WO2002040402A1 - Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants - Google Patents

Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants Download PDF

Info

Publication number
WO2002040402A1
WO2002040402A1 PCT/FR2001/003496 FR0103496W WO0240402A1 WO 2002040402 A1 WO2002040402 A1 WO 2002040402A1 FR 0103496 W FR0103496 W FR 0103496W WO 0240402 A1 WO0240402 A1 WO 0240402A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethyl
size
particles
pores
mesoporous
Prior art date
Application number
PCT/FR2001/003496
Other languages
English (en)
Inventor
Dominique Plee
Original Assignee
Ceca S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceca S.A. filed Critical Ceca S.A.
Priority to JP2002542736A priority Critical patent/JP2004525846A/ja
Priority to KR10-2003-7006547A priority patent/KR20030067685A/ko
Priority to AU2002218356A priority patent/AU2002218356A1/en
Priority to CA002428734A priority patent/CA2428734A1/fr
Priority to EP01996513A priority patent/EP1334066A1/fr
Publication of WO2002040402A1 publication Critical patent/WO2002040402A1/fr
Priority to US10/437,456 priority patent/US20040035751A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/185Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process of crystalline silica-polymorphs having molecular sieve properties, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3491Regenerating or reactivating by pressure treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Definitions

  • This invention relates to a process for the preparation of a new family of mesoporous inorganic particles; the process makes it possible to precisely control the particle size distribution and the morphology of the prepared particles which can advantageously be used as catalyst supports, as catalysts and / or for the separation of compounds in the gas phase having different boiling points as well as for the packing of chromatography columns.
  • Prior art
  • Mesoporous particles are very useful in the industrial field, both as catalysts, catalyst supports but also as adsorbents insofar as their high porosity expressed in terms of surface area to volume ratio allows the molecules with which they are brought into contact to easily access the core of the particles and react on a large surface thus enhancing the catalytic and / or adsorbent properties of these materials.
  • MOBIL describes a method for preparing a composition of matter consisting of an inorganic, non-lamellar and crystalline phase having, after calcination, an arrangement of pores of uniform size equal to at least 1, 3 nm, with at least minus an X-ray diffraction peak corresponding to a reticular distance greater than 1.8 nm and having a benzene adsorption capacity greater than 15% by weight at 25 ° C. and 50 torr from a HiSil type silica mixed with a solution of tetramethylammonium silicate.
  • syntheses of silicic mesoporous solids are carried out using tetraethylortho silicate (TEOS), a tetraalkylammonium or sodium silicate, precipitated silica.
  • TEOS tetraethylortho silicate
  • a tetraalkylammonium or sodium silicate precipitated silica.
  • TEOS has the disadvantage, besides being an expensive reagent, of generating ethanol during hydrolysis. But, used in a non-basic medium, it is the only source of silica which makes it possible to prepare particles of mesoporous solids of a few ⁇ m.
  • Another disadvantage of syntheses of mesoporous solids in neutral or acid medium relates to the yield of surfactant expressed as the ratio between the surfactant introduced at the start of synthesis and the surfactant retained in the solid formed which is clearly less than 100%.
  • the granulation produces particles in the form of beads, therefore rather spherical, with a distribution of. large size, which, for certain applications, can constitute a handicap.
  • the only way with this technique to obtain particles with a narrow particle size distribution is to make particle size selections subsequent to the actual granulation step to the detriment of yield and / or productivity.
  • granulation is a technique rather suitable for particle sizes greater than one millimeter; - compaction is mainly used for the formulation of pharmaceutical products and concerns particles of even larger sizes: a few mm at least;
  • the present invention relates to mesoporous inorganic solids in the form of primary and / or secondary inorganic particles of D10> 1 ⁇ m and D50> 3 ⁇ m, preferably of D10> 2 ⁇ m and D50> 10 ⁇ m whose size can go up to 10 mm, preferably up to 3 mm and advantageously up to 1.5 mm, of overall composition corresponding to the formula:
  • M represents one or more ions, such as the ammonium ion, the ions of groups IA IIA and VIIB, and in particular the hydrogen and / or sodium ion , n and q represent respectively the equivalent fraction and the valence of the M ion (s) and n / q represents the number of moles or the molar fraction of the M ion (s),
  • W represents one or more divalent elements, such as manganese, cobalt, iron and / or magnesium,
  • X represents one or more trivalent elements, such as aluminum, boron, iron and / or gallium
  • Y represents one or more tetravalent elements, such as silicon and / or germanium, and preferably silicon
  • the pore volumes are measured by adsorption of N 2 to 77 K.
  • the pore volumes corresponding to pores whose size is greater than or equal to 2 nm and less than or equal to 300 nm are measured by the DFT method (cylindrical pores) porous corresponding to pores whose size is less than or equal to 2 nm (microporous volume in the sense of TIUPAC) are measured by the t-plot method.
  • D10, D50 and D90 represent the diameters of the particles below which are respectively 10%, 50% and 90% by weight of the particles, the D 50 giving a good approximation of the size of the particles.
  • the invention also relates to a method for manufacturing the inorganic solids described above, comprising the following steps:
  • a solid inorganic source in the form of primary and / or secondary particles of D10> 1 ⁇ m and D50> 3 ⁇ m, preferably of D10> 2 ⁇ m and D50> 10 ⁇ m whose size can range up to 10 mm, of composition global corresponding to the formula: where M, W, X, Y, Z, n, q, a, b, c, d and h have the same meaning as before,
  • a solvent preferably water, optionally in the presence of a swelling agent which dissolves in the micelles, preferably trimethylbenzene,
  • pore calibrators include: most particularly surfactants containing quaternary ammonium or phosphonium ions, substituted by aryl or alkyl groups having from 6 to 36 carbon atoms, identical or different, with which hydroxide, halide or silicate anions are associated and in particular those which contain cetyltrimethylammonium ions , cetyltrimethyiphosphonium, octadecyltrimethylammonium, octadecyltrimethylphosphonium, benzylt rimethylammonium, cetylpyridinium, decyltrimethylammonium, dimethyldidodecylammonium, trimethyldodecylammonium as well as amines such as dodecylamine and Thexadecylamine.
  • the solvent can be organic but is preferably aqueous.
  • oxide mobilizing agents mention may be made of mineral and organic bases, sodium hydroxide being particularly preferred.
  • the pH of the reaction mixture is generally not critical and can vary between 1 and 14.
  • the crystallization of the solid can be carried out with stirring or not, the latter having to be moderate enough not to cause attrition of the particles present and therefore the increase in the rate of fines.
  • the crystallization temperature is generally between room temperature and 200 ° C and the duration of the crystallization reaction can generally range from a few minutes to a few days.
  • the duration of the reaction step is controlled and optimized by SEM and laser granulometry, a reaction time that is too long risking increasing the level of fines.
  • a solid is obtained in suspension in the solvent which is filtered, washed and dried; the product obtained is, after calcination intended in particular for removing the surfactant by combustion, in the form of inorganic solid particles having pores of regular size which can be of cubic or hexagonal symmetry depending on the synthesis conditions. In the case of hexagonal symmetry, the pores are all parallel.
  • the method according to the invention is particularly advantageous when looking for narrow distributions of particle sizes; in this case, an oxide source should be used, the particle size distribution of which is narrow. 4.
  • an oxide source should be used, the particle size distribution of which is narrow. 4.
  • the pH allows the thickness of the walls to be varied: an interpretation commonly accepted by many authors is that in basic medium, silica is organized around the micelles of the surfactant by interaction between the cationic head of the surfactant and the ionized silanol groups which are found on the surface of the silica.
  • the mesoporous volume corresponding to pores ranging from 4 to 15 nm is greater than or equal to 0.7 cm 3 / g, and preferably greater than or equal to 1 cm 3 / g,
  • the concentration of swelling agent influences the size of the pores: the higher the concentration of swelling agent, the higher the size of the pores.
  • the solids according to the invention are obtained, of which:
  • the mesoporous volume corresponding to the pores ranging in size from 2 to 10 nm is greater than or equal to 0.18 crrrVg, and preferably greater than or equal to 0.3 cm 3 / g,
  • A-2 the maximum peak diameter of the DFT distribution (Dmax) is such that 2 nm ⁇ Dmax ⁇ 10 nm, preferably 2nm ⁇ Dmax ⁇ 5 nm
  • the pore volume corresponding to pores of size Dmax ⁇ 15% represents at least 70%, preferably at least 80% and advantageously 90% of the pore volume corresponding to pores of size between 2 and
  • the particles according to the invention of D50> 10 ⁇ m can advantageously serve as supports for a catalytic component (as such, they can be called in the following "support particles") for the polymerization of various polymers, in particular polyamides, polyesters , olefins and styrenic compounds, together referred to below as olefins, etc. ;
  • olefins is understood here to mean polymers derived from one or more monomers chosen from C2-C10 olefins, vinyl monomers such as vinyl acetate and vinyl aromatic monomers, such as styrene and its derivatives.
  • a catalytic component for the polymerization of olefins can be obtained by association of a compound of a transition metal with the support particles.
  • This transition metal can be titanium, zirconium, hafnium, chromium, vanadium or any other metal capable, under suitable conditions, of catalyzing the polymerization of olefins.
  • a solid catalytic component can be obtained by association of the support, a titanium compound, chlorine, optionally an aluminum compound, optionally an electron acceptor or donor as well as any other compound usable in solid components of the Ziegler-Natta or metallocene type.
  • Polymers in particular copolymers and prepolymers
  • Polymers can be obtained by polymerization of monomer (s), in the presence of the catalytic component according to the invention by the processes in suspension, in solution, in gaseous phase or in mass.
  • the particles according to the invention can also serve as catalysts in reactions in the field of refining and petrochemicals, typically alkylation, isomerization, disproportionation, cracking reactions, which are generally reactions of an acidic nature.
  • the particles according to the invention can also be used as adsorbents to separate the components of a gaseous or liquid mixture made up of at least 2 different compounds in an adsorption process.
  • the preferred adsorbents are those whose particle size is generally at least of the order of a millimeter.
  • the particles according to the invention can be used, the particle size of which corresponds to that sought, or it may be necessary, if their particle size is insufficient, to agglomerate them before their application, for example according to one and / or the other of the agglomeration techniques described above (extrusion, agglomeration, compacting and atomization)
  • adsorption process By way of example of adsorption processes, mention will be made very particularly of those operating in a cyclic manner which comprise the following stages operating alternately which are detailed below: a / passing said mixture through an adsorption zone containing the mesoporous particles and recover either the least adsorbed compound (s) or a gas mixture enriched in the least adsorbed compound (s) at the outlet of said adsorption zone, b / desorb the compound (s) (s) adsorbed in the adsorption zone and regenerate the adsorption zone so as to restore its adsorption capacity.
  • the desorption / regeneration step b / is carried out by vacuum means
  • suction by purging the adsorption zone with one or more inert gases and / or with part of the gas flow obtained at the exit from the adsorption zone, by temperature increase or by combination of regenerations by suction, by purging and / or temperature variation.
  • the processes preferred by the applicant are of the PSA or VSA type, of the TSA type or of a combination of these different types of process (PTSA).
  • This process is particularly well suited for the separation of VOCs present even at very low concentration in flows. gaseous preferably based on dry or humid air.
  • the process of the present invention is also well suited for the purification of hydrocarbons, particularly oxygenated hydrocarbons and even more specifically of hydrocarbons belonging to the group of ketones, aldehydes, acids or alcohols, in admixture with compounds, preferably in the state of impurities or traces.
  • particles according to the invention those with 1 ⁇ D10 ⁇ 3 ⁇ m and 3 ⁇ D50 ⁇ 15 ⁇ m, preferably those based on silica, can be advantageously used for the packing of chromatography columns.
  • a particle of D50 close to 12 ⁇ m are used and in HPLC (high performance liquid chromatography) particles of D50 close to 5 ⁇ m are preferably used.
  • HPLC high performance liquid chromatography
  • the typical composition of the suspension is:
  • reaction medium is brought to 100 ° C., the temperature at which it is maintained for 3 h.
  • the solid is filtered then washed with 3 l of water and dried in a ventilated oven at 70 ° C and calcined at 550 ° C by rising in 5 h from 25 ° C to 550 ° C then holding at the plateau for 1 h.
  • the solid is characterized by adsorption / desorption of N 2 at 77 K (ASAP 2010 from MICROMERITICS) and with the LASER granulometer (MALVERN)
  • the pore size distribution is calculated according to the DFT method.
  • Example 1 The synthesis of Example 1 is reproduced with the exception of the stirring mobile which is replaced by a magnetic stirring by means of a magnetic bar 3 cm in diameter rotating at 100 rpm.
  • Example 1 The solid resulting from this synthesis has practically the same surface and porosity characteristics as that of Example 1 but reveals to the LASER granulometer the existence of fine particles estimated at 4-5% by weight of less than 2 ⁇ m; the use of a shear agitation system promotes abrasion of the particles.
  • EXAMPLE 3 The synthesis of example 1 is reproduced by replacing LEVILITE® with a silica sold by GRACE under the name SYLOPOL® 2104; this silica has a narrow particle size distribution without fines (0% of particles smaller than 15 ⁇ m) and a large pore size distribution centered on approximately 20 to 40 nm. The characteristics of the starting silica and of the product resulting from the synthesis are indicated in Table 1.
  • Example 1 The synthesis of Example 1 is reproduced, using as a source of silica ZEOSIL® 175 MP sold by RHODIA, the pore size distribution of which is wide and located in the macropores (> 50 nm)
  • the particle size distribution of this silica shows a main peak around 150 ⁇ m with a wide drag towards particles of smaller particle size but no fines (0% of particles of size less than 4 ⁇ m)
  • the characteristics of the starting silica and of the synthesized mesoporous solid are gathered in the table 1.
  • Example 1 The synthesis of Example 1 is reproduced using SYLIPOL® 2104 as a source of silica and an Na 2 0 on silica ratio of 0.08 instead of 0.19.
  • the mesoporous solid synthesized is of lower quality than those of the previous examples due to the lower basicity of the medium which only allowed a partial transformation of the solid.
  • the characteristics of the starting silica-alumina and of the product resulting from the synthesis are indicated in Table 1 below.
  • the product is then dried at 100 ° C for 2 h then activated in an oven by rising in 1 h to 550 ° C and maintained at this temperature for 2 h under N 2 sweep.
  • the solid is then characterized by its adsorption / desorption isotherm from N 2 to 77 K which makes it possible to deduce the surface and porosity values.
  • the adsorption / desorption isotherm of N 2 at 77 K shows that the solid is a mesoporous solid according to the invention well formed with a marked adsorption step and a relatively narrow pore size distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

La présente invention a trait à de nouveaux solides inorganiques mésoporeux se présentant sous forme de particules inorganiques primaires et/ou secondaires de D10 ≥ 1 νm et D 50 ≥ 3 νm, de préférence de D10 ≥ 2 νm et D50 ≥ 10 νm dont la taille peut aller jusqu'à 10 mm, dont le volume microporeux (pores de taille inférieure ou égale à 2 νm) représente au plus 10 % du volume poreux total jusqu'à 300 nm. Ces solides peuvent avantageusement être utilisés comme supports de composante catalytique dans des réactions de polymérisation, comme catalyseurs de réactions dans le domaine du raffinage et de la pétrochimie, comme adsorbants pour séparer les composants d'un mélange gazeux ou liquide constitué d'au moins e composés différents et comme supports de garnissage de colonnes de chromatographie.

Description

SOLIDES INORGANIQUES MESOPOREUX LEUR PROCEDE DE PREPARATION ET LEURS UTILISATIONS NOTAMMENT COMME CATALYSEURS ET
ADSORBANTS Domaine de l'invention Cette invention concerne un procédé de préparation d'une nouvelle famille de particules inorganiques mésoporeuses ; le procédé permet de contrôler avec précision la distribution granulométrique et la morphologie des particules préparées qui peuvent être avantageusement utilisées comme supports de catalyseur, comme catalyseurs et/ou pour la séparation de composés en phase gazeuse ayant des points d'ébullition différents ainsi que pour le garnissage de colonnes de chromatographie. Art antérieur
Les particules mésoporeuses présentent une grande utilité dans le domaine industriel, à la fois comme catalyseurs, supports de catalyseurs mais aussi comme adsorbants dans la mesure où leur porosité importante exprimée en termes de rapport surface sur volume permet aux molécules avec lesquelles elles sont mises en contact d'accéder facilement au cœur des particules et de réagir sur une surface importante exaltant ainsi les propriétés catalytiques et/ou adsorbantes de ces matériaux. La synthèse de solides mésoporeux inorganiques, à distribution étroite et calibrée de mésopores par effet structurant de tensioactif, a été décrite pour la première fois par Sylvania Electric Products dans le brevet US 3.556.725.
La société Mobil au cours des années 1.990 a entrepris de nombreux travaux relatifs aux solides inorganiques mésoporeux, notamment à des composés (alumino)siliciques et plus particulièrement le composé MCM 41 (pour Mobil Composition Of Matter 41) dont on trouve décrit un procédé de synthèse dans Nature, 1992, vol 359, pp.710-712 et qui ont fait l'objet de nombreux brevets et articles scientifiques ; de tels matériaux mésoporeux sont maintenant bien connus à l'échelle du laboratoire tant au niveau de leur structure et de leur distribution poreuses, des conditions de synthèse que des applications possibles comme catalyseur et/ou comme adsorbant.
On sait ainsi préparer de tels solides organisés mésoporeux, inorganiques et à distribution de taille-de pores étroite jusqu'au domaine-de-2-à- 10 nanomètres. Ainsi dans US 5.057.296, MOBIL décrit une méthode pour préparer une composition de matière constituée d'une phase inorganique, non lamellaire et cristalline possédant, après calcination, un arrangement de pores de taille uniforme égale à au moins 1 ,3 nm, avec au moins un pic de diffraction de rayons X correspondant à une distance reticulaire supérieure à 1 ,8 nm et possédant une capacité d'adsorption de benzène supérieure à 15% en poids à 25°C et 50 torrs à partir d'une silice de type HiSil en mélange avec une solution de silicate de tétraméthylammonium.
D'autres travaux ont montré l'influence du pH sur la taille et la morphologie des particules de solide mésoporeux synthétisé : en milieu acide et pour un rapport molaire HCI/silice égal à 2,05, les particules synthétisées ont une taille de 12 à 13 μm et adoptent une forme spiralée (Dl RENZO F. et cols , Microporous and Mesoporous Materials , 28 ( 1999 ) , p. 437 - 446 ) ; en milieu neutre, la taille des particules diminue et n'est plus que de 3 μm environ et leur morphologie dépend de la force ionique ; enfin, en milieu basique, la taille des particules n'est que de l'ordre du μm ou submicronique.
De manière générale, les synthèses de solides mésoporeux siliciques sont réalisées à partir de tétraéthylortho silicate (TEOS), d'un silicate de tétraalkylammonium ou de sodium, de silice précipitée.
Le TEOS présente l'inconvénient, outre d'être un réactif coûteux, de générer de l'éthanol lors de l'hydrolyse. Mais, utilisé en milieu non basique, il est la seule source de silice qui permette de préparer des particules de solides mésoporeux de quelques μm. Un autre désavantage des synthèses de solides mésoporeux en milieu neutre ou acide concerne le rendement en agent tensioactif exprimé comme le rapport entre le tensioactif introduit en début de synthèse et le tensioactif retenu dans le solide formé qui est nettement inférieur à 100%.
L'utilisation de silicates, de coût moindre, est réservée aux pH basiques qui permettent d'obtenir des particules de taille très faible, typiquement inférieure au micromètre mais de morphologie très irrégulière. Par contre, le rendement en tensioactif est de 100%. La préparation de particules de solides mésoporeux de taille supérieure à 15-
20 μm nécessite une étape supplémentaire d'agglomération des particules primaires obtenues selon l'un ou l'autre des procédés rappelés ci-dessous. Parmi les procédés d'agglomération bien connus de l'homme du métier, on peut citer :
Textrusion dans laquelle on fait passer au travers une filière une pâte composée des particules primaires de solide mésoporeux, d'un liant, d'un liquide et éventuellement d'un additif d'extrusion et on récupère ensuite de petits bâtonnets ou extrudés qui sont coupés à la longueur choisie,
^'agglomération sur plateau granulateur des mêmes ingrédients que pour Textrusion pour former des billes par effet boule de neige,
*le compactage sous pression d'un mélange des particules primaires de solide mésoporeux, d'un liant et éventuellement d'un peu de liquide sous pression de façon à obtenir la cohésion désirée, atomisation pour les particules de plus petite taille.
Or, ces procédés d'agglomération présente les inconvénients listés ci-dessous :
- Textrusion produit des particules de diamètre identique mais de longueur variable, ce qui peut avoir une incidence néfaste sur les propriétés diffusionnelles du matériau ; de plus cette technique est bien adaptée pour des diamètres supérieurs à 500 μm mais peu adaptée pour les diamètres inférieurs ;
- la granulation produit des particules sous forme de billes, donc plutôt sphériques, avec une distribution de. taille large, ce qui, pour certaines applications, peut constituer un handicap. Le seul moyen avec cette technique pour obtenir des particules avec une distribution granulométrique étroite est d'opérer des sélections granulométriques postérieures à l'étape de granulation proprement dite au détriment du rendement et/ou de la productivité. De plus, la granulation est une technique plutôt adaptée pour des tailles de particules supérieures au millimètre ; - le compactage est surtout utilisé pour la formulation de produits pharmaceutiques et concerne des particules de tailles encore supérieures : quelques mm au moins ;
- Tatomisation permet de fabriquer des particules de 20 à 200 μm environ avec une distribution étroite de taille de particules. Mais cette technique ne permet pas d'obtenir des particules secondaires de propriétés mécaniques suffisantes pour la plupart des utilisations envisagées (catalyse, adsorption), particulièrement lorsque la source de silice est du TEOS. Toutes ces considérations montrent qu'il existe un réel besoin de proposer un système permettant d'obtenir des particules de solides mésoporeux dans une gamme de taille de particules comprise entre 1 μm et quelques mm et ne présentant pas les désavantages précédemment exposés. Pour se convaincre qu'il est très important de pouvoir réguler la distribution granulométrique des solides mésoporeux formés, il suffit de citer l 'exemple de la catalyse de polymérisation des oléfines : il est bien connu, que la taille des particules de silice utilisée comme support en catalyse de polymérisation joue un rôle très important dans le contrôle morphologique du polymère produit. Certains travaux montrent ainsi l'intérêt du support MCM 41 en polymérisation du propylène ; la synthèse de polypropylène isotactique avec de hauts points de fusion a été démontrée sur le système MCM 41 / MAO / Zr Cl2 ( EBI ) [avec EBI = 1 ,2-bis(inden -1-yl)-ethane] (« Stereospecific propene polymérisation catalysis using an organometallic modified mesoporous silicate » , TUDOR, J. and O'HARE, D . , Chem. Commun., 1997, p.603-604) Description de l'invention
La présente invention concerne des solides inorganiques mésoporeux se présentant sous forme de particules inorganiques primaires et/ou secondaires de D10 > 1 μm et D50 > 3 μm, de préférence de D10 > 2 μm et D50 > 10 μm dont la taille peut aller jusqu'à 10 mm, de préférence jusqu'à 3 mm et avantageusement jusqu'à 1 ,5 mm,de composition globale correspondant à la formule :
M n/q (Wa Xb Yc Zd Oh) dans laquelle M représente un ou plusieurs ions , tels que l'ion ammonium, les ions des groupes IA IIA et VIIB, et notamment l'ion hydrogène et/ou sodium, n et q représentent respectivement la fraction équivalente et la valence du ou des ions M et n/q représente le nombre de moles ou la fraction molaire du ou des ions M,
W représente un ou plusieurs éléments divalents, tels que le manganèse, le cobalt, le fer et/ou le magnésium,
X représente un ou plusieurs éléments trivalents , tels que l'aluminium, le bore, le fer et/ou le gallium, Y représente un ou plusieurs éléments tétravalents , tels que le silicium et/ou le germanium, et de préférence le silicium,
Z représente un ou plusieurs éléments pentavalents, tels que le phosphore, 0 représente l'oxygène, a, b, c et d sont les fractions molaires respectives de W, X, Y et Z avec a+b+c+d =1 et 1 < h < 2,5, dont le volume microporeux (pores de taille inférieure ou égale à 2 μm) représente au plus 10 % du volume poreux total correspondant à des pores de taille allant jusqu'à 300 nm, et • soit dont le volume mésoporeux correspondant aux pores de taille allant de 2 à 10 nm est supérieur ou égal à 0,18 cm3/g, et de préférence supérieur ou égal à 0,3 cm3/g, dont le diamètre du pic maximal de la distribution DFT (Dmax) est tel que 2 < Dmax < 10 nm, de préférence 2 < Dmax < 5 nm, et dont le volume poreux correspondant aux pores de taille Dmax ± 15 % représente au moins 70 % de préférence au moins 80 % et avantageusement 90 % du volume poreux correspondant aux pores de taille comprise entre 2 et 10 nm, • soit dont le volume mésoporeux correspondant à des pores allant de 4 à 15 nm est supérieur ou égal à 0,7 cm3/g, et de préférence supérieur ou égal à 1 cm3/g, dont le diamètre du pic maximal de la distribution DFT (Dmax) est compris au sens large entre 4 et 15 nm et dont le volume poreux correspondant aux pores de taille Dmax ± 20 % représente au moins 45 % de préférence au moins 50 % du volume poreux correspondant aux pores de taille comprise entre 4 et 15 nm.
Les volumes poreux sont mesurés par adsorption de N2 à 77 K. Les volumes poreux correspondant à des pores dont la taille est supérieure ou égale à 2 nm et inférieure ou égale à 300 nm sont mesurés par la méthode DFT (pores cylindriques) Les volume poreux correspondant à des pores dont la taille est inférieure ou égale à 2 nm (volume microporeux au sens de TIUPAC) sont mesurés par la méthode t-plot.
D10, D50 et D90 représentent les diamètres des particules en dessous desquels se trouvent respectivement 10 % , 50 % et 90 % en poids des particules, le D 50 donnant une bonne approximation de la taille des particules.
Parmi les solides inorganiques selon l'invention, on préfère ceux dont la composition chimique peut être représentée empiriquement par la formule : M n/q (Xb Yc Oh) avec X = Al , Y = Si et éventuellement Ti, b+c=1 et 0 < b <1 , et avantageusement les silices. L'invention concerne également un procédé de fabrication des solides inorganiques décrits ci-dessus comprenant les étapes suivantes :
* mise en contact et réaction d'un mélange réactionnel contenant
• une source inorganique solide sous forme de particules primaires et/ou secondaires de D10 > 1 μm et D50 > 3 μm, de préférence de D10 > 2 μm et D50 > 10 μm dont la taille peut aller jusqu'à 10 mm, de composition globale correspondant à la formule :
Figure imgf000008_0001
où M, W, X, Y, Z, n, q, a, b, c, d et h ont la même signification que précédemment,
• un agent mobilisateur de la source inorganique solide, • un agent calibreur de pores, par exemple un tensioactif,
• et un solvant, de préférence Teau, éventuellement en présence d'un agent gonflant qui se solubilise dans les micelles, de préférence le triméthylbenzène,
*puis filtration, lavage, séchage et éventuellement élimination de l'agent calibreur de pores "et calcination des particules inorganiques obtenues, caractérisé en ce que les conditions de température, d'agitation et de durée de la réaction sont telles qu'on ne constate pas de modification notable de la morphologie et de la taille des particules présentes au cours de ladite réaction, que Ton peut apprécier par microscopie électronique à balayage (MEB) et granulométrie laser. A titre d'exemples d'agents calibreurs de pores, on citera tout particulièrement les tensioactifs contenant des ions ammonium ou phosphonium quaternaires, substitués par des groupements aryle ou alkyle ayant de 6 à 36 atomes de carbone, identiques ou différents, auxquels sont associés des anions hydroxydes, halogénures ou silicates et notamment ceux qui contiennent des ions cetyltriméthylammonium, cétyltrimethyiphosphonium, octadecyltriméthylammonium , octadécyltriméthylphosphonium , benzyltriméthylammonium, cétylpyridinium, décyltriméthylammonium, diméthyldidodécylammonium, triméthyldodécylammonium ainsi que les aminés comme la dodécylamine et Thexadécylamine.
Le solvant peut être organique mais est de préférence aqueux.
A titre d'exemples d'agents mobilisateurs de l'oxyde, on peut citer les bases minérales et organiques, la soude étant particulièrement préférée.
Le pH du mélange réactionnel n'est en général pas critique et peut varier entre 1 et 14. La cristallisation du solide peut être mise en oeuvre sous agitation ou non, celle-ci devant être suffisamment modérée pour ne pas provoquer Tattrition des particules présentes et donc l'augmentation du taux de fines. La température de cristallisation est en général comprise entre la température ambiante et 200 °C et la durée de la réaction de cristallisation peut en général aller de quelques minutes à quelques jours.
On contrôle et optimise la durée de l'étape de réaction par MEB et granulométrie laser, une durée de réaction trop longue risquant d'augmenter le taux de fines.
A l'issue de l'étape de réaction proprement dite, on obtient un solide en suspension dans le solvant que l'on filtre, lave et sèche ; le produit obtenu se présente, après calcination destinée notamment à éliminer le tensioactif par combustion, sous forme de particules solides inorganiques possédant des pores de taille régulière pouyant être de symétrie cubique ou hexagonale selon les conditions de synthèse. Dans le cas d'une symétrie hexagonale, les pores sont tous parallèles.
Le procédé selon l'invention présente notamment les avantages suivants :
1. Il est possible d'influencer la morphologie des particules d'oxyde mésoporeux par la morphologie des particules de la source d'oxyde. Il est donc possible, grâce au procédé selon l'invention d'optimiser la morphologie des particules d'oxyde mésoporeux en fonction des caractéristiques recherchées, comme par exemple la coulabilité ou l'aptitude de ces particules à ne pas accumuler les charges électrostatiques.
2. Il est possible d'influencer la taille des particules d'oxyde mésoporeux en modifiant la taille des particules de la source d'oxyde. Ainsi, en augmentant ou en diminuant la taille des particules de la source d'oxyde, on peut augmenter ou diminuer la taille des particules d'oxyde mésoporeux. 3. Il est possible d'influencer la distribution granulométrique des particules d'oxyde mésoporeux en jouant sur la distribution granulométrique des particules de la source d'oxyde. En effet la distribution de la taille de particules d'oxyde mésoporeux, mesurée par granulométrie laser est sensiblement voisine de la distribution granulométrique des particules de la source d'oxyde mise en œuvre.
Le procédé selon l'invention est particulièrement intéressant lorsque Ton recherche des distributions étroites de tailles de particules ; dans ce cas, il convient de mettre en œuvre une source d'oxyde dont la distribution des tailles de particules est étroite. 4. Selon les conditions opératoires utilisées, il est possible de faire varier les distances entre les pores ou les épaisseurs des parois entre les pores. Par exemple, le pH permet de faire varier l'épaisseur des parois : une interprétation couramment admise par de nombreux auteurs est qu'en milieu basique, la silice s'organise autour des micelles du tensioactif par interaction entre la tête cationique du tensioactif et les groupements silanols ionisés qui se trouvent en surface de la silice.
5. Il est possible de faire varier la répartition de la taille des pores des particules formées en ajoutant ou non, plus ou moins, d'agent gonflant : lorsqu'au cours de la synthèse des particules selon l'invention on met en œuvre un agent gonflant, on obtient des solides à grands pores, c'est-à-dire les solides mésoporeux selon l'invention dont
• B-1 le volume mésoporeux correspondant à des pores allant de 4 à 15 nm est supérieur ou égal à 0,7 cm3/g, et de préférence supérieur ou égal à 1 cm3/g,
" B-2 le diamètre du pic maximal de la distribution DFT (Dmax) est compris entre 4 et 15 nm
• et le volume poreux correspondant aux pores de taille Dmax ± 20 % représente au moins 45 % de préférence au moins 50 % du volume poreux correspondant aux pores de taille comprise entre 4 et 15 nm.
On constate que la concentration en agent gonflant influence la taille des pores : plus la concentration est élevée en agent gonflant est élevée, plus grande est la taille des pores. Lorsqu'aucun agent gonflant n'est mis en œuvre, on obtient les solides selon l'invention dont :
• A-1 le volume mésoporeux correspondant aux pores de taille allant de 2 à 10 nm est supérieur ou égal à 0,18 crrrVg, et de préférence supérieur ou égal à 0,3 cm3/g,
« A-2 le diamètre du pic maximal de la distribution DFT (Dmax) est tel que 2 nm < Dmax < 10 nm, de préférence 2nm < Dmax < 5 nm
• et A-3 le volume poreux correspondant aux pores de taille Dmax ± 15 % représente au moins 70 % de préférence au moins 80 % et avantageusement 90 % du volume poreux correspondant aux pores de taille comprise entre 2 et
10 nm,
Les particules selon l'invention de D50 > 10 μm peuvent avantageusement servir de supports de composante catalytique (à ce titre, elles peuvent être nommées dans ce qui suit "particules de support") pour la polymérisation de divers polymères notamment les polyamides , les polyesters, les oléfines et les composés styréniques , dénommés conjointement dans ce qui suit oléfines, etc. ; par oléfines on entend ici les polymères issus d'un ou plusieurs monomères choisis parmi les oléfines en C2-C10, les monomères vinyliques tels que l'acétate de vinyle et les monomères vinyliques aromatiques, tels que le styrène et ses dérivés. Une composante catalytique pour la polymérisation des oléfines peut être obtenue par association d'un composé d'un métal de transition aux particules de support. Ce métal de transition peut être le titane, le zirconium, le hafnium, le chrome, le vanadium ou tout autre métal capable dans des conditions adaptées de catalyser la polymérisation des oléfines. Par exemple, une composante catalytique solide peut être obtenue par association du support, d'un composé de titane, de chlore, éventuellement d'un composé d'aluminium, éventuellement un accepteur ou un donneur d'électrons ainsi que tout autre composé utilisable dans les composantes solides de type Ziegler-Natta ou métallocène.
Des polymères (notamment copolymères et prépolymères) peuvent être obtenus par polymérisation de monomère(s), en présence de la composante catalytique selon l'invention par les procédés en suspension, en solution, en phase gazeuse ou en masse. Les particules selon l'invention peuvent également servir de catalyseurs dans des réactions dans le domaine du raffinage et de la pétrochimie, typiquement réactions d'alkylation, isomérisation, dismutation, craquage, qui sont en général des réactions de nature acide. Les particules selon l'invention peuvent également servir d'adsorbants pour séparer les composants d'un mélange gazeux ou liquide constitué d'au moins 2 composés différents dans un procédé par adsorption. D'un point de vue pratique, les adsorbants préférés sont ceux dont la granulométrie est en général au moins de Tordre du millimètre. On peut mettre en œuvre les particules selon l'invention dont la granulométrie correspond à celle recherchée ou bien il peut être nécessaire, si leur granulométrie est insuffisante, de les agglomérer avant leur mise en œuvre par exemple selon Tune et/ou l'autre des techniques d'agglomération exposées plus haut (extrusion, agglomération, compactage et atomisation)
A titre d'exemple de procédés par adsorption, on citera tout particulièrement ceux fonctionnant de manière cyclique qui comprennent les étapes suivantes fonctionnant alternativement qui sont détaillées ci-après : a/ faire passer ledit mélange dans une zone d'adsorption contenant les particules mésoporeuses et récupérer soit le ou les composés le(s) moins adsorbé(s) soit un mélange gazeux enrichi en composé(s) le(s) moins adsorbé(s) en sortie de ladite zone d'adsorption, b/ désorber le ou les composé(s) adsorbé(s) dans la zone d'adsorption et régénérer la zone d'adsorption de manière à lui restaurer sa capacité d'adsorption.
L'étape de désorption/régénération b/ est réalisée par des moyens de vide
(aspiration), par purge de la zone d'adsorption avec un ou plusieurs gaz inerte(s) et/ou avec une partie du flux gazeux obtenu en sortie de la zone d'adsorption, par augmentation de température ou par combinaison des régénérations par aspiration, par purge et/ou variation de température.
Les procédés préférés par la demanderesse sont de type PSA ou VSA , de type TSA ou d'une combinaison de ces différents types de procédés (PTSA) Ce procédé est particulièrement bien adapté pour la séparation de VOC présents même à très faible concentration dans des flux gazeux de préférence à base d'air sec ou humide. Le procédé de la présente invention est également bien adapté pour la purification d'hydrocarbures particulièrement d'hydrocarbures oxygénés et encore plus spécifiquement d'hydrocarbures appartenant au groupe des cétones, des aldéhydes, des acides ou des alcools, en mélange avec des composés, de préférence à l'état d'impuretés ou de traces.
Parmi les particules selon l'invention, celles avec 1 < D10 < 3 μm et 3 < D50 < 15 μm, de préférence celles à base de silice, peuvent être avantageusement utilisées pour le garnissage de colonnes de chromatographie. A titre d'exemple, en chromatographie préparative on utilise de préférence des particules de D50 voisin de 12 μm et en HPLC (chromatographie en phase liquide haute performance) on utilise de préférence des particules de D50 voisin de 5 μm. EXEMPLE 1
1 ) Dans un réacteur cylindrique de 1 I et de 8 cm de diamètre, on prépare une solution contenant 310 ml d'eau, 8,3 g de soude et 29,4 g de NORAMIUM® MS 50 vendu par CECA (chlorure de triméthylalkylammonium avec une longueur de chaîne alkyle de 16 à 18 atomes de carbone)
2) Toujours à température ambiante, on ajoute sous agitation à ancre ou à pales, 33 g (comptés en équivalents anhydre) de silice pulvérulente précipitée vendue par CECA sous la dénomination de LEVILITE® dont la distribution de la taille des pores est large et se situe vers 20 nm et dont certaines des caractéristiques sont réunies dans le tableau 1 ci-dessous.
La composition typique de la suspension est :
0,19 Na20 - 0,084 C16 + - 1 Si02 - 32 H20
2) Toujours sous agitation, le milieu réactionnel est porté à 100°C, température à laquelle il est maintenu 3 h. Le solide est filtré puis lavé avec 3 I d'eau et séché en étuve ventilée à 70°C et calciné à 550°C par montée en 5 h de 25°C à 550°C puis maintien au palier pendant 1 h.
Après synthèse, le solide est caractérisé par adsorption/ désorption de N2 à 77 K (ASAP 2010 de MICROMERITICS ) et au granulomètre LASER (MALVERN ) La distribution de taille de pores est calculée selon la méthode DFT.
On remarque sur l'isotherme le saut d'adsorption brusque vers P/Ps = 0,37, correspondant à la condensation capillaire caractéristique dans les mésopores. Par ailleurs, on mesure la capacité d'adsorption de toluène en phase gazeuse à 25 °C sous une pression relative de 0,5 , qui est égale à 65% en poids.
Les caractéristiques de la silice de départ et du solide obtenus sont réunies dans le tableau 1. Au vu du tableau 1 , on constate que la distribution granulométrique du solide mésoporeux formé et celle de la silice de départ sont pratiquement superposables avec, en particulier aucune fine (0 % de particules de taille inférieure à 2 μm). La synthèse telle qu'elle est pratiquée permet de conserver la morphologie du matériau de départ. EXEMPLE 2
La synthèse de l'exemple 1 est reproduite à l'exception du mobile d'agitation qui est remplacé par une agitation magnétique au moyen d'un barreau aimanté de 3 cm de diamètre tournant à 100 trs / min.
Le solide résultant de cette synthèse présente pratiquement les mêmes caractéristiques de surface et de porosité que celui de l'exemple 1 mais révèle au granulomètre LASER l'existence de fines particules estimées à 4-5 % en poids inférieures à 2 μm ; l'utilisation d'un système d'agitation cisaillant favorise l'abrasion des particules. EXEMPLE 3 On reproduit la synthèse de l'exemple 1 en remplaçant la LEVILITE® par une silice vendue par GRACE sous la dénomination SYLOPOL® 2104 ; cette silice présente une distribution de taille de particules étroite sans fines (0% de particules inférieures à 15 μm) et une distribution de taille de pores large centrée sur environ 20 à 40 nm. Les caractéristiques de la silice de départ et du produit issu de la synthèse sont indiquées dans le tableau 1 .
Le solide mésoporeux formé présente un saut brusque d'adsorption d'azote pour P/Ps = 0,37, correspondant à la condensation capillaire dans les mésopores.
De plus, à partir des résultats du tableau 1 , on constate que la distribution granulométrique du solide résultant de la synthèse peut être quasiment confondue avec celle de la silice initiale à l'exception d'une petite traînée vers les particules de faible taille. Le solide formé contient un second volume poreux (volume poreux 10- 300 nm) résidu de la synthèse du produit de départ. EXEMPLE 4
On reproduit la synthèse de l'exemple 1 , en utilisant comme source de silice du ZEOSIL® 175 MP vendu par RHODIA dont la distribution de taille de pores est large et située dans les macropores (> 50 nm) La distribution granulométrique de cette silice montre un pic principal vers 150 μm avec une traînée large vers les particules de plus faible granulométrie mais pas de fines (0 % de particules de taille inférieure à 4 μm) Les caractéristiques de la silice de départ et du solide mésoporeux synthétisé sont réunies dans le tableau 1.
Au vu du tableau 1 , on constate que le solide synthétisé, même s'il ne possède pas le même diamètre médian (D50) que la silice de départ, reproduit assez fidèlement sa distribution globale. On constate aussi que le rapport du volume poreux (2-10 nm) au volume poreux (10-300nm) est inférieur à celui du solide formé à l'exemple 1 , ce que Ton attribue au reliquat de porosité de la silice initiale.
Le saut brusque d'adsorption d'azote est observé pour P/Ps = 0,36, correspondant à la condensation capillaire dans les mésopores.
La position du pic maximal de granulométrie de la silice de départ correspond à 150 μm alors que celle du solide formé est située à 90 μm avec pour les 2 solides une traînée large vers les petites tailles de particules et aucune fine (0% < 4 μm ) . EXEMPLE 5
On reproduit la synthèse de l'exemple 1 en utilisant comme source de silice le SYLIPOL® 2104 et un rapport Na20 sur silice de 0,08 au lieu de 0,19.
Les caractéristiques de la silice de départ et du produit issu de la synthèse sont indiquées dans le tableau 1 ci-dessous.
Le solide mésoporeux synthétisé est de moins bonne qualité que ceux des exemples précédents du fait de la plus faible basicité du milieu qui n'a permis qu'une transformation partielle du solide. Le saut brusque d'adsorption d'azote est observé pour P/Ps = 0,36, correspondant à la condensation capillaire dans les mésopores. II reproduit assez fidèlement le profil granulométrique de la silice de départ.
EXEMPLE 6 On réalise la synthèse d'un solide de type mésoporeux à plus grands pores dans les conditions suivantes :
1) On prépare une solution contenant 300 ml d'eau, 8,3 g de soude et
29,4 g de NORAMIUM® MS 50 2) On ajoute 27,7 g de triméthylbenzène (TMB) en tant qu'agent gonflant sous agitation de manière à permettre la solubilisation de cette molécule dans la micelle de tensioactif.
3) Après agitation pendant environ 15 min, on ajoute sous agitation lente,
33 g de SYLIPOL® 2104 (comptés en équivalent anhydre) 4) Montée à 100°C sous agitation et maintien 16 h à cette température
5) Filtration et lavage avec 3 I d'eau
6) Séchage à 70°C en étuve ventilée
7) Calcination à 550°C par montée en 5 heures de 25 °C à 550°C et maintien 1 h à cette température. La composition du milieu de synthèse est la suivante:
0,19 Na20 - 0,084 C16 + - 0,42 TMB - 1 Si02 - 32 H20 Le solide est caractérisé comme précédemment et les résultats sont reportés dans le tableau 2 ci-dessous. Le solide présente un saut brusque d'adsorption d'azote vers 0,75, correspondant à la condensation capillaire dans les mésopores et sa distribution granulométrique reproduit très fidèlement celle de la silice initiale. EXEMPLE 7
On reproduit la synthèse de l'exemple 1 , en utilisant comme source d'oxyde qui est une silice-alumine de rapport molaire Si/Ai = 7 vendu par KETJEN sous forme de grains préalablement concassés et tamisés en dessous de 125 μm. Les caractéristiques de la silice-alumine de départ et du produit issu de la synthèse sont indiquées dans le tableau 1 ci-dessous.
L'examen au MEB montre une parfaite conservation de la taille et de la morphologie des particules au cours de la synthèse. On note toutefois un aspect de surface des particules formées un peu différent (plus lisse) de celui des particules de la silice-alumine de départ. EXEMPLE 8 Dans 310 g d'eau, on dissout 29,4 g de NORAMIUM® MS 50 puis 8,4 g de soude. Après agitation pour dissoudre tous les ingrédients, on disperse dans le mélange 33 g (équivalent anhydre) de silice précipitée commercialisée par la demanderesse sous la dénomination LEVILITE® dont les caractéristiques sont indiquées dans le tableau 1 puis on le porte à une température d'environ 100 °C, température à laquelle on maintient le mélange pendant 16 h sous légère agitation. On filtre et lave avec 6 I d'eau puis sèche le solide obtenu qui présente, après un traitement thermique de 2 h à 550 °C sous air, les caractéristiques réunies dans le tableau 1. On constate que le taux de fines particules de taille inférieure à 4 μm représente 3 % du poids total des particules alors qu'il était de 0 % pour la silice de départ, ce qui montre bien une dégradation des particules lors de la synthèse. Au MEB, on constate que certaines particules sont abîmées ou ont éclaté et de petits fragments sont apparus. Ceci démontre bien l'influence de la durée de la synthèse sur le taux de fines.
EXEMPLE 9
Dans 310 g d'eau, on dissout 29,4 g de NORAMIUM® MS 50 puis 8,4 g de soude. Après agitation pour dissoudre tous les ingrédients, on disperse dans le milieu 31 g ( équivalent anhydre ) de silice précipitée commercialisée par la société GRACE sous la dénomination SYLOPOL® 2104 dont les caractéristiques sont indiquées dans le tableau 1 puis on porte a une température de 100 °C, température à laquelle on maintient le mélange pendant 40 h sous légère agitation. On filtre et lave avec 6 I d'eau puis on sèche le solide obtenu qui présente après un traitement thermique de 2 h à 550°C sous air les caractéristiques réunies dans le tableau 1. On constate que le taux de fines particules de taille inférieure à 4 μm représente 43 % du poids total des particules alors qu'il était de 0 % pour la silice de départ, ce qui montre une légère dégradation des particules lors de la synthèse. Dans cet exemple, on constate aussi que les particules sont abîmées du fait de la durée de la synthèse. EXEMPLE 10
Dans un réacteur équipé d'un mobile d'agitation de type vis d'Archimède, on introduit 400 ml d'une solution contenant 33,2 g de soude, préalablement dissous. On lance l'agitation à 200 trs/ min et on ajoute 117,6 g de NORAMIUM® MS 50, vendu par CECA et 102,2 g de 1,3,5 triméthylbenzène (agent gonflant). Après 5 min d'agitation pendant lesquelles se forme Témulsion, on introduit 132 g (équivalent anhydres ) de TIXOSIL® 68, silice vendue par RHODIA. On porte le milieu réactionnel à 100°C pendant 3 h en maintenant l'agitation puis on filtre et on lave avec 12 I d'eau. Le produit est ensuite séché à 100°C pendant 2 h puis activé dans une étuve par montée en 1 h à 550°C et maintien à cette température pendant 2 h sous balayage de N2 . Le solide est alors caractérisé par son isotherme d'adsorption/ désorption de N2 à 77 K qui permet de déduire les valeurs de surface et porosité.
L'isotherme d'adsorption/ désorption de N2 à 77 K montre que le solide est un solide mésoporeux selon Tinvention bien formé avec une marche d'adsorption marquée et une distribution de taille de pores relativement étroite.
On procède également une mesure de la distribution granulométrique au moyen d'un granulomètre MALVERN.
Les caractéristiques du solide obtenu sont réunies dans le tableau 2. La comparaison des granulométries respectives apparaît dans le tableau 2 ci-dessous : On en conclut qu'il est possible de synthétiser des solides inorganiques mésoporeux à grands pores selon Tinvention par synthèse isomorphique dans un réacteur équipé d'un moyen d'agitation de type vis d'Archimède. On constate de plus, que la largeur de la distribution granulométrique est plus faible sur le solide selon Tinvention que sur la silice de départ ; ceci est un avantage dans l'optique d'une utilisation en catalyse de polymérisation notamment parce que le taux de fines particules du solide selon Tinvention est fortement diminué (D10) par rapport à la silice de départ en maintenant le taux de grosses particules (D90)
Figure imgf000019_0001
Tableau 2
Figure imgf000020_0001

Claims

REVENDICATIONS
1. Solides inorganiques mésoporeux caractérisés en ce qu'ils se présentent
• sous forme de particules inorganiques primaires et/ou secondaires de D10 > 1 μm et D50 > 3 μm, de préférence de D10 > 2 μm et D50 > 10 μm,
» dont la taille peut aller jusqu'à 10 mm, de préférence jusqu'à 3 mm et avantageusement jusqu'à 1 ,5 mm,
• de composition globale correspondant à la formule : n/q (Wa X YC Zd Oh) dans laquelle M représente un ou plusieurs ions , tels que l'ion ammonium, les ions des groupes IA MA et VI IB, et notamment l'ion hydrogène et/ou sodium, n et q représentent respectivement la fraction équivalente et la valence du ou des ions M et n/q représenté le nombre de moles ou la fraction molaire du ou des ions M, W représente un ou plusieurs éléments divalents, tels que le manganèse, le cobalt, le fer et/ou le magnésium,
X représente un ou plusieurs éléments trivalents , tels que l'aluminium, le bore, le fer et/ou le gallium,
Y représente un ou plusieurs éléments tétravalents , tels que le silicium et/ou le germanium,, et de préférence le silicium,
Z représente un ou plusieurs éléments pentavalents, tels que le phosphore,
0 représente l'oxygène, a, b, c et d sont les fractions molaires respectives de W, X, Y et Z avec a+b+c+d =1
1 < h < 2,5 ,
• dont le volume microporeux (pores de taille inférieure ou égale à 2 μm) représente au plus 10 % du volume poreux total correspondant aux pores de taille allant jusqu'à 300 nm, et " A-1 dont le volume mésoporeux correspondant aux pores de taille allant de 2 à 10 nm est supérieur ou égal à 0,18 cm3/g, et de préférence supérieur ou égal à 0,3 cm3/g, " A-2 dont le diamètre du pic maximal de la distribution DFT (Dmax) est tel que 2nm < Dmax < 10 nm, de préférence 2nm < Dmax < 5 nm
" et A-3 dont le volume poreux correspondant aux pores de taille Dmax ± 15 % représente au moins 70 % de préférence au moins 80 % et avantageusement 90 % du volume poreux correspondant aux pores de taille comprise entre 2 et 10 nm, ou
" B-1 dont le volume mésoporeux correspondant à des pores allant de 4 à 15 nm est supérieur ou égal à 0,7 cm3/g, et de préférence supérieur ou égal à 1 cm3/g, • B-2 dont le diamètre du pic maximal de la distribution DFT (Dmax) est compris entre 4 et 15 nm • et B-3 dont le volume poreux correspondant aux pores de taille Dmax ± 20 % représente au moins 45 % de préférence au moins 50 % du volume poreux correspondant aux pores de taille comprise entre 4 et 15 nm.
2. Solides inorganiques selon la revendication 1 de composition globale correspondant à la formule : M n/q (Xb Yc Oh) avec X = Al , Y = Si et éventuellement Ti, b+c=1 et 0 < b <1.
3. Solides inorganiques selon la revendication 1 ou 2 à base de silice.
4. Solides inorganiques selon Tune quelconque des revendications 1 à 3 dont le taux de fines particules de taille inférieure ou égale à 4 μm est de 0 %.
5. Procédé de préparation de solides inorganiques mésoporeux tels que définis dans Tune quelconque des revendications 1 à 4 comprenant les étapes suivantes :
* mise en contact et réaction d'un mélange réactionnel contenant
• une source inorganique solide sous forme de particules primaires et/ou secondaires de D10 > 1 μm et de D50 > 3 μm, de préférence de D10 > 2 μm et de D50 > 10 μm, dont la taille peut aller jusqu'à 10 mm, de composition globale correspondant à la formule : n/q (Wa Xb Yc Zd On) où M, W, X, Y, Z, n, q, a, b, c, d et h sont tels que définis dans Tune quelconque des revendications 1 à 3,
• un agent mobilisateur de la source inorganique solide, « un agent calibreur de pores, par exemple un tensioactif,
• et un solvant, de préférence l'eau, éventuellement en présence d'un agent gonflant qui se solubilise dans les micelles, de préférence le triméthylbenzène,
*puis filtration, lavage, séchage et éventuellement élimination de l'agent calibreur de pores et calcination des particules inorganiques obtenues, caractérisé en ce que les conditions de température, d'agitation et de durée de la réaction soient telles qu'on ne constate pas de modification notable de la morphologie et de la taille des particules présentes au cours de ladite réaction.
6. Procédé selon la revendication 5, caractérisé en ce que le ou les agents calibreurs de pores sont choisis parmi les tensioactifs contenant des ions ammonium ou phosphonium quaternaires, substitués par des groupements aryle ou alkyle ayant de 6 à 36 atomes de carbone, identiques ou différents, auxquels sont associés des anions hydroxydes, halogénures ou silicates et notamment ceux qui contiennent des ions cetyltriméthylammonium, cétyltrimethyiphosphonium, octadecyltriméthylammonium , octadécyltriméthylphosphonium , benzyltriméthylammonium, cétylpyridiniunï, décyltriméthylammonium, diméthyldidodécylammonium, tri éthyldodécylammonium ainsi que les aminés comme la dodécylamine et Thexadécylamine.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le solvant est organique ou aqueux, et de préférence aqueux.
8. Utilisation des solides inorganiques mésoporeux tels que définis dans Tune quelconque des revendications 1 à 3, de préférence ceux de D50 > 10 μm, et avantageusement ceux définis à la revendication 4, comme support de composante catalytique pour la polymérisation de polymères non oléfiniques.
9. Utilisation des solides inorganiques mésoporeux tels que définis dans
Tune quelconque des revendications 1 à 4, comme catalyseurs de réactions dans le domaine du raffinage et de la pétrochimie, telles que réactions d'alkylation, isomérisation, dismutation, craquage.
10. Utilisation des solides inorganiques mésoporeux tels que définis dans Tune quelconque des revendications 1 à 4, de préférence ceux dont la taille est supérieure ou égale à 0,5 mm, éventuellement agglomérés avec un liant, comme adsorbants pour séparer les composants d'un mélange gazeux ou liquide constitué d'au moins 2 composés différents dans un procédé par adsorption fonctionnant de manière cyclique et comprenant les étapes fonctionnant alternativement et consistant à : a/ faire passer ledit mélange dans une zone d'adsorption contenant les solides inorganiques mésoporeux et récupérer soit le ou les composés le(s) moins adsorbé(s) soit un mélange gazeux enrichi en composé(s) le(s) moins adsorbé(s) en sortie de ladite zone d'adsorption, b/ désorber le ou les composé(s) adsorbé(s) dans la zone d'adsorption et régénérer la zone d'adsorption de manière à lui restaurer sa capacité d'adsorption.
11. Utilisation des solides inorganiques mésoporeux tels que définis dans l'une quelconque des revendications 1 à 4, de préférence tels que 1 < D10 < 3 μm et 3 < D50 < 15 μm, comme supports de colonne de chromatographie pour séparer les composants d'un mélange gazeux et/ou liquide constitué d'au moins 2 composés différents.
PCT/FR2001/003496 2000-11-14 2001-11-09 Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants WO2002040402A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002542736A JP2004525846A (ja) 2000-11-14 2001-11-09 メソ細孔無機固体と、その製造方法と、その触媒および吸着剤としての使用
KR10-2003-7006547A KR20030067685A (ko) 2000-11-14 2001-11-09 메소다공성 무기 고형물, 이의 제조 방법 및 특히 촉매 및흡착제로서의 이의 용도
AU2002218356A AU2002218356A1 (en) 2000-11-14 2001-11-09 Mesoporous inorganic solids, method for preparing same and uses thereof in particular as catalysts and adsorbents
CA002428734A CA2428734A1 (fr) 2000-11-14 2001-11-09 Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants
EP01996513A EP1334066A1 (fr) 2000-11-14 2001-11-09 Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants
US10/437,456 US20040035751A1 (en) 2000-11-14 2003-05-14 Inorganic mesoporous solids, a process for their preparation and their use, notably as catalysts and adsorbents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/14595 2000-11-14
FR0014595A FR2816609B1 (fr) 2000-11-14 2000-11-14 Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et absorbants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/437,456 Continuation US20040035751A1 (en) 2000-11-14 2003-05-14 Inorganic mesoporous solids, a process for their preparation and their use, notably as catalysts and adsorbents

Publications (1)

Publication Number Publication Date
WO2002040402A1 true WO2002040402A1 (fr) 2002-05-23

Family

ID=8856397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003496 WO2002040402A1 (fr) 2000-11-14 2001-11-09 Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants

Country Status (8)

Country Link
US (1) US20040035751A1 (fr)
EP (1) EP1334066A1 (fr)
JP (1) JP2004525846A (fr)
KR (1) KR20030067685A (fr)
AU (1) AU2002218356A1 (fr)
CA (1) CA2428734A1 (fr)
FR (1) FR2816609B1 (fr)
WO (1) WO2002040402A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026473A1 (fr) * 2002-09-18 2004-04-01 Abb Lummus Global Inc. Materiau mesoporeux et son utilisation pour l'oxydation selective de composes organiques
WO2007036620A1 (fr) * 2005-09-30 2007-04-05 Rhodia Recherches Et Technologies Silice de cohesion elevee, procede de preparation et utilisations
US7608747B2 (en) 1999-09-07 2009-10-27 Lummus Technology Inc. Aromatics hydrogenolysis using novel mesoporous catalyst system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2404830C (fr) * 2002-10-17 2011-03-22 University Of Windsor Tamis moleculaires mesaporeux metalliques pour oxyde metallique de transition utilises pour la production d'ammoniac par activation du diazote a la temperature ambiante
JP4512060B2 (ja) * 2006-04-18 2010-07-28 独立行政法人科学技術振興機構 3次元構造メソポーラスシリカとその製造方法
CN100529754C (zh) * 2006-11-10 2009-08-19 中国科学院山西煤炭化学研究所 一种分离苯及其同系物的方法
US7824641B2 (en) * 2007-05-25 2010-11-02 Lehigh University Periodic mesoporous phosphorus-nitrogen compounds
US8088277B2 (en) * 2008-06-11 2012-01-03 General Electric Company Methods and system for removing impurities from heavy fuel
US8986836B2 (en) * 2009-03-19 2015-03-24 Ohio University Microspheres and their methods of preparation
WO2014188924A1 (fr) * 2013-05-22 2014-11-27 三井化学株式会社 Particules d'oxyde métallique poreuses, leur procédé de fabrication, et leur utilisation
JP7320405B2 (ja) * 2018-09-28 2023-08-03 住友化学株式会社 高分子化合物の製造方法
JP7484650B2 (ja) 2020-10-15 2024-05-16 トヨタ自動車株式会社 多孔質カーボン、触媒担体、及び多孔質カーボンの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057296A (en) * 1990-12-10 1991-10-15 Mobil Oil Corp. Method for synthesizing mesoporous crystalline material
DE19530031A1 (de) * 1995-08-16 1997-02-20 Merck Patent Gmbh Poröse monodisperse SiO¶2¶-Partikel
US5795559A (en) * 1995-06-06 1998-08-18 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant templating route
JPH10328558A (ja) * 1997-05-30 1998-12-15 Toyota Central Res & Dev Lab Inc 球状メソ多孔体及びその製造方法
EP0985636A1 (fr) * 1998-09-09 2000-03-15 Degussa-Hüls Aktiengesellschaft Silices et métallosilicates à structure mésoporeuse régulière

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556725A (en) * 1969-02-26 1971-01-19 Sylvania Electric Prod Process for producing low-bulk density silica
US5863515A (en) * 1996-02-20 1999-01-26 California Institute Of Technology Mesoporous alumina and process for its preparation
US5718878A (en) * 1996-07-12 1998-02-17 Akzo Nobel N.V. Mesoporous titania and process for its preparation
FR2764213B1 (fr) * 1997-06-10 1999-07-16 Inst Francais Du Petrole Catalyseur d'hydrotraitement de charges hydrocarbonees dans un reacteur a lit fixe
DE19730126A1 (de) * 1997-07-14 1999-01-21 Basf Ag Aluminiumoxid enthaltender Feststoff mit großer Oberfläche
DE19730125A1 (de) * 1997-07-14 1999-01-21 Basf Ag Aluminiumoxid enthaltender Feststoff mit großer Oberfläche
US6139814A (en) * 1997-11-10 2000-10-31 Ford Global Technologies, Inc. Thermally stable, high-surface-area metal oxides made by organic templating
US6027706A (en) * 1998-05-05 2000-02-22 Board Of Trustees Operating Michigan State University Porous aluminum oxide materials prepared by non-ionic surfactant assembly route

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057296A (en) * 1990-12-10 1991-10-15 Mobil Oil Corp. Method for synthesizing mesoporous crystalline material
US5795559A (en) * 1995-06-06 1998-08-18 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant templating route
DE19530031A1 (de) * 1995-08-16 1997-02-20 Merck Patent Gmbh Poröse monodisperse SiO¶2¶-Partikel
JPH10328558A (ja) * 1997-05-30 1998-12-15 Toyota Central Res & Dev Lab Inc 球状メソ多孔体及びその製造方法
EP0985636A1 (fr) * 1998-09-09 2000-03-15 Degussa-Hüls Aktiengesellschaft Silices et métallosilicates à structure mésoporeuse régulière

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906208B2 (en) 1999-09-07 2005-06-14 Abb Lummus Global Inc. Mesoporous material and use thereof for the selective oxidation of organic compounds
US7608747B2 (en) 1999-09-07 2009-10-27 Lummus Technology Inc. Aromatics hydrogenolysis using novel mesoporous catalyst system
WO2004026473A1 (fr) * 2002-09-18 2004-04-01 Abb Lummus Global Inc. Materiau mesoporeux et son utilisation pour l'oxydation selective de composes organiques
WO2007036620A1 (fr) * 2005-09-30 2007-04-05 Rhodia Recherches Et Technologies Silice de cohesion elevee, procede de preparation et utilisations
FR2891539A1 (fr) * 2005-09-30 2007-04-06 Rhodia Recherches & Tech Silice de cohesion elevee, procede de preparation et utilisations

Also Published As

Publication number Publication date
KR20030067685A (ko) 2003-08-14
AU2002218356A1 (en) 2002-05-27
US20040035751A1 (en) 2004-02-26
CA2428734A1 (fr) 2002-05-23
FR2816609B1 (fr) 2003-01-10
FR2816609A1 (fr) 2002-05-17
EP1334066A1 (fr) 2003-08-13
JP2004525846A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
EP1627852B1 (fr) Matériau aluminosilicate mésostructuré
EP3043902B1 (fr) Adsorbants zéolithiques de haute surface externe comprenant du baryum et/ou due potassium et leurs utilisations
EP3218102B1 (fr) Adsorbant zéolithique à base de zéolithe mésoporeuse
EP3030520B1 (fr) Matériau zéolithique à base de zéolithe mésoporeuse
WO2002040402A1 (fr) Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants
EP3191401B1 (fr) Agrégats de nanocristaux de zéolithes
EP3177381B1 (fr) Adsorbants zéolithiques à faible taux de liant et à haute surface externe, leur procédé de préparation et leurs utilisations
EP2991760A1 (fr) Adsorbants zéolithiques comprenant de la zeolithe emt, leur procédé de préparation et leurs utilisations
FR3010072A1 (fr) Materiau zeolithique a base de zeolithe mesoporeuse
EP2274237B1 (fr) Matériau aluminosilicate mesostructure forme de particules spheriques de taille specifique
EP2274236B1 (fr) Materiau mesostructure a forte teneur en aluminium et constitue de particules spheriques de taille specifique
EP3177584B1 (fr) Procédé de séparation du méta-xylène utilisant un adsorbant zéolithique à haute surface externe
CA2342258A1 (fr) Methode de separation de molecules en phase gaz par adsorption au moyen d&#39;adsorbants inorganiques solides agglomeres a distribution mesoporeuse etroite et calibree
CA2297557A1 (fr) Materiaux siliciques mesostructures et leur procede de fabrication
EP2231521B1 (fr) Méthode de préparation de matériaux mésoporeux
EP3679004A1 (fr) Procede hybride de production de paraxylene de haute purete avec solvant toluene
WO2019122649A1 (fr) Adsorbants zéolitiques contenant du strontium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2428734

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10437456

Country of ref document: US

Ref document number: 1020037006547

Country of ref document: KR

Ref document number: 2002542736

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 773/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001996513

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001996513

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037006547

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001996513

Country of ref document: EP