WO2002040225A1 - Robot a pattes - Google Patents

Robot a pattes Download PDF

Info

Publication number
WO2002040225A1
WO2002040225A1 PCT/JP2001/010027 JP0110027W WO0240225A1 WO 2002040225 A1 WO2002040225 A1 WO 2002040225A1 JP 0110027 W JP0110027 W JP 0110027W WO 0240225 A1 WO0240225 A1 WO 0240225A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
upper body
leg
legs
robot
Prior art date
Application number
PCT/JP2001/010027
Other languages
English (en)
French (fr)
Inventor
Hideaki Takahashi
Susumu Miyazaki
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to JP2002542575A priority Critical patent/JP3854926B2/ja
Priority to AU2002224043A priority patent/AU2002224043A1/en
Priority to DE60137650T priority patent/DE60137650D1/de
Priority to KR10-2003-7006573A priority patent/KR100532685B1/ko
Priority to CA002426980A priority patent/CA2426980C/en
Priority to EP01994554A priority patent/EP1358971B1/en
Priority to US10/416,851 priority patent/US6897631B2/en
Publication of WO2002040225A1 publication Critical patent/WO2002040225A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0241One-dimensional joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators

Definitions

  • the present invention relates to a legged walking robot, and more specifically, to a bipedal legged walking robot capable of easily attaching and detaching an upper body and legs.
  • a drive source for driving a joint connecting the upper body and the leg is robotized. It is placed on the waist plate, which is part of the upper body.
  • a harmonic drive harmonic reducer. Product name
  • the flexspline is fitted with a gear spline and fitted with a spline, and it is relatively easy to disassemble it, but it is necessary to perform assembly with the gear and it is always satisfactory in maintenance. It was not something. Furthermore, when adjusting the tension of the belt that transmits the driving force from the drive source to the reduction gear, it was necessary to remove the waist plate from the upper body of the robot, which was cumbersome. Disclosure of the invention
  • an object of the present invention is to solve the above-mentioned disadvantages and to improve the maintainability by easily attaching and detaching the legs in the leg-type walking port. Is to provide.
  • a second object of the present invention is to enable easy access to a power transmitting means for transmitting a driving force from a driving source for driving a joint connecting the upper body and the leg, and to adjust the power transmitting means as necessary. It is an object of the present invention to provide a legged walking robot capable of performing the following.
  • a third object of the present invention is to prevent interference when the legs are relatively displaced to facilitate a turning operation and the like, thereby increasing the degree of gait design.
  • a legged walking robot having at least an upper body and a plurality of legs that are rotatably connected to the upper body via joints, respectively. And a drive source for driving the joint is arranged on the leg side.
  • the drive source that drives the joint that connects the upper body and the leg is located on the leg side, it is easy to attach and detach the leg from the upper body of the robot, and maintain the leg of the legged walking robot. Performance can be improved.
  • the drive source is arranged so as to be offset from a rotation axis of the joint, and is connected to the joint via power transmission means.
  • the drive source for driving the joint that connects the upper body and the leg is offset from the axis of rotation of the joint. More specifically, the output shaft of the drive source (electric motor) is connected to the input shaft of the reducer (that is, the rotation of the joint). ) Are parallel axes that are separated from each other, and the drive source is located behind the outside of the legs in the direction of robot movement.
  • the drive source and the joint were connected via power transmission means, more specifically, via a belt.
  • the drive source is covered with a case, and an opening is formed at a position facing the upper body of the case.
  • the drive source was covered with the case, and an opening was formed at the position facing the upper body of the case, more specifically, near the upper end of the leg, and more specifically, an adjustment device such as a screwdriver was inserted into the hole.
  • Transmission means such as a belt that drives the joint that connects the upper body and legs Easily accessible and similarly easy to maintain o
  • a bipedal walking robot having at least an upper body and two legs respectively rotatably connected to the upper body via joints.
  • the drive source for driving the joint is offset from the rotation axis of the joint and arranged outside the leg, so that interference when the two legs are relatively displaced is prevented. Configured.
  • a drive source for driving a joint is offset from the rotation axis of the joint and arranged outside the leg, that is, a drive provided on the two legs
  • the source is located on the right side of the right leg, the left side of the left leg, and more specifically on the left and right sides with respect to the traveling direction of the robot.
  • the legs are rotated to any angle because they are configured to prevent interference when the legs are displaced relative to each other, facilitating turning motions and expanding the freedom of gait design. it can.
  • FIG. 1 is a front view of a legged walking robot according to one embodiment of the present invention.
  • FIG. 2 is a right side view of the legged walking robot shown in FIG.
  • FIG. 3 is a schematic diagram showing the entire internal structure of the legged walking robot shown in FIG. 1 centering on joints.
  • FIG. 4 is a block diagram showing details of the control unit shown in FIG.
  • FIG. 5 is a partial cross-sectional view taken along line VV of FIG.
  • FIG. 6 is a top view of the right leg taken from the upper body as viewed from above.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a bottom perspective view of the upper body of the legged walking robot shown in FIG. 1 and the like as viewed obliquely from below.
  • FIG. 9 is a top perspective view of the right leg of the robot shown in FIG. 6 as viewed obliquely from above.
  • FIG. 10 is a cross-sectional view taken along line XX of FIGS. 1 and 2.
  • FIG. 11 is a partially enlarged view of a portion indicated by reference numeral XI in FIG.
  • FIG. 12 is a perspective view illustrating the positional relationship between the upper body and the legs of the robot when adjusting the tension of the belt (power transmission means).
  • FIG. 1 is a front view of a legged walking robot (hereinafter, referred to as “robot”) 1 according to one embodiment of the present invention
  • FIG. 2 is a side view thereof.
  • a biped walking robot is taken as an example of a legged walking robot.
  • the robot 1 has two legs (leg links) 2 and an upper body (base) 3 is provided above the two legs.
  • a head 4 is provided on the upper part of the upper body 3, and two arm links 5 are connected to both sides of the upper body 3.
  • a storage unit 6 is provided at the back of the upper body 3, and an electric motor (drive source) for driving a control unit (to be described later) and a joint of the robot 1 is provided therein.
  • a battery power supply (not shown) is accommodated.
  • the mouth bot 1 shown in FIG. 1 and FIG. 2 has a cover attached to protect the internal structure.
  • the robot 1 has six joints on each of the right and left legs 2.
  • the two joints are joints around the vertical axis (Z-axis or gravity axis) for the rotation of the waist legs.
  • crotch (waist) Joints 12R and 12L in the mouth direction (around the X axis), joints 14R and 14L in the crotch (lumbar) pitch direction (around the Y axis), and knee pitch directions ( Joints 16 R and 16 L in the ankle pitch direction (around the Y axis), joints 18 R and 18 L in the ankle pitch direction (around the Y axis), and joints 20 R and 16 R in the same mouth direction (around the X axis) Consists of 20 L.
  • a foot (foot) 22R, 22L is attached to a lower portion of the leg link 2R (L).
  • the leg 2 includes a hip joint (hip joint) 1 OR (L), 12 R (L), 14 R (L), a knee joint 16 R (L), and an ankle joint 18 R (L), 20 R (L) It is.
  • the hip and knee joints are connected by a femoral link 24 R (L), and the knee joint and ankle joint are connected by a lower leg link 26 R (L).
  • leg (leg link) 2 is connected to the upper body 3 through the hip joint, but the upper body 3 is simply shown as a upper body link 28 in FIG. As described above, the arm link 5 is connected to the upper body 3.
  • Arm link 5 is a joint in the pitch direction of the shoulder 3 OR, 30 L, a joint in the same roll direction 32 R, 32 L, a joint around the vertical axis for arm rotation 34 R, 34 L, elbow It consists of joints 36 R and 36 L around the pitch axis of the robot, and joints 38 R and 38 L around the vertical axis for wrist rotation.
  • Hands (end effectors) 40 R and 40 L are attached to the end of the wrist.
  • the arm link 5 includes a shoulder joint 3OR (L), 32R (L), 34R (L), an elbow joint 36R (L), and a wrist joint 38R (L).
  • the shoulder joint and the elbow joint are connected by an upper arm link 42 R (L), and the elbow joint and the hand are connected by a lower arm link 44 R (L).
  • the head 4 is composed of a neck joint 46 around a vertical axis and a head swinging mechanism 48 that rotates the head 4 about an axis orthogonal thereto.
  • a visual sensor (not shown) made up of a CCD or the like is housed inside the head 4 as an external sensor.
  • the leg 2 is provided with a total of 12 degrees of freedom for the left and right feet, and by driving these 12 joints at an appropriate angle during walking, the desired movement can be performed on the entire foot. Can be given, and can walk in a three-dimensional space arbitrarily.
  • the arm link 5 is also provided with five degrees of freedom for each of the left and right arms, and a desired operation can be performed by driving these joints at an appropriate angle.
  • a well-known six-axis force sensor 50 is attached to the foot 22 R (L) below the ankle joint, and among the external forces acting on the robot, three of the floor reaction force acting on the robot from the ground contact surface. Detects the direction components Fx, Fy, Fz and the three-direction components Mx, My, Mz of the moment.
  • an inclination sensor 5'4 is installed on the upper body 3, and the inclination with respect to the vertical axis and its angular velocity are detected. To detect.
  • the electric motors of each joint move relative to the links 24, 26 R (L) and the like via a speed reducer (described later) that decelerates and increases the output. Is equipped with a rotary encoder (not shown in Fig. 3) for detecting the amount of rotation.
  • control unit 60 including a microcomputer is stored in the storage unit 6, and the output of the 6-axis force sensor 50 and the like (for convenience of illustration, the right side of the robot 1) Is sent to the control unit 60.
  • FIG. 4 is a block diagram showing the configuration of the control unit 60 in detail.
  • control unit 60 comprises a microcomputer.
  • the output of the tilt sensor 54 is converted into a digital value by an AZD converter (shown as “AZD” in the figure) 62, and the output is sent to the RAM 66 via the bus 64. Further, the output of the encoder arranged adjacent to the electric motor at each joint is input to the RAM 66 via the counter 68.
  • AZD AZD converter
  • An arithmetic unit 70 including a CPU is provided in the control unit 60.
  • the arithmetic unit 70 controls the control values (operations) required for driving each joint based on the data stored in the ROM 72 and the sensor output.
  • the D / A converter shown as “D / Aj” in the figure
  • the electric motor that drives each joint via the actuator drive unit (amplifier) 76 provided at each joint.
  • a characteristic of the robot 1 according to this embodiment is that a plurality of rotatably connected to the upper body 3 are rotatably connected via joints 1 OR (L) around a vertical axis for rotation of each leg in the hip joint.
  • joints 1 OR (L) around a vertical axis for rotation of each leg in the hip joint.
  • FIG. 5 is a partial sectional view of the leg 2R of the robot 1 shown in Fig. 1 taken along the line V-V
  • Fig. 6 shows the leg 2R removed from the upper body 3 with the leg 2R facing upward.
  • FIG. 7 is an explanatory sectional view taken along line VII-VII of FIG. In FIGS. 6 and 7, only the periphery of the joint 1OR is shown for simplification of the description.
  • the joint 1 OR around the vertical axis of is placed.
  • the joint 1OR includes an upper body fixing portion 80 provided with a bolt hole (described later) to be fixed to the upper body 3, and a frame member 82 connecting the joint 1OR and the joint 12R.
  • the upper body fixing portion 80 and the frame member 82 are connected via a bearing 83 so as to be relatively rotatable, and the driving force of the relative rotation is a speed reducer, specifically, a harmonic drive. Granted from 8 4.
  • the frame member 82 is provided with a motor mounting member (case) 86 in which a drive source, specifically, an electric motor 88 (shown by imaginary lines in FIG. 6) is accommodated. Is done.
  • the rotation amount of the electric motor 88 is detected by a mouth-to-mouth re-encoder 89, and its driving force is transmitted to a harmonic drive 84 via a belt (power transmission means) 90.
  • a pulley (power transmission means) 96 is fixed to an output shaft 94 of the electric motor 88 accommodated at an appropriate position in the motor mounting member 86, and a belt 90 is appropriately fixed to the pulley 96. Wound under tension.
  • the other end of the belt 90 is wound around a pulley (power transmission means) 98 on the input shaft side of the harmonic drive 84.
  • the pulley 98 is fixed to the wave-generator 100 so as to rotate coaxially with it. Therefore, the driving force of the electric motor 88 is transmitted to the harmonic drive 84 via the belt 90.
  • the wave generator 100 is fitted into the flex spline 102, and the output portion 102a of the flex spline 102 is fixed to the body fixing portion 80 side, while the sagittal spline 10 spline
  • the output section 104 a of 4 is fixed to the frame member 82 side.
  • the flexspline 102 is fitted into the spur spline 104 with its respective gears engaged.
  • the flex spline 102 (that is, the upper body fixing portion 80) is well known. A relative motion is generated between the circulatory spline 104 and the frame member 82.
  • an example of the case where the motor is viewed from above as shown in FIG. 6 is as follows.
  • the electric motor 88 is driven clockwise, the driving force is reduced by the pulley 96, the belt 90, and the like. And through the pulley 98 to drive the wave generator 100 clockwise.
  • Flexspline 102 is rotated counterclockwise, and the sun is rotated clockwise.
  • their output parts 102a, 104a are fixed to the upper body fixed part 80, which is fixed. Is driven counterclockwise, and the frame member 82 is driven clockwise to generate a relative rotational movement, so that the leg 2R is rotated clockwise with respect to the upper body 3.
  • the configurations of the joints 12 and 14 other than the joint 1OR of the leg 2R are substantially the same as those described in Japanese Patent Application Laid-Open No. HEI 3-1847482, and a description thereof will be omitted. Also, illustration in FIG. 5 and the like is omitted. Since the leg 2R (L) is formed symmetrically, the description of the left leg 2L is omitted.
  • FIG. 8 is a bottom perspective view of the upper body 3 as viewed obliquely from below
  • FIG. 9 is a top perspective view of the leg 2R as viewed obliquely from above.
  • the leg mounting surface 1 1 2 of the waist plate 110 on the bottom side of the upper body 3 has bolt holes 1 1 4 R (L) for bolting the legs 2 R (L). Are formed, and the stud bolts 116 R (L) are formed so as to protrude. A positioning hole 118 is formed at an appropriate position on the leg mounting surface 112.
  • a bolt hole 120 is provided for fixing the bolt to the upper body.
  • a projection 121 is provided at a position corresponding to the positioning hole 118.
  • the procedure for attaching the leg 2R to the upper body 3 is as follows. First, the stud bolt 1 16R on the upper body 3 side should be bolted along the broken lines 8a and 8b shown in FIGS. 8 and 9. 20 and insert the protrusions 1 21 into the positioning holes 1 18 to complete the positioning. Then, insert a nut (not shown) into the bolts 16 from below the upper body fixing portion 80. Tighten. Then, bolts 1 2 2 are dashed from below the upper body fixing part 80 by dashed lines Through the bolt hole 120, and then insert it into the bolt hole 114 and tighten. In this way, the attachment of the leg 2 to the upper body 3 is completed.
  • the drive source is arranged on the lumbar board, when attaching the legs to the lumbar board, it is necessary to assemble while combining the respective gears of the flexspline and the sagittal spline.
  • the electric motor 88 is disposed on the side of the leg 2R (L)
  • the upper body 3 of the robot 1 It is not necessary to disassemble the components of the harmonic drive 84 when attaching / detaching the legs R (L) from the front, so the legs 2R (L) need only be bolted together, which improves maintainability. Can be improved o
  • the electric motor 88 is arranged offset from the rotation axis 92 of the joint 1OR. More specifically, the output shaft (line) of the electric motor 88 and the input axis of the harmonic drive 84 (that is, the rotational axis 92 of the joint) are parallel axes separated from each other, and the electric motor 88 is robotized. It was located behind the outside of the leg in the direction of travel. Further, the electric motor 88 is disposed on the right outside rear of the leg 2R with respect to the traveling direction (X-axis direction) of the robot 1, and is connected to the joint 1OR via a belt 90.
  • FIGS. 10 (a) and 10 (b) are cross-sectional views of both legs 2R (L) taken along the line X--X in FIGS. 1 and 2.
  • FIG. The illustration focuses on the joint 1 OR (L), and only the periphery is shown, and illustration of the foot 22 R (L) and the like is omitted.
  • the joint 1 OR (L) includes the leg 2R (L) and the foot 22 R (L) not shown. It must be configured to be able to rotate from the state shown in Fig. 10 (a) to an arbitrary angle as shown in Fig. 10 (b). Therefore, in the present embodiment, as described above, the electric motor 88 is arranged offset from the rotation axis 92 of the joint 10 R (L). More specifically, the electric motor 88 is disposed rearward in the traveling direction (X-axis direction) outside the leg 2R (L), and is connected to the joint 1OR via a belt 90 power transmission means. Connected.
  • the leg 2R (L) can be rotated to an arbitrary angle so that the left and right legs 2R (L) do not interfere with each other.
  • the above-mentioned object can be achieved.
  • Belt 900 may lose its tension due to aging or the like, in which case slippage occurs between burry 96 and tube generator 100. Since the electric motor is provided with an encoder 89 on the side of the motor, if such slippage occurs, in addition to a reduction in the transmission force, the command value to the electric motor 88 and the pulse generator 100 An error may occur in the actual number of revolutions, which may reduce controllability.
  • An opening (opening) 124 is formed at a position facing the upper body 3 of the motor mounting member 86 covering the electric motor 88. More specifically, as shown in FIG. 11, which is a partially enlarged view of the periphery indicated by reference numeral XI in FIG. 6, an opening 1 2 is formed at a position facing the upper body 3 of the motor mounting member 86. 4 are formed, and further, an adjustment device insertion hole (opening) 125 for adjusting the position of the electric motor 88 is formed.
  • the electric motor 88 is locked to the upper surface side of the motor mounting member 86 by bolts 126a and 126b.
  • a lid (not shown) is actually mounted on the opening 124 so that the belt 90 can be opened and closed when the belt 90 is adjusted.
  • the bolt 126a is inserted into a locking hole (not shown), and the bolt 126b is configured to be movable along a groove 128 shown by an imaginary line. That is, when adjusting the tension of the belt 90, first loosen the bolts 126 a and b, and then insert an adjusting device such as a screwdriver 130 into the adjusting device ⁇ insertion hole 125, and 8 Move the position of 8.
  • the electric motor 88 pivots the shaft that locks the bolt 124a. (The center axis), and is moved to, for example, the position indicated by (8 8), whereby the tension of the belt 90 is adjusted.
  • the leg 2 Since the opening 124 is formed at a position facing the upper body 3, the leg 2 (only R is shown) is rotated to the position shown in FIG. It is possible to access the belt 90 without attaching / detaching (L) and adjust the tension.
  • the electric motor 88 is disposed on the leg 2R (L) side, so that the leg 2R (L) is detached from the upper body 3. Is easier. That is, for example, when adjusting the legs, the maintainability of the legs 2R (L) of the robot 1 can be improved.
  • the electric motor 88 is offset from the rotation axis 92 of the joint 10 R (L), and more specifically, the electric motor 88 is arranged at the rear outside the leg with respect to the traveling direction of the robot (X-axis direction). Since it is connected to the joint 1 OR (L) via the belt 90, the leg 2R (L) can be rotated to any angle, making it easy to perform turning motions, etc. Can be expanded.
  • the robot 1 can be immediately removed without removing the waist plate 78 from the upper body 3.
  • the tension of the belt 90 can be adjusted in a state in which the belt 90 is in an upright state or a state in which the belt 90 is hung on a stand (not shown). .
  • a leg having at least an upper body 3 and a plurality of legs 2 R (L) rotatably connected to the upper body via a joint 1 OR (L), respectively.
  • a drive source electric motor 88 for driving the joint is arranged on the leg side.
  • the drive source is arranged so as to be offset from the rotation axis 92 of the joint, and is connected to the joint via a power transmission means (belt 90).
  • the drive source is covered with a case (motor mounting member 86), and an opening (opening 124, adjusting instrument insertion hole 125) is formed at a position facing the upper body of the case. It was configured to be.
  • At least the upper body 3 is rotatably connected to the upper body via a joint.
  • a drive source (electric motor 88) for driving the joint is offset from a rotation axis 92 of the joint, and The two legs are arranged outside, thereby preventing interference when the two legs are relatively displaced (FIG. 10 (b)).
  • the joint for the rotation of the leg in the waist is a joint about the vertical axis (Z axis or gravity axis), but the invention is not limited to this.
  • the drive source is set to the leg side.
  • a belt and a pulley are used as power transmission means, but other transmission means such as a gear mechanism may be used.
  • the present invention has been described with respect to a bipedal walking robot, but the present invention is also applicable to a multilegged robot other than a bipedal walking robot.
  • the legs can be rotated to an arbitrary angle, which makes it easy to perform a turning operation and the like, thereby increasing the degree of freedom in gait design.
  • a transmission means such as a belt that drives a joint connecting the upper body and the leg, and similarly, it is possible to improve the maintainability.
  • the legs can be rotated to an arbitrary angle, which facilitates a turning operation and the like, and expands the freedom of gait design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Description

明細書
脚式歩行ロボッ ト 技術分野
本発明は脚式歩行ロボッ トに関し、 より具体的には上体と脚部を容易に着脱で きるようにした 2足歩行の脚式歩行ロボッ トに関する。 背景技術
従来から脚式歩行ロボッ トに関する技術としては種々のものが提案されており 、 例えば特開平 3 - 1 8 4 7 8 2号公報に記載された技術が知られている。
特開平 3 _ 1 8 4 7 8 2号公報においては、 脚部 (リンク) の慣性質量を減少 させるために、 上体と脚部を連結する関節を駆動するための駆動源 (モータ) を ロボッ トの上体の一部である腰板に配置している。 脚式歩行ロボッ トにおいて駆 動源の出力 (回転) を減速させて関節に伝達するには、 高い減速比とスペース効 率を上げるために、 通例、 ハーモニックドライブ (ハーモニック減速機。 商品名 ) などの入力と出力が同軸上にある高減速比の減速機が用いられる。
前記した技術にあっては、 脚部を取外すには、 腰板における減速機の構成要素 (ハ一モニック減速機にあってはフレクスプラインとサ一キユラ ·スプライン) を分解する必要があり、 また組立の際は、 逆の手順で行う必要があり煩瑣であつ た。
特に、 フレクスプラインはサ一キユラ ·スプラインにギアが嚙合されて嵌込ま れており、 分解は比較的容易であるものの、 組立はギアを嚙み合わせて行う必要 があり、 メンテナンス性で必ずしも満足できるものではなかった。 さらには、 駆 動源から減速機に駆動力を伝達するベルトの張力を調整するときもロボッ トの上 体から腰板を取り外す必要があつて煩瑣であつた。 発明の開示
従って、 本発明の目的は上記した不都合を解消し、 脚式歩行口ポッ トにおいて 脚部の着脱を容易にしてメンテナンス性を向上するようにした脚式歩行ロボッ ト を提供することにある。
さらに、 本発明の第 2の目的は、 上体と脚部を連結する関節を駆動する駆動源 から駆動力を伝達する動力伝達手段へ容易にアクセスすることができ、 必要に応 じてその調整を可能とした脚式歩行ロボットを提供することにある。
さらに、 本発明の第 3の目的は、 脚部を相対変位させるときの干渉を防止して 旋回動作などを容易とし、 よつて歩容設計の 由度を拡大するようにした脚式歩 行ロボッ トを提供することにある。
上記した課題を解決するために、 請求の範囲の 1項においては、 少なくとも上 体と、 前記上体にそれぞれ関節を介して回転自在に連結される複数本の脚部を備 えた脚式歩行ロボッ トにおいて、 前記関節を駆動する駆動源を前記脚部側に配置 するように構成した。
上体と脚部を連結する関節を駆動する駆動源を脚部側に配置するので、 ロボッ トの上体から脚部を着脱するのが容易となり、 脚式歩行ロボッ トの脚部のメンテ ナンス性を向上することができる。
請求の範囲の 2項にあっては、 前記駆動源を前記関節の回転軸線からオフセッ トさせて配置し、 動力伝達手段を介して前記関節に接続するように構成した。 上体と脚部を連結する関節を駆動する駆動源を関節の回転軸線からオフセッ ト し、 より詳しくは駆動源 (電動モー夕) の出力軸から減速機の入力軸 (即ち、 関 節の回転軸) を離間した平行軸とすると共に、 駆動源をロボッ トの進行方向に対 し脚部の外側の後方に配置した。 また、 駆動源と関節を動力伝達手段、 より詳し くはベルトを介して接続した。
このように構成したので、 請求の範囲の 1項と同様の作用効果を奏すると共に 、 脚部を任意の角度に回転させることができ、 旋回動作などが容易となって歩容 設計の自由度を拡大することができる。
請求の範囲の 3項にあっては、 前記駆動源をケースで被覆すると共に、 前記ケ ースの前記上体と対面する位置に開口部を穿設するように構成した。
駆動源をケースで被覆すると共に、 ケースの上体と対面する位置、 より具体的 には脚部の上端付近に開口部、 さらに具体的にはドライバなどの調整器具揷入孔 を穿設したので、 上体と脚部を連結する関節を駆動するベルトなどの伝達手段に 容易にアクセスすることができ、 同様にメンテナンス性を向上することができる o
請求の範囲の 4項にあっては、 少なく とも上体と、 前記上体にそれぞれ関節を 介して回転自在に連結される 2本の脚部を備えた 2足歩行の脚式歩行ロボッ トに おいて、 前記関節を駆動する駆動源を前記関節の回転軸線からオフセッ トさせて 前記脚部の外側に配置し、 よつて前記 2本の脚部を相対変位させるときの干渉を 防止するように構成した。
2足歩行の脚式歩行ロボッ トにおいて、 関節を駆動する駆動源を前記関節の回 転軸線からオフセッ トさせて前記脚部の外側に配置し、 即ち、 2本の脚部に備え られた駆動源をロボッ トの進行方向に対し、 右脚部にあっては右側方、 左脚部に あっては左側方、 より詳しくは左右側方の後方側に配置し、 よって前記 2本の脚 部を相対変位させるときの干渉を防止するように構成したので、 脚部を任意の角 度に回転させることができ、 旋回動作などが容易となって歩容設計の自由度を拡 大することができる。 図面の簡単な説明
第 1図は、 本発明の一^ ^の実施の形態に係る脚式歩行ロボッ トの正面図である o
第 2図は、 第 1図に示す脚式歩行ロボッ トの右側面図である。
第 3図は、 第 1図に示す脚式歩行ロボッ 卜の内部構造を関節を中心に全体的に 示す概略図である。
第 4図は、 第 3図に示す制御ュニッ 卜の詳細を示すブロック図である。
第 5図は、 第 1図の V— V線で切断した部分断面図である。
第 6図は、 上体から取りタ された右側の脚部を上方から見た上面図である。 第 7図は、 第 6図の V I I— V I I線断面図である。
第 8図は、 第 1図などに示す脚式歩行ロボッ トの上体を斜め下方から見た底面 斜視図である。
第 9図は、 第 6図に示すロボッ トの右側の脚部を斜め上方から見た上面斜視図 である。 第 1 0図は、 第 1図および第 2図の X— X線断面図である。
第 1 1図は、 第 6図に符号 XI で示した部分の部分拡大図である。
第 1 2図は、 ベルト (動力伝達手段) の張力を調整する際のロボットの上体と 脚部の間の位置関係を説明する斜視図である。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の一つの実施の形態に係る脚式歩行ロボッ ト を説明する。
第 1図は本発明の一つの実施の形態に係る脚式歩行ロボッ ト (以下 「ロボッ ト 」 という) 1の正面図、 第 2図はその側面図である。 尚、 脚式歩行ロボッ トとし て、 2足歩行のロボッ トを例にとる。
第 1図に示すように、 ロボッ ト 1は、 2本の脚部 (脚部リンク) 2を備えると 共に、 その上方には上体 (基体) 3が設けられる。 上体 3の上部には頭部 4が設 けられると共に、 上体 3の両側には 2本の腕リンク 5が連結される。 また、 第 2 図に示すように、 上体 3の背部には格納部 6が設けられ、 その内部には制御ュニ ッ ト (後述) およびロボッ ト 1の関節を駆動する電動モータ (駆動源。 後述) の バッテリ電源 (図示せず) などが収容される。 尚、 第 1図および第 2図に示す口 ボッ ト 1は、 内部構造を保護するためのカバーが取着されたものを示す。
第 3図を参照して上記したロボッ ト 1の内部構造を関節を中心に説明する。 図示の如く、 ロボッ ト 1は、 左右それぞれの脚部 2に 6個の関節を備える。 1 2個の関節は、 腰部の脚回旋用の鉛直軸 (Z軸あるいは重力軸) まわりの関 節 1 O R, 1 0 L (右側を R、 左側をしとする。 以下同じ) 、 股 (腰部) の口一 ル方向 (X軸まわり) の関節 1 2 R, 1 2 L、 股 (腰部) のピッチ方向 (Y軸ま わり) の関節 1 4 R, 1 4 L、 膝部のピッチ方向 (Y軸まわり) の関節 1 6 R, 1 6 L、 足首のピッチ方向 (Y軸まわり) の関節 1 8 R, 1 8 L、 および同口一 ル方向 (X軸まわり) の関節 2 0 R, 2 0 Lから構成される。 脚部リンク 2 R ( L) の下部には足平 (足部) 2 2R, 22 Lが取着される。
即ち、 脚部 2は、 股関節 (腰関節) 1 O R (L) , 1 2R (L) , 1 4 R (L ) 、 膝関節 1 6 R (L) 、 および足関節 1 8 R (L) , 2 0 R (L) から構成さ れる。 股関節と膝関節は大腿リンク 24 R (L) で、 膝関節と足関節は下腿リン ク 2 6 R (L) で連結される。
脚部 (脚部リンク) 2は股関節を介して上体 3に連結されるが、 第 3図では上 体 3を上体リンク 2 8として簡略的に示す。 前記したように、 上体 3には腕リン ク 5が連結される。
腕リンク 5は、 肩部のピッチ方向の関節 3 O R, 3 0 L、 同ロール方向の関節 3 2R, 3 2 L、 腕の回旋用の鉛直軸まわりの関節 3 4 R, 34 L、 肘部のピッ チ軸まわりの関節 3 6 R, 3 6 L、 手首回旋用の鉛直軸まわりの関節 3 8 R, 3 8 Lから構成される。 手首の先にはハン ド (ェン ドエフヱクタ) 4 0 R, 4 0 L が取着される。
即ち、 腕リンク 5は、 肩関節 3 O R (L) , 3 2 R (L) , 34 R (L) 、 肘 関節 3 6 R (L) 、 手首関節 3 8 R (L) から構成される。 また肩関節と肘関節 とは上腕リンク 4 2 R (L) で、 肘関節とハンドとは下腕リンク 4 4 R (L) で 連結される。
頭部 4は、 鉛直軸まわりの首関節 4 6およびそれと直交する軸で頭部 4を回転 させる頭部揺動機構 4 8から構成される。 頭部 4の内部には、 CCDなどからな る視覚センサ (図示せず) が外界センサとして収容される。
上記の構成により、 脚部 2は左右の足について合計 1 2の自由度を与えられ、 歩行中にこれらの 1 2個の関節を適宜な角度で駆動することで、 足全体に所望の 動きを与えることができ、 任意に 3次元空間を歩行させることができる。 また、 腕リンク 5も左右の腕についてそれぞれ 5つの自由度を与えられ、 これらの関節 を適宜な角度で駆動することで所望の作業を行わせることができる。
尚、 足関節の下方の足部 22 R (L) には公知の 6軸力センサ 5 0が取着され 、 ロボットに作用する外力の内、 接地面からロボッ トに作用する床反力の 3方向 成分 Fx, F y, F zとモーメントの 3方向成分 Mx, My, Mzとを検出する また、 上体 3には傾斜センサ 5'4が設置され、 鉛直軸に対する傾きとその角速 度を検出する。 さらに、 各関節の電動モータはその出力を減速,増力する減速機 (後述) を介して前記したリンク 24, 2 6 R (L) などを相対変位させると共 に、 その回転量を検出するロータリエンコーダ (第 3図で図示省略) が設けられ る
前記したとおり、 格納部 6の内部にはマイクロコンピュー夕からなる制御ュニ ッ ト 6 0などが収納され、 6軸力センサ 5 0などの出力 (図示の便宜のためロボ ッ ト 1の右側についてのみ図示する) は、 制御ュニッ ト 6 0に送られる。
第 4図は制御ュニッ ト 6 0の構成を詳細に示すブロック図である。
図示の如く、 制御ュニッ ト 6 0はマイクロ · コンピュータから構成される。 そ こにおいて傾斜センサ 5 4などの出力は AZD変換器 (図に 「AZD」 と示す) 6 2でデジタル値に変換され、 その出力はバス 6 4を介して RAM 6 6に送られ る。 また各関節において電動モ一夕に隣接して配置されるエンコーダの出力は、 カウン夕 6 8を介して RAM 6 6内に入力される。
制御ュニット 6 0内には CPUからなる演算装置 7 0が設けられ、 演算装置 7 0は、 ROM 7 2に格納されているデータおよびセンサ出力に基づいて各関節の 駆動に必要な制御値 (操作量) を算出して D/A変換器 (図に 「D/Aj と示す ) 74と各関節に設けられたァクチユエ一夕駆動装置 (アンプ) 7 6を介して各 関節を駆動する電動モータに出力する。,
この実施の形態に係るロボッ ト 1において特徴的なことは、 上体 3に、 股関節 におけるそれぞれの脚部回旋用の鉛直軸まわりの関節 1 O R (L) を介して回転 自在に連結される複数本、 より具体的には 2本の脚部 2 R (L) を備えたものに おいて、 関節 1 O R (L) を駆動する駆動源 (電動モータ。 後述) を脚部 2 R ( L) 側に配置することにより、 上体 3から脚部 2R (L) を容易に着脱可能とす る如く構成したことにある。
以下、 右側の脚部 2 Rを示す第 5図から第 7図を参照して、 関節 1 O Rの構成 を説明する。
第 5図は、 第 1図に示すロボッ ト 1の脚部 2 Rの部分断面図である V— V線断 面図、 第 6図は上体 3から取外された脚部 2 Rを上方から見た上面図、 第 7図は 第 6図の VII— VII線で切断した説明断面図である。 尚、 第 6図および第 7図に おいては説明の簡略化のために、 関節 1 O Rの周辺のみ図示した。
第 5図および第 6図に示すように、 脚部 2 Rの上端付近には、 腰部の脚回旋用 の鉛直軸まわりの関節 1 O Rが配置される。 関節 1 O Rは、 上体 3に固定される べきボルト孔 (後述) が穿設された上体固定部 8 0と、 関節 1 O Rと関節 1 2 R 間を連結するフレーム部材 8 2を備える。
上体固定部 8 0およぴフレ一ム部材 8 2は、 ベアリング 8 3を介して相対回転 可能に連結されると共に、 その相対回転の駆動力は、 減速機、 具体的にはハーモ ニック ドライブ 8 4から付与される。 フレーム部材 8 2にはモータ取付部材 (ケ —ス) 8 6がー体的に設けられ、 その内部に駆動源、 具体的には電動モータ 8 8 (第 6図に想像線で示す) が収容される。 電動モ一夕 8 8の回転量は口一夕リエ ンコーダ 8 9により検出されると共に、 その駆動力はベルト (動力伝達手段) 9 0を介してハーモニックドライブ 8 4に伝達される。
次いで第 7図を参照して、 関節 1 O Rの構成をさらに詳しく説明する。
モータ取付部材 8 6内の適宜位置に収容された電動モータ 8 8の出力軸 9 4に は、 プーリ (動力伝達手段) 9 6が固定されると共に、 プーリ 9 6にはベルト 9 0が適宜な張力で巻掛られる。 ベルト 9 0の他端は、 ハーモニック ドライブ 8 4 の入力軸側のプーリ (動力伝達手段) 9 8に巻掛られる。 プーリ 9 8はウェーブ - ジェネレータ 1 0 0にそれと同軸で回転するように固定される。 よって、 電動 乇一夕 8 8の駆動力はベルト 9 0を介してハ一モニックドライブ 8 4に伝達され る。
ウエーブ · ジェネレータ 1 0 0はフレクスプライン 1 0 2に嵌込まれ、 フレク スプライン 1 0 2の出力部 1 0 2 aは上体固定部 8 0側に固定され、 他方、 サ一 キユラ ■スプライン 1 0 4の出力部 1 0 4 aは、 フレーム部材 8 2側に固定され る。 フレクスプライン 1 0 2は、 サ一キユラ ·スプライン 1 0 4に、 それぞれの ギアが嚙合されて嵌込まれる。
関節 1 0 Rにおいて、 電動モー夕 8 8から出力された駆動力が、 ベルト 9 0を 介してハーモニックドライブに入力されると、 周知の如くフレクスプライン 1 0 2 (即ち上体固定部 8 0 ) とサーキユラ ·スプライン 1 0 4 (即ちフレーム部材 8 2 ) との間に相対運動が生じる。
第 6図のように上方から見た場合を例に、 より具体的に説明すると、 電動モー 夕 8 8が時計まわりに駆動されると、 その駆動力は、 プーリ 9 6、 ベルト 9 0お よびプ一リ 9 8を介して伝達されて、 ウェーブ · ジェネレータ 1 0 0を時計まわ りに.駆動する。 フレクスプライン 1 0 2が反時計まわりに、 サ一キユラ ■スプラ インがそれぞれ時計まわりに駆動されると、 それらの出力部 1 0 2 a, 1 0 4 a が固定された上体固定部 8 0が反時計まわりに、 フレーム部材 8 2が時計回りに 駆動されて相対回転運動が生じ、 よって、 脚部 2 Rは上体 3に対して時計まわり に回転される。
尚、 脚部 2 Rの関節 1 O R以外の関節 1 2, 1 4などの構成は、 特開平 3— 1 8 4 7 8 2号公報に記載したものと略同様であるため、 説明を省略すると共に、 第 5図などにおける図示を省略する。 また、 脚部 2 R (L) は左右対称に形成さ れるため、 左側の脚部 2 Lの説明を省略する。
次いで、 第 8図および第 9図を参照して脚部 2 R (L) の上体 3への着脱につ いて説明する。
第 8図は上体 3を斜め下方から見た底面斜視図、 第 9図は脚部 2 Rを斜め上方 から見た上面斜視図である。 尚、 第 8図以降で上体 3を図示する場合、 説明の簡 略化のために頭部 4および腕リンク 5 R (L) の図示を省略した。
第 8図に示す如く、 上体 3底面側の腰板 1 1 0の脚部取付面 1 1 2には、 脚部 2 R (L) をボルト止めするためのボルト孔 1 1 4 R (L) が穿設されると共に 、 スタツ ドボルト 1 1 6 R (L) が突出するように形成される。 脚部取付面 1 1 2の適宜位置には、 位置決め孔 1 1 8が穿設される。
第 9図に示す如く、 脚部 2 Rの上体固定部 8 0において、 ボルト孔 1 1 4 R ( L) 、 スタッ ドボルト 1 1 6 R (L) に対応する位置には、 脚部 2 Rを上体に固 定するためのボルト孔 1 2 0が穿設される。 また、 上体固定部 8 0の上面 (脚部 取付面 1 1 2と向かい合う面) において、 位置決め孔 1 1 8に対応する位置には 、 突起部 1 2 1が設けられる。
脚部 2 Rを上体 3に取り付ける手順を説明すると、 先ず上体 3側のスタツ ドボ ルト 1 1 6 Rを第 8図および第 9図に示す破線 8 aおよび 8 bに沿ってボルト孔 1 2 0に揷入し、 突起部 1 2 1を位置決め孔 1 1 8に挿入し位置決めが完了し、 次いでス夕ッドボルト 1 6に上体固定部 8 0の下方からナツ ト (図示せず) を締 着する。 次いで、 ボルト 1 2 2を上体固定部 8 0の下方から破線 8 cおよび 8 d に沿ってボルト孔 1 2 0を挿通し、 次いでボルト孔 1 1 4に挿入して締着する。 このようにして脚部 2の上体 3への取り付けが完了する。
前記したとおり従来技術にあっては、 駆動源が腰板に配置されていたため、 脚 部を腰板に取り付けるときはフレクスプラインとサ一キユラ ·スプラインのそれ ぞれのギアを嚙み合わせつつ組立する必要があり、 作業が煩瑣となっていたが、 本発明に係るロボッ ト 1にあっては、 電動モータ 8 8が脚部 2 R (L) 側に配置 されるので、 ロボッ ト 1の上体 3から脚部 R (L) を着脱するとき、 ハーモニッ クドライブ 8 4の構成要素を分解する必要がなく、 よって脚部 2R (L) の取り 付けはボルト止めを行うだけで良いため、 メンテナンス性を向上することができ る o
尚、 上体 3からの脚部 2 Rを取り外す場合は、 位置決めなどを考慮する必要が ないので、 スタツドボルト 1 1 6に締着されたナツ ト、 およびボルト 1 22を取 り外すだけで良い。
第 6図の説明に戻ると、 電動モータ 8 8は、 関節 1 O Rの回転軸線 9 2からォ フセッ トして配置される。 より詳しくは電動モータ 8 8の出力軸 (線) とハ一モ ニック ドライブ 8 4の入力軸線 (即ち、 関節の回転軸線 9 2) を離間した平行軸 とすると共に、 電動モータ 8 8をロボッ ト 1の進行方向に対し脚部の外側の後方 に配置した。 また、 電動モータ 8 8は、 ロボット 1の進行方向 (X軸方向) に対 して脚部 2 Rの右外側後方に配置され、 ベルト 9 0を介して関節 1 O Rに接続さ れる。
次いで、 第 6図および第 1 0図 (a) (b) を参照してロボッ ト 1の旋回動作 について説明する。
第 1 0図 (a) (b) は、 両脚部 2 R (L) を第 1図および第 2図の X— X線 で切断した断面図である。 尚、 図示は関節 1 O R (L) を焦点とし、 その周辺の み図示すると共に、 足平 2 2 R (L) などの図示は省略した。
πボッ ト 1の旋回動作を容易にして歩容設計の自由度を拡大するために、 関節 1 O R (L) は、 脚部 2R (L) および図示しない足平 2 2 R (L) を第 1 0図 (a) に示す状態から第 1 0図 (b) に示すような任意の角度に回転できるよう に構成される必要がある。 そこで、 この実施の形態にあっては前記した通り、 電動モ一夕 8 8を関節 1 0 R ( L ) の回転軸線 9 2からオフセッ トして配置するようにした。 より具体的に は、 電動モータ 8 8は、 脚部 2 R ( L ) の外側において進行方向 (X軸方向) に 対して後方に配置され、 ベルト 9 0動力伝達手段を介して関節 1 O Rに接続する ようにした。
これによつて、 第 1 0図 (b ) に示すように、 左右の脚部 2 R ( L ) が相互に 干渉しないよう、 脚部 2 R ( L ) を任意の角度に回転させることができ、 上記し た目的を実現することができる。
再度第 6図の説明に戻ると共に、 第 1 1図および第 1 2図を参照して、 電動モ —夕 8 8からハーモニックドライブ 8 4へ駆動力を伝達するベルト 9 0の張力の 調整について説明する。
ベルト 9 0は、 経年変化などによってその張力が減少することがあり、 その場 合にはブーリ 9 6とゥヱーブ · ジェネレータ 1 0 0の間に滑りが生じる。 電動乇 —夕 8 8側にエンコーダ 8 9が設けられているため、 そのような滑りが生じると 、 伝達力の低下に加え、 電動モータ 8 8への指令値とゥヱーブ · ジヱネレー夕 1 0 0に実際に入力される回転数に誤差が生じ、 制御性が低下する恐れがある。 電動モータ 8 8を被覆するモータ取付部材 8 6の上体 3と対面する位置に開口 (開口部) 1 2 4が形成される。 より具体的には、 第 6図に符号 X I で示した周 辺の部分拡大図である第 1 1図に示すように、 モータ取付部材 8 6の上体 3と対 面する位置に開口 1 2 4が形成され、 さらに電動モータ 8 8の位置調節用の調節 器具揷入孔 (開口部) 1 2 5が穿設される。
電動モ一夕 8 8は、 ボルト 1 2 6 a , 1 2 6 bによってモ一夕取付部材 8 6の 上面側に係止される。 尚、 実際には開口部 1 2 4上には蓋 (図示せず) が取り付 けられて、 ベルト 9 0の調節を行うときに開閉可能とされる。
ここで、 ボルト 1 2 6 aは図示しない係止孔に挿入されると共に、 ボルト 1 2 6 bは想像線で示す溝部 1 2 8に沿って可動可能に構成される。 即ち、 ベルト 9 0の張力を調整するときは、 先ずボルト 1 2 6 a , bを緩め、 次いで調節器具揷 入孔 1 2 5に例えばドライバ 1 3 0などの調整器具を挿入し、 電動モー夕 8 8の 位置を移動する。 電動モータ 8 8は、 ボルト 1 2 4 aを係止する軸をピボッ ト ( 中心軸) として回転させられ、 例えば (8 8) と示す位置まで移動され、 よって ベルト 9 0の張力が調整される。
開口 1 24は、 上体 3と対面する位置に形成されるので、 脚部 2 (Rのみ図示 ) を第 1 2図に示すような位置に回転することにより、 上体 3から脚部 2 R (L ) を着脱することなくベルト 9 0にアクセスし、 その張力を調整することができ る。
この実施の形態に係るロボッ ト 1にあっては、 前記したとおり、 電動モータ 8 8を脚部 2 R (L) 側に配置したので、 上体 3から脚部 2 R (L) を着脱するの が容易となる。 即ち、 例えば脚部を調整する場合などにおいてロボッ ト 1の脚部 2 R (L) のメンテナンス性を向上することができる。
また、 電動モータ 8 8を関節 1 0 R (L) の回転軸線 9 2からオフセッ トし、 より詳しくはロボッ トの進行方向 (X軸方向) に対し脚部の外側の後方に配置す ると共に、 ベルト 9 0を介して関節 1 O R (L) に接続したので、 脚部 2 R (L ) を任意の角度に回転させることができ、 旋回動作などが容易となって歩容設計 の自由度を拡大することができる。
さらに、 電動モータ 88を被覆するモータ取付部材 8 6の上体 3と対面する位 置に開口部 1 24を穿設したので、 上体 3から腰板 7 8を取り外すことなく、 即 ちロボッ ト 1を直立させた状態、 あるいはスタンド (図示せず) などに掛止した 状態でベルト 9 0の張力を調整することができる。 。
この実施の形態では上記の如く、 少なくとも上体 3と、 前記上体にそれぞれ関 節 1 O R (L) を介して回転自在に連結される複数本の脚部 2 R (L) を備えた 脚式歩行ロボッ ト 1において、 前記関節を駆動する駆動源 (電動モータ 8 8) を 前記脚部側に配置するように構成した。
また、 前記駆動源を前記関節の回転軸線 9 2からオフセッ トさせて配置し、 動 力伝達手段 (ベルト 9 0) を介して前記関節に接続するように構成した。
また、 前記駆動源をケース (モータ取付部材 8 6) で被覆すると共に、 前記ケ ースの前記上体と対面する位置に開口部 (開口 1 24、 調節器具挿入孔 1 2 5) を穿設するように構成した。
また、 少なくとも上体 3と、 前記上体にそれぞれ関節を介して回転自在に連結 される 2本の脚部 2を備えた 2足歩行の脚式歩行ロボット 1において、 前記関節 を駆動する駆動源 (電動モータ 8 8 ) を前記関節の回転軸線 9 2からオフセッ ト させて前記脚部の外側に配置し、 よつて前記 2本の脚部を相対変位させるときの 干渉を防止する (第 1 0図 (b ) ) ように構成した。
尚、 腰部の脚回旋用の関節を鉛直軸 (Z軸あるいは重力軸) まわりの関節とし たが、 それに限られず、 要は上体と脚部を連結する関節において、 駆動源を脚部 側に配置した構成であれば、 例えば鉛直軸に対して回転中心軸が傾斜した関節で めっても良い。
また、 本発明において動力伝達手段としてベルトおよびプーリを用いたが、 ギ ァ機構など、 他の伝達手段を用いても良い。
また、 本発明を 2足の脚式歩行ロボッ トに関して説明したが、 2足歩行以外の 多脚ロボッ トにも妥当する。 産業上の利用可能性
本発明によれば、 ロボッ トの上体から脚部を着脱するのが容易となり、 脚式歩 行 ΰポッ トの脚部のメンテナンス性を向上することができる。 また、 脚部を任意 の角度に回転させることができ、 旋回動作などが容易となって歩容設計の自由度 を拡大することができる。 また、 上体と脚部を連結する関節を駆動するベルトな どの伝達手段に容易にアクセスすることができ、 同様にメンテナンス性を向上す ることができる。 さらに、 脚部を任意の角度に回転させることができ、 旋回動作 などが容易となって歩容設計の自由度を拡大することができる。

Claims

請求の範囲
1 . 少なくとも上体と、 前記上体にそれぞれ関節を介して回転自在に連結される 複数本の脚部を備えた脚式歩行 αボッ トにおいて、 前記関節を駆動する駆動源を 前記脚部側に配置したことを特徴とする脚式歩行口ボッ ト。
2 . 前記駆動源を前記関節の回転軸線からオフセッ トさせて配置し、 動力伝達手 段を介して前記関節に接続したことを特徴とする請求の範囲の 1項記載の脚式歩 行ロボッ ト。
3 . 前記駆動源をケースで被覆すると共に、 前記ケースの前記上体と対面する位 置に開口部を穿設したことを特徴とする請求の範囲の 1項または 2項記載の脚式 歩行ロボッ ト。 ,
4 . 少なくとも上体と、 前記上体にそれぞれ関節を介して回転自在に連結される 2本の脚部を備えた 2足歩行の脚式歩行ロボットにおいて、 前記関節を駆動する 駆動源を前記関節の回転軸線からオフセッ トさせて前記脚部の外側に配置し、 よ つて前記 2本の脚部を相対変位させるときの干渉を防止するようにしたことを特 徴とする脚式歩行ロボット。
PCT/JP2001/010027 2000-11-17 2001-11-16 Robot a pattes WO2002040225A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002542575A JP3854926B2 (ja) 2000-11-17 2001-11-16 脚式歩行ロボット
AU2002224043A AU2002224043A1 (en) 2000-11-17 2001-11-16 Legged robot
DE60137650T DE60137650D1 (de) 2000-11-17 2001-11-16 Roboter mit beinen
KR10-2003-7006573A KR100532685B1 (ko) 2000-11-17 2001-11-16 레그식 보행 로봇
CA002426980A CA2426980C (en) 2000-11-17 2001-11-16 Legged robot
EP01994554A EP1358971B1 (en) 2000-11-17 2001-11-16 Legged robot
US10/416,851 US6897631B2 (en) 2000-11-17 2001-11-16 Legged robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-352012 2000-11-17
JP2000352012 2000-11-17

Publications (1)

Publication Number Publication Date
WO2002040225A1 true WO2002040225A1 (fr) 2002-05-23

Family

ID=18824969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010027 WO2002040225A1 (fr) 2000-11-17 2001-11-16 Robot a pattes

Country Status (10)

Country Link
US (1) US6897631B2 (ja)
EP (1) EP1358971B1 (ja)
JP (1) JP3854926B2 (ja)
KR (1) KR100532685B1 (ja)
CN (1) CN1236898C (ja)
AU (1) AU2002224043A1 (ja)
CA (1) CA2426980C (ja)
DE (1) DE60137650D1 (ja)
RU (1) RU2251480C2 (ja)
WO (1) WO2002040225A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105617668A (zh) * 2014-10-30 2016-06-01 深圳宝葫芦机器人有限公司 腰部关节装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2427571C (en) * 2000-11-17 2008-04-29 Susumu Miyazaki Leg structure of legged robot
US6947819B2 (en) * 2002-11-13 2005-09-20 Caterpillar Inc Swivel joint for a work machine
CN1303951C (zh) * 2004-09-16 2007-03-14 上海交通大学 双足步行假肢控制系统
JP4384021B2 (ja) * 2004-12-14 2009-12-16 本田技研工業株式会社 脚式ロボットの制御装置
DE602006009885D1 (de) * 2005-12-12 2009-12-03 Honda Motor Co Ltd Steuersystem für einen beweglichen Roboter mit Beinen
JP4539618B2 (ja) * 2006-07-31 2010-09-08 トヨタ自動車株式会社 脚式ロボット
JP4551893B2 (ja) * 2006-12-27 2010-09-29 株式会社タカラトミー ロボット玩具
JP4397412B2 (ja) 2007-12-07 2010-01-13 株式会社タカラトミー ロボット玩具およびその組立方法
KR20110026935A (ko) * 2009-09-09 2011-03-16 삼성전자주식회사 로봇 관절 구동장치 및 이를 포함하는 로봇
FR3021573B1 (fr) 2014-06-03 2019-04-19 Aldebaran Robotics Systeme anti coincement dans un robot a caractere humanoide
JP6497575B2 (ja) * 2014-11-27 2019-04-10 株式会社リコー 駆動制御装置及びマニピュレータ装置
ITUB20156881A1 (it) * 2015-12-10 2017-06-10 Scuola Superiore Di Studi Univ E Di Perfezionamento Santanna Giunto meccanico a modalita di trasmissione selezionabile
EP3415283B1 (en) 2016-02-10 2021-06-09 Advanced Telecommunications Research Institute International Externally-driven joint structure
JP1584573S (ja) * 2017-01-12 2018-08-20
CN106938674A (zh) * 2017-03-15 2017-07-11 上海未来伙伴机器人有限公司 机器人腿部舵机以及机器人
CN108639184B (zh) * 2018-06-13 2023-04-25 辽宁石油化工大学 一种新型仿生关节机械腿

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205069A (ja) * 1993-12-30 1995-08-08 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
WO2000047372A1 (fr) * 1999-02-10 2000-08-17 Sony Corporation Dispositif et procede de commande d'un mecanisme d'assemblage, dispositif d'assemblage, dispositif robotique et procede de commande d'un tel dispositif robotique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520019B2 (ja) * 1989-06-29 1996-07-31 本田技研工業株式会社 脚式移動ロボットの駆動制御装置
JP2592340B2 (ja) * 1989-12-14 1997-03-19 本田技研工業株式会社 脚式歩行ロボットの関節構造
JP2819353B2 (ja) * 1990-09-28 1998-10-30 本田技研工業株式会社 脚式移動ロボットの歩行制御装置
US5157316A (en) * 1991-06-26 1992-10-20 Glovier Lloyd H Robotic joint movement device
US5318471A (en) * 1991-12-06 1994-06-07 Glovier Lloyd H Robotic joint movement device
JP3330710B2 (ja) * 1993-12-30 2002-09-30 本田技研工業株式会社 移動ロボットの位置検知および制御装置
US5808433A (en) * 1995-09-29 1998-09-15 Honda Giken Kogyo Kabushiki Kaisha Method of generating gait of legged walking robot and system for controlling its locomotion
DE69725764T2 (de) * 1996-07-25 2004-08-05 Honda Giken Kogyo K.K. Vorrichtung zur nachbildung des ganges für einen zweibeinigen robotor
US5872893A (en) * 1996-07-25 1999-02-16 Honda Giken Kogyo Kabushiki Kaisha Gait generation system of legged mobile robot
EP1053835B1 (en) * 1997-01-31 2006-12-27 Honda Giken Kogyo Kabushiki Kaisha Leg type mobile robot control apparatus
JPH10286789A (ja) * 1997-04-15 1998-10-27 Honda Motor Co Ltd 関節トルク検出装置
CA2271498C (en) * 1998-05-11 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot
JP3435666B2 (ja) * 1999-09-07 2003-08-11 ソニー株式会社 ロボット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205069A (ja) * 1993-12-30 1995-08-08 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
WO2000047372A1 (fr) * 1999-02-10 2000-08-17 Sony Corporation Dispositif et procede de commande d'un mecanisme d'assemblage, dispositif d'assemblage, dispositif robotique et procede de commande d'un tel dispositif robotique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1358971A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105617668A (zh) * 2014-10-30 2016-06-01 深圳宝葫芦机器人有限公司 腰部关节装置
CN105617668B (zh) * 2014-10-30 2018-01-02 深圳宝葫芦机器人有限公司 腰部关节装置

Also Published As

Publication number Publication date
CA2426980C (en) 2009-02-17
CA2426980A1 (en) 2003-04-25
CN1474736A (zh) 2004-02-11
KR20030051824A (ko) 2003-06-25
JPWO2002040225A1 (ja) 2004-03-25
US20040032233A1 (en) 2004-02-19
EP1358971A1 (en) 2003-11-05
EP1358971B1 (en) 2009-02-11
KR100532685B1 (ko) 2005-12-01
CN1236898C (zh) 2006-01-18
JP3854926B2 (ja) 2006-12-06
US6897631B2 (en) 2005-05-24
RU2251480C2 (ru) 2005-05-10
AU2002224043A1 (en) 2002-05-27
DE60137650D1 (de) 2009-03-26
EP1358971A4 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
WO2002040225A1 (fr) Robot a pattes
JP2592340B2 (ja) 脚式歩行ロボットの関節構造
JP4213310B2 (ja) 2足歩行脚式移動ロボット
JP4299567B2 (ja) 脚式移動ロボット
JP5525738B2 (ja) 歩行ロボット
US8327959B2 (en) Walking robot
JP2004141976A (ja) ロボットの関節構造
JP4255663B2 (ja) 脚式移動ロボット
JP5586163B2 (ja) ロボット及びその制御方法
US20090321150A1 (en) Walking robot and method of controlling the same
JP5270449B2 (ja) ロボットの関節構造、及びそれを備えるロボット
JP4847401B2 (ja) 移動ロボットの駆動装置
JPH10286789A (ja) 関節トルク検出装置
US7441614B2 (en) Legged mobile robot
JP3055737B2 (ja) 脚式移動ロボットの歩行制御装置
JPH04122585A (ja) 脚式移動ロボットの歩行制御装置
JPH11285982A (ja) ねじ締め装置
JPS62136390A (ja) 3自由度手首機構

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2426980

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037006573

Country of ref document: KR

Ref document number: 2002542575

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018190316

Country of ref document: CN

Ref document number: 10416851

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001994554

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2003115434

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020037006573

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001994554

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037006573

Country of ref document: KR