WO2002032807A1 - Verfahren zur gewinnung von wasserstoff aus kohlenwasserstoff - Google Patents

Verfahren zur gewinnung von wasserstoff aus kohlenwasserstoff Download PDF

Info

Publication number
WO2002032807A1
WO2002032807A1 PCT/EP2001/012065 EP0112065W WO0232807A1 WO 2002032807 A1 WO2002032807 A1 WO 2002032807A1 EP 0112065 W EP0112065 W EP 0112065W WO 0232807 A1 WO0232807 A1 WO 0232807A1
Authority
WO
WIPO (PCT)
Prior art keywords
product gas
gas stream
reformer
stream
hydrogen
Prior art date
Application number
PCT/EP2001/012065
Other languages
English (en)
French (fr)
Inventor
Walter Jäger
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority to AU2002221699A priority Critical patent/AU2002221699A1/en
Priority to JP2002535998A priority patent/JP2004511415A/ja
Publication of WO2002032807A1 publication Critical patent/WO2002032807A1/de
Priority to US10/417,485 priority patent/US20030182862A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0438Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for producing a hydrogen-containing product gas from liquid or gaseous hydrocarbons.
  • the hydrogen obtained is used, for example, for the purpose of operating a fuel cell system.
  • the object of the present invention is to provide a method for producing a hydrogen-containing product gas from liquid or gaseous hydrocarbons, the reformer system having an improved cold start and load change behavior, so that hydrogen can be provided very quickly in the required amount.
  • the method according to the invention is preferably carried out in a reformer system which has a combustion chamber, a mixing chamber and a reformer unit.
  • the generation of a hydrogen-containing product gas from liquid or gaseous hydrocarbons comprises the following steps:
  • a partial oxidation of a first hydrocarbon stream with a first oxygen-containing gas stream takes place in the combustion chamber of the reformer plant, a first product gas stream being formed which contains hydrogen.
  • a second hydrocarbon stream is reformed with water, producing a second product gas stream which also contains hydrogen.
  • the first and the second product gas stream are then mixed in the mixing chamber of the reformer system, whereby a third product gas stream is formed.
  • Liquid or gaseous hydrocarbons are understood here to mean both relatively short-chain hydrocarbons and their derivatives (e.g. methane, methanol) and more complex hydrocarbon compounds (such as those found in gasoline).
  • a strict separation of the combustion chamber and the mixing chamber is structurally not necessary in the reformer system. Rather, the combustion chamber can also represent an area in the interior of the reformer system in which the partial oxidation preferably takes place, while the mixing process of the two product gas streams predominates in another partial area of the reformer system.
  • the basic processes during the partial oxidation and the reforming, in particular the steam reforming, are to be explained below.
  • the partial oxidation produces carbon monoxide (CO) as a by-product, which must be removed from the product gas stream for the operation of fuel cells.
  • the primary reaction equation for partial oxidation is: C m H n + m / 2 O 2 -> m CO + n / 2 H 2 .
  • C m H n stands for a hydrocarbon compound, where m is the number of carbon atoms and n is the number of hydrogen atoms. It is known that the quantity of the educt gas streams is determined in accordance with the specified reaction. If the oxygen addition is too high, complete oxidation takes place. In this case, the products would be carbon dioxide (CO 2 ) and water (H 2 O), which would reduce the efficiency in terms of hydrogen production.
  • two product gas streams are generated in the reformer system, the first product gas stream having a significantly higher temperature than the second product gas stream due to the partial oxidation.
  • a third product gas stream is formed which is of sufficient volume to enable intensive heat transfer from the third product gas stream to the reformer unit.
  • the reformer unit in which mainly the endothermic steam reforming takes place, is quickly warmed up after the cold start and during highly dynamic load changes, as a result of which the hydrogen yield is quickly adjusted to the level required for the subsequent energy generation.
  • the first and the second product gas stream are mixed in countercurrent. This means that the first product gas stream of the partial oxidation flows into the mixing chamber in the opposite direction to the second product gas stream of the reformer unit. This means that the two product gas streams are almost completely mixed. is sufficient, whereby a third product gas stream is formed, which has a substantially uniform temperature distribution. This has the advantage that uniform heat input into the reformer unit is thus also ensured by the third product gas stream.
  • the third product gas stream comes into direct contact with the reformer unit.
  • the third product gas stream can, for example, be directed outside the reformer unit.
  • the second hydrocarbon stream is mixed with a second oxygen-containing gas stream after the reforming.
  • the second hydrocarbon stream is then oxidized, generating further hydrogen.
  • an essentially three-stage reformer unit is formed, in which three chemical conversion processes take place in the flow direction of the second hydrocarbon stream.
  • methanation takes place, in which, for example, complex hydrocarbon compounds (C m H n ) are converted exothermically into methane (CH 4 ).
  • steam reforming takes place at increasing temperatures. This mainly results in the endothermic cleavage of the methane.
  • a so-called shift reaction takes place subordinate, with the aid of excess water converting the carbon monoxide generated by the steam reforming into carbon dioxide.
  • This is followed by the addition of oxygen and the oxidation of the carbon still hydrogen methane. Hydrogen is also consumed in this oxidation, but a methane-free second product gas stream is produced in this way. This is of great importance in particular with regard to the further use of the product gas stream for operating a fuel cell.
  • the first and the second hydrocarbon stream are regulated as a function of the temperature in the reformer system. This means, for example, that a larger amount of the first hydrocarbon stream is fed to the reformer system in the cold start phase (ie at low temperatures). This has the consequence that the exothermic partial oxidation takes place increasingly. As a result, a sufficiently large thermal energy for heating the reformer unit can be made available very quickly.
  • the carbon monoxide portion of the third product gas stream is reduced in a cleaning system.
  • the cleaning system is connected downstream of the reformer system and ensures the required purity of the hydrogen-containing product gas for further use in a fuel cell system.
  • the remaining portion of the carbon monoxide still contained in the product gas can be reduced to concentrations of less than 1,000 ppm, or even 10 ppm.
  • the hydrogen-containing product gas produced is therefore also suitable for low-temperature fuel cells.
  • a method for producing a hydrogen-containing product gas from liquid or gaseous hydrocarbons in which a reformed and purified product gas stream with a high hydrogen content is fed to a fuel cell system and converted there for energy generation, the exhaust gas removed from the fuel cell system being used to heat the reformer unit is used.
  • the reformer unit can thus In addition, a heat flow can be made available that supports the heating process of the reformer unit.
  • Fig. 1 is a block diagram of a reformer system according to the invention with a downstream cleaning system and a fuel cell system.
  • the reformer system shows a reformer system 3 which is suitable for carrying out the method according to the invention for producing a hydrogen-containing product gas 1 from liquid or gaseous hydrocarbons 2.
  • the reformer system has a combustion chamber 4, a mixing chamber 5 and a reformer unit 6.
  • the reformer unit 6 is encapsulated with respect to the interior of the reformer system 3 and has only one outlet 26 through which the second product gas stream 12 can flow into the mixing chamber 5.
  • a first hydrocarbon stream 7 and a first oxygen-containing gas stream 8 are introduced into the combustion chamber 4.
  • the oxygen in the gas stream 8 serves as an oxidizing agent for the hydrocarbons 2 in the first hydrocarbon stream 7.
  • the type of hydrocarbons 2 is not limited here, which means that complex hydrocarbons 2, such as to be found in petrol, for example, can be introduced into the reformer system 3.
  • a single activation eg by sparking
  • Temperatures of approximately 900 to 1000 ° C. occur in the combustion chamber 4.
  • the pressure is approximately 1.427 bar. Air is used here as the oxygen-containing gas.
  • first product gas stream 9 which has a hydrogen content of approximately 27%.
  • the first product gas stream 9 has in particular approximately 25% carbon monoxide and 47% nitrogen.
  • the hydrogen content of the resulting first product gas stream 9 can, however, be up to about 50%, the carbon monoxide content being about 3 to 4%.
  • a reforming of a second hydrocarbon stream 11 with water 19 is carried out in the reformer unit 6, a second product gas stream 12 being formed which contains hydrogen 10.
  • the reforming of the second hydrocarbon stream 11 takes place essentially by the so-called steam reforming. Due to its oxygen content, water 19 acts on the one hand as an oxidizing agent in order to separate the hydrogen contained in the second hydrocarbon stream 11 from the carbon and on the other hand itself contributes to hydrogen production. For pure steam reforming processes, therefore, the highest hydrogen yields of all reforming processes result even at a lower temperature level.
  • different catalysts are used, all of which are activated by reduction with hydrogen or carbon monoxide and must be kept in the further course with the exclusion of oxygen. Steam reforming reactions are highly endothermic and therefore require external heat sources.
  • the hydrogen The second product gas stream 12 is therefore above that of the first product gas stream 9, the carbon monoxide content being lower.
  • the second hydrocarbon stream 11 is first passed through a first evaporator 25, in which liquid constituents of the gasoline are brought into a gaseous state.
  • the evaporated gasoline is mixed with also evaporated water 19. This mixture is then introduced into the reformer unit 6.
  • the reformer unit 6 is designed here with a primary reformer 22 and a secondary reformer 21.
  • a methanization takes place first. This essentially involves a slightly exothermic conversion of complex hydrocarbons in the gasoline to methane. So that this methanation can already take place at temperatures of approx. 400 ° C., 23 catalysts are used in this sub-area, which for example contain components of nickel, rhodium, cobalt or platinum.
  • the steam reforming primarily follows in the second partial area 24.
  • an exothermic shift reaction with water takes place (to a small extent) for the conversion of the carbon monoxide.
  • the steam reforming is preferably operated with an excess of water.
  • a second oxygen-containing gas stream 14, in particular air, is supplied. This is followed by an additional oxidation in the secondary reformer 21 at a pressure of approximately 1.44 bar and a temperature of 740 ° C. Residual amounts of methane are removed from the second product gas stream 12.
  • the second product gas stream 12 then has approximately a hydrogen fraction of approximately 47%, a carbon monoxide fraction of 9% and a water fraction of 35%.
  • the division of the first hydrocarbon stream 7 into the second hydrocarbon stream 11 is preferably carried out in a ratio which is approximately 2: 3.
  • the hydrocarbons 2 are, for example, gasoline, with approximately 10 kg of gasoline / h being required for a specific output of the fuel cell system 17, the first hydrocarbon stream 7 is accordingly approximately 4 kg / h and the second hydrocarbon stream 11 is approximately 6 kg /H.
  • the first 9 and the second product gas stream 12 are mixed in the mixing chamber 5.
  • the combustion chamber and the mixing chamber are not structurally separated from one another. In contrast to a spaced arrangement of the combustion chamber 4 from the mixing chamber 5, the embodiment shown prevents, for example, heat transfer from the hot first product gas stream 9 to additional walls of the combustion chamber 4 or the mixing chamber 5.
  • the delimitation from a combustion chamber 4 and a mixing chamber 5 was carried out in particular for a more detailed explanation of which chemical or physical processes take place in these areas of the reformer plant.
  • the first 9 and the second product gas stream 12 form a third product gas stream 13 in the mixing chamber 5, this being used to heat the reformer unit 6.
  • the third product gas stream 13 thus formed has a uniform temperature distribution and flows past the reformer unit 6 on the outside.
  • the third product gas stream 13 comes into contact with the reformer unit and thus ensures the amount of heat necessary for the endothermic steam reforming.
  • This heat transfer process keeps the reformer's start and load change times as short as possible.
  • the thermal efficiency of steam reforming can also be increased by the fact that further heat accumulating in the overall process, such as. B. the heat of the exhaust gas 18 of the fuel cell 17 is used for steam reforming.
  • it is desirable to generate a product gas stream 12 already during the reforming which preferably has no residual portion of, for example, methane. Due to the temperatures (approx.
  • the second hydrocarbon stream 11 begins to methanate. This means that a large number of the complex hydrocarbons 2 (C m H n ) are converted into methane (CH 4 ). This methanation process is followed by steam reforming in the direction of the outlet 20.
  • the second hydrocarbon stream 11 is mixed with a second oxygen-containing gas stream 14 after the reforming. Oxidation of the second hydrocarbon stream 11 now follows in the direction of the outlet 20, further hydrogen 10 being generated and the possibly remaining amount of methane in the hydrocarbon stream 11 being converted.
  • the third product gas stream 13 thus produced has a carbon monoxide content which is so high that use for fuel cells is very problematic. For this reason, the carbon monoxide content of the third product gas stream 13 is reduced in a subsequent cleaning system 15. A conversion of the carbon monoxide takes place in the cleaning system 15. In this way, the carbon monoxide concentrations in the purified product gas are reduced from 16 to less than 1000 ppm, in particular less than 100 ppm.
  • the heating device 27 is flowed through, for example, by the hot exhaust gas 18 of a fuel cell system 17 and / or a hydrocarbon-containing heating gas 26. Such a heating device 27 shortens the start time which the reformer unit 6 requires until it reaches the temperatures required for steam reforming.
  • the exhaust gas 18 or the heating gas 26 is then fed to the evaporators 25, where they ultimately Lich the mixture of the second hydrocarbon stream 11 and the water 19 are added. In this way, the hydrogens or hydrocarbons still contained in the exhaust gas 18 or heating gas 26 can be used for steam reforming in the primary reformer 22.
  • a process sequence suitable for use in modern fuel cells for the production of hydrogen from gaseous or liquid hydrocarbons by means of steam reforming and partial oxidation can consequently be realized.
  • Product gas flows for heating the reformer unit enable operation of the reformer system even with very dynamic load changes.
  • Reformer unit first hydrocarbon first oxygen-containing gas stream first product gas stream

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Verfahren zur Erzeugung eines wasserstoffhaltigen Produktgases (1) aus flüssigen oder gasförmigen Kohlenwasserstoffen (2) in einen Reformeranlage (3), die einen Brennraum (4), eine Mischkammer (5) und eine Reformereinheit (6) aufweist, wobei a) in dem Brennraum (4) eine partielle Oxidation eines ersten Kohlenwasserstofftstroms (7) mit einem ersten sauerstoffhaltigen Gasstrom (8) stattfindet und ein erster Produktgasstrom (9) entsteht, der Wasserstoff (10) enthält; b) in der Reformereinheit (6) eine Reformierung eines zweiten Kohlenwasserstoffstroms (11) mit Wasser (25) erfolgt und ein zweiter Produktgasstrom (12) entsteht, der Wasserstoff (10) enthält; c) der erste (9) und der zweite Produktgasstrom (12) in der Mischkammer (5) gemischt werden und einen dritten Produktgasstrom (13) bilden, wobei d) der dritte Produktgasstrom (13) zur Erwärmung der Reformereinheit (6) dient.

Description

Verfahren zur Gewinnung von Wasserstoff aus Kohlenwasserstoff
Die Erfindung bezieht sich auf ein Verfahren zur Erzeugung eines wasserstoffhal- tigen Produktgases aus flüssigen oder gasförmigen Kohlenwasserstoffen. Der gewonnene Wasserstoff wird beispielsweise zum Zwecke des Betriebes einer Brennstoffzellenanlage eingesetzt.
Bekanntermaßen wird eine Wasserdampfreformierung zur Reformierung eines Kohlenwasserstoffs oder Kohlenwasserstoffderivats, wie beispielsweise Methanol, eingesetzt. Die Wasserd--mp-xeformierungsreak-tionen laufen jedoch im wesentlichen endotherm und bei einer gegenüber Raumtemperatur erhöhten Reakti- onstemperatur ab. Bei einem Kaltstart der Reformeranlage kann daher mit der Wasserdampfreformierung nicht sofort Wasserstoff bereitgestellt werden, vielmehr muß zunächst die Reformeranlage auf eine entsprechende Betriebstemperatur gebracht werden. Insbesondere bei Reformeranlagen, welche diskontinuierlich oder mit unterschiedlichen Lastbedingungen gefahren werden, besteht der Wunsch, möglichst unverzüglich die erforderliche Wasserstoffmenge produzieren zu können. Gerade im Anwendungsfall einer solchen Reformeranlage mit einer Brennstoffzellenanlage in einem Kraftfahrzeug ist eine möglichst schnelle Bereitstellung von ausreichend Wasserstoff in Abhängigkeit von der momentanen Antriebsleistung notwendig.
Ein wichtiges Anwendungsgebiet dieser Technik der Wasserstoffgewinnung stellen Brennstoffzellen dar, mit denen sich die chemische Energie fossiler Brennstoffe direkt in elektrische Energie umwandeln läßt. Hierfür verwendete moderne Brennstoffzellen, z. B. PEM-Zellen, erlauben jedoch für einen störungsfreien Betrieb nur ganz geringe Mengen des bei den KoMenwasserstoffumwaridlungsreak- tionen als Nebenprodukt entstehenden Kohlenmonoxids. Beim Betreib einer be- kannten Niedertemperaturbreimstoffzellen sind beispielsweise nur etwa 50 ppm ("parts per million") des Kohlenmonoxids im Produktgas.
Zur Verbesserung der Kaltstarteigenschaften der Reforrmerungsanlage sowie der Gewinnung von hochreinem Wasserstoff wurden bereits verschiedene Maßnahmen vorgeschlagen.
So ist beispielsweise aus den Patentschriften FR 1.417.757 und FR 1.417.758 bekannt, bei einem Kaltstart einer Anlage zur Wasserdampfreformierung von Me~ thanol zunächst ein Gemisch aus Methanol und einem Oxidationsmittel in den Reformierungsreaktor einzuleiten, um dort eine entsprechende Verbrennungsreaktion durchzufuhren und damit den Reaktor aufzuheizen. Danach wird die Zufuhr des Oxidationsmittels beendet und statt dessen das zu reformierende Metha- nol/Wasserdampf-Gemisch zugeführt und die Wasserdampfreformierungsreaktion gestartet.
Aus der Patentschrift DE 44 23 587 C2 ist es bekannt, in einem mit geeignetem Katalysatormaterial, z. B. Cu/ZnO-Material, befällten Reformierungsreaktor je nach Steuerung der Zufuhrung der einzelnen Reaktionspartner in den Reaktor und der dort herrschenden Temperatur Wasserstoff wahlweise mittels exothermer partieller Oxidation und/oder endothermer Wasserdampfreformierung von Methanol zu gewinnen. Bei geeigneter Prozeßfuhrung laufen die beiden Reaktionen parallel ab, wobei ein autothermer Reaktionsablauf einstellbar ist.
Weitere Anlagen zur Wasserdampfreformierung eines Kohlenwasserstoffes sind beispielsweise in den Patentschriften US 4.820.594 und US 5.110.559 beschrieben. Bei den dort beschriebenen Anlagen zur Wasserdampfreformierung ist ein Brenner in dem Reformierungsreaktor integriert, der mit dem Reaktionsraum des Reaktors über eine wärmeleitende Trennwand in Wärmekontakt steht. Beim Kalt- start wird in diesem Brenner ein brennbares Gemisch bei offener Flamme verbrannt, das im Fall der US 5.110.559 aus dem Reformierungsreaktor selbst stam t, wobei dem Reaktionsraum schon beim Kaltstart der zu reformierende, brennbare Kohlenwasserstoff zugeführt wird. Die heißen Verbrennungsabgase des in den Reaktor integrierten Brenners werden in einen nachgeschalteten CO- Shiftkonverter weitergeleitet, um diesen damit aufzuheizen und auf diese Weise die Anlage schneller auf Betriebstemperatur zu bringen.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Erzeugung eines wasserstoffhaltigen Produktgases aus flüssigen oder gasförmigen Kohlenwasserstoffen, wobei die Reformeranlage ein verbessertes Kaltstart- und Lastwechselverhalten hat, so daß sehr schnell Wasserstoff in der erforderlichen Menge bereitgestellt werden kann.
Diese Aufgabe wird durch ein Verfahren zur Erzeugung eines wasserstoffhaltigen Produktgases gemäß den Merkmalen des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen des Verfahrens sind in den abhängigen Ansprüchen beschrieben.
Das erfindungsgemäße Verfahren wird vorzugsweise in einer Reformeranlage durchgeführt, die einen Brennraum, eine Mischkammer und eine Reformereinheit aufweist. Die Erzeugung eines wasserstoffhaltigen Produktgases aus flüssigen oder gasförmigen Kohlenwasserstoffen umfaßt dabei folgende Schritte:
a) In dem Brennraum der Reformeranlage findet eine partielle Oxidation eines ersten Kohlenwasserstoffstroms mit einem ersten sauerstoffhaltigen Gasstrom statt, wobei ein erster Produktgasstrom entsteht, der Wasserstoff enthält.
b) In der Reformereinheit erfolgt eine Reformierung eines zweiten Kohlenwasserstoffstroms mit Wasser, wobei ein zweiter Produktgasstrom entsteht, der ebenfalls Wasserstoff enthält. c) Der erste und der zweite Produktgasstrom werden anschließend in der Mischkammer der Reformeranlage gemischt, wodurch ein dritter Produktgasstrom gebildet wird.
d) Der dritte Produktgasstrom dient nun der Erwärmung der Reformereinheit.
Unter flüssigen oder gasförmigen Kohlenwasserstoffen werden hier sowohl relativ kurzkettige Kohlenwasserstoffe und ihre Derivate (z.B. Methan, Methanol) sowie komplexere Kohlenwasserstoff- Verbindungen (wie sie beispielsweise im Benzin vorkommen) verstanden. Weiterhin sei angemerkt, daß eine strikte Trennung von Brennraum und Mischkammer in der Reformeranlage strukturell nicht notwendig ist. Vielmehr kann der Brennraum auch einen Bereich im Inneren der Reformeranlage darstellen, in dem bevorzugt die partielle Oxidation abläuft, während in einem anderen Teilbereich der Reformeranlage der Mischprozeß der beiden Pro- duktgasströme überwiegt. Nachfolgend sollen die prinzipiellen Vorgänge während der partiellen Oxidation sowie der Reformierung, insbesondere der Wasserdampfreformierung erläutert werden.
Die partielle Oxidation erzeugt Kohlenmonoxid (CO) als Nebenprodukt, das für den Betrieb von Brennstoffzellen aus dem Produktgasstrom entfernt werden muß. Die primäre Reaktionsgleichung der partiellen Oxidation lautet: CmHn + m/2 O2 -> m CO + n/2 H2. Dabei steht CmHn für eine Kohlenwasserstoff- Verbindung, wobei m die Anzahl der Kohlenstoffatome und n die Anzahl der Wasserstoffatome angibt. Die Mengenbestimmung der Eduktgasströme erfolgt bekanntermaßen entsprechend der angegebenen Reaktion. Bei zu hoher Sauerstoffzugabe findet eine vollständige Oxidation statt. In diesem Fall währen die Produkte Kohlendioxid (CO2) und Wasser (H2O), wodurch der Wirkungsgrad bezüglich der Wasserstoffgewinnung gesenkt werden würde. Bei zu geringer Sauerstoffzugabe ginge der Prozeß langsam in eine Prolyse über, wobei als Neben- produkt Ruß anfällt, der sich in der Reformeranlage absetzt und nur mit sehr großem Aufwand zu entfernen ist. Zum Starten der partiellen Oxidation wird eine Aktivierungsenergie benötigt, nachfolgend läuft der Prozeß im wesentlichen exotherm (mit Wärmeabgabe) ab. Diese Reaktionen laufen im wesentlichen in einem Temperaturbereich von 800 bis 1300°C ab.
Die Wasserdampfreformierung erzeugt ebenfalls Kohlenmonoxid (CO) als Nebenprodukt, wandelt aber den Wasserdampf ebenfalls in Wasserstoff (H2) um. Die Reaktionsgleichung in Abhängigkeit der verwendeten Kohlenwasserstoffe (CmHn) lautet hierzu: CmHn + m H2O -> m CO + (n/2 + m) H2. Die Wasserdampfreformierung läuft allerdings endotherm ab, benötigt also Energie. Die höchste H2- Ausbeute kann hier bei Temperaturen von 600-800°C erreicht werden, wobei der Einsatz von Katalysatoren mit Kupfer-, Zink-, Nickel-, Rhodium-, Cobalt- und Edelmetallanteilen (z. B. Platin) eine Verschiebung zu tieferen Temperaturen zuläßt.
Nach dem erfindungsgemäßen Verfahren werden in der Reformeranlage zwei Produktgasströme erzeugt, wobei der erste Produktgasstrom aufgrund der partiellen Oxidation eine deutlich höhere Temperatur als der zweite Produktgasstrom aufweist. Durch die Mischung der beiden Produktgasströme wird ein dritter Produktgasstrom gebildet, der volumenmäßig ausreichend groß ist, um einen intensi- ven Wärmeübergang vom dritten Produktgasstrom zur Reformereinheit zu ermöglichen. Auf diese Weise wird die Reformereinheit, in der sich überwiegend die endotherme Wasserdampfreformierung abspielt, nach dem Kaltstart sowie bei hochdynamischen Lastwechseln schnell erwärmt, wodurch die Wasserstoff- Ausbeute schnell an das für die nachfolgende Energiegewinnung erforderliche Maß angeglichen wird.
Gemäß einer vorteilhaften Ausgestaltung des Verfahrens werden der erste und der zweite Produktgasstrom im Gegenstrom vermischt. Dies bedeutet, daß der erste Produktgasstrom der partiellen Oxidation in entgegengesetzter Richtung zum zweiten Produktgasstrom der Reformereinheit in die Mischkammer strömt. Somit wird eine nahezu vollständige Durchmischung der beiden Produktgasströme er- reicht, wodurch ein dritter Produktgasstrom gebildet wird, der im wesentlichen eine gleichmäßige Temperaturverteilung aufweist. Das hat den Vorteil, daß somit auch eine gleichmäßige Wärmeeinbringung in die Reformereinheit durch den dritten Produktgasstrom gewährleistet ist.
Gemäß noch einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens kommt der dritte Produktgasstrom direkt mit der Reformereinheit in Kontakt. Das bedeutet, daß der dritte Produktgasstrom beispielsweise außen direkt an der Reformereinheit vorbeigeleitet werden kann. Daneben ist es aber auch möglich, den dritten Produktgasstrom durch separate Kanäle durch innere Bereiche der Reformereinheit strömen zu lassen, wobei eine Durchmischung des dritten Produktgasstromes mit dem zweiten Kohlenwasserstoffstrom verhindert wird. Dies hat den Vorteil, daß die Kontaktfläche vergrößert wird und derart auch die inneren Bereiche der Reformereinheit erwärmbar sind.
Gemäß einer weiteren Ausgestaltung des Verfahrens wird der zweite Kohlenwasserstoffstrom nach der Reformierung mit einem zweiten sauerstof haltigen Gasstrom vermengt. Anschließend erfolgt eine Oxidation des zweiten Kohlenwasserstoffstroms, wobei weiterer Wasserstoff erzeugt wird. Auf diese Weise ist eine im wesentlichen dreistufige Reformereinheit gebildet, in der in Strömungsrichtung des zweiten Kohlenwasserstoffstroms drei chemische Umsetzungsprozesse ablaufen. Direkt nach der Einleitung des zweiten Kohlenwasserstoffstroms in die Reformereinheit erfolgt zunächst eine Methanisierung, bei der beispielsweise komplexe Kohlenwasserstoff- Verbindungen (CmHn) exotherm in Methan (CH4) um- gewandelt werden. Daran anschließend findet bei zunehmenden Temperaturen die Dampfreformierung statt. Hierbei kommt es überwiegend zu der endothermen Spaltung des Methans. Untergeordnet läuft eine sogenannte Shift-Reaktion ab, wobei mit Hilfe von Wasserüberschuß eine Umwandlung des durch die Dampfreformierung erzeugten Kohlenmonoxids in Kohlendioxid erfolgt. Die Reaktions- gleichung der Shift-Reaktion lautet: CO + H2O <J=» CO2 + H2. Im Anschluß daran erfolgt die Beimischung von Sauerstoff sowie die Oxidation des noch im Koh- lenwasserstoffstrom befindlichen Methans. Zwar werden bei dieser Oxidation auch Wasserstoffe verbraucht, allerdings wird auf diese Weise ein methanfreier zweiter Produktgasstrom hergestellt. Dies ist insbesondere im Hinblick auf eine weitere Verwendung des Produktgasstromes zum Betrieb einer Brennstoffzelle von großer Bedeutung.
Gemäß noch einer weiteren Ausgestaltung des Verfahrens wird der erste und der zweite Kohlenwasserstoffstrom in Abhängigkeit von der Temperatur in der Reformeranlage geregelt. Dies bedeutet beispielsweise, daß in der Kaltstartphase der Reformeranlage (also bei niedrigen Temperaturen) eine größere Menge des ersten Kohlenwasserstoffstroms zugeführt wird. Dies hat zur Folge, daß verstärkt die exotherme partielle Oxidation abläuft. Dadurch kann sehr schnell eine ausreichend große Wärmeenergie zur Aufheizung der Reformereinheit zur Verfügung gestellt werden.
Gemäß noch einer weiteren Ausgestaltung des Verfahrens wird der Kohlenmono- xidanteil des dritten Produktgasstromes in einer Reinigungsanlage reduziert. Die Reinigungsanlage ist der Reformeranlage nachgeschaltet und gewährleistet die erforderliche Reinheit des wasserstoffhaltigen Produktgases für eine weitere Ver- wendung in einer Brennstoffzellenanlage. Der Restanteil des noch im Produktgas enthaltenen Kohlenmonoxid kann derart auf Konzentrationen kleiner 1.000 ppm, bzw. sogar 10 ppm reduziert werden. Das produzierte wasserstoffhaltige Produktgas ist somit auch für Niedertemperaturbrennstoffzellen geeignet.
Weiterhin wird ein Verfahren zur Erzeugung eines wasserstoffhaltigen Produktgases aus flüssigen oder gasförmigen Kohlenwasserstoffen vorgeschlagen, bei dem ein reformierter und gereinigter Produktgasstrom mit einem hohen Wasserstoffgehalt einer Brennstoffzellenanlage zugeführt und dort zur Energieerzeugung umgesetzt wird, wobei das von der Brennstoffzellenanlage abgeführte Abgas zur Er- wärmung der Reformereinheit benutzt wird. Somit kann der Reformereinheit zu- sätzlich ein Wärmestrom zur Verfügung gestellt werden, der den Aufheizvorgang der Reformereinheit unterstützt.
Dabei ist es besonders vorteilhaft, das Abgas anschließend dem zweiten Kohlen- wasserstoffstrom erneut zuzuführen. Untersuchungen haben gezeigt, daß das Abgas unter Umständen noch einen Restanteil von Wasserstoff ( bis ca. 10 %) aufweist. Dieser Wasserstoffanteil kann derart wieder der Reformereinheit zugeführt werden, wodurch der Wasserstoffanteil des generierten Produktgases erhöht wird.
Weitere Vorteile des erfindungsgemäßen Verfahrens werden anhand der Zeichnung nachfolgend beschrieben.
Es zeigt:
Fig. 1 Ein Blockschaltbild einer erfindungsgemäßen Reformeranlage mit einer nachgeschalteten Reinigungsanlage und einer Brennstoffzellenanlage.
Fig. 1 zeigt eine Reformeranlage 3, die zur Durchführung des erfindungsgemäßen Verfahrens zur Erzeugung eines wasserstoffhaltigen Produktgases 1 aus flüssigen oder gasförmigen Kohlenwasserstoffen 2 geeignet ist. Die Reformeranlage weist einen Brennraum 4, eine Mischkammer 5 und eine Reformereinheit 6 auf. Die Reformereinheit 6 ist dabei gegenüber dem Inneren der Reformeranlage 3 gekapselt ausgeführt und weist lediglich einen Auslaß 26 auf, durch den der zweite Pro- duktgasstrom 12 in die Mischkammer 5 strömen kann.
In den Brennraum 4 werden ein erster Kohlenwasserstoffstrom 7 und ein erster sauerstoffhaltiger Gasstrom 8 eingeleitet. Der in dem Gasstrom 8 befindliche Sauerstoff dient als Oxidationsmittel für die im ersten Kohlenwasserstoffstrom 7 be- findlichen Kohlenwasserstoffe 2. Die Art der Kohlenwasserstoffe 2 ist hierbei nicht limitiert, was bedeutet, daß auch komplexe Kohlenwasserstoffe 2, wie bei- spielsweise im Benzin anzutreffen, in die Reformeranlage 3 einleitbar sind. In dem Brennraum 4 kommt es nach einmaliger Aktivierung (z. B. durch Funken- schlag) zu einer stark exothermen Reaktion, die überschüssige Wärme produziert. In dem Brennraum 4 treten Temperaturen von ca. 900 bis 1000°C auf. Der Druck beträgt ca. 1,427 bar. Als sauerstoffhaltiges Gas wird hier Luft verwendet. Dabei ist die oben beschriebene Aufteilung des Kohlenwasserstoffs mit einem geringeren ersten Kohlenwasserstoffstrom 7 besonders vorteilhaft, da nun auch entsprechend weniger Luft und somit weniger Stickstoff eingeleitet werden muß. Der geringere Stickstoffanteil im Brennraum 4 ermöglicht ein schnelleres Aufheizen der Reformeranlage 3. Unter diesen Bedingungen wird ein erster Produktgasstrom 9 generiert, der einen Wasserstoffanteil von ca. 27 % aufweist. Neben Wasserstoff weist der erste Produktgasstrom 9 insbesondere ca. 25 % Kohlenmonoxid und 47 % Stickstoff auf. Der Wasserstoffgehalt des entstehenden ersten Produktgasstromes 9 kann aber bis zu ca. 50 % betragen, wobei der Kohlenmonoxid- Gehalt bei ca. 3 bis 4 % liegt.
In der Reformereinheit 6 wird eine Reformierung eines zweiten Kohlenwasserstoffstroms 11 mit Wasser 19 durchgeführt, wobei ein zweiter Produktgasstrom 12 entsteht, der Wasserstoff 10 enthält. Die Reformierung des zweiten Koh- lenwasserstoffstroms 11 erfolgt im wesentlichen durch die sogenannte Wasserdampfreformierung. Dabei wirkt Wasser 19 durch seinen Sauerstoffanteil einerseits als Oxidationsmittel, um den im zweiten Kohlenwasserstoffstrom 11 enthaltenen Wasserstoff vom Kohlenstoff zu trennen und trägt andererseits selbst zur Wasserstoffproduktion bei. Daher ergeben sich für reine Dampfreformierungspro- zesse schon bei niedrigerem Temperatumiveau die höchsten Wasserstoffausbeuten aller Refo mierungsprozesse. Je nach eingesetztem Kohlenwasserstoff kommen unterschiedliche Katalysatoren zum Einsatz, die alle durch Reduktion mit Wasserstoff oder Kohlenmonoxid aktiviert und im weiteren Verlauf unter Sauerstoffabschluß gehalten werden müssen. Dampfreformierungsreaktionen sind stark endotherm und benötigen daher externe Wärmequellen. Der Wasserstoffge- halt des zweiten Produktgasstromes 12 liegt daher oberhalb dem des ersten Produktgasstromes 9, wobei der Kohlenmonoxid-Gehalt niedriger ist.
Der zweite Kohlenwasserstoffstrom 11 wird zunächst durch einen ersten Verdampfer 25 geleitet, in dem flüssige Bestandteile des Benzins in einen gasförmigen Zustand gebracht werden. Das verdampfte Benzin wird mit ebenfalls verdampftem Wasser 19 vermengt. Dieses Gemisch wird anschließend in die Reformereinheit 6 eingeleitet. Die Reformereinheit 6 ist hier mit einem Primärreformer 22 und einem Sekundärreformer 21 ausgeführt.
In einem ersten Teilbereich 23 des Primärreformers 22 findet zunächst eine Me- thanisierung statt. Dabei erfolgt im wesentlichen eine leicht exotherme Umwandlung komplexer, im Bezin befindlicher Kohlenwasserstoffe zu Methan. Damit diese Methanisierung bereits bei Temperaturen von ca. 400°C stattfinden kann, werden in diesem Teilbereich 23 Katalysatoren eingesetzt, die beispielsweise Bestandteile von Nickel, Rhodium, Kobald oder Platin aufweisen.
Im Anschluß an diese Methanisierung im ersten Teilbereich 23 folgt im zweiten Teilbereich 24 primär die Wasserdampfreformierung. Daneben findet (in gerin- gem Maße) für die Konversion des Kohlenmonoxids eine exotherme Shift- Reaktion mit Wasser statt. Die Wasserdampfreformierung wird vorzugsweise mit einem Wasserüberschuß betrieben.
Nach der Wasserdampfreformierung wird ein zweiter sauerstoffhaltiger Gas- ström 14, insbesondere Luft, zugeführt. Danach erfolgt eine zusätzliche Oxidation im Sekundärrefor er 21 bei einem Druck von ca. 1,44 bar und einer Temperatur von 740°C. Dabei werden Restmengen von Methan aus dem zweiten Produktgasstrom 12 entfernt. Der zweite Produktgasstrom 12 weist danach ungefähr einen Wasserstoffanteil von ca. 47%, einen Kohlenmonoxidanteil von 9% und einen Wasseranteil von 35% auf. Die Aufteilung des ersten Kohlenwasserstoffstroms 7 zum zweiten Kohlenwasserstoffstrom 11 erfolgt vorzugsweise in einem Verhältnis, das ungefähr 2:3 ist. Handelt es sich bei den Kohlenwasserstoffen 2 beispielsweise um Benzin, wobei für eine bestimmte Leistung der Brennstoffzellenanlage 17 ca. 10 kg Benzin/h benötigt werden, beträgt demnach der erste Kohlenwasserstoffstrom 7 ca. 4 kg/h und der zweite Kohlenwasserstoffstrom 11 ca. 6 kg/h.
Der erste 9 und der zweite Produktgasstrom 12 werden in der Mischkammer 5 gemischt. Der Brennraum und die Mischkammer sind hierbei nicht strukturell voneinander getrennt. Im Gegensatz zu einer voneinander beabstandeten Anordnung des Brennraumes 4 von der Mischkammer 5 verhindert die dargestellte Ausführungsform beispielsweise einen Wärmeübergang von dem heißen ersten Produktgasstrom 9 hin zu zusätzlichen Wandungen der Brennkammer 4 bzw. der Mischkammer 5. Die vorgenommene Abgrenzung von einem Brennraum 4 und einer Mischkammer 5 erfolgte insbesondere zur näheren Erläuterung, welche chemischen bzw. physikalischen Vorgänge in diesen Bereichen der Reformeranlage stattfinden. Der erste 9 und der zweite Produktgasstrom 12 bilden in der Mischkammer 5 einen dritten Produktgasstrom 13, wobei dieser zur Erwärmung der Reformereinheit 6 dient.
Der so gebildete dritte Produktgasstrom 13 hat eine gleichmäßige Temperaturverteilung und strömt außen an der Reformereinheit 6 vorbei. Dabei kommt der dritte Produktgasstrom 13 mit der Reformereinheit in Kontakt und gewährleistet derart die für die endotherme Wasserdampfreformierung notwendige Wärmemenge. Dieser Wärmeübertragungsprozeß hält die Start- und Lastwechselzeiten des Reformers so gering wie möglich. Der thermische Wirkungsgrad der Wasserdampfreformierung kann zusätzlich dadurch gesteigert werden, daß weitere im Gesamtprozeß anfallende Wärme, wie z. B. die Wärme des Abgases 18 der Brennstoffzelle 17, für die Wasserdampfreformierung genutzt wird. Im Hinblick auf eine spätere Reinigung des dritten Produktgases 13 ist es wünschenswert, bereits bei der Reformierung einen Produktgasstrom 12 zu erzeugen, welcher möglichst keinen Restanteil von beispielsweise Methan aufweist. Aufgrund der in der Reformereinheit 6 nahe der Einleitung des zweiten Kohlenwas- serstoffstroms 11 auftretenden Temperaturen (ca. 400°C), setzt zunächst eine Methanisierung des zweiten Kohlenwasserstoffstroms 11 ein. Dies bedeutet, daß eine Vielzahl der komplexen Kohlenwasserstoffe 2 (CmHn) in Methan (CH4) umgewandelt werden. Diesem Methanisierungsprozeß schließt sich in Richtung des Auslasses 20 hin die Wasserdampfreformierung an. Bei dem dargestellten Block- schaubild wird der zweite Kohlenwasserstoffstrom 11 nach der Reformierung mit einem zweiten sauerstoffhaltigen Gasstrom 14 vermengt. In Richtung des Auslasses 20 schließt sich nun eine Oxidation des zweiten Kohlenwasserstoffstroms 11 an, wobei weiterer Wasserstoff 10 erzeugt wird und so die gegebenenfalls noch verbliebene Restmenge des Methans im Kohlenwasserstoffstrom 11 umgesetzt wird.
Der so hergestellte dritte Produktgasstrom 13 weist einen Kohlenmonoxidanteil auf, der so hoch ist, daß eine Verwendung für Brennstoffzellen sehr problematisch ist. Aus diesem Grund wird der Kohlenmonoxidanteil des dritten Produktgas- Stroms 13 in einer nachfolgenden Reinigungsanlage 15 reduziert. In der Reinigungsanlage 15 findet eine Umsetzung des Kohlenmonoxids statt. Auf diese Weise werden die Kohlenmonoxidkonzentrationen im gereinigten Produktgas 16 bis kleiner 1000 ppm, insbesondere kleiner 100 ppm, reduziert.
Um das Kaltstartverhalten der Reformereinheit 6 weiter zu verbessern, weist diese eine Heizvorrichtung 27 auf. Die Heizvorrichtung 27 wird beispielsweise von dem heißen Abgas 18 einer Brennstoffzellenanlage 17 und/oder einem kohlen- wasserstofQialtigen Heizgas 26 durchströmt. Eine derartige Heizvorrichtung 27 verkürzt die Startzeit, welche die Reformereinheit 6 benötigt, bis diese die für die Dampfreformierung erforderlichen Temperaturen erreicht. Das Abgas 18 bzw. das Heizgas 26 wird anschließend den Verdampfern 25 zugeführt, wobei sie letztend- lich dem Gemisch aus dem zweiten Kohlenwasserstoffstrom 11 und dem Wasser 19 beigemengt werden. Auf diese Weise können die noch im Abgas 18 bzw. Heizgas 26 enthaltenen Wasserstoffe bzw. Kohlenwasserstoffe zur Dampfreformierung im Primärreformer 22 verwendet werden.
Somit läßt sich folglich ein für den Einsatz in modernen Brennstoffzellen geeigneter Verfahrensablauf zur Wasserstoffgewinnung aus gasförmigen oder flüssigen Kohlenwasserstoffen mittels Wasserdampfreformierung und partieller Oxidation verwirklichen. Produktgasströme zur Erwärmung der Reformereinheit ermögli- chen den Betrieb der Reformeranlage auch bei sehr dynamischen Lastwechseln.
Bezugszeichenliste
Produktgas
Kohlenwasserstoff
Reformeranlage
Brennraum
Mischkammer
Reformereinheit erster Kohlenwasserstoffsfrom erster sauerstoffhaltiger Gasstrom erster Produktgasstrom
Wasserstoff zweiter Kohlenwasserstoffstrom zweiter Produktgasstrom dritter Produktgasstrom zweiter sauerstoffhaltiger Gasstrom
Reinigungsanlage gereinigter Produktgasstrom
Brennstoffzelle
Abgas
Wasser
Auslaß
Sekundärreformer
Primärreformer erster Teilbereich zweiter Teilbereich
Verdampfer
Heizgas
Heizvorrichtung

Claims

Patentansprüche
1. Verfahren zur Erzeugung eines wasserstoffhaltigen Produktgases (1) aus flüssigen oder gasförmigen Kohlenwasserstoffen (2) in einer Reformeranlage (3), die einen Brennraum (4), eine Mischkammer (5) und eine Reformereinheit (6) aufweist, wobei a) in dem Brennraum (4) eine partielle Oxidation eines ersten Kohlenwasserstoffstroms (7) mit einem ersten sauerstoffhaltigen Gas- ström (8) stattfindet und ein erster Produktgasstrom (9) entsteht, der Wasserstoff (10) enthält; b) in der Reformereinheit (6) eine Reformierung eines zweiten Kohlenwasserstoffstroms (11) mit Wasser (19) erfolgt und ein zweiter Produktgasstrom (12) entsteht, der Wasserstoff (10) enthält; c) der erste (9) und der zweite Produktgasstrom (12) in der Mischkammer (5) gemischt werden und einen dritten Produktgasstrom (13) bilden, wobei d) der dritte Produktgasstrom (13) zur Erwärmung der Reformereinheit (6) dient.
2. Verfahren nach Anspruch 1, wobei der erste (9) und der zweite Produktgasstrom (12) im Gegenstrom vermischt werden.
3. Verfahren nach Anspruch 1 oder 2, wobei der dritte Produktgasstrom (13) mit der Reformereinheit (6) in Kontakt kommt.
4. Verfahren nach einem vorherigen der Ansprüche, wobei dem zweiten Kohlenwasserstoffsfrom (11) nach der Reformierung mit einem zweiten sauerstoffhaltigen Gasstrom (14) vermengt wird und anschließend eine Oxidation des zweiten Kohlenwasserstoffsfroms (11) erfolgt, wobei weiterer Wasserstoff (10) erzeugt wird.
5. Verfahren nach einem vorherigen der Ansprüche, wobei der erste (9) und der zweite Kohlenwasserstoffstrom (11) in Abhängigkeit von der Temperatur in der Reformeranlage (3) geregelt wird.
6. Verfahren nach einem vorherigen der Ansprüche, wobei der dritte Produktgassfrom (13) einen Kohlenmonoxidanteil hat, der in einer Reinigungsanlage (15) reduziert wird.
7. Verfahren nach einem der vorangegangenen Ansprüche, wobei ein reformierter und gereinigter Produktgasstrom (16) mit einem hohen Wasserstoffgehalt einer Brennstoffzellenanlage (17) zugeführt und dort zur Energieerzeugung umgesetzt wird, wobei das von der Brennstoffzellenanlage (17) abgeführte Abgas (18) zur Erwärmung der Reformereinheit (6) be- nutzt wird.
8. Verfahren nach Anspruch 7, wobei das Abgas (18) anschließend dem zweiten Kohlenwasserstoffsfrom (11) zugeführt wird.
PCT/EP2001/012065 2000-10-18 2001-10-18 Verfahren zur gewinnung von wasserstoff aus kohlenwasserstoff WO2002032807A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002221699A AU2002221699A1 (en) 2000-10-18 2001-10-18 Method for obtaining hydrogen from hydrocarbons
JP2002535998A JP2004511415A (ja) 2000-10-18 2001-10-18 炭化水素から水素を得る方法
US10/417,485 US20030182862A1 (en) 2000-10-18 2003-04-17 Method for obtaining hydrogen from hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10051563A DE10051563A1 (de) 2000-10-18 2000-10-18 Verfahren zur Gewinnung von Wasserstoff aus Kohlenwasserstoff
DE10051563.0 2000-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/417,485 Continuation US20030182862A1 (en) 2000-10-18 2003-04-17 Method for obtaining hydrogen from hydrocarbons

Publications (1)

Publication Number Publication Date
WO2002032807A1 true WO2002032807A1 (de) 2002-04-25

Family

ID=7660175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012065 WO2002032807A1 (de) 2000-10-18 2001-10-18 Verfahren zur gewinnung von wasserstoff aus kohlenwasserstoff

Country Status (5)

Country Link
US (1) US20030182862A1 (de)
JP (1) JP2004511415A (de)
AU (1) AU2002221699A1 (de)
DE (1) DE10051563A1 (de)
WO (1) WO2002032807A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793441A2 (de) * 2005-12-05 2007-06-06 LG Electronics Inc. Brennstoffzellensystem mit einem Wärmeübertrager zum Vorwärmen des Brennstoffs und/oder der Luft mittels Reformerbrennerabgas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050144961A1 (en) * 2003-12-24 2005-07-07 General Electric Company System and method for cogeneration of hydrogen and electricity
EP1650160A1 (de) * 2004-10-20 2006-04-26 Stichting Energieonderzoek Centrum Nederland Verfahren und Reaktor zur Erzeugung von Synthesegas
EP1945565A4 (de) * 2005-10-10 2011-04-13 Fairstock Technologies Corp Verfahren zur umwandlung von organischen verbindungen unter verwendung einer verflüssigten metalllegierung und zugehörige vorrichtung
US20080206129A1 (en) * 2007-01-16 2008-08-28 Fairstock Technologies Corporation Methods for transforming compounds using a metal alloy and related apparatus
JP6122360B2 (ja) * 2013-07-19 2017-04-26 本田技研工業株式会社 燃料電池モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345064A1 (de) * 1983-12-13 1985-06-20 Linde Ag, 6200 Wiesbaden Verfahren zur erzeugung von synthesegas
US4741885A (en) * 1985-09-11 1988-05-03 Uhde Gmbh Vessel for the generation of synthesis gas
US4822521A (en) * 1983-06-09 1989-04-18 Uop Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US5068058A (en) * 1989-05-04 1991-11-26 Air Products And Chemicals, Inc. Production of ammonia synthesis gas
US5156821A (en) * 1988-07-07 1992-10-20 Mitsubishi Gas Chemical Company, Inc. Reactor for reforming hydrocarbon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345088A1 (de) * 1983-12-13 1985-06-13 Linde Ag, 6200 Wiesbaden Verfahren zur erzeugung von synthesegas
DE19822691A1 (de) * 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
DE19827879C1 (de) * 1998-06-23 2000-04-13 Dbb Fuel Cell Engines Gmbh Wasserdampfreformierungsreaktor, insbesondere mit autothermer Prozeßführung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822521A (en) * 1983-06-09 1989-04-18 Uop Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
DE3345064A1 (de) * 1983-12-13 1985-06-20 Linde Ag, 6200 Wiesbaden Verfahren zur erzeugung von synthesegas
US4741885A (en) * 1985-09-11 1988-05-03 Uhde Gmbh Vessel for the generation of synthesis gas
US5156821A (en) * 1988-07-07 1992-10-20 Mitsubishi Gas Chemical Company, Inc. Reactor for reforming hydrocarbon
US5068058A (en) * 1989-05-04 1991-11-26 Air Products And Chemicals, Inc. Production of ammonia synthesis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793441A2 (de) * 2005-12-05 2007-06-06 LG Electronics Inc. Brennstoffzellensystem mit einem Wärmeübertrager zum Vorwärmen des Brennstoffs und/oder der Luft mittels Reformerbrennerabgas
EP1793441A3 (de) * 2005-12-05 2007-07-25 LG Electronics Inc. Brennstoffzellensystem mit einem Wärmeübertrager zum Vorwärmen des Brennstoffs und/oder der Luft mittels Reformerbrennerabgas

Also Published As

Publication number Publication date
DE10051563A1 (de) 2002-05-02
JP2004511415A (ja) 2004-04-15
US20030182862A1 (en) 2003-10-02
AU2002221699A1 (en) 2002-04-29

Similar Documents

Publication Publication Date Title
DE69935101T2 (de) Synthesegasherstellung mittels leitender Mischmembranen mit integrierter Konvertierung zu flüssigen Produkten
DE69309862T2 (de) Kombinierter Reformer und Shift Reaktor
DE102006023248B4 (de) Verfahren und Anlage zur Herstellung von Synthesegas
EP1218290B1 (de) Verfahren und vorrichtung zur erzeugung eines wasserstoff- oder synthesegases und verwendung derselben
DE3688990T2 (de) Brennstoffzelle mit integriertem Wasserdampfumformer.
WO2010020358A2 (de) Mehrstufige reaktorkaskade zur russfreien herstellung von synthesegas
EP3967654A1 (de) Verfahren und anlage zur herstellung von wasserstoff durch dampfreformierung und hochtemperaturelektrolyse
DE69817749T2 (de) Verwendung von mittels leitenten Mischmembranen hergestelltem Synthesegas
EP1717198A2 (de) Verfahren und Vorrichtung zur Hochtemperaturreformierung
EP3526315B1 (de) Verfahren zur herstellung von methan
WO2002032807A1 (de) Verfahren zur gewinnung von wasserstoff aus kohlenwasserstoff
DE60008288T2 (de) Gleichzeitige gewinnung von methanol und elektrizität
DE10136970A1 (de) Vorrichtung zur Erzeugung von wasserstoffhaltigem Gas für eine Brennstoffzellenanlage
EP2758338B1 (de) Verfahren zur herstellung von synthesegas
EP1246287A1 (de) Kombinierte Kraft- Wärmeanlage mit Gaserzeugungssystem und Brennstoffzellen sowie Verfahren zu ihrem Betrieb
EP1129988B1 (de) Verfahren zum Betreiben einer Gaserzeugungsvorrichtung bzw. eines Brennstoffzellensystems, Gaserzeugungsvorrichtung und Brennstoffzellensystem
DE60131471T2 (de) Reaktor zur reformierung von erdgas und gleichzeitige herstellung von wasserstoff
DE10143656B4 (de) Verfahren zur Erzeugung von Energie in einem Brennstoffzellen-Gesamtsystem mit Crackreaktor und Brennstoffzelle sowie Vorrichtung zur Durchführung des Verfahrens
DE10253930A1 (de) Verfahren zur Erzeugung eines wasserstoffhaltigen Brenngases für Brennstoffzellen sowie Vorrichtung dafür
EP3075706A1 (de) Verfahren und eine anlage zur erzeugung von synthesegas
DE102017200435A1 (de) Verfahren und Vorrichtung zur Herstellung von Kohlenwasserstoffen
EP1304310A2 (de) Verfahren und Vorrichtung zur Reformierung flüssiger Kohlenwasserstoffgemische
DE102007018311A1 (de) Zweistufiger Reformer und Verfahren zum Betreiben eines Reformers
DE10041712A1 (de) Autotherme Brenngaserzeugungseinheit für Brennstoffzellen
WO2014044385A1 (de) Verfahren zur herstellung von acetylen oder/und ethylen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002535998

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10417485

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase