le liquide (catalyse hétérogène et/ou homogène), et/ou dans ou autour de l'arbre, selon qu'il s'agit d'un arbre creux, ou d'un arbre plein, dans le cadre de l'utilisation d'une turbine autoaspirante, (catalyse hétérogène, généralement), et/ou dans la turbine. Le procédé de l'invention est avantageusement mis en oeuvre avec :
- un contrôle de la température (θ) et de la pression (P) au sein du réacteur, et/ou,
- un contrôle du niveau de liquide au sein dudit réacteur, et/ou, - un contrôle de la quantité de gaz oxydant introduit, et/ou,
- un contrôle de la teneur en gaz oxydant du ciel gazeux, lorsqu'au moins un gaz non oxydant est contenu dans le gaz d'oxydation.
Le procédé de l'invention, performant en lui-même, par le fait que sa mise en œuvre optimise l'utilisation du gaz oxydation, s'est révélé remarquablement adapté dans de nombreux contextes et notamment lorsqu'il est mis en œuvre : a) pour l'oxydation par l'oxygène de liquide constitué de milieux aqueux renfermant des composés soufrés et/ou des composés métalliques, et notamment pour : - l'oxydation partielle ou totale des sulfures de liqueurs de papeterie.
- la synthèse de polysulfures par oxydation de liqueurs de papeterie,
- l'oxydation des sulfures dans les effluents industriels, notamment les souches de raffinerie,
- l'oxydation de sulfites en sulfates, - l'oxydation de thiosulfates en sulfates,
- l'oxydation de composés métalliques tels que FeSO4, FeS, FeCb b) pour l'oxydation par l'oxygène de liquide constitués de milieux aqueux contenant des composés organiques et présentant une demande chimique en oxygène (DCO) comprise entre 5 et 200 g/1, et notamment
" pour l'oxydation d'effluents difficilement biodégradables et/ou renfermant des inhibiteurs de réactions biologiques ; c) pour l'oxydation par l'oxygène de boues organiques dans des milieux aqueux ; d) pour l'oxydation par l'ozone de milieux aqueux; et notamment pour :
- la décoloration à l'ozone d'effluents industriels ou d'eaux de procédé, - l'ozonation des boues biologiques,
- l'ozonation des cyanures,
- l'ozonation de solutions aqueuses renfermant des composés organiques et présentant une demande chimique en oxygène (DCO) comprise entre 10 mg/l et 10 g/l. Dans chacun des contextes a) à d) précisés ci-dessus, la
Demanderesse préconise la mise en oeuvre de l'oxydation, selon l'invention, dans les conditions de température (θ) et de pression dans le ciel gazeux (P) suivantes : a) 20°C < θ < 200°C et 105 Pa < P < 107 Pa (entre 1 et 100 bars) ; avantageusement :
60°C < θ < 150°C et 105 Pa < P < 30.105 Pa (entre 1 et 30 bars) ; de préférence :
100°C < θ < 130°C et 105 Pa <P < 15.105 Pa (entre 1 et 15 bars) ; b) 20°C < θ < 250°C et 105 Pa < P ≤ 107 Pa (entre 1 et 100 bars) ; avantageusement :
80°C < θ < 180°C et 105 Pa < P < 25.105 Pa (entre 1 et 25 bars) ; c) 40°C < θ < 300°C et 106 Pa <P < 15.106 Pa (entre 10 et 150 bars) ; avantageusement :
150°C < θ < 250°C et 2.106 Pa <P < 12.106 Pa (entre 20 et 120 bars) ; d) 5°C < θ < 90°C et 105 Pa < P < 1.5106 Pa (entre 1 et 15 bars) ; avantageusement : 10°C < θ ≤ 30°C et 105 Pa < P < 3.105 Pa (entre 1 et 3 bars).
Dans l'un ou l'autre des contextes a) à d) précités, l'oxydation est avantageusement mise en oeuvre en présence d'au moins un initiateur de réactions radicalaires, notamment choisi parmi le peroxyde d'hydrogène, les ultraviolets, les catalyseurs de type métaux ou composés métalliques, les ions OH" et les quinones..
La mise en œuvre du procédé de l'invention permet dans des conditions douces de température et de pression (voir notamment les plages avantageuses et préférées énoncées ci-dessus) de minimiser le temps de séjour du liquide dans le réacteur. Les résultats obtenus lors de la mise en œuvre de l'oxydation de sulfures ou de l'oxydation d'effluents en vue d'améliorer leur biodégradabilité, selon l'invention, sont particulièrement remarquables.
On se propose maintenant de rappeler les principales caractéristiques du procédé de l'invention, en référence aux trois figures annexées, figures 1 à 3 qui montrent schématiquement, en coupe, un réacteur équipé de moyens pour la mise en oeuvre de trois variantes du procédé d'oxydation selon l'invention.
Sur les trois figures, on a représenté : - en L, le liquide à traiter contenu dans le réacteur ;le liquide est introduit en partie haute du réacteur et soutiré en point bas, en continu ou non.
- En G, le gaz d'oxydation (renfermant du gaz non oxydant G'qui non consommé est purgé du ciel gazeux 20),
- En 1 , le réacteur clos équipé d'une turbine auto-aspirante 2. La turbine auto-aspirante 2 est une turbine à disques. Elle comporte un disque supérieur 2' et un disque inférieur 2", solidaires par l'intermédiaire d'ailettes ou aubes radiales 2'". Dans le disque supérieur 2', est ménagé un espace central 8, dans lequel pénètre le dispositif d'amenée du gaz (arbre creux 3a ou arbre plein 3b). Du liquide est aspiré dans la turbine 2 via l'espace 8 pour un mélange gaz/liquide. La turbine 2 est entraînée en rotation, par l'intermédiaire de l'arbre (3a, 3b), grâce au système d'entraînement (moteur) 4.
Le réacteur 1 est également équipé : - de contre-pales anti-vortex 6, sur ses parois internes ; - d'un circuit de refroidissement 10, dans lesdites parois internes, circuit dans lequel circule, à titre de fluide réfrigérant, de l'eau.
Selon la variante du procédé illustrée sur la figure 1, le gaz d'oxydation G (oxygène VSA , par exemple) est introduit, dans le liquide en partie basse du réacteur 1 , au travers d'un tore 9a, percé d'orifices adéquats. Le gaz G après une première traversée du liquide agité, se retrouve en partie dans le ciel gazeux 20, il est alors aspiré au travers de lumières 5a, dans l'arbre creux 3a. Comportant dans sa partie inférieure, au niveau de et dans la turbine auto-aspirante, au moins une fente (non référencée), l'arbre creux 3a délivre le gaz aspiré, au sein du liquide via une première étape de mélange du gaz à du liquide L, présent au sein de la turbine, cette première étape de mélange s'effectuant dans la zone pré- réactionnelle 15 située dans la turbine, autour de l'arbre. Lors de ce premier mélange, une partie des composés réagit, en même temps qu'une première dispersion gaz/liquide se fait. Cette étape est suivie d'une éjection radiale de la dispersion dans L. La qualité du mélange gaz/liquide au sein du réacteur peut se traduire par une rétention de gaz supérieure à 50 %. Ce mélange s'effectue dans la zone de mélange 16 dans le réacteur. Le gaz est, en partie, recirculé plusieurs fois. Pour éviter une accumulation de gaz non oxydant dans le ciel gazeux 20, on a prévu un dispositif de purge de G', sur la paroi supérieure du réacteur 1. Le liquide traité est déchargé par soutirage en partie basse du réacteur. Ce soutirage est notamment effectué dans la zone de soutirage 17 aménagée en dessous de la turbine et en dessous du tore d'alimentation en gaz G.
Selon la variante du procédé illustré sur la figure 2, le gaz d'oxydation G est introduit, dans le ciel gazeux 20, en partie haute du réacteur 1 , au travers d'un dispositif d'injection 9b. Il est alors directement aspiré dans l'espace ménagé autour de l'arbre plein 3b, espace ménagé entre l'arbre plein 3b et une chemise cylindrique 12 agencée autour de celui-ci au niveau de l'orifice 5b, percé dans la chemise 12, pour être délivré au niveau de et dans la turbine auto-aspirante 2. La chemise 12 présente une hauteur adéquate (variante représentée) ou des orifices adéquats, pour la délivrance du gaz au voisinage immédiat de l'espace 8 d'arrivée du liquide. Le gaz est ainsi parfaitement mélangé au liquide, et recircule, selon une variante du mode précédemment décrit.
Selon la variante représentée sur la figure 3, le gaz d'oxydation G (oxygène ozone, par exemple) est introduit dans le ciel gazeux 20, dans un espace 13. Il est introduit par le biais de moyens 9c dans ledit espace 13, où il est aspiré dans l'espace ménagé entre l'arbre plein 3b et la chemise 12 (aspiration au travers de l'orifice 5b ménagé dans la chemise 12) pour être délivré au niveau de, et dans la turbine auto-aspirante 2, conformément aux variantes précédentes. Un tel mode d'introduction du gaz G, que l'on pourrait qualifier d'introduction protégée , limite le prélèvement direct du gaz G par le système de purge.
Selon la variante représentée, l'espace 13 ménagé dans le ciel gazeux 20 n'est que partiellement isolé du ciel gazeux 20 ; ce qui autorise le recyclage du gaz par les orifices 5b à l'intérieur de cet espace 13.
On peut tout à fait concevoir une autre variante selon laquelle l'espace protégé, pour l'introduction du gaz G, est totalement isolé du ciel gazeux. Dans le cadre d'une telle variante, le gaz G introduit est aspiré au travers d'orifices 5b et il est nécessaire de prévoir dans la chemise, au niveau du ciel gazeux mais hors espace protégé, au moins un autre orifice pour l'aspiration du gaz présent dans le ciel gazeux après avoir circulé dans le liquide L.
On se propose d'illustrer maintenant l'invention par les exemples ci-après. Exemple 1 Dans une première série d'essais, la Demanderesse a oxydé (par l'oxygène), selon le procédé de l'invention, des liqueurs blanches de papeterie, présentant les caractéristiques suivantes : - concentration en sulfure 18 g/l (44 g/l de Na2S)
- température initiale 85°C
- teneur approximative en soude : 90 g/l (NaOH).
Les liqueurs, après oxydation, sont utilisées comme source d'alcali dans le procédé papetier. La liqueur non oxydée est introduite en continu dans le haut d'un réacteur équipé d'une turbine auto-aspirante. La sortie de liqueur oxydée est régulée par une sonde de niveau. Le soutirage est mis en oeuvre dans la partie basse du réacteur. L'oxydation est effectuée à pression constante, un régulateur de pression permettant de maintenir la pression par un apport de gaz d'oxydation au fur et à mesure que l'oxygène est consommé.
L'élévation de température n'est due qu'aux calories dégagées par la réaction. La température de la réaction est régulée grâce à l'intervention d'un serpentin de refroidissement externe. Dans le cas de l'utilisation d'un gaz d'oxydation contenant des gaz inertes (cas de l'essai 2), une purge proportionnelle au débit de gaz entrant est réalisée. Cette purge est effectuée sur les gaz contenus dans le ciel du réacteur. Elle permet d'éliminer principalement les gaz inertes introduits en maintenant une consommation d'oxygène très proche de la stœchiometrie. Le réacteur utilisé est du type de celui représenté sur la figure 1.
Le réacteur utilisé et la turbine auto-aspirante dont il est équipé sont en Inox 316L. Le réacteur et sa turbine présentent les caractéristiques ci-après : Diamètre interne de la cuve : 0,8 m
Volume utile du réacteur : 300 à 450 I Hauteur de l'ensemble (moteur + cuve) : 2,7 m
Pression maximale de service : 20 bars
Puissance du moteur d'agitation : 3 à 15 kW
Vitesse de rotation de l'arbre variable : entre 500 et 1 200 tr/min Diamètre de la turbine : 27 cm
Hauteur d'immersion de la turbine : 70 cm.
Les essais ont été mis en oeuvre dans les conditions indiquées dans le tableau 1 ci-après. Les résultats obtenus sont indiqués dans le tableau 2 ci-après.
Tableau 1
Figure imgf000022_0001
Tableau 2
Figure imgf000022_0002
Les pourcentages en thiosulfate et sulfate sont donnés en poids. Le calcul est réalisé sur les ions S04 = et S203 = uniquement.
On constate qu'il est possible d'obtenir des taux de conversion élevés en sulfate avec des températures et pressions relativement basses
(voir essai 2). Ces températures faibles permettent de limiter fortement les risques de corrosion de l'installation et les pressions peu élevées évitent de recomprimer le gaz pour l'application.
Les temps de séjour de la liqueur L dans le réacteur sont particulièrement faibles pour les températures choisies. Ceci permet d'obtenir des installations très compactes (temps < 13 min avec gaz non pur). Pour l'ensemble des essais, les consommations d'oxygène restent proches de la stoechiométrie.
Exemple 2 La Demanderesse a oxydé, par voie humide, selon le procédé de l'invention, des soudes usées de raffineries, présentant les caractéristiques suivantes :
- Demande Chimique en Oxygène (DCO) : 25 000 mg/l
- Carbone Organique Total (COT) : 300 mg/l
- Température initiale de l'effluent : 18°C. L'effluent, après oxydation est neutralisé, avant son rejet.
Comme pour l'exempie 1 , i'effluent est introduit en continu dans le haut d'un réacteur équipé d'une turbine auto-aspirante ; sa sortie après oxydation est régulée par une sonde de niveau. Le soutirage est réalisé dans la partie basse du réacteur. Un régulateur de pression permet de maintenir la pression par un apport d'oxygène au fur et à mesure de sa consommation.
Le réacteur utilisé est identique à celui de l'exemple 1. Les paramètres du procédé d'oxydation (par l'oxygène) mis en oeuvre sont indiqués dans le tableau 3 ci-après. Tableau 3
Figure imgf000024_0001
Dans ces conditions douces d'oxydation, une réduction de 98 % de la Demande Chimique en Oxygène (DCO, essentiellement due à la présence de sulfures) a été obtenue.
Exemple 3
La Demanderesse a oxydé (par de l'oxygène, pur à 99,9 % molaire), par voie humide, selon le procédé de l'invention, un effluent de l'industrie chimique. L'effluent considéré est composé essentiellement de molécules organo-azotées, très difficilement biodégradables. Il présente les principales caractéristiques suivantes :
- Demande Chimique en Oxygène (DCO) : 14 700 mg/l
- Rapport DCO/DBO5 : 11 ,6 (DBO5 Demande Biologique en Oxygène sous 5 jours).
- Azote organique : 1000 mg/l - Température initiale de l'effluent : 150°C.
Le réacteur utilisé pour cet essai est ici aussi du type représenté sur la figure 1. Il est en Inox, équipé d'une turbine autoaspirante en Hastelloy C22. Le réacteur et la turbine présentent les caractéristiques suivantes : Diamètre interne de la cuve : 12 cm
Volume utile : 2 litres
Hauteur de l'ensemble (moteur + cuve) : 80 cm Pression maximale de service : 30 bars Puissance du moteur d'agitation : 0, 18 kW Vitesse de rotation de l'arbre variable : entre 500 et 3000 tr/min
Refroidissement assuré par un serpentin interne Préchauffage assuré par une double paroi Diamètre de la turbine : 4 cm Hauteur d'immersion de la turbine : 10 cm. La température de réaction est de 165°C.
La pression absolue du réacteur est de 20 bars. Après 45 minutes de temps de séjour de l'effluent considéré dans le réacteur, on observe :
- une réduction de la Demande Chimique en Oxygène (DCO) de 11 % - une ammonification totale traduisant une dégradation totale des composés organo-azotés.
- un rapport DCO/DBO5 = 4,6 (cette diminution de la valeur dudit rapport de 11,6 à 4,6 traduit une augmentation importante de la biodégradabilité de l'effluent). Un résultat similaire pourrait sans doute être obtenu, avec des temps de séjour beaucoup plus courts, dans des conditions de température et de pression plus élevées.
Le traitement oxydant, toujours réalisé dans des conditions douces de pression et température, permet un rejet de l'effluent vers une station de traitement biologique adaptées qui éliminera le reste de la pollution organique et azotée.
L'utilisation, dans le cadre de l'invention, de conditions d'oxydation douces permet de limiter les contraintes de matériels sur l'installation (épaisseur de l'acier utilisé, corrosion, risque de fuite,...) tout en conduisant aux résultats escomptés.
Exemple 4
La Demanderesse a évalué les performances du procédé de l'invention dans le contexte de la décoloration à l'ozone. Elle a mis en oeuvre, à l'échelle du laboratoire, sur un même effluent coloré, renfermant 100 ppm de DCO soluble, des tests de décoloration : a) dans un réacteur agité, équipé d'une turbine auto-aspirante (réacteur identique à celui de l'exemple 3) ; b) dans un réacteur de type colonne à bulles. Dans chacun des deux cas, un abattement de la couleur de 66 %, mesuré selon l'indice Pt/Co, pour une longueur d'onde de 455 nm, a été obtenu. Les conditions des tests sont indiquées dans le tableau 4 ci- après.
Tableau 4
Figure imgf000027_0001
Ces résultats montrent que la sélectivité de l'action de l'ozone est plus grande en mettant en oeuvre la technologie de l'invention.
En effet, dans cet exemple, les cinétiques d'ozonation des colorants sont beaucoup plus rapides que les cinétiques d'oxydation de la DCO. Ainsi, dans le cadre de l'utilisation de la colonne à bulles, au sein de laquelle les apports en oxydant sont beaucoup moins rapides que les cinétiques d'oxydation des colorants, une partie de l'oxydant (l'ozone) est consommé pour l'abaissement de la DCO. Lorsque le procédé de l'invention est mis en œuvre, l'apport en oxydant n'est plus limitant, par rapport aux cinétiques de décoloration, on obtient une excellente homogénéité du milieu , il est dans ces conditions possible, en contrôlant le temps de séjour, de mettre en œuvre les réactions rapides de décoloration, alors que l'abattement de la DCO reste en dessous de la limite de détection. Ainsi, un gain de l'ordre de 40 % sur la consommation d'ozone et d'un facteur 3 sur les volumes de réacteur a été obtenu par application du procédé de l'invention à la décoloration.

Claims

REVENDICATIONS
. Procédé d'oxydation à l'aide d'un gaz d'oxydation d'un liquide contenu dans un réacteur (1) comprenant :
- au moins un moyen d'introduction du gaz dans le réacteur et au moins un moyen d'introduction du liquide dans le réacteur,
- au moins un moyen d'évacuation du liquide,
- au moins un moyen d'agitation du liquide (2), - au moins un conduit (3) permettant l'aspiration du gaz présent dans le réacteur (1) et débouchant dans le liquide contenu dans le réacteur (1), procédé dans lequel :
- le liquide et le gaz sont introduits dans le réacteur (1) en quantités telles qu'un ciel gazeux (20) est formé au dessus du liquide contenu dans le réacteur (1),
- dans une étape de mélange du gaz et du liquide, le gaz du ciel gazeux (20) est aspiré dans le conduit (3) et introduit dans le liquide présent dans le réacteur au niveau du moyen d'agitation (2) du liquide de manière à dissoudre au moins une partie du gaz dans le liquide, - dans une étape de récupération, la partie du gaz qui est introduite dans le liquide présent dans le réacteur et qui n'est pas dissoute dans le liquide est récupérée dans le ciel gazeux (20), caractérisé en ce que lors de l'étape de mélange du gaz et du liquide, le moyen d 'agitation (2) du liquide : - crée un flux de liquide dans l'espace (8) à proximité immédiate de l'extrémité du conduit (3) débouchant dans le liquide et génère une dispersion gaz/liquide dans la zone (15) au voisinage dudit espace (8), dite zone pré-réactionnelle, au sein de laquelle le liquide réagit avec le gaz, puis - véhicule et éjecte en sa périphérie ladite dispersion gaz/liquide selon une direction sensiblement horizontale, de telle sorte que le gaz se dissout dans le liquide dans la zone (16)s'étendant du moyen d'agitation (2) à la surface du liquide, dite zone de mélange.
2. Procédé selon la revendication 1 , caractérisé en ce que le liquide est introduit et évacué en continu .
3. Procédé selon la revendication 1 caractérisé en ce le liquide est introduit et évacué en discontinu.
4. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'au moins un moyen d'introduction du liquide dans le réacteur introduit le liquide à proximité du moyen d'agitation (2) de manière à ce qu'au moins une partie du flux de liquide dans l'espace (8) provienne directement dudit moyen d'introduction du liquide dans le réacteur.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on soutire le liquide dans une troisième zone du réacteur dite zone de soutirage située en partie basse du réacteur et en ce que ce liquide soutiré présente une teneur en gaz non dissous inférieure à 5% en volume de gaz / volume de liquide.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le gaz d'oxydation contient au moins 20% d'oxygène, de préférence au moins 80% d'oxygène, de préférence encore plus de 98% d'oxygène.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le gaz d'oxydation contient de l'ozone.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le réacteur délimite un volume clos.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le liquide est un liquide aqueux.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le gaz d'oxydation est alimenté en continu à partir d'une source extérieure.
11. Procédé selon la revendication 10, caractérisé en ce que l'alimentation en gaz d'oxydation se fait à débit de gaz introduit contrôlé.
12. Procédé selon l'une des revendications 1 à 11 , caractérisé , en ce que l'alimentation en gaz d'oxydation se fait à pression de gaz oxydant dans le ciel gazeux contrôlée .
13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que lors de son introduction dans le réacteur, le gaz d'oxydation est introduit dans le liquide et/ou le gaz:
- directement, dans le ciel gazeux; et/ou
- directement au sein du liquide contenu dans le réacteur, avantageusement au moyen d'un tore percé d'orifices adéquats; et/ou - dans un espace ménagé dans le ciel gazeux, isolé totalement ou partiellement dudit ciel, de sorte qu'il soit directement aspiré pour être dispersé dans le liquide.
14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que durant la mise en œuvre du procédé, une purge du ciel gazeux est réalisée en un point situé à une distance suffisante du lieu d'introduction du gaz d'oxydation pour ne pas perturber le fonctionnement du réacteur.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que les moyens d'agitation comprennent une turbine auto-aspirante (2) reliée par un arbre (3a, 3b) à un système d'entraînement (4).
16. Procédé selon la revendication 15, caractérisé en ce que ladite turbine auto-aspirante (2) présente un nombre de Froude modifié d'au moins 1, avantageusement compris entre 1,5 et 4.
17. Procédé selon l'une des revendications 15 ou 16, caractérisé en ce que l'arbre (3a) est un arbre creux, comportant au niveau du ciel gazeux (20) au moins une lumière (5a) ; le gaz étant aspiré au niveau de la lumière (5a) dans l'arbre creux (3a).
18. Procédé selon l'une des revendications 15 ou 16, caractérisé en ce que l'arbre (3b) est un arbre plein enveloppé coaxialement par une chemise (12), avantageusement cylindrique, un espace étant ménagé entre l'arbre plein (3b) et la chemise (12), laquelle communique en son extrémité supérieure (5b) avec le ciel gazeux (20) et débouche en son extrémité inférieure au niveau de la zone pré- réactionnelle dans la turbine auto-aspirante, le gaz (G) étant aspiré au niveau du ciel gazeux (20) dans l'espace ménagé entre l'arbre (3b) et la chemise (12).
19. Procédé selon l'une des revendications 15 à 18, caractérisé en ce que la turbine auto-aspirante (2) comporte au moins deux disques horizontaux, un disque supérieur (21) et un disque inférieur (2"), reliés l'un à l'autre par des ailettes (2"'); un espace (8) est ménagé entre le disque supérieur et l'arbre (3) de la turbine, espace assurant l'apport du flux de liquide à proximité immédiate de l'extrémité du conduit (3) vers la zone pré-réactionnelle située à la base de l'arbre entre les disques de la turbine
20. Procédé selon l'une des revendications 1 à 19, caractérisé en ce que le réacteur (1) est équipé sur ses parois internes de contre- pales anti-vortex (6).
21. Procédé selon l'une des revendications 1 à 20, caractérisé en ce que, lors de sa mise en oeuvre, une évacuation au moins partielle des calories dégagées est réalisée grâce à des moyens de refroidissement (10) disposés à l'intérieur et/ou à l'extérieur du réacteur (1).
22. Procédé selon l'une des revendications 1 à 21 , caractérisé en ce que le liquide est chauffé.
23. Procédé selon l'une des revendications 1 à 22, caractérisé en ce que l'oxydation mise en oeuvre est une oxydation catalytique.
24. Procédé selon l'une des revendications 1 à 27, caractérisé en ce qu'il est mis en oeuvre avec :
- un contrôle de la température (θ) et de la pression (P) dans le ciel gazeux, et/ou,
- un contrôle du niveau de liquide au sein dudit réacteur (1), et/ou,
- un contrôle de la quantité de gaz oxydant introduit, et/ou, - un contrôle de la teneur en gaz oxydant du ciel gazeux (20), lorsqu'au moins un gaz non oxydant est contenu dans le gaz d' oxydation ;
25. Procédé selon l'une des revendications 1 à 24, caractérisé en ce qu'il est mis en œuvre pour l'oxydation par l'oxygène de liquide constitué de milieux aqueux renfermant des composés soufrés et/ou des composés métalliques, et notamment pour :
- l'oxydation partielle ou totale des sulfures de liqueurs de papeterie,
- la synthèse de polysulfures par oxydation de liqueurs de papeterie,
- l'oxydation des sulfures dans les effluents industriels, notamment les souches de raffinerie,
- l'oxydation de sulfites en sulfates,
- l'oxydation de thiosulfates en sulfates, - l'oxydation de composés métalliques tels FeSO l FeCI2, FeS.
26. Procédé selon la revendication 25, caractérisé en ce qu'il est mis en œuvre dans les conditions de température (θ) et de pression (P) suivantes:
20°C < Θ < 200°C • et 105 Pa < P < 107 Pa (entre 1 et 100 bars) ; avantageusement :
60°C < θ < 150°C et 105 Pa < P < 30.105 Pa (entre 1 et 30 bars) ; de préférence : 100°C ≤ Θ ≤ 130°C et 105 Pa < P < 15.105 Pa (entre 1 et 15 bars)
27. Procédé selon l'une des revendications 1 à 24, caractérisé en ce qu'il est mis en œuvre pour l'oxydation par l'oxygène de liquide constitué de milieux aqueux contenant des composés organiques et présentant une demande chimique en oxygène (DCO) comprise entre 5 et 200 g/l, et notamment, pour l'oxydation d'effluents difficilement biodégradables et/ou renfermant des inhibiteurs de réactions biologiques.
28. Procédé selon la revendication 27, caractérisé en ce qu'il est mis en œuvre dans les conditions de température (θ) et de pression (P) suivantes :
20°C < θ < 250°C et 105 Pa < P < 107 Pa (entre 1 et 100 bars) ; avantageusement :
80°C < θ < 180°C et 105 Pa < P < 25.105 Pa (entre 1 et 25 bars).
29. Procédé selon l'une des revendications 1 à 24, caractérisé en ce qu'il est mis en oeuvre pour l'oxydation par l'oxygène de boues organiques dans des milieux aqueux dans les conditions de température (θ) et de pression (P) suivantes : 40°C < Θ < 300°C et.106 Pa < P < 15.106 Pa (entre 10 et
150 bars) ; avantageusement :
150°C < θ < 250°C et 2.106 Pa < P < 12.106 Pa (entre 20 et 120 bars).
30. Procédé selon l'une des revendications 1 à 24, caractérisé en ce qu'il est mis en oeuvre pour l'oxydation par l'ozone de milieux aqueux; et notamment pour :
- la décoloration à l'ozone d'effluents industriels ou d'eaux de procédé ; - l'ozonation des boues biologiques ;
- l'ozonation des cyanures ;
- l'ozonation de solutions aqueuses renfermant des composés organiques et présentant une demande chimique en oxygène (DCO) comprise entre 10 mg/l et 10 g/l.
31. Procédé selon la revendication 30, caractérisé en ce qu'il est mis en oeuvre dans les conditions de température (θ) et de pression (P) suivantes :
5°C < θ < 90°C et 105 Pa < P≤ 1.5106 Pa (entre 1 et 15 bars) ; avantageusement :
10°C < θ < 30°C et 105 Pa < P < 3.105 Pa (entre 1 et 3 bars).
32 Procédé selon l'une des revendications 25 à 31 , caractérisé en ce qu'il est mis en œuvre en présence d'au moins un initiateur de réactions radicalaires.
PCT/FR2001/004038 2000-12-20 2001-12-18 Procede d'oxydation de type oxydation par voie humide ou ozonation WO2002049751A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002226459A AU2002226459A1 (en) 2000-12-20 2001-12-18 Wet process or ozonizing oxidation method
AT01995732T ATE280637T1 (de) 2000-12-20 2001-12-18 Nassoxydations- oder ozonierungsverfahren
EP01995732A EP1345680B1 (fr) 2000-12-20 2001-12-18 Procede d'oxydation par voie humide ou ozonation
CA002431942A CA2431942C (fr) 2000-12-20 2001-12-18 Procede d'oxydation de type oxydation par voie humide ou ozonation
DE60106785T DE60106785D1 (de) 2000-12-20 2001-12-18 Nassoxydations- oder ozonierungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0016672A FR2818160B1 (fr) 2000-12-20 2000-12-20 Procede d'oxydation de type oxydation par voie humide ou ozonation
FR00/16672 2000-12-20

Publications (1)

Publication Number Publication Date
WO2002049751A1 true WO2002049751A1 (fr) 2002-06-27

Family

ID=8857931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004038 WO2002049751A1 (fr) 2000-12-20 2001-12-18 Procede d'oxydation de type oxydation par voie humide ou ozonation

Country Status (10)

Country Link
US (1) US6517729B2 (fr)
EP (1) EP1345680B1 (fr)
AT (1) ATE280637T1 (fr)
AU (1) AU2002226459A1 (fr)
CA (1) CA2431942C (fr)
DE (1) DE60106785D1 (fr)
ES (1) ES2232681T3 (fr)
FR (1) FR2818160B1 (fr)
PT (1) PT1345680E (fr)
WO (1) WO2002049751A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832334A1 (fr) * 2006-03-03 2007-09-12 Linde Aktiengesellschaft Réacteur à haute pression pour le traitement des boues et procédé d'opération
RU2447932C2 (ru) * 2010-07-23 2012-04-20 Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) Газожидкостный реактор (варианты)
CN104971803A (zh) * 2015-06-24 2015-10-14 张家港市顺佳隔热技术有限公司 一种压力搅拌研磨罐
EP3060333A4 (fr) * 2013-10-25 2017-06-28 Spinchem AB Réacteur pour transformation biologique ou chimique

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780331B2 (en) * 2002-04-02 2004-08-24 Science Applications International Corporation Ozonation of contaminated liquids under high pressure
US6986507B2 (en) * 2002-09-26 2006-01-17 Spx Corporation Mass transfer method
US20040134794A1 (en) * 2002-10-22 2004-07-15 Sundaram V S Meenakshi Systems and methods for generating polysulfides
FR2859645A1 (fr) * 2003-09-17 2005-03-18 Air Liquide Procede d'amelioration de la capacite d'injection d'un gaz dans un liquide produite par un dispositif d'agitation et d'injection
US7887763B2 (en) * 2003-12-24 2011-02-15 Roger Kennedy Apparatus for chemical or biological reactions
US7931816B2 (en) * 2004-12-29 2011-04-26 Acos Llc Method, apparatus and systems for treating contaminants in a waste fluid
US20100061920A1 (en) * 2008-09-10 2010-03-11 Kevin Edward Janak Process for producing stable ferric salts for water treatment applications
CN101602537B (zh) * 2009-07-15 2012-08-08 华南理工大学 臭氧强化氧化亚硫酸盐水溶液的处理方法
TWI427094B (zh) * 2010-10-25 2014-02-21 Nanya Plastics Corp 一種提高丙二酚型氫化環氧樹脂產率的氫化方法
CN103363813B (zh) * 2013-06-20 2014-11-12 宁波长振铜业有限公司 具有自动捣料搅拌装置的熔炼装置
DE102016210224A1 (de) * 2016-06-09 2017-12-14 Friedrich-Alexander-Universität Erlangen-Nürnberg Reaktor und Verfahren zur Umsetzung von gleichgewichtslimitierten Reaktionen
CN106994307A (zh) * 2017-04-07 2017-08-01 南京中德环保设备制造有限公司 一种立式搅拌机高效搅拌涡轮
US10851000B2 (en) * 2018-03-28 2020-12-01 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Systems for producing high-concentration of dissolved ozone in liquid media
US11434153B2 (en) 2018-03-28 2022-09-06 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés George Claude Separation of ozone oxidation in liquid media into three unit operations for process optimization
US11084744B2 (en) 2018-03-28 2021-08-10 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for mixing gas-free liquid oxidant with process liquid
CN108671864B (zh) * 2018-05-24 2020-12-29 荣成惠德环保科技有限公司 粘稠物料冷却用反应釜
CN108715502B (zh) * 2018-06-01 2021-06-22 嘉兴宇乾环保科技有限公司 一种生活污水物理净化地下闷池结构
US11530146B2 (en) * 2019-07-03 2022-12-20 Clean Water Tech, Llc Fluid remanufacturing
CN112986111A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种催化湿式氧化腐蚀实验装置
WO2021216395A1 (fr) * 2020-04-24 2021-10-28 Duplicent, Llc Système d'accélération de fluide
CN115245773B (zh) * 2022-07-13 2023-10-20 湖南文昌新材科技股份有限公司 一种碳纳米管增强铝基复合材料制备装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE679324A (fr) * 1965-04-17 1966-10-10
US3870631A (en) * 1973-03-29 1975-03-11 Barber Colman Co Apparatus and method for wet oxidation of organic matter
JPS6245335A (ja) * 1985-08-23 1987-02-27 Nippon Kokan Kk <Nkk> 液相酸化装置
EP0341813A1 (fr) * 1988-03-17 1989-11-15 Amoco Corporation Réacteur et procédé pour oxydation d'hydrocarbures alkyl-aromatiques en acides carboxyliques aromatiques.
EP0553709A1 (fr) * 1992-01-31 1993-08-04 V-Zug AG Dispositif pour introduire un gaz dans un liquide
US5478535A (en) * 1993-07-08 1995-12-26 Biazzi Sa Apparatus for gas - liquid reactions
EP0754489A1 (fr) * 1995-07-20 1997-01-22 Air Products And Chemicals, Inc. Méthode et appareil pour améliorer la dispersion de gaz et le transfert de masse de gaz dans un réacteur agité

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607496B1 (fr) * 1986-11-28 1989-03-10 Elf Aquitaine Procede de production de polysulfures organiques et systeme catalytique pour sa realisation
US5380442A (en) * 1993-11-18 1995-01-10 Mobil Oil Corporation Regeneration of used stretford solution for recycle
US5824243A (en) * 1997-02-12 1998-10-20 Contreras; Edward M. Water ozonating system
US6348129B1 (en) * 2000-04-28 2002-02-19 Praxair Technology Inc Treatment of pulp mill condensate with ozone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE679324A (fr) * 1965-04-17 1966-10-10
US3870631A (en) * 1973-03-29 1975-03-11 Barber Colman Co Apparatus and method for wet oxidation of organic matter
JPS6245335A (ja) * 1985-08-23 1987-02-27 Nippon Kokan Kk <Nkk> 液相酸化装置
EP0341813A1 (fr) * 1988-03-17 1989-11-15 Amoco Corporation Réacteur et procédé pour oxydation d'hydrocarbures alkyl-aromatiques en acides carboxyliques aromatiques.
EP0553709A1 (fr) * 1992-01-31 1993-08-04 V-Zug AG Dispositif pour introduire un gaz dans un liquide
US5478535A (en) * 1993-07-08 1995-12-26 Biazzi Sa Apparatus for gas - liquid reactions
EP0754489A1 (fr) * 1995-07-20 1997-01-22 Air Products And Chemicals, Inc. Méthode et appareil pour améliorer la dispersion de gaz et le transfert de masse de gaz dans un réacteur agité

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0112, no. 32 (C - 437) 29 July 1987 (1987-07-29) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832334A1 (fr) * 2006-03-03 2007-09-12 Linde Aktiengesellschaft Réacteur à haute pression pour le traitement des boues et procédé d'opération
WO2007101521A1 (fr) * 2006-03-03 2007-09-13 Linde Aktiengesellschaft Reacteur haute pression pour la preparation de boues et procede pour faire fonctionner ce reacteur haute pression
RU2447932C2 (ru) * 2010-07-23 2012-04-20 Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) Газожидкостный реактор (варианты)
EP3060333A4 (fr) * 2013-10-25 2017-06-28 Spinchem AB Réacteur pour transformation biologique ou chimique
US10188963B2 (en) 2013-10-25 2019-01-29 Spinchem Ab Reactor for biological or chemical transformation
CN104971803A (zh) * 2015-06-24 2015-10-14 张家港市顺佳隔热技术有限公司 一种压力搅拌研磨罐

Also Published As

Publication number Publication date
US20020110508A1 (en) 2002-08-15
ATE280637T1 (de) 2004-11-15
FR2818160A1 (fr) 2002-06-21
AU2002226459A1 (en) 2002-07-01
CA2431942A1 (fr) 2002-06-27
CA2431942C (fr) 2009-11-17
ES2232681T3 (es) 2005-06-01
DE60106785D1 (de) 2004-12-02
PT1345680E (pt) 2005-02-28
US6517729B2 (en) 2003-02-11
EP1345680A1 (fr) 2003-09-24
EP1345680B1 (fr) 2004-10-27
FR2818160B1 (fr) 2003-03-07

Similar Documents

Publication Publication Date Title
EP1345680B1 (fr) Procede d&#39;oxydation par voie humide ou ozonation
CA2683354C (fr) Procede et dispositif d&#39;epuration d&#39;effluents liquides
US5120442A (en) Process for the simultaneous chemical and biological elimination of solid and liquid organic waste
US4341641A (en) Process for treating cyanide and cyanate containing wastewaters
FR2701704A1 (fr) Procédé de traitement des déchets organiques par oxydation.
WO2010092265A1 (fr) Procédé et dispositif d&#39;épuration d&#39;effluents
CA2432818C (fr) Procede et dispositif pour la mise en oeuvre d&#39;une reaction en milieu liquide avec degagement gazeux
EP0191679B1 (fr) Procédé d&#39;oxydation de substances dissoutes ou en suspension dans une solution aqueuse
FR2921057A1 (fr) Procede et dispositif de traitement des eaux residuaires
EP0751914B1 (fr) Procede et installation de traitement d&#39;effluents charges en matiere organique, notamment par oxydation en milieu humide, avec recyclage interne des residus solides, et station d&#39;epuration correspondante
EP0459928B1 (fr) Installation pour le traitement de flux de liquides à contacteur monophasique, et dispositifrecirculateur-dégazeur pour une telle installation
WO2010049629A2 (fr) Procede et dispositif de traitement par voie biologique d&#39;une charge liquide contaminee comprenant une phase liquide organique dispersible et digestible telle qu&#39;une huile ou solvant toxique
EP0564386B1 (fr) Procédé de traitement des boues par oxydation combinée chimique et biologique et installations pour la mise en oeuvre d&#39;un tel procédé
FR2670868A1 (fr) Procede de destruction d&#39;effluents organiques toxiques par incineration en phase aqueuse et installation en faisant application.
EP1345684B1 (fr) Perfectionnement aux procedes d&#39;oxydation par transfert d&#39;oxygene au sein d&#39;un milieu liquide dans un reacteur sous pression
EP1544171A1 (fr) Procédé de réduction de boues issues du traitement d&#39;eaux usées par oxygénation et action mécanique
FR2845682A1 (fr) Procede de reduction des boues d&#39;un traitement biologique de l&#39;eau mettant en oeuvre de l&#39;ozone
FR2484862A1 (fr) Procede et dispositif pour le transfert de gaz dans un liquide applicable en particulier au traitement des eaux, en biotechnologie et dans l&#39;industrie chimique
JP3848238B2 (ja) 着色廃水の処理方法及びそれに用いる装置
BE1029409B1 (fr) Procédé pour le traitement biologique des eaux usées
EP1137602B1 (fr) Procede de traitement des boues provenant des installations d&#39;epuration biologique des eaux
EP0936190A1 (fr) Procédé de traitement d&#39;effluants par voie biologique et oxydation ne produisant pas ou peu de boues en excès
WO2022243114A1 (fr) Procédé et réacteur pour le traitement biologique des eaux usées
WO1980000335A1 (fr) Procede de traitement des eaux usees contenant des cyanures et des cyanates
BE473310A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001995732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2431942

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001995732

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001995732

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP