WO2002037153A1 - Dispositif de transmission d'energie optique - Google Patents

Dispositif de transmission d'energie optique Download PDF

Info

Publication number
WO2002037153A1
WO2002037153A1 PCT/JP2000/007710 JP0007710W WO0237153A1 WO 2002037153 A1 WO2002037153 A1 WO 2002037153A1 JP 0007710 W JP0007710 W JP 0007710W WO 0237153 A1 WO0237153 A1 WO 0237153A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmission element
optical energy
transmission
transparent body
Prior art date
Application number
PCT/JP2000/007710
Other languages
English (en)
French (fr)
Inventor
Kouzou Kitamura
Yuuji Hamaji
Toshirou Hamaji
Original Assignee
Taiyoukou Kenkyuujo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyoukou Kenkyuujo Co., Ltd. filed Critical Taiyoukou Kenkyuujo Co., Ltd.
Priority to AU2001210537A priority Critical patent/AU2001210537A1/en
Priority to PCT/JP2000/007710 priority patent/WO2002037153A1/ja
Publication of WO2002037153A1 publication Critical patent/WO2002037153A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a device for efficiently transmitting light energy, and more particularly to a light energy transmission device capable of efficiently transmitting a large amount of light energy such as sunlight incident on a large area to an arbitrary place.
  • the diameter of an optical fiber is only a few tens of micrometers to a few millimeters, and the condensing lens for making such a small light spot has an extremely small diameter. Does not match.
  • the light condensing device 3 that collects the light 2 of the sun 1 and the size of the light spot of the focal point 4 of the light condensing device 3 are equal to, or A rod-shaped transparent body 5 having a cross section larger than that and having substantially no voids inside, and having a side surface and a cross section that is an optically smooth surface.
  • One end face of the transparent body 5 is disposed, and the light energy incident on the condensing device 3 is transmitted to the other end face side of the transparent body 5 via the internal transmission path of the transparent body 5. It is characterized by doing.
  • the transparent body 5 made of a cylinder such as quartz glass is disposed on one end face side at or near the focal point 4, the light 2 incident on the transparent body 5 becomes transparent body Based on the difference in the refractive index between the transparent body and the surrounding air, total reflection is repeated at the interface between the transparent body and the air, and the inside of the transparent body travels as a transmission path, and the height from the other end of the transparent body 5 rises. Emitted as dense light energy.
  • the optical energy transmission device according to claim 2 is characterized in that the transparent body 5 is quartz glass.
  • the transparent body 5 is quartz glass.
  • FIG. 1 is a conceptual diagram illustrating an example of an optical energy transmission device according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing another example of the optical energy transmission device according to the embodiment of the present invention.
  • the principle of the present invention will be described with reference to FIG.
  • the light 2 from the sun 1 is guided to a light collecting device 3 composed of a Fresnel lens, and the light 2 is collected at a focal point 4 thereof.
  • the size of the light spot is proportional to the focal length of the light condensing device 3, and when the focal length is 5 meters, the diameter of the light spot becomes a circle of about 5 cm.
  • a transparent transmission body (transmission path) 5 composed of a quartz glass cylinder is disposed at one end face side at or near the focal point 4, the light 2 incident on the quartz glass (transmission body 5)
  • transmission body 5 On the basis of the difference in the refractive index between the quartz glass and the surrounding air, total reflection is repeated at the interface between the quartz glass cylinder and air, and the inside of the quartz glass cylinder travels as a transmission path, and the other end of the transmission body 5
  • the light is radiated from the end face to the object 6 as high-density light energy.
  • the quartz glass at the focal point does not contain bubbles or voids that cause light scattering or absorption, and transmits almost all incident light, and the loss of light energy is extremely small.
  • the temperature rise is small and it can function stably.
  • the light 2 travels only through the transparent transmission body 5 as a transmission path, and since the light 2 does not leak from the wall of the transmission body 5 to the outside from the middle, there is no principle. It is safe even if there are flammable objects around.
  • glass having a low heat-resistant temperature or an ataryl resin may be used as the transmission member 5 in addition to the quartz glass.
  • transmission of a large amount of light energy to a predetermined position is performed by using a transparent rigid columnar body having a thickness corresponding to the size of the focal point of the condensing device 3 as a transmission path. By using this as the transmission body 5, it is possible to easily and safely execute the transmission.
  • the light collecting device 3 used in the present invention in addition to the Fresnel lens, a convex lens, a concave mirror, or the like can be used.
  • a flat mirror 7 driven by an automatic tracking device can be used.
  • the solar light can be guided to the concave mirror 8 which is a light collecting device.
  • quartz glass having a large cross-sectional shape with a diameter of about 5 cm is used as the transmission body 5 of the transmission line.
  • the size of the light spot at the focal point 4 of the condensing device 3 may be as large as this, and the accuracy of the lens, the reflecting mirror, the solar tracking device, etc. of the condensing device 3 can be reduced. With cheap equipment It is possible to do.
  • the transmission body 5 may be bent with an appropriate radius of curvature that does not prevent the total reflection of the light 2 passing through the inside. Further, if a slight increase in loss due to reflection at the end of the transmission body 5 is allowed, a plurality of bent transmission paths (transmission body 5) may be used in combination. As a result, the position and direction of the transmission body 5 can be freely adjusted.
  • the diameter of the transmission body 5 is set to about 5 cm. However, the diameter of the transmission body 5 may be set to about 10 cm, or a transmission body 5 having a diameter of about 15 cm may be used. . Of course, the diameter of the transmitter 5 may be set to an arbitrary value between about 5 cm and about 15 cm, and the transmitter 5 having any of these diameters may be used.
  • the diameter of the transmission body 5 is about 10 cm.
  • the light 2 collected by the light condensing device 3 from light having a low energy density, such as sunlight is safely transferred to a desired place in a high energy density state with a relatively small cross-sectional area. It is particularly suitable for applications where sunlight is converted to heat energy, such as power generation by steam turbine, heat source for promoting chemical reaction, heat source for cooling and heating, etc. It is possible to provide a simple optical energy transmission device.
  • the sunlight was collected by a circular acrylic resin Fresnel lens with a diameter of 100 cm, and an 8 cm diameter solar image was formed at the focal point.
  • a transparent quartz glass having a diameter of 10 cm and a length of 3 m, which is the transmitter 5 shown in FIG. 1, is placed.
  • Light was emitted, and this light was applied to the slag, which is the object to be heated 6 of the blast furnace at room temperature in the crucible, and the temperature rise of the slag was measured.
  • the temperature of slag 6 reached 450 ° C 10 minutes after irradiation.
  • the sunlight was collected by a circular acrylic resin resin Fresnel lens with a diameter of 100 cm, and a sun image with a diameter of 8 cm was formed at the focal point.
  • a transparent quartz glass which is a transmission body 5 having a diameter of 10 cm and a length of 3 m, shown in FIG. 1 is arranged, and light is emitted from the other end face of the quartz glass.
  • Medium temperature 16 When 500 cc of water was irradiated, the water temperature reached 72 ° C 3 minutes after irradiation.
  • the optical energy transmission device of the present invention light collected by the light condensing device from light having a low energy density, such as sunlight, can be safely and arbitrarily provided in a state of high energy density. Can be transmitted over a transmission path with a relatively small cross-section to a location, especially for applications that convert sunlight into thermal energy, for example, power generation by a steam bin, heat sources for promoting chemical reactions
  • an optical energy transmission device which is extremely suitable for use as a heat source for cooling and heating.
  • quartz glass as the transparent body, the energy density of the light spot can be increased, and a large amount of high-density light energy can be transmitted to the other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

明 細 書 光エネルギー伝送装置
技術分野
本発明は、 光エネルギーを効率良く伝送する装置に関するものであり、 特に大面積で入射した太陽光等の大量の光エネルギーを効率良く、 任意の 場所に伝送できる光エネルギー伝送装置に関するものである。 背景技術
従来、 光を光ファイバ一の一端に入射し、 該光ファイバ一の壁面、 また は屈折率の異なる境界面で光を全反射させるか、 あるいは屈折率が中心に 向かって徐々に変化した光ファイバ一を用いて入射光を光ファイバ一の中 心に導く ことにより、 損失の少ない伝送方法が知られている。 しかしながら、 この光ファイバ一を用いる方法では、 一般的な光ェネル ギ一、 例えば太陽光を伝送しょうとすると、 先ず太陽光を小さな面積に集 光し、 これを光ファイバ一の一端に入射させることが必要になる。
ところが、 光ファイバ一の直径は数十マイクロメートルないし数ミ リメ 一トルに過ぎず、 このような小さな光点とするための集光レンズは極めて 小さな直径のものとなり、 大量のエネルギーを伝送する目的には合致しな い。
また、 光ファイバ一を多数束ねて、 所定の大きさの断面とし、 この断面 に前記の光点を一致させた場合には、 光ファイバ一相互間の空隙に入射し た光が熱に変わり、 集光部分の材料が熔解してしまう。 この他、 レンズや 凹面鏡で集光して、 これを鏡で任意の場所に伝送する方法もあるが、 太陽 光の追尾装置や光学系が複雑となり、 安全性にも問題が残されている。 本発明は、 上述の点に鑑みて提供したものであって、 従来の方法に比べ て、 遥かに大量で高密度の光エネルギーを、 安全、 且つ容易に任意の場所 に伝送することができる光エネルギー伝送装置を提供することを目的とす るものである。 発明の開示
そこで、 本発明の請求項 1記載の光エネルギ一伝送装置では、 太陽 1の 光 2を集める集光装置 3と、 該集光装置 3の焦点 4の光点の大きさに等し いか、 またはそれよりも大きい断面を有し、 且つ内部に実質的に空隙を含 まず、 側面および断面が光学的に平滑な面である棒状の透明体 5 とからな り、 前記集光装置 3の焦点 4に、 前記透明体 5の一方の端面を配置し、 前 記集光装置 3に入射した光エネルギーを、 前記透明体 5の内部伝送路を介 して該透明体 5の他方の端面側に伝送することを特徴としている。 かかる構成とすることで、 焦点 4の位置、 またはその近傍に例えば、 石 英ガラスなどの円柱からなる透明体 5の一方の端面側に配置すると、 透明 体 5に入射した光 2は、 透明体と周囲の空気との屈折率の差に基づき、 透 明体の円柱と空気との界面で全反射を繰り返して透明体の円柱内部を伝送 路として進行し、 透明体 5の他方の端面から高密度な光エネルギーとして 放射される。 また、 請求項 2の光エネルギー伝送装置では、 前記透明体 5が石英ガラ スであることを特徴としている。 これにより、 透明体 5 として石英ガラスを用いることで、 光点のェネル ギー密度を高く して、 大量の高密度の光エネルギーを他方へ伝送すること ができる。 図面の簡単な説明
図 1は本発明の実施の形態の光エネルギー伝送装置の一例を示す概念図 である。
図 2は本発明の実施の形態の光エネルギー伝送装置の他の一例を示す概 念図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して詳細に説明する。
本発明の原理について図 1を用いて説明する。 太陽 1からの光 2は、 フレ ネルレンズからなる集光装置 3に導かれ、 その焦点 4に光 2が集められる 。 このとき、 光点の大きさは集光装置 3の焦点距離に比例し、 焦点距離が 5メートルの場合では、 光点の直径は約 5 c mの円になる。
この焦点 4の位置、 またはその近傍に例えば、 石英ガラスの円柱からな る透明な伝送体 (伝送路) 5の一方の端面側に配置すると、 石英ガラス ( 伝送体 5 ) に入射した光 2は、 石英ガラスと周囲の空気との屈折率の差に 基づき、 石英ガラスの円柱と空気との界面で全反射を繰り返して石英ガラ スの円柱内部を伝送路として進行し、 伝送体 5の他方の端面から被加熱物 6に高密度な光エネルギーとして放射される。
ここで、 被加熱物 6には蓄熱ゃ化学反応、 あるいは熔解を目的とした力 —ボナイ ト、 高炉滓、 ホワイ トメタル、 炭化ゲイ素、 黒鉛等が用いられる このとき、 焦点位置の石英ガラスが光散乱や吸収の原因となる気泡や空 隙を含まず、 ほとんど全ての入射光を透過してしまい、 光エネルギーの損 失が極めて少ないので、 伝送体 5の温度の上昇は少なく、 安定に機能する ことができる。
また、 光 2は透明体の伝送体 5の内部のみを伝送路として進み、 途中か ら光 2が伝送体 5の壁面から外部へ漏れだすことが原理的に無いので、 伝 送体 5の途中の周囲に可燃性の物体が有っても安全である。 なお、 光点のエネルギー密度が小さい場合には、 伝送体 5 として石英ガ ラスの他に、 耐熱温度の低いガラスやアタリル樹脂を用いるようにしても 良い。 このように、 本発明では、 従来困難であった大量の光エネルギーの所定 位置への伝送を、 その伝送路として集光装置 3の焦点の大きさに相当する 太さの透明な剛体の柱状体を伝送体 5 として用いることにより、 簡単、 且 つ安全に実施可能としたものである。 ここで、 本発明で用いる集光装置 3としては、 フレネルレンズの他、 凸 レンズ、 凹面鏡等を用いることができ、 また、 図 2に示すように、 自動追 尾装置により駆動される平面鏡 7により太陽光を、 集光装置である凹面鏡 8に導く こともできるものである。 本発明では、 伝送路の伝送体 5 として、 例えば、 直径 5 c m程度の大き な断面形状の石英ガラスを用いている。 その結果、 集光装置 3の焦点 4の 光点の大きさもこの程度の大きさで良く、 集光装置 3のレンズや反射鏡、 太陽光の追尾装置等の精度を下げることができ、 そのため、 安価な装置と することが可能となる。
伝送体 5は、 その内部を通過する光 2の全反射を妨げない範囲の適当な 曲率半径で曲がっていても良い。 また、 伝送体 5の端部での反射による多 少の損失の増加を許容するならば、 屈曲した複数個の伝送路 (伝送体 5 ) を直列に組み合わせて用いるようにしても良い。 これにより、 伝送体 5の 位置や方向を自在に調節することが可能となる。 なお、 上記の実施形態では、 伝送体 5の直径を 5 c m程度としていたが 、 伝送体 5の直径を 1 0 c m程度、 あるいは直径を 1 5 c m程度の伝送体 5を用いるようにしても良い。 もちろん、 伝送体 5の直径を、 5 c m程度 〜 1 5 c m程度の間の任意の数値として、 これらの任意の数値の直径の伝 送体 5を用いるようにしても良い。 なお、 伝送体 5の直径は 1 0 c m程度 が好適例である。 このように本実施形態では、 太陽光等のエネルギー密度の小さい光から 集光装置 3によって集められた光 2を、 高エネルギー密度の状態で、 安全 に、 且つ任意の場所へ比較的小さな断面積の伝送路により伝送することが 可能であり、 特に、 太陽光を熱エネルギーに変換して用いる用途、 例えば 、 水蒸気タービンによる発電、 化学反応促進用の熱源、 冷暖房用の熱源等 の用途に極めて好適な光エネルギー伝送装置を提供できるものである。 具体実施例 1
次に、 具体的な実施例について説明する。 直径が 1 0 0 c mの円形のァ ク リル樹脂製フレネルレンズで太陽光を集光し、 焦点に直径 8 c mの太陽 像を結像させた。 この焦点位置に直径 1 0 c m、 長さ 3 mの図 1に示す伝 送体 5である透明石英ガラスの一端面を配置し、 該石英ガラスの他端面か ら光を放射し、 この光をルツボ中の常温の高炉の被加熱物 6であるスラグ に当て、 このスラグの温度の上昇を測定した。 その結果、 照射後 1 0分で スラグ 6の温度は 4 5 0 °Cに達した。 具体実施例 2
直径が 1 0 0 c mの円形のァクリル樹脂製フレネルレンズで太陽光を集 光し、 焦点に直径 8 c mの太陽像を結像させた。 この焦点位置に直径 1 0 c m、 長さ 3 mの図 1に示す伝送体 5である透明石英ガラスの一端面を配 置し、 該石英ガラスの他端面から光を放射し、 この光を水槽中の温度 1 6 :、 5 0 0 c cの水に照射したところ、 照射後 3分で水温は 7 2 °Cとなつ た。 このように、 本発明の光エネルギー伝送装置によれば、 太陽光等のエネ ルギー密度の小さい光から集光装置によって集められた光を、 高工ネルギ 一密度の状態で、 安全に、 且つ任意の場所へ比較的小さな断面積の伝送路 により伝送することが可能であり、 特に、 太陽光を熱エネルギーに変換し て用いる用途、 例えば、 水蒸気夕一ビンによる発電、 化学反応促進用の熱 源、 冷暖房用の熱源等の用途に極めて好適な光エネルギー伝送装置を提供 できるものである。 また、 透明体として石英ガラスを用いることで、 光点のエネルギー密度 を高く して、 大量の高密度の光エネルギーを他方へ伝送することができる

Claims

請 求 の 範 囲
1. 太陽 ( 1 ) の光 ( 2 ) を集める集光装置 ( 3 ) と、 該集光装置 ( 3 ) の焦点 ( 4 ) の光点の大きさに等しいか、 またはそれよりも大きい断面 を有し、 且つ内部に実質的に空隙を含まず、 側面および断面が光学的に平 滑な面である棒状の透明体 ( 5 ) とからなり、 前記集光装置 ( 3) の焦点
(4 ) に、 前記透明体 ( 5 ) の一方の端面を配置し、 前記集光装置 ( 3) に入射した光エネルギーを、 前記透明体 ( 5 ) の内部伝送路を介して該透 明体 ( 5) の他方の端面側に伝送することを特徴とする光エネルギー伝送
2. 前記透明体 ( 5) が石英ガラスであることを特徴とする請求項 1記 載の光エネルギー伝送装置。
PCT/JP2000/007710 2000-11-01 2000-11-01 Dispositif de transmission d'energie optique WO2002037153A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001210537A AU2001210537A1 (en) 2000-11-01 2000-11-01 Optical energy transmission device
PCT/JP2000/007710 WO2002037153A1 (fr) 2000-11-01 2000-11-01 Dispositif de transmission d'energie optique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007710 WO2002037153A1 (fr) 2000-11-01 2000-11-01 Dispositif de transmission d'energie optique

Publications (1)

Publication Number Publication Date
WO2002037153A1 true WO2002037153A1 (fr) 2002-05-10

Family

ID=11736650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007710 WO2002037153A1 (fr) 2000-11-01 2000-11-01 Dispositif de transmission d'energie optique

Country Status (2)

Country Link
AU (1) AU2001210537A1 (ja)
WO (1) WO2002037153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2257914A1 (es) * 2004-02-18 2006-08-01 Juan Barranco Castillo Aparato que sigue la trayectoria del sol, colecta y concentrada la luz sobre un punto.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261335A (en) * 1978-10-16 1981-04-14 Balhorn Alan C Solar energy apparatus
JPS5883803A (ja) * 1981-11-14 1983-05-19 Takashi Mori 太陽光エネルギ−収集伝送装置
JPS6167010A (ja) * 1984-09-07 1986-04-07 Takashi Mori 太陽光収集装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261335A (en) * 1978-10-16 1981-04-14 Balhorn Alan C Solar energy apparatus
JPS5883803A (ja) * 1981-11-14 1983-05-19 Takashi Mori 太陽光エネルギ−収集伝送装置
JPS6167010A (ja) * 1984-09-07 1986-04-07 Takashi Mori 太陽光収集装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2257914A1 (es) * 2004-02-18 2006-08-01 Juan Barranco Castillo Aparato que sigue la trayectoria del sol, colecta y concentrada la luz sobre un punto.

Also Published As

Publication number Publication date
AU2001210537A1 (en) 2002-05-15

Similar Documents

Publication Publication Date Title
US4380365A (en) Optical fiber, having on at least one of its frontal extremities a plano-convex microlens joined with its plane face to said frontal extremity
US4201197A (en) Solar energy collector having a fiber-optic cable
JP5077590B2 (ja) 光ファイババンドルおよび光照射装置
CN101576649A (zh) 一种利用抛物面镜传送光能的装置
JP2010026505A (ja) 集光光ファイバ
US20130214139A1 (en) Distributive optical energy system
JP2008511872A (ja) 広帯域光ファイバタップ
JP2009526265A (ja) 光ファイバーコネクター
US6713713B1 (en) Lens to adapt laser intensity for uniform welding
JP2016524723A (ja) Tir光ファイバレンズを形成する方法
JPH08292339A (ja) 光ファイバ照射装置
US20060285798A1 (en) Bent side-firing laser
RU2260782C2 (ru) Способ и устройство для измерения потерь оптической мощности в соединителе из оптического волокна
JP4380615B2 (ja) ライトガイドおよび光照射装置
WO2002037153A1 (fr) Dispositif de transmission d'energie optique
JP4471522B2 (ja) 集光部品並びにこれを用いた光源モジュール、レーザー装置及び光信号増幅装置
JP6915905B2 (ja) 温熱治療器
JP2001013357A (ja) 光エネルギー伝送装置
JP2665664B2 (ja) 散光管およびその製造方法
JP2012098556A (ja) 光カップリングユニット及び光源装置
RU2627017C1 (ru) Способ изготовления волновода в объеме пластины из пористого оптического материала
Shalem et al. Optical properties of silver-halide core/clad IR fibers
US6587286B1 (en) Circular prism light capacitor
Rahou et al. Direct transfer of solar radiation to high temperature applications
Inberg et al. Hollow waveguide for mid and thermal infrared radiation

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP