WO2002033762A1 - Polymeres schaltelement - Google Patents

Polymeres schaltelement Download PDF

Info

Publication number
WO2002033762A1
WO2002033762A1 PCT/EP2001/011987 EP0111987W WO0233762A1 WO 2002033762 A1 WO2002033762 A1 WO 2002033762A1 EP 0111987 W EP0111987 W EP 0111987W WO 0233762 A1 WO0233762 A1 WO 0233762A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
switching element
element according
poly
type
Prior art date
Application number
PCT/EP2001/011987
Other languages
English (en)
French (fr)
Inventor
Silvia Janietz
Armin Wedel
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP01987951A priority Critical patent/EP1334526A1/de
Priority to AU2002221691A priority patent/AU2002221691A1/en
Publication of WO2002033762A1 publication Critical patent/WO2002033762A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/20Organic diodes
    • H10K10/26Diodes comprising organic-organic junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/43Bipolar transistors, e.g. organic bipolar junction transistors [OBJT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers

Definitions

  • the invention relates to a polymeric switching element for use as a transistor or diode.
  • the transistor represents a key electronic component in information technology.
  • Conventional diodes and transistors consist of inorganic materials and are bound to semiconductor technology, which means that the property profile of these components is naturally limited.
  • Semiconductor diodes and transistors can be divided into many types and classes.
  • bipolar and unipolar transistors which have a completely different structure.
  • An example of a unipolar transistor is the field effect transistor (FET), which in its basic structure consists of a semiconducting current channel, the conductivity of which is influenced by an electric field.
  • FET field effect transistor
  • the bipolar transistors have i.a. found their way into power electronics and work with positive and negative charge carriers.
  • the desired types of charge carriers can be realized by doping the semiconductor material (cf. K.-H. Rumpf and. Powder, transistor electronics, Verlagtechnik, Berlin, 1982).
  • Schottky diodes and FETs were combined with organic compounds (e.g. phthalocyanines) (see TJ Marks, Science 227 (1985) 881) and polymers (e.g. polythiophenes) (see AJ Lovinger and Lewis J. Rothberg, J. Mater. Res. 11 (1996) 1581).
  • organic compounds e.g. phthalocyanines
  • polymers e.g. polythiophenes
  • OFET Organic field effect transistors
  • oligothiophenes ⁇ -nT with 3 ⁇ n ⁇ 8
  • ⁇ -6T cf. G. Horowiti-., D. Fichou and F. Garnier, Solid State Commun. 70 (1989) 385
  • Aromatic hydrocarbons the best known of which is pentacene, are also used for this purpose.
  • the OFETs based on pentacenes either consist of evaporation films (cf. CD Dimitrikapouios, AR Brown, A. Pomp, J.
  • diodes and transistors which are characterized by robustness, lightness and light transmission (cf. M.C. Lonergan, Science 278 (1997) 2103). These material properties can be achieved through the use of polymeric materials.
  • the invention has for its object to provide new switching elements for use as a diode or transistor, which can be manufactured much easier than that of the prior art.
  • the invention relates to a polymeric switching element, comprising
  • Semiconducting polymers are suitable as polymer materials for hole transport.
  • n-material Materials which predominantly have electron transport (n-material) are used as electron transport layers in the polymeric switching element according to the invention.
  • the electron transport layer preferably comprises substituted or unsubstituted aromatic polyoxadiazoles (DE 198 40 195 Cl, September 3, 1998), aromatic polyquinoxalines (Agrawal, AK, Jenecke, SA, Macromolecules 26, 1993, 895), polyquinolines (Zhang, X., Shetty, AS, Jeschke, SA, Acta Polymerica 49, 1998, 52) and Polybenzbisthiazole (Jenecke, SA, Johnson, PD, Macromolecules 23, 1990, 4419).
  • n is an integer from 10 to 1000, preferably 20 to 30.
  • n-material a soluble 2,5-dialkoxy-substituted poly (phenyl-1,3-oxadiazole) (PODX) is preferably used.
  • the alkoxy group has 1 to 18, preferably 16, carbon atoms.
  • n is an integer from 100 to 1000, preferably 300 to 700.
  • the individual layers of the polymeric switching element can consist of the aforementioned polymeric materials or, according to a further embodiment of the invention, can be incorporated into polymer matrices, which can optionally be doped.
  • Suitable polymer matrices which can contain the aforementioned polymeric compounds as guest materials are, for example, polymethyl methacrylates (PMMA) or polycarbonates (PC).
  • PMMA polymethyl methacrylates
  • PC polycarbonates
  • These layers and layer systems are to be arranged in the polymeric switching element according to the invention in such a way that, starting from the hole-injecting electrode, first the hole transport layer and then the electron transport layer are prepared. An electron-injecting electrode is then applied (cf. A.R. Brown, A. Pomp, CM. Hart, D. de Leeuw, Science 270 (1995), 972).
  • FIG. 1 shows an exemplary structure of the polymeric switching element according to the invention.
  • the carrier material (2) the electrodes, (3) a polymeric intermediate layer to adapt the injection barriers to the polymeric layers, (4) the layer with a hole-conducting character (p-material) and (5) the layer with electron trans - portability (n-material).
  • the polymeric switching element according to the invention can also have one of the following layer arrangements:
  • n-type polymer material between two p-type materials for example PTPA / PODX / PTPA
  • p-type polymer material between two n-type materials for example PODX / PTPA / PODX
  • n-conductive polymer material between two conductive electrodes for example BAYTRON ® / PODX / B ⁇ YTRON ®
  • the inventive polymer switching element has hole-injecting and electron-injecting electrodes.
  • Suitable hole-injecting electrodes include Materials that have a high exit work area (> 4.5 eV). These include Gold, platinum and indium tin oxide (ITO) layers.
  • the ITO layers must be designed using special vapor deposition processes (RF sputtering) so that they have both high optical transparency (> 80%) and high conductivity ( ⁇ 1 k ⁇ /). The typical layer thicknesses must therefore be between 80 and 150 nm.
  • Electrodes Materials with a low work function are suitable as electron-injecting electrodes, e.g. Calcium, aluminum, mixtures of magnesium and aluminum and magnesium and indium.
  • the layer thicknesses of this electrode are in the range from 500 nm to 1 ⁇ m.
  • the electrodes are attached to the interfaces between the materials and to the delimiting layers. It is expedient to use a polymeric intermediate layer which serves to adapt the injection barriers to the polymeric layers.
  • a polymeric intermediate layer (3) is shown in FIG. 1.
  • the polymeric intermediate layer is located between the electrode material (2) and the layer with a hole-conducting character (p-material) (4).
  • the polymeric intermediate layer can consist of a conductive polymer (for example polyethylene dioxythiophene) and can be produced from commercially available materials.
  • a conductive polymer for example polyethylene dioxythiophene
  • BAYTRON ® from Bayer AG, Leverkusen, has proven to be expedient.
  • the polymeric switching elements according to the invention have the advantage over the switching elements known in the prior art, which comprise inorganic components, that they are easier to process and have a significantly increased formability.
  • the polymer switching elements can be manufactured more cost-effectively under environmentally friendly process conditions.
  • the invention can be used in the field of polymer-based electronic components. It is to be used in the design of new switching elements that are made entirely of polymer. These components can with organic electroluminescent displays can be combined and used for control.
  • a bipolar polymer transistor with the following layer structure is produced: ITO / PTPA / Al / PODX / Al.
  • ITO layer 50 nm
  • a glass substrate of approx. 5 cm 2 serves as carrier material and hole-injecting electrode.
  • a polymeric intermediate layer is created by spin-coating the dispersion of a conductive polymer (BAYTRON ® ) and then drying at 100 ° C.
  • a thin film is applied from a polyamide carboxylic acid soluble in dimethylacetamide by spin-coating, which is converted into an insoluble polyimide layer (PTPA) with a thickness of 100 nm by a thermal process at 200 ° C under vacuum conditions ( ⁇ 10 ⁇ 3 bar) , A structured aluminum electrode with a thickness of approximately 80 nm is then deposited. A PODX layer (100 nm) is then applied. Another structured aluminum electrode completes the transistor structure. The aluminum electrodes are geometrically arranged so that the active areas overlap by approx. 50%.
  • PTPA insoluble polyimide layer
  • FIG. 2 shows the band diagram of such a bipolar polymer transistor. There is information about the injection barriers.
  • FIG. 3 shows the current-voltage characteristic of the polymer transistor, ie its switching behavior. Doing so Voltage is applied between the PTPA and PODX layers, with PTPA acting as the emitter, AI as the base and PODX as the collector.
  • Diodes and transistors can thus be constructed using the conjugated polymer systems used in the polymeric switching element according to the invention.

Abstract

Beschrieben werden neue polymere Schaltelemente, umfassend (i) eine löcherinjizierende Elektrode, (ii) eine polymere Lochtransportschicht, (iii) eine polymere Elektronentransportschicht und (iv) eine elektroneninjizierende Elektrode.

Description

Polymeres Schaltelement
Die Erfindung betrifft ein polymeres Schaltelement zur Verwendung als Transistor oder Diode.
Eine elektronische Schlüsselkomponente in der Informationstechnik stellt der Transistor dar. Herkömmliche Dioden und Transistoren bestehen aus anorganischen Materialien und sind an die Halbleitertechnologie gebunden, wodurch das Eigenschaftsprofil dieser Bauelemente auf natürliche Weise begrenzt ist. Halbleiterdioden und Transistoren lassen sich in viele Typen und Klassen einteilen.
Bei den Transistoren unterscheidet man bipolare und unipolare Transistoren, die völlig unterschiedlich aufgebaut sind. Als ein Beispiel für einen unipolaren Transistor sei hier der Feldeffekttransistor (FET) genannt, der im Grundaufbau aus einem halbleitenden Stromkanal besteht, dessen Leitfähigkeit durch ein elektrisches Feld beeinflusst wird. Im Gegensatz zu den bipolaren Transistoren trägt zum Ladungstransport bei den unipolaren Transistoren nur eine Ladungsträgerart bei.
Die bipolaren Transistoren haben u.a. in der Leistungselektronik Einzug gehalten und arbeiten mit positiven und negativen Ladungsträgern. Die gewünschten Ladungsträgerarten lassen sich durch Dotierung des Halbleitermaterials realisieren (vgl. K.-H. Rumpf und . Pulvers, Transistor-Elektronik, Verlag Technik, Berlin, 1982) .
Neben der sprunghaften Entwicklung der Halbieitermaterialien in den letzten drei Jahrzehnten werden auch relativ lange schon organische Materialien hinsichtlich ihrer Halbleitereigenschaften analysiert. Als ein Vertreter ist das Antracen zu nennen, welches bereits in den 60er Jahren inrensiv unter- sucht wurde (vgl. W. Helfrich und W.G. Schneider, J. Chem. Phys. 44, 8 (1996) 2902) .
In den vergangenen Jahren sind eine große Anzahl von Forschungsergebnissen zu halbleitenden organischen Verbindungen veröffentlicht worden (vgl. G. Wegner , Angew. Chem., Int. Ed. Engl. 20 (1981) 361; G. Horowitz, Adv. Materials 10, 5 (1998) 365) . Die meisten von diesen Verbindungen sind Donator-Akzeptor-Verbindungen, z.B. Tetrahiafulvalen-Tetracyano- quinodimethan (TTF-TCNQ) und andere analoge Verbindungen (vgl. D. Jerome und H.J. Schultz, Adv. Phys. 31 (1982) 299; M. Narita und C.U. Pittmann, Jr . Synthesis 489 (1976)). Verschiedene elektronische Bauteile, z.B. Schottky-Dioden und FETs, wurden mit organischen Verbindungen (z.B. Phthalocyani- nen) (vgl. T.J. Marks, Science 227 (1985) 881) und Polymeren (z.B. Polythiophene) (vgl. A.J. Lovinger und Lewis J. Rothberg, J. Mater. Res. 11 (1996) 1581) aufgebaut.
Organische Feldeffekttransistoren (OFET) wurden 1987 das erste Mal beschrieben und haben in den letzten Jahren eine sprunghafte Entwicklung auf dem Gebiet der Materialentwicklung genommen. In den letzten Jahren wurden vor allem Untersuchungen an Oligothiophenen (α-nT mit 3 < n < 8) , von denen das α-6T (vgl. G. Horowiti-., D. Fichou und F. Garnier, Solid State Commun . 70 (1989) 385) der bekannteste Vertreter mit der höchsten Mobilität der Ladungsträger unter den organischen Halbleitern ist, durchgeführt. Des weiteren werden aromatische Kohlenwasserstoffe, dessen bekanntester Vertreter das Pentacen ist, für diesen Anwendungszweck eingesetzt. Die auf Pentacenen basierenden OFETs bestehen entweder aus Aufdamp filmen (vgl. C.D. Dimitrikapouios, A.R. Brown, A. Pomp, J. Appl . Phys. 80 (1996), 2501) oder werden durch Konversion aus einem löslichen Precursor-Molekül hergestellt (vgl. A.R. Brown, A. Pomp, C.M. Hart, D. de Leeuw, Science 270 (1995), 972). Die bisher existierenden, dem Stand der Technik zuzuordnenden Bauelemente haben die Nachteile, dass sie beim Aufbau sehr aufwendige Fertigungsverfahren erfordern. Dies lässt sich durch den Einsatz polymerer Materialien vermeiden.
Überdies ist es für viele elektronische Geräte wünschenswert, Dioden und Transistoren einzusetzen, die sich durch Robust- heit, Leichtigkeit und Lichtdurchlässigkeit auszeichnen (vgl. M.C. Lonergan, Science 278 (1997) 2103) . Diese Materialeigenschaften lassen sich durch den Einsatz von polymeren Werkstoffen realisieren.
Der Erfindung liegt die Aufgabe zugrunde, neue Schaltelemente zur Verwendung als Diode oder Transistor bereitzustellen, die wesentlich einfacher als die des Stands der Technik hergestellt werden können.
Gegenstand der Erfindung ist ein polymeres Schaltelement, umfassend
(i) eine löcherinjizierende Elektrode,
(ii) eine polymere Lochtransportschicht,
(iii) eine polymere Elektronentransportschicht und
(iv) eine elektroneninjizierende Elektrode.
Als polymere Materialien für den Lochtransport eignen sich halbleitende Polymere.
In dem erfindungsgemäßen Schaltelement werden vorzugsweise unsubstituierte (Wessling, R.A., J. Poly . Sei. Polym. Sym . 72, 1986, 55) oder substituierte (Becker, H., Spreitzer, H., Ibrom, K. , Kreuder, W., Macromolecules V, 32, 1999, 4925) Po- ly-p-phenylenvinylene (PPV), konjugierte Poly-p-phenylen (PPP) -Leiterpolymere (Schlüter, A.-D., Wegner G., Acta Poly- erica 44, 1993, 59), Polyvinylcarbazole ( PVCar ) (Kido J., Hongawa, K., Okuyuma K. , Katsutoshi, N., Appl . Phys. Lett . 63, 1993, 19), Polyfluorene (Grell, M., Bradley, D.D.C., In- basekeran, M., Woo, E.P., Adv. Mater. 9, 1997, 798), thi- anthrenhaltige Hauptkettenpolymere (Friedrich, R., Janietz, S., Wedel, A., Macromolecules V, 200, 1999, 731) und Polythi- ophene (Mao, H., Xu, B., Holdcraft, S., Macromolecules 25, 1992, 554) eingesetzt.
Als Elektronentransportschichten werden in dem erfindungsgemäßen polymeren Schaltelement Materialien verwendet, die ü- berwiegend Elektronentransport aufweisen (n-Material) .
Vorzugsweise umfasst die Elektronentransportschicht substituierte oder unsubstituierte aromatische Polyoxadiazole (DE 198 40 195 Cl, 3. September 1998), aromatische Polyquinoxali- ne (Agrawal, A.K., Jenecke, S.A., Macromolecules 26, 1993, 895), Polychinoline (Zhang, X., Shetty, A.S., Jeschke, S.A., Acta Polymerica 49, 1998, 52) und Polybenzbisthiazole (Jenecke, S.A., Johnson, P.D., Macromolecules 23, 1990, 4419).
Solche Polyoxadiazole sind der DE 198 40 195 Cl vom 3. September 1998 beschrieben.
Als besonders zweckmäßig erweist sich die Verwendung von Po- lyimid (PTPA) mit Thianthreneinheiten der folgenden allgemeinen Formel
Figure imgf000006_0001
worin n eine ganze Zahl von 10 bis 1000, vorzugsweise 20 bis 30, bedeutet.
Seine Herstellung ist in S. Janietz, A. Wedel, R. Friedrich, S. Anlauf, Pol. Prepr., 40, 1999, 1219 beschrieben. Es handelt sich hierbei um sogenanntes p-leitendes Polymermaterial, das löcherleitenden Charakter aufweist. Als Material, das ü- berwiegend Elektronentransport aufweist, d.h. sogenanntes n-Material, wird vorzugsweise ein lösliches 2 , 5-Dialkoxy- substituiertes Poly (phenyl-1 , 3 , -oxadiazol) (PODX) verwendet. Die Alkoxygruppe weist dabei 1 bis 18, vorzugsweise 16, Kohlenstoffatome auf.
Besonders bevorzugt ist die Verwendung eines 2 , 5-Dialkoxy- substituierten Poly (phenyl-1, 3-4-oxadiazols) der Formel
Figure imgf000006_0002
worin n für eine ganze Zahl von 100 bis 1000, bevorzugt 300 bis 700, steht.
Seine Herstellung ist in der DE 198 40 195 Cl beschriebe Die einzelnen Schichten des polymeren Schaltelements können aus den vorgenannten polymeren Materialien bestehen oder gemäß einer weiteren Ausführungsform der Erfindung in Polymermatrizen, die gegebenenfalls dotiert sein können, eingearbeitet werden .
Geeignete Polymermatrizen, welche die vorgenannten polymeren Verbindungen als Gastmaterialien enthalten können, sind beispielsweise Polymethylmethacrylate (PMMA) oder Polycarbonate (PC) .
In dem erfindungsgemäßen polymeren Schaltelement sind diese Schichten und Schichtsysteme so anzuordnen, daß, ausgehend von der löcherinjizierenden Elektrode, zunächst die Loch- transportschicht und dann die Elektronentransportschicht präpariert wird. Danach erfolgt die Aufbringung einer elektroneninjizierenden Elektrode (vgl. A.R. Brown, A. Pomp, CM. Hart, D. de Leeuw, Science 270 (1995), 972).
Die Figur 1 zeigt einen beispielhaften Aufbau des erfindungsgemäßen polymeren Schaltelements. Hierin bedeutet (1) das Trägermaterial, (2) die Elektroden, (3) eine polymere Zwischenschicht zur Anpassung der Injektionsbarrieren an die polymeren Schichten, (4) die Schicht mit löcherleitendem Charakter (p-Material) und (5) die Schicht mit Elektronentrans- portcharakter (n-Material) .
Das erfindungsgemäße polymere Schaltelement kann gemäß einer weiteren Ausführungsform der Erfindung auch eine der folgenden Schichtanordnungen aufweisen:
(a) n-leitendes Polymermaterial zwischen zwei p-leitenden Materialien, beispielsweise PTPA/PODX/PTPA (b) p-leitendes Polymermaterial zwischen zwei n-leitenden Materialien, beispielsweise PODX/PTPA/PODX
(c) n-leitendes Polymermaterial zwischen zwei leitfähigen Elektroden, beispielsweise BAYTRON®/PODX/BÄYTRON®
(d) n-leitendes Polymermaterial zwischen zwei p-leitenden Materialien auf leitfähiger Elektrode,
sowie BAYTRON®/PTPA/PODX/PTPA.
Neben dem oben erwähnten n-leitenden bzw. p-leitenden Polymermaterial weist das erfindungsgemäße polymere Schaltelement löcherinjizierende und elektroneninjizierende Elektroden auf. Als löcherinjizierende Elektrode eignen sich u.a. Materialien, die eine hohe Austrittsarbeir (> 4,5 eV) besitzen. Dazu zählen u.a. Gold, Platin und Indium-Zinn-Oxid (ITO) -Schichten. Die ITO-Schichten müssen durch spezielle Aufdampverfah- ren (RF-Sputtern) so ausgeführt werden, dass sie sowohl eine hohe optische Transparenz (> 80%) als auch eine hohe Leitfähigkeit (< 1 kΩ/ ) besitzen. Die typischen Schichtdicken müssen deshalb zwischen 80 und 150 nm liegen.
Als elektroneninjizierende Elektroden eignen sich Materialien mit geringer Austrittsarbeit, z.B. Calcium, Aluminium, Mischungen aus Magnesium und Aluminium und Magnesium und Indium. Die Schichtdicken dieser Elektrode liegen im Bereich von 500 nm bis 1 μm.
Die Herstellung solcher elektroneninjizierender Elektroden ist beispielsweise in Adachi, Ch . , Tetsuo, T. und Shogo, S., Appl. Phys. Lett . 55 (1989) 15, 1489 beschrieben. Nach Präparation dieser Schichten und Schichtsysteme weisen diese einen oder mehrere p-n-Übergang/p-n-Übergänge auf, der/die m Abhängigkeit von der anliegenden Spannung sowohl in Flussrichtung betrieben als auch in Sperrrichtung geschaltet werden kann/können.
Die Elektroden werden dabei an den Grenzflächen der Materialien untereinander und an den begrenzenden Schichten angebracht. Dabei ist es zweckmäßig, eine polymere Zwischenschicht zu verwenden, welche zur Anpassung der Injektionsbarrieren an die polymeren Schichten dient. Eine solche polymere Zwischenschicht (3) ist in Figur 1 dargestellt. In dieser Ausführungsform befindet sich die polymere Zwischenschicht zwischen dem Elektrodenmaterial (2) und der Schicht mit löcherleitendem Charakter (p-Material) (4).
Die polymere Zwischenschicht kann aus einem leitfähigen Polymer bestehen (z.B. Polyethylendioxythiophen) und aus handelsüblichen Materialien hergestellt werden. Als zweckmäßig erweist sich die Verwendung von BAYTRON® der Firma Bayer AG, Leverkusen .
Die erfindungsgemäßen polymeren Schaltelemente weisen gegenüber den im Stand der Technik bekannten Schaltelementen, welche anorganische Komponenten umfassen, den Vorteil auf, dass sie besser verarbeitbar sind und eine deutlich erhöhte Formgebbarkeit aufweisen.
Des weiteren sind die polymeren Schaltelemenfe kostengünstiger unter umweltgerechten Prozessbedingungen herstellbar. Die Erfindung kann auf dem Gebiet der elektronischen Bauelemente auf Polymerbasis eingesetzt werden. Sie soll beim Entwurf neuartiger Schaltelemente genutzt werden, die vollständig aus polymerer Basis aufgebaut sind. Diese Bauelemente können mit organischen Elektrolumineszenzanzeigen kombiniert und zur An- steuerung verwendet werden.
Die Erfindung wird durch das folgende Ausführungsbeispiel näher erläutert :
BEISPIEL
Es wird ein bipolarer Polymertransistor mit dem folgenden Schichtaufbau hergestellt: ITO/PTPA/Al/PODX/Al .
Eine auf einem Glassubstrat von ca. 5 cm2 aufgebrachte ITO- Schicht (50 nm) dient als Trägermaterial und lochinjizierende Elektrode. Eine polymere Zwischenschicht wird durch spin- coating der Dispersion eines leitfähigen Polymers (BAYTRON®) und anschließender Trocknung bei 100°C erzeugt.
Darauf wird aus einer in Dimethylacetamid löslichen Polyamidcarbonsäure durch spin—coating ein dünner Film aufgebracht, der durch einen thermischen Prozess bei 200°C unter Vakuumbedingungen (< 10~3 bar) in eine unlösliche Polyimidschicht (PTPA) mit einer Dicke von 100 nm umgewandelt wird. Danach wird eine strukturierte Aluminiumelektrode von ca. 80 nm Dicke abgeschieden. Anschließend erfolgt das Aufbringen einer PODX-Schicht (100 nm) . Eine weitere strukturierte Aluminiumelektrode schließt den Transistoraufbau ab. Die Aluminium- elektroden sind geometrisch dabei so angeordnet, dass sich die aktiven Flächen mit ca. 50 % überlappen.
Die Figur 2 zeigt das Banddiagramm eines solchen bipolaren Polymertransistors. Es gibt Auskunft über die Inj ekτionsbar- rieren .
Die Figur 3 zeigt die Strom-Spannungs-Charakteristik des Polymertransistors, d.h. sein Schaltverhalten. Dabei wird eine Spannung zwischen der PTPA- und der PODX-Schicht angelegt, wobei PTPA als Emitter, AI als Basis und PODX als Kollektor wirkt .
Aus der resultierenden Strom-Spannungs-Kennlinie gemäß Figur 3 lassen sich Schaltvorgänge nachweisen. Mit den in dem erfindungsgemäßen polymeren Schaltelement eingesetzten konjugierten Polymersystemen lassen sich somit Dioden und Transistoren aufbauen.

Claims

Patentansprüche
1. Polymeres Schaltelement, umfassend
(i) eine löcherinjizierende Elektrode,
(ii) eine polymere Lochtransportschicht,
(iii) eine polymere Elektronentransportschicht und
(iv) eine elektroneninjizierende Elektrode.
2. Polymeres Schaltelement nach Anspruch 1, dadurch gekennzeichnet, dass die polymere Lochtransportschicht halbleitende Polymere umfasst.
3. Polymeres Schaltelement nach Anspruch 2, dadurch gekennzeichnet, dass die halbleitenden Polymere aus substituierten oder unsubstituierten Poly-p- phenylenvinylenen, konjugierten Poly-p-phenylenen- Leiterpolymeren, Polyvinylcarbazolen, Polyfluorenen, Poly- benzthiazolen, thianthrenhaltigen Hauptkettenpolymeren und Polythicphenen ausgewählt sind.
4. Polymeres Schaltelement nach Anspruch 3, dadurch gekennzeichnet, dass das halbleitende Polymer ein Po- lyimid mit Thianthreneinheiten der allgemeinen Formel
Figure imgf000012_0001
ist, worin n für eine ganze Zahl von 10 bis 1000 steht
5. Polymeres Schaltelement nach Anspruch 1, dadurcn gekennzeichnet, dass die polymere Elektronentransportschicht substituierte oder unsubstituierte aromatische Polyoxadiazole und/oder aromatische Polyquinoxaline umfassϊ
6. Polymeres Schaltelement nach Anspruch 5, dadurch gekennzeichnet, dass das substituierte aromatische Polyoxadiazol ein 2 , 5-Dialkoxy-substituiertes Poly(phenyl- 1 , 3 , 4-oxadiazol ) ist.
7. Polymeres Schaltelement nach Anspruch 6, dadurch gekennzeichnet, dass das 2, 5-Dialkoxy-substituierte Poly (phenyl-1, 3-4-oxadiazol ) die Formel
Figure imgf000013_0001
aufweist, worin n für eine ganze Zahl von 300 bis 700 steht.
8. Polymeres Schaltelement nach den Ansprüchen 2 bis 7, dadurch gekennzeichnet, dass die polymeren Transportschichten eine Polymermatrix aufweisen, die gegebenenfalls dotiert sein kann .
9. Polymeres Schaltelement nach Anspruch 8, dadurch gekennzeichnet, dass die Polymermatrix Polymethyl- methacrylat oder Polycarbonat umfasst.
10. Polymeres Schaltelement, dadurch gekennzeichnet, dass es eine der folgenden Schichtanordnungen aufweist: (a) n-leitendes Polymermaterial zwischen zwei p-leitenden Materialien,
(b) p-leitendes Polymermaterial zwischen zwei n-leitenden Materialien,
(c) n-leitendes Polymermaterial zwischen zwei leitfähigen Elektroden,
(d) n-leitendes Polymermaterial zwischen zwei p-leitenden Materialien auf leitfähiger Elektrode.
PCT/EP2001/011987 2000-10-17 2001-10-16 Polymeres schaltelement WO2002033762A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01987951A EP1334526A1 (de) 2000-10-17 2001-10-16 Polymeres schaltelement
AU2002221691A AU2002221691A1 (en) 2000-10-17 2001-10-16 Polymer switching element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10051369.7 2000-10-17
DE10051369A DE10051369A1 (de) 2000-10-17 2000-10-17 Polymeres Schaltelement

Publications (1)

Publication Number Publication Date
WO2002033762A1 true WO2002033762A1 (de) 2002-04-25

Family

ID=7660052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/011987 WO2002033762A1 (de) 2000-10-17 2001-10-16 Polymeres schaltelement

Country Status (4)

Country Link
EP (1) EP1334526A1 (de)
AU (1) AU2002221691A1 (de)
DE (1) DE10051369A1 (de)
WO (1) WO2002033762A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536484A1 (de) * 2002-07-15 2005-06-01 Pioneer Corporation Organisches halbleiterbauelement und verfahren zu seiner herstellung
EP2474026A1 (de) * 2009-09-04 2012-07-11 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Stromverstärkende transistorvorrichtung sowie stromverstärkende und lichtemittierende transistorvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780790A (en) * 1986-05-20 1988-10-25 Canon Kabushiki Kaisha Electric device
US5315129A (en) * 1990-08-20 1994-05-24 University Of Southern California Organic optoelectronic devices and methods
WO1998020565A1 (en) * 1996-11-07 1998-05-14 University Of Durham Polymer light emitting diode
WO2000014144A1 (de) * 1998-09-03 2000-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aromatische poly(1,3,4-heterodiazole) für den einsatz in optischen vorrichtungen, insbesondere elektrolumineszenzbauelementen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2122328C (en) * 1993-04-28 1999-01-19 Hideyuki Murata Thin-film electroluminescent device
US6143433A (en) * 1994-09-14 2000-11-07 Mitsui Chemicals, Inc. Organic electroluminescent device and process for producing the same
JP3268993B2 (ja) * 1997-01-31 2002-03-25 三洋電機株式会社 表示装置
DE19727686C1 (de) * 1997-06-20 1998-12-10 Fraunhofer Ges Forschung Gas- und Dampfsensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780790A (en) * 1986-05-20 1988-10-25 Canon Kabushiki Kaisha Electric device
US5315129A (en) * 1990-08-20 1994-05-24 University Of Southern California Organic optoelectronic devices and methods
WO1998020565A1 (en) * 1996-11-07 1998-05-14 University Of Durham Polymer light emitting diode
WO2000014144A1 (de) * 1998-09-03 2000-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aromatische poly(1,3,4-heterodiazole) für den einsatz in optischen vorrichtungen, insbesondere elektrolumineszenzbauelementen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEDEL A ET AL: "Injection and charge transport processes of polymer light emitting diodes", ELECTRETS, 1996. (ISE 9)., 9TH INTERNATIONAL SYMPOSIUM ON SHANGHAI, CHINA 25-30 SEPT. 1996, NEW YORK, NY, USA,IEEE, US, 25 September 1996 (1996-09-25), pages 373 - 377, XP010212776, ISBN: 0-7803-2695-4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536484A1 (de) * 2002-07-15 2005-06-01 Pioneer Corporation Organisches halbleiterbauelement und verfahren zu seiner herstellung
EP1536484A4 (de) * 2002-07-15 2009-01-07 Pioneer Corp Organisches halbleiterbauelement und verfahren zu seiner herstellung
EP2474026A1 (de) * 2009-09-04 2012-07-11 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Stromverstärkende transistorvorrichtung sowie stromverstärkende und lichtemittierende transistorvorrichtung
EP2474026A4 (de) * 2009-09-04 2013-01-09 Dainichiseika Color Chem Stromverstärkende transistorvorrichtung sowie stromverstärkende und lichtemittierende transistorvorrichtung
US8927972B2 (en) 2009-09-04 2015-01-06 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Current-amplifying transistor device and current-amplifying, light-emitting transistor device

Also Published As

Publication number Publication date
AU2002221691A1 (en) 2002-04-29
DE10051369A1 (de) 2002-05-02
EP1334526A1 (de) 2003-08-13

Similar Documents

Publication Publication Date Title
EP2398056B1 (de) Organische Solarzelle mit mehreren Transportschichtsystemen
EP1670844B2 (de) Weiss emittierende copolymere, deren darstellung und verwendung
EP1370619B1 (de) Lösung und dispersionen organischer halbleiter
EP1861886B8 (de) Organisches photoaktives bauelement
EP1798785B1 (de) Transparente polymere Elektrode für elektro-optische Aufbauten
EP1671379B2 (de) Elektronische vorrichtung enthaltend einen organischen leiter und einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist
EP2203944B1 (de) Optoelektronische vorrichtung
DE112011104040T5 (de) Lochinjektionsschichten
DE102007000791A1 (de) Verfahren zur Herstellung einer organischen Leuchtdiode oder einer organischen Solarzelle und hergestellte organische Leuchtdioden oder Solarzellen
DE102007023208A1 (de) Polymersolarzelle und Verfahren zur Herstellung hierfür
DE102009038633B4 (de) Photoaktives Bauelement mit organischen Doppel- bzw. Mehrfachmischschichten
DE10209400A1 (de) Transponderschaltung mit einer Gleichrichterschaltung sowie Verfahren zur Herstellung einer Transponderschaltung mit einer Gleichrichterschaltung
WO2008125100A1 (de) Organisches elektronisches speicherbauelement, speicherbauelementanordnung und verfahren zum betreiben eines organischen elektronischen speicherbauelementes
WO2002033762A1 (de) Polymeres schaltelement
WO2010139782A1 (de) Licht absorbierendes organisches bauelement
Brütting Organic semiconductor
Von Hauff Field effect investigations of charge carrier transport in organic semiconductors
WO2021223814A1 (de) Schichtsystem für ein organisches elektronisches bauelement
Krishnan et al. Polymer Ruled Electronics World
Gupta Studies of polymer based solar cells and performance limiting factors
DE102008045664A1 (de) Optoelektronische Vorrichtung
DE102008045662A1 (de) Optoelektronische Vorrichtung
DE20320925U1 (de) OLED-Bauelement und Display auf Basis von OLED-Bauelementen mit verbesserter Effizienz
KR20150072480A (ko) 유기 발광 소자용 정공 수송층의 제조방법 및 이에 따라 제조되는 정공 수송층을 포함하는 유기 발광 소자
DE102012002354A1 (de) Feinstrukturierter p-/n-Heteroübergang

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001987951

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001987951

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP