WO2002031563A1 - Umlenkende auskopplung in einer leiterplatte eingebetteter lichtleiter - Google Patents
Umlenkende auskopplung in einer leiterplatte eingebetteter lichtleiter Download PDFInfo
- Publication number
- WO2002031563A1 WO2002031563A1 PCT/DE2000/003551 DE0003551W WO0231563A1 WO 2002031563 A1 WO2002031563 A1 WO 2002031563A1 DE 0003551 W DE0003551 W DE 0003551W WO 0231563 A1 WO0231563 A1 WO 0231563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit board
- light guide
- printed circuit
- coupling
- coupler
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/04—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/04—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
- G02B6/06—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2817—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0274—Optical details, e.g. printed circuits comprising integral optical means
Definitions
- the invention relates to the coupling of light guides embedded in a printed circuit board to components located on the surface of the printed circuit board.
- Printed circuit boards are provided for future information and communication devices, which contain electrical as well as optical conductors.
- a central task in this technology is the coupling of the electrical with the optical conductors.
- a developed technology is known for the electrical connections of a printed circuit board, in which electrical components are positioned on the surface of the printed circuit board with a high accuracy of fractions of a millimeter and then soldered on.
- a number of methods are known for producing optical conductors in a printed circuit board.
- Electro-optical converters are used in the transition from the optical to the electrical conductors. However, these must be positioned very precisely at the ends of the light guides so that an efficient and reliable coupling is guaranteed. It is not just the high accuracy position itself the problem; rather, the light guides are inside the circuit boards.
- a proposal for access to light guides embedded in a printed circuit board leads them to the surface in a not too large bending radius, where the optical fibers then have to be individually connected to a connector.
- the connector provides the necessary mechanical positioning accuracy via mechanical precision surfaces or openings.
- the process engineering treatment of the light guides is quite complex; in particular, the individual fibers must be connected individually to the connectors. The ends of the fibers must also be protected separately and in a complex manner during the manufacture and processing of the printed circuit board.
- the object of the invention is therefore to provide a substantially simplified coupling of light guides embedded in a printed circuit board to electro-optical components.
- the invention uses optical deflection units which convert the ends of the light guides from a plane perpendicular to the surface into the plane of the surface of the printed circuit board.
- the light guides are first completely embedded in the circuit board and only later exposed in one work step and separated from unnecessary ends.
- a deflection unit to be positioned uncritically is then attached to the exposed ends. inserts and redirects the light emerging from the ends to the surface.
- Fig. 1 shows a cross section through a circuit board with a light guide, which is the basis for the
- Fig. 5 shows a completed arrangement.
- FIG. 1 shows a cross-section, not to scale, through a printed circuit board 10 with insulating, electrical and optical layers.
- the insulating and electrical layers are not shown separately, but are only combined to form layers 11a and 11b.
- An optical conductor 13 is located in an optical layer 12, the cross section shown is selected such that the cutting plane is perpendicular to the surface 10a of the printed circuit board and furthermore through the central axis of the optical conductor 13, which for example has a round cross section, which is indicated in FIG. 1 as a perspective oval.
- the fiber has a core 13b with a high refractive index and a cladding 13a with a small one. Refractive index.
- One, although possibly not optimal, production method consists in milling trenches in the lower layer 11b, inserting them into known fibers made of polyacrylate or glass, applying an embedding compound and thereby gluing the upper layer 11a to the lower 11b. Because the object of the invention is to provide a coupling to the optical waveguide if they are embedded in the inside of a circuit board by whatever method.
- an opening 14 is created in a first step of production, as shown in FIG. 2. This opening starts from the surface 10a and is at least as deep as the optical conductor 13 is deep in the circuit board.
- the optical conductor is interrupted.
- the preferred method for creating the opening 14 is a milling process that is carried out perpendicular to the plane of FIG. The milling process creates a flat coupling surface 15 at the transition from the opening 14 to the light guide 13.
- the light guide is interrupted by the opening. This usually takes place near the end of the light guide; the rest is irrelevant. This process corresponds to cutting a cable when installing it in a distributor, in which the excess ends are also cut off and discarded.
- the depth of this opening 14 is so great that the light guide is completely severed.
- the width in the direction of the axis of the light guide depends on the extent of a deflection coupler, which is described in more detail below.
- the width across the axis of the light guide depends on the number of light guides to be coupled at the same time; this is also described below.
- the deflection coupler 20 is inserted into this opening 14, as is indicated in FIG. 3.
- the deflection coupler 20 preferably consists essentially of a short piece 22, shown in dotted lines in FIG. 3, of a fiber optic image guide which, according to the prior art, consists of a large number of very thin optical fibers which are combined to form a bundle, that the relative position of the fibers in the bundle remains the same, the fibers do not couple in the longitudinal direction and are also fixed to one another.
- image conductors are manufactured under the name 'image conduit' by the Schott company, for example, according to customer specifications. The ends are cut flat.
- the fiber bundle describes an angle of 90 °.
- An image lying in the entry plane 23a can thus be converted into the exit plane 23b. Since the optical effects are generally reversible, it is clear that, conversely, light can also enter the exit plane 23b and then exit the entry plane 23a. To simplify the description, however, this designation is retained.
- the fiber bundles have a numerical aperture for each of the fibers, which can be set differently at the entry and exit level, with the result that their areas are also correspondingly different.
- the numerical aperture of the fiber bundle at the entry surface should be the same as that of the light guide.
- the aperture at the exit surface should be matched to that of the electro-optical converter to be coupled.
- the deflection coupler 20 is thus inserted into the opening 14 in such a way that the entry plane 23a lies flat on the coupling surface 15 of the light guide 13 and projects above it.
- the entrance plane 23a has a substantially larger area than the cross section of the light guide plus the mechanical tolerances with which the opening can be milled relative to the axis of the light guide.
- the fibers in the fiber bundle 22 preferably have a diameter below half the diameter of the light guide in order to ensure low losses during the coupling.
- the space between the entry plane 23a of the deflection coupler 22 and the coupling surface 15 of the light guide 13 is filled with a transparent filler and adhesive with a suitable refractive index.
- the other surfaces of the deflection coupler 20 located in the circuit board are also preferably attached by gluing, so that the deflection coupler is fixed in the circuit board.
- a plurality of light guides lying side by side in the circuit board with respect to the surface are coupled.
- the optical waveguides can also lie one above the other if they are arranged in the same optical position and the manufacturing process permits low vertical tolerances.
- a well reproducible distance between the axes of the light guides can be achieved, the error of which is clearly below the optical diameter of the light guides.
- the exit points of the light guides then also have a well reproducible distance from one another after their deflection onto the surface, even if the position of this band of points in the x-y plane varies considerably more with respect to the conductor tracks attached to the surface.
- a concave mirror 29 can also be used as a deflection coupler, as indicated in FIG. 4. However, this too must be adapted to the aperture of the light bundle emerging from the light guide.
- This deflection coupler is preferably cuboid with inlet and outlet surfaces standing perpendicular to one another.
- the axis of the concave mirror is perpendicular and goes through the intersection of the entry and exit surfaces or their extensions.
- the axis of the light guide is perpendicular to the entry surface.
- the concave mirror causes the light diverging light bundles leaving the conductor and entering the entry surface are collected, deflected and leaves the deflection coupler through the exit plane. Since the concave mirror is made substantially larger than the diameter of the light guide, the positioning as in the embodiment with fiber bundles is relatively uncritical, even if the adjustment of the apertures is not as easy as with the fiber bundle.
- This concave mirror is also perfectly suitable for the coupling of several light guides. A right-left swap then occurs, which can, however, be easily taken into account when connecting the electro-optical converters.
- the deflection coupler 22 thus preferably forms the coupling surfaces 15 of the light guides in a plane parallel to the surface of the printed circuit board.
- the distance from the plane of the surface is determined by the components to be assembled and can in principle be freely determined.
- An assembly of an electro-optical converter 50 is shown in FIG. 5. This is connected to electrical connections 51a, 51b on conductor tracks (not shown) on the surface 10a of the printed circuit board 10, preferably by soldering. In Fig. 5 this connection is only shown symbolically.
- the position of the transducer 50 with respect to these electrical connection points is relatively noncritical, since the solder compensates for a shift in the xy plane of the surface 10a.
- the converter 50 is optically connected to the deflection coupler 20, as is strongly symbolized by the connection 52.
- a movement of the coupling element perpendicular to the surface of the circuit board only shifts the images of the coupling surface in the exit plane of the deflection coupler.
- these are not exactly determined anyway, since the depth of the light guide in the circuit board is relatively difficult to reproduce, based on the diameter of the light guide. It is therefore necessary to determine the position in the exit plane of the deflecting coupler after the deflecting coupler has been inserted.
- both ends of an optical fiber are deflected by couplers according to this invention.
- a light beam is then fed in on one side over a large area, that is to say on the entire exit plane of the coupler, for example by means of a strong stationary laser.
- a large part of the light energy is lost because the light guide only covers a small part of the entrance plane of the deflection coupler.
- both sides are exchanged and the process is repeated. With the positions measured in this way, the components, which in this case have the electro-optical transducers on the underside, are placed and fastened with a precision positioning device.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Anordnung zur Kopplung an eine Koppelfläche eines Lichtleiters (13), der sich im Innern einer Leiterplatte (10) befindet, wobei ein Umlenkkoppler (20) das Bild der Koppelfläche (15) in eine Ebene parallel zu der Oberfläche der Leiterplatte abbildet.
Description
Umlenkende Auskopplung in einer Leiterplatte eingebetteter Lichtleiter
Technisches Gebiet
Die Erfindung betrifft die Kopplung in einer Leiterplatte eingebetteter Lichtleiter an auf der Oberfläche der Leiterplatte befindliche Bauelemente .
Stand der Technik
Für zukünftige Informations- und Kommunikationsgeräte sind Leiterplatten vorgesehen, die neben elektrischen auch optische Leiter enthalten. Eine zentrale Aufgabe in dieser Technologie ist die Kopplung der elektischen mit den optischen Leitern.
Für die elektrischen Verbindungen einer Leiterplatte ist eine entwickelte Technologie bekannt, bei der auf der Oberfläche der Leiterplatte elektrische Komponenten mit hoher Genauigkeit von Millimeterbruchteilen positioniert und dann festgelötet werden.
Für die Herstellung von optischen Leitern in einer Leiterplatte sind eine Anzahl von Verfahren bekannt.
Bei dem Übergang der optischen in die elektrischen Leiter sind elektro-optische Wandler verwendet. Diese müssen jedoch sehr genau an die Enden der Lichtleiter positioniert werden, damit eine effiziente und zuverlässige Kopplung gewährleistet ist. Dabei ist nicht nur die hohe Genauig-
keit der Position an sich das Problem; vielmehr liegen die Lichtleiter im Innern der Leiterplatten.
Ein Vorschlag für einen Zugang zu in einer Leiterplatte eingebetteten Lichtleitern führt diese in nicht allzugro- ßem Biegeradius an die Oberfläche, wo die optischen Fasern dann einzeln an einen Verbinder angeschlossen werden müssen. Der Verbinder sorgt über mechanische Präzisions- flächen oder -Öffnungen für die notwendige mechanische Positioniergenauigkeit. Die prozesstechnische Behandlung der Lichtleiter ist jedoch recht aufwendig; insbesondere müssen die einzelnen Fasern einzeln an die Steckverbinder angeschlossen werden. Auch müssen die Enden der Fasern während der Herstellung und Bearbeitung der Leiterplatte gesondert und aufwendig geschüzt werden.
Aufgabe der Erfindung ist es daher, eine wesentlich vereinfachte Auskopplung von in einer Leiterplatte eingebetteten Lichtleitern an elektro-optischen Bauelemente anzugeben.
Darstellung der Erfindung
Die Erfindung benutzt optische Umlenkeinheiten, die die Enden der Lichtleiter von einer Ebene senkrecht zu der Oberfläche in die Ebene der Oberfläche der Leiterplatte umsetzen. Hierzu werden die Lichtleiter zunächst vollständig in die Leiterplatte eingebettet und erst später in einem Arbeitsgang freigelegt und dabei von überflüssigen Enden abgetrennt. Eine unkritisch zu positionierende Umlenkeinheit wird sodann an die freigelegten Enden ange-
fügt und lenkt das aus den Enden austretende Licht auf die Oberfläche um.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung, welche in Verbindung mit den beigefügten Zeichnungen die Erfindung an Hand eines Ausführungsbeispiels erläutert.
Kurzbeschreibung der Zeichnungen
Es zeigen
Fig. 1 einen Querschnitt durch eine Leiterplatte mit einem Lichtleiter, welche Ausgangsbasis für die
Anwendung der Erfindung ist,
Fig. 2 wie Fig. 1 nach Anwendung des ersten Fertigungsschritts,
Fig. 3 wie Fig. 1 nach dem zweiten Fertigungschritt,
Fig. 4 einen alternativen Umlenkkoppler,
Fig. 5 eine fertiggestellte Anordnung.
Beschreibung einer Ausführungsform der Erfindung
Fig. 1 zeigt einen nicht maßstabsgerechten Querschnitt durch eine Leiterplatte 10 mit isolierenden, elektrischen und optischen Lagen. Die isolierenden und elektischen Lagen sind der Übersichtlichkeit halber nicht getrennt dargestellt, sondern lediglich zu den Lagen 11a und 11b zusammengefaßt. In einer optischen Lage 12 befindet sich ein optischer Leiter 13 , wobei der gezeigte Querschnitt
so gewählt ist, daß die Schnittebene senkrecht auf der Oberfläche 10a der Leiterplatte und ferner durch die Mittelachse des optischen Leiters 13 geht, der beispielsweise einen runden Querschnitt hat, der in Fig.l als per- spektivisches Oval angedeutet ist. Um als Lichtleiter dienen zu können, weist die Faser einen Kern 13b mit hohem Brechungsindex und einen Mantel 13a mit dagegen kleinem. Brechungsindex auf. Ob diese als Stufen- oder Gradientenindex-Lichtleiter ausgeführt sind, ist dabei ohne Bedeutung. Es ist auch ohne Bedeutung für die Erfindung, wie eine Leiterplatte mit solchen Lichtleitern hergestellt wird. Eine, wenn auch möglicherweise nicht optimale, Herstellungsform besteht darin, in die untere Lage 11b Gräben zu fräsen, in diese bekannte Fasern aus Po- lyacrylat oder Glas einzulegen, eine Einbettungsmasse aufzutragen und durch diese die obere Lage 11a mit der unteren 11b zu verkleben. Denn die Aufgabe der Erfindung besteht ja darin, eine Kopplung an die optischen Wellenleiter anzugeben, wenn diese im Innern einer Leiterplatte durch welches Verfahren auch immer eingebettet sind. Dabei ist zu beachten, daß dieses, wie auch die bislang bekannte, Verfahren zwar durchaus einen sehr gut reproduzierbaren Abstand der Lichtleiter zueinander - in derselben Lage, versteht sich - erreicht, aber durch das Zusam- menpressen der Lagen der Abstand der optischen Lage und insbesondere der Achsen der Lichtleiter von der Oberfläche der fertigen Leiterplatte wesentlich weniger gut reproduzierbar ist und insbesondere größer ist als der Durchmesser der Lichtleiter.
Die Erfindung löst die Aufgabe, eine Kopplung an die in der Leiterplatte eingebetteten Lichtleiter zu bewirken.
Hierzu wird in einem ersten Schritt der Herstellung eine Öffnung 14 angelelgt, wie es in Fig. 2 dargestellt ist. Diese Öffnung geht von der Oberfläche 10a aus und ist mindestens so tief, wie der optische Leiter 13 tief in der Leiterplatte ist . Der optische Leiter wird dabei unterbrochen. Die bevorzugte Methode zum Erstellen der Öffnung 14 ist ein Fräsvorgang, der senkrecht zur Ebene der Fig.2 erfolgt. Durch den Fräsvorgang entsteht an dem Übergang von der Öffnung 14 zu dem Lichtleiter 13 eine plane Koppelfläche 15.
Zwar wird durch das Anlegen der Öffnung der Lichtleiter unterbrochen. Dieses erfolgt meist nahe dem Ende des Lichtleiters; der verbleibende Rest ist ohne Bedeutung. Dieser Vorgang entspricht dem Abschneiden eines Kabels bei der Montage in einem Verteiler, bei dem ja auch die überschüssigen Enden abgeschnitten und verworfen werden.
Die Tiefe dieser Öffnung 14 ist, wie bereits erwähnt, so groß, daß der Lichtleiter vollständig durchtrennt wird. Die Breite in der Richtung der Achse des Lichtleiters richtet sich nach der Ausdehnung eines Umlenkkopplers, der im folgenden näher beschrieben ist . Die Breite quer zur Achse des Lichtleiters richtet sich nach der Anzahl der gleichzeitig zu koppelnden Lichtleiter; dies wird gleichfalls weiter unten beschrieben.
In diese Öffnung 14 wird ein Umlenkkoppler 20 eingesetzt, wie dies in Fig. 3 angedeutet ist. In Fig. 3 wurden die Proportionen etwas angepaßt, damit klar sichtbar wird, daß der Lichtleiter relativ dünn ist.
Der Umlenkkoppler 20 besteht bevorzugt im wesentlichen aus einem kurzen Stück 22, in Fig. 3 gepunktet dargestellt, eines faseroptischen Bildleiters, der nach dem Stand der Technik aus einer großen Anzahl sehr dünner op- tischer Fasern besteht, die zu einem Bündel derart zusammengefügt sind, daß die relative Lage der Fasern in dem Bündel gleich bleibt, die Fasern nicht in Längsrichtung koppeln und zudem aneinander fixiert sind. Solche Bildleiter werden unter der Bezeichnung ' image conduit ' bei- spielsweise von der Firma Schott nach Kundenspezifikationen gefertigt. Die Enden sind plan abgeschnitten. Wird auf eines der beiden Enden ein Bild projiziert, dann erscheint eben dieses Bild an dem anderen Ende . In dem in der Erfindung bevorzugt verwendeten Umlenkkoppler 20 be- schreibt, wie in Fig. 3 angedeutet, das Fasernbündel einen Winkel von 90°. Damit kann also ein in der Eintrittsebene 23a liegendes Bild in die Austrittsebene 23b umgesetzt werden. Da die optischen Effekte in der Regel umkehrbar sind, ist klar, daß auch umgekehrt Licht in die Austrittsebene 23b eintreten kann und dann aus der Eintrittsebene 23a wieder austritt. Zur Vereinfachung der Beschreibung wird jedoch diese Bezeichnung beibehalten.
Die Faserbündel haben für jede der Faser eine numerische Apertur, die an der Ein- und Austrittsebene unterschied- lieh eingestellt sein kann, womit dann auch deren Flächen entsprechend unterschiedlich sind. Auf jeden Fall sollte zur Minimierung der Kopplungsverluste die numerische Apertur des Fasernbündels an der Eintrittsfläche gleich der des Lichtleiters sein. Die Apertur an der Austritts- fläche sollte an die des anzukoppelnden elektro-optischen Wandlers angepaßt sein.
Der Umlenkkoppler 20 wird also in die Öffnung 14 derart eingesetzt, daß die Eintrittsebene 23a plan auf die Koppelfläche 15 des Lichtleiters 13 aufliegt und diesen überragt. Mit anderen Worten, die Eintrittsebene 23a hat eine wesentlich größere Fläche als der Querschnitt des Lichtleiters plus die mechanischen Toleranzen, mit denen die Öffnung relativ zur Achse des Lichtleiters gefräst werden kann. Bevorzugt haben die Fasern in dem Fasernbündel 22 einen Durchmesser unterhalb der Hälfte des Durch- messers des Lichtleiters, um geringe Verluste bei der An- kopplung sicherzustellen. Der Zwischenraum zwischen der Eintrittsebene 23a des Umlenkkopplers 22 und der Koppel- fläche 15 des Lichtleiters 13 wird durch einen transparenten Füll- und Klebstoff mit geeignetem Brechungsindex ausgefüllt. Die anderen in der Leiterplatte befindlichen Oberflächen des Umlenkkoppler 20 werden bevorzugt gleichfalls durch Kleben befestigt, so daß der Umlenkkoppler in der Leiterplatte fixiert ist. Es sei darauf hingewiesen, daß, da der Querschnitt der Eintrittsfläche wesentlich größer als der Duchmesser des Lichtleiters ist, hierbei keine besondere mechanische Positionierung des Umlenkkopplers erforderlich ist; dieser wird lediglich in die Öffnung 14 eingelassen und während des Aushärtens der Klebstoffe gegen die Koppelfläche 15 gedrückt, um hier die Übergangsverluste klein zu halten. Es ergibt sich damit, daß in den Lichtleiter 13 eingespeistes Licht von dem Umlenkkoppler an die Oberfläche gebracht wird und dort als Lichtpunkt auf der Austrittsfläche 23b erscheint. Dessen Lage in der x-y-Ebene der Leiterplat- tenoberflache ist relativ ungenau vorbestimmt, da diese
insbesondere von der Tiefe abhängt, in der sich der Lichtleiter in der Leiterplatte befindet.
In einer Weiterbildung der Erfindung werden mehrere, in der Leiterplatte in Bezug auf die Oberfläche nebeneinan- der liegende Lichtleiter angekoppelt. Die optischen Wellenleiter können auch übereinander liegen, wenn sie in derselben optischen Lage angeordnet sind und der Herstellungsprozeß geringe vertikale Toleranzen zuläßt . Wie oben dargestellt, kann mit den bekannten Verfahren zur Her- Stellung von Leiterplatten mit eingebetteten Lichtleitern ein gut reproduzierbarer Abstand der Achsen der Lichtleiter erreicht werden, dessen Fehler deutlich unterhalb dem optischen Durchmesser der Lichtleiter liegt. Damit haben dann die Austrittspunkte der Lichtleiter nach ihrer Um- lenkung auf die Oberfläche gleichfalls untereinander einen gut reproduzierbaren Abstand, wenn auch die Lage dieses Bandes von Punkten in der x-y-Ebene in Bezug auf die auf der Oberfläche angebrachten Leiterbahnen wesentlich stärker variiert .
Anstelle eines Bildleiter-Fasernbündels kann auch ein Hohlspiegel 29 als Umlenkkoppler verwendet werden, wie in Fig. 4 angedeutet. Auch dieser muß jedoch an die Apertur des aus dem Lichtleiter austretenden Lichtbündels angepaßt werden. Dieser Umlenkkoppler ist bevorzugt quader- förmig mit senkrecht aufeinander stehenden Ein- und Aus- trittsflachen ausgebildet. Die Achse des Hohlspiegels steht senkrecht auf und geht durch die Schnittlinie der Ein- und Austrittsflächen bzw. deren Verlängerungen. Die Achse des Lichtleiters steht senkrecht auf der Eintritts- fläche. Der Hohlspiegel bewirkt damit, daß das den Licht-
leiter verlassende, an der Eintrittsfläche eintretende, divergierende Lichtbündel gesammelt, umgelenkt und durch die Austrittsebene den Umlenkkoppler verläßt. Da der Hohlspiegel wesentlich größer ausgeführt ist als der Durchmesser des Lichtleiters, so ist die Positionierung wie bei der Ausführungsform mit Fasernbündeln relativ unkritisch, auch wenn die Anpassung der Aperturen nicht so problemlos ist wie bei dem Fasernbündel .
Dieser Hohlspiegel eignet sich durchaus auch für die Kopplung von mehreren Lichtleitern. Dabei tritt dann eine rechts-links-Vertauschung auf, die jedoch problemlos bei der Verschaltung der elektro-optischen Wandler berücksichtigt werden kann.
Der Umlenkkoppler 22 bildet also die Koppelflächen 15 der Lichtleiter bevorzugt in eine Ebene parallel zu der Oberfläche der Leiterplatte ab. Der Abstand von der Ebene der Oberfläche wird durch die zu montierenden Bauelemente bestimmt und kann im Prinzip frei bestimmt werden. In Fig. 5 ist eine Montage eines elektro-optischen Wandlers 50 gezeigt. Dieser wird mit elektrischen Anschlüssen 51a, 51b an (nicht gezeigten) Leiterbahnen auf der Oberfläche 10a der Leiterplatte 10 bevorzugt durch Löten verbunden. In Fig. 5 ist diese Verbindung nur symbolisch dargestellt. Dabei ist die Position des Wandlers 50 in Bezug auf diese elektrischen Anschlußpunkte relativ unkrisch, da das Lot eine Verschiebung in der x-y-Ebene der Oberfläche 10a ausgleicht. Ferner wird der Wandler 50 an den Umlenkkoppler 20 optisch angeschlossen, wie es durch die Verbindung 52 stark symbolisiert ist. Diese besteht in der Regel nur aus einem Kleb- und Füllstoff passenden op-
tischen Brechungsindexes; bevorzugt mündet der optische Koppler 53 in dem Wandler an der glatten Unterseite, die dann die Höhe des Wandlers vorgibt. Eine Bewegung des Koppelelements senkrecht zur Leiterplattenoberfläche ver- schiebt lediglich die Bilder der Koppelfläche in der Austrittsebene des Umlenkkopplers. Diese sind jedoch ohnehin nicht genau bestimmt, da die Tiefe der Lichtleiter in der Leiterplatte relativ schlecht reproduzierbar ist, bezogen auf den Durchmesser der Lichtleiter. Es ist also im An- Schluß an das Einsetzen der Umlenkkoppler eine Positionsbestimmung in der Austrittsebene der Ummlenkkoppler notwendig. Hierzu werde angenommen, daß beide Enden eines Lichtleiters durch Koppler gemäß dieser Erfindung umgelenkt sind. Dann wird auf der einen Seite großflächig, d.h. auf die gesamte Austrittsebene des Kopplers, ein Lichtstrahl eingespeist, beispielsweise durch einen starken stationären Laser. Davon geht ein großer Teil der Lichtenergie verloren, da der Lichtleiter nur einen kleinen Teil der Eintrittsebene des Umlenkkopplers bedeckt . Auf der anderen Seite entsteht auf der Austrittsebene für- jeden Lichtleiter ein scharf begrenzter Punkt. Dieser kann mit bekannten Verfahren, insbesondere durch CCD- Kameras, gegenüber anderen Fixpunkten sehr genau vermessen werden. Danach werden beide Seiten vertauscht und der Vorgang wiederholt. Mit den so gemessenen Positionen werden die Bauelemente, die in diesem Fall die elektro- optischen Wandler an der Unterseite haben, mit eine Präzisions-Positioniereinrichtung plaziert und befestigt.
Claims
1. Anordnung zur Kopplung an eine Koppelfläche (15) eines Lichtleiters (13), der sich im Innern einer Leiterplatte (10) befindet, dadurch ge kennz e i chne t , daß ein Umlenkkoppler (20) das Bild der Koppelfläche (15) in eine Ebene parallel zu der Oberfläche (10a) der Leiterplatte (10) abbildet.
2. Anordnung nach Anspruch 1, wobei der Umlenkkoppler im wesentlichen aus einem als Fasernbündel ausgebildeten, gebogenen Bildleiter besteht.
3. Anordnung nach Anspruch 2, wobei die wirksame Bildfläche des Umlenkkoppers um mindestens die mechanische Toleranzen bei der Einbettung der Lichtleiter größer als der Querschnitt derselben ist .
4. Anordnung nach Anspruch 1, wobei der Umlenkkoppler einen Hohlspiegel umfaßt.
5. Anordnung nach Anspruch 1 oder 2, wobei die Koppel- fläche senkrecht zu der Achse des Lichtleiters steht .
6. Verfahren zur Herstellung einer Kopplung an einen Lichtleiter, der sich im Innern einer Leiterplatte befindet, mit den Schritten:
- Der Lichtleiter wird vollständig in die Leiterplatte eingebettet, - in die Leiterplatte wird eine Öffnung eingebracht, die den Lichtleiter vollständig durchtrennt, so daß eine Austrittsfläche freigelegt wird, - in die Öffnung wird ein Umlenkkoppler mit zwei Bildflächen eingesetzt, so daß eine der Bildflächen auf die Austrittsfläche zu liegen kommt und die andere in oder über der Oberfläche der Leiterplatte liegt,
- der Umlenkkoppler wird in der Öffnung dauerhaft befestigt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2000/003551 WO2002031563A1 (de) | 2000-10-10 | 2000-10-10 | Umlenkende auskopplung in einer leiterplatte eingebetteter lichtleiter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2000/003551 WO2002031563A1 (de) | 2000-10-10 | 2000-10-10 | Umlenkende auskopplung in einer leiterplatte eingebetteter lichtleiter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002031563A1 true WO2002031563A1 (de) | 2002-04-18 |
Family
ID=5647972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/003551 WO2002031563A1 (de) | 2000-10-10 | 2000-10-10 | Umlenkende auskopplung in einer leiterplatte eingebetteter lichtleiter |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002031563A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1253453A1 (de) * | 2001-04-27 | 2002-10-30 | Siemens Aktiengesellschaft | Koppler für optische Signale und Verfahren zum Setzen mechanischer Führungselemente von Kopplern |
WO2005031418A1 (en) * | 2003-09-22 | 2005-04-07 | Intel Corporation | Connecting a component with an embedded optical fiber |
WO2005062096A1 (en) * | 2003-12-22 | 2005-07-07 | Bae Systems Plc | Waveguide assembly and connector |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3058021A (en) * | 1958-11-24 | 1962-10-09 | American Optical Corp | Optical coupling device between x-ray intensifier and vidicon camera tube or the like |
US4672197A (en) * | 1984-12-12 | 1987-06-09 | Hitachi, Ltd. | Photosensor employing optical guide posts to detect an object in the path |
US5277930A (en) * | 1990-04-27 | 1994-01-11 | Ngk Insulators, Ltd. | Method of fabricating a substrate for an optical surface mount circuit |
US5362961A (en) * | 1990-09-21 | 1994-11-08 | Nippon Sheet Glass Co., Ltd. | Optical information transmitting device and method of manufacturing same |
EP0807981A2 (de) * | 1996-05-13 | 1997-11-19 | Fujitsu Limited | Optisches Modul mit einer photoempfindlichen Vorrichtung |
US6257771B1 (en) * | 1996-10-17 | 2001-07-10 | Advantest Corporation | Opitcal/electrical hybrid wiring board and its manufacturing method |
-
2000
- 2000-10-10 WO PCT/DE2000/003551 patent/WO2002031563A1/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3058021A (en) * | 1958-11-24 | 1962-10-09 | American Optical Corp | Optical coupling device between x-ray intensifier and vidicon camera tube or the like |
US4672197A (en) * | 1984-12-12 | 1987-06-09 | Hitachi, Ltd. | Photosensor employing optical guide posts to detect an object in the path |
US5277930A (en) * | 1990-04-27 | 1994-01-11 | Ngk Insulators, Ltd. | Method of fabricating a substrate for an optical surface mount circuit |
US5362961A (en) * | 1990-09-21 | 1994-11-08 | Nippon Sheet Glass Co., Ltd. | Optical information transmitting device and method of manufacturing same |
EP0807981A2 (de) * | 1996-05-13 | 1997-11-19 | Fujitsu Limited | Optisches Modul mit einer photoempfindlichen Vorrichtung |
US6257771B1 (en) * | 1996-10-17 | 2001-07-10 | Advantest Corporation | Opitcal/electrical hybrid wiring board and its manufacturing method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1253453A1 (de) * | 2001-04-27 | 2002-10-30 | Siemens Aktiengesellschaft | Koppler für optische Signale und Verfahren zum Setzen mechanischer Führungselemente von Kopplern |
WO2005031418A1 (en) * | 2003-09-22 | 2005-04-07 | Intel Corporation | Connecting a component with an embedded optical fiber |
JP2007506142A (ja) * | 2003-09-22 | 2007-03-15 | インテル コーポレイション | 埋設光ファイバーを有する部品の接続方法 |
US7373068B2 (en) | 2003-09-22 | 2008-05-13 | Intel Corporation | Connecting a component with an embedded optical fiber |
KR100857632B1 (ko) * | 2003-09-22 | 2008-09-08 | 인텔 코오퍼레이션 | 내장된 광섬유와 컴포넌트의 접속 |
CN100432729C (zh) * | 2003-09-22 | 2008-11-12 | 英特尔公司 | 用嵌入光纤连接组件 |
US7630601B2 (en) | 2003-09-22 | 2009-12-08 | Intel Corporation | Connecting a component with an embedded optical fiber |
EP2270563A1 (de) * | 2003-09-22 | 2011-01-05 | Intel Corporation | Anschließen einer Komponente an einen eingebetteten optischen Pfad, insbesondere an eine eingebettete optische Faser |
JP4739210B2 (ja) * | 2003-09-22 | 2011-08-03 | インテル コーポレイション | 埋設光ファイバーを有する部品の接続方法 |
WO2005062096A1 (en) * | 2003-12-22 | 2005-07-07 | Bae Systems Plc | Waveguide assembly and connector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69833150T2 (de) | Vorrichtung zur Herstellung einer faseroptischen Steckerferrule | |
DE69132083T2 (de) | Optisches system | |
DE3408783C2 (de) | ||
DE69320243T2 (de) | Optischer Schalter, optische Faserverteileranordnung und Verfahren zur deren Herstellung | |
DE69304138T2 (de) | Verfahren zum Verbinden eines optischen Wellenleiters mit einer optischen Faser | |
DE102013216589B4 (de) | Verfahren und Systeme zum Blindstecken von multioptischen Faserkonnektormodulen | |
DE19932430C2 (de) | Opto-elektronische Baugruppe sowie Bauteil für diese Baugruppe | |
DE102012220823B4 (de) | Ferrule eines steckverbinders für mehrschichtige wellenleiter, steckverbinder und verfahren | |
DE2921035C2 (de) | Optisches Verzweigerelement | |
DE2622607A1 (de) | Selbstzentrierende steckverbindungsanordnung fuer lichtwellenleiter | |
DE2842276A1 (de) | Ein-/auskoppelelement | |
DE19711121B4 (de) | Verzweigende Lichtwellenleiteranordnung und verzweigendes Lichtwellenleiterarray | |
DE2428570C2 (de) | Anordnung zur optischen Signalübertragung | |
DE3432239A1 (de) | Optischer multiplexer/demultiplexer | |
EP2502105A2 (de) | Verfahren zur herstellung einer optischen baugruppe, optische baugruppe sowie splitterkaskade | |
DE69837129T2 (de) | Faseroptischer Steckerstift | |
DE69834870T2 (de) | Ausrichtsystem für einen faseroptischen Steckerstift | |
EP1330670B1 (de) | Positionsfixierung in leiterplatten | |
DE10003420A1 (de) | Optisches Wellenleiterbauteil | |
DE10393683T5 (de) | Einrichtung mit mehreren optischen Fasern | |
DE69024314T2 (de) | Mehrpolige Steckerstruktur | |
DE19917554C2 (de) | Positionsfixierung in Leiterplatten | |
EP0129048A2 (de) | Vorrichtung zum spielfreien Verschieben von Objekten in einem Koordinatensystem | |
DE4243342C2 (de) | Lichtwellenleiter-Verzweiger oder -Combiner, Bauelemente hierfür sowie Verfahren zur Herstellung solcher Bauelemente | |
DE3422972C2 (de) | Vorrichtung zum Positionieren und Fixieren von Lichtleitfasern in einer parallelen Anordnung zu einem Lichtleitfaserarray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |