WO2002027055A1 - Alliage amorphe et procede de preparation dudit alliage - Google Patents

Alliage amorphe et procede de preparation dudit alliage Download PDF

Info

Publication number
WO2002027055A1
WO2002027055A1 PCT/JP2000/006589 JP0006589W WO0227055A1 WO 2002027055 A1 WO2002027055 A1 WO 2002027055A1 JP 0006589 W JP0006589 W JP 0006589W WO 0227055 A1 WO0227055 A1 WO 0227055A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
zrc
particles
dispersed
amorphous alloy
Prior art date
Application number
PCT/JP2000/006589
Other languages
English (en)
Japanese (ja)
Inventor
Akihisa Inoue
Yoshihito Kawamura
Original Assignee
Tohoku Techno Arch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co., Ltd. filed Critical Tohoku Techno Arch Co., Ltd.
Priority to JP2002530815A priority Critical patent/JPWO2002027055A1/ja
Priority to PCT/JP2000/006589 priority patent/WO2002027055A1/fr
Priority to TW089119986A priority patent/TWI235770B/zh
Publication of WO2002027055A1 publication Critical patent/WO2002027055A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Definitions

  • the present invention relates to an amorphous alloy, and more particularly to an amorphous ZrC particle dispersed alloy.
  • amorphous alloy composite materials containing a second phase such as ceramics and metals have been developed to date. It was reported for the first time in 980 that increased yield strength and delocalization of fracture due to the compounding of amorphous alloys. In other words, this means that the Ni 78 S ii 0 Bi 2 quenched ribbon in which micron-sized tungsten carbide particles are dispersed has high strength.
  • ZrC zirconium carbide
  • an object of the present invention is to produce a ZrC particle-dispersed amorphous alloy composite material having excellent mechanical properties at low cost. Disclosure of the invention
  • the present invention provides a method for melting an alloy serving as a matrix, adding carbon particles and a Zr alloy to the alloy, and melting the alloy at a temperature equal to or higher than the melting point of the Zr alloy + 100 K or more.
  • ZrC particles are produced by reacting Zr and C during melting to produce an alloy in which ZrC particles are uniformly dispersed. Is the law.
  • a ZrC particle-dispersed amorphous alloy having a desired shape can be formed from an alloy having glass forming ability obtained by adjusting an alloy in which the ZrC particles are uniformly dispersed.
  • the present invention also includes a child dispersed amorphous alloy.
  • FIG. 1 is an optical micrograph of a cross section of a structural composite material made of the alloy according to the present invention.
  • FIG. 2 is a graph of X-ray diffraction of a cross section of a structural composite material made of the alloy according to the present invention.
  • FIG. 3 is a graph showing a differential scanning calorimetry curve of a structural composite material made of the alloy according to the present invention.
  • FIG. 4 is a graph showing a stress-strain curve under compression test of an alloy in which ZrC particles are uniformly dispersed.
  • FIG. 5 is a graph showing the maximum stress in a compression test with respect to the volume fraction of ZrC particles.
  • FIG. 6 is a graph showing plastic strain in a compression test with respect to the volume fraction of ZrC particles.
  • FIG. 7 is a graph showing a Young's modulus by a compression test with respect to a volume fraction of ZrC particles.
  • a method for producing a ZrC particle-dispersed Zr-based amorphous alloy composite material using the present invention is as follows: adding carbon particles and a Zr pure metal or a Zr alloy to a matrix alloy; The alloy is melted at a temperature equal to or higher than the melting point of the alloy +100 K, and Zr and C are reacted during melting to form ZrC particles.
  • a ZrC particle-dispersed amorphous alloy can be manufactured by preparing a mother alloy having glass forming ability in which ZrC particles are uniformly dispersed and adjusting the same.
  • the size of the carbon particles used for the preparation is 100 micrometer or less, and the size of the ZrC particles is desirably 100 micrometer or less.
  • the dispersion ratio of the particles is desirably 20% or less by volume.
  • Zr metal has the highest reactivity to graphite and the generated zirconium carbide (ZrC) is the most stable. Only ZrC particles are generated as a dispersed phase. (3)
  • the master alloy containing the ZrC particles is pulverized and charged into a quartz nozzle, which is subjected to high-frequency melting in a vacuum atmosphere of 10 ⁇ 4 1rr or less, and then to a melt temperature of 850 ° C or more.
  • a quartz nozzle which is subjected to high-frequency melting in a vacuum atmosphere of 10 ⁇ 4 1rr or less, and then to a melt temperature of 850 ° C or more.
  • a copper mold diameter 2 mm, height 5 Omm shape).
  • FIG. 1 shows an optical micrograph of a cross section of the structural composite material produced as described above. From this photograph, it can be seen that particles of 10 ⁇ m or less are uniformly dispersed in the parent phase.
  • Figure 2 shows an X-ray diffraction pattern of a cross section of a structural composite material containing 15 V o 1% (volume fraction) of dispersed particles. Since this is composed of five peaks indicating ZrC and a halo pattern indicating an amorphous structure, the obtained composite material has a matrix of Zr-A1-Ni-Cu amorphous alloy. It can be seen that the dispersion is ZrC particles and the graphite has disappeared.
  • Figure 3 shows the differential scanning calorimetry (DSC) curve (temperature rise rate 0.67K si) of the ZrC particle-dispersed Zr-based amorphous alloy composite containing 15 vo 1% dispersed particles.
  • DSC differential scanning calorimetry
  • Fig. 5 to Fig. 7 show how the maximum stress (Fig. 5), plastic strain (Fig. 6) and Young's modulus (Fig. 7) change according to the change of the volume fraction of ZrC particles. . From these figures, it can be seen that when the volume fraction is 20% or less, the maximum stress and the Young's coefficient increase as the proportion of ZrC particles increases, and their performance increases.However, with respect to plastic strain, the volume fraction 10% There is a peak when.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

L'invention concerne un procédé pour préparer un matériau composite d'alliage amorphe contenant des particules ZrC dispersées dans ledit matériau. Ce procédé consiste à ajouter à un alliage mère des particules de carbone et un métal pur Zr ou un alliage Zr, les dissoudre à une température supérieure au point de fusion du métal pur Zr ou de l'alliage Zr + 100 °K, faire réagir Zr avec C pour former des particules ZrC et produire l'alliage mère mentionné ci-dessus capable de former du verre présentant des particules ZrC dispersées uniformément. Des matériaux composites d'alliage amorphe contenant diverses quantités de particules ZrC dispersées dans lesdits matériaux et présentant des formes souhaitées peuvent être préparés. Ce procédé peut être utilisé pour préparer, pour un faible coût, un matériau composite d'alliage amorphe contenant des particules ZrC dispersées dans ledit matériau, lequel matériau présente une excellente résistance mécanique.
PCT/JP2000/006589 2000-09-25 2000-09-25 Alliage amorphe et procede de preparation dudit alliage WO2002027055A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002530815A JPWO2002027055A1 (ja) 2000-09-25 2000-09-25 アモルファス合金及びその作製法
PCT/JP2000/006589 WO2002027055A1 (fr) 2000-09-25 2000-09-25 Alliage amorphe et procede de preparation dudit alliage
TW089119986A TWI235770B (en) 2000-09-25 2000-09-27 Amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/006589 WO2002027055A1 (fr) 2000-09-25 2000-09-25 Alliage amorphe et procede de preparation dudit alliage

Publications (1)

Publication Number Publication Date
WO2002027055A1 true WO2002027055A1 (fr) 2002-04-04

Family

ID=11736516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006589 WO2002027055A1 (fr) 2000-09-25 2000-09-25 Alliage amorphe et procede de preparation dudit alliage

Country Status (3)

Country Link
JP (1) JPWO2002027055A1 (fr)
TW (1) TWI235770B (fr)
WO (1) WO2002027055A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092103A (ja) * 2005-09-27 2007-04-12 Japan Science & Technology Agency 延性を有するマグネシウム基金属ガラス合金−金属粒体複合材
JP2009510267A (ja) * 2005-10-03 2009-03-12 エーテーハー チューリヒ バルク金属ガラス/グラファイト複合材料
CN102529191A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 一种非晶合金制品及其制造方法
CN105316603A (zh) * 2015-10-26 2016-02-10 宋佳 一种高韧性非晶合金及其制备方法
CN105316604A (zh) * 2015-10-26 2016-02-10 宋佳 一种高硬度非晶合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475641A (en) * 1987-09-18 1989-03-22 Takeshi Masumoto Amorphous alloy containing carbon grain and its manufacture
JPH0688154A (ja) * 1992-09-04 1994-03-29 Mitsubishi Kasei Corp 金属組成物及び発泡金属組成物の製造方法
JPH07157834A (ja) * 1993-12-03 1995-06-20 Honda Motor Co Ltd 炭化物粒子分散強化Al合金の製造方法
JP2734891B2 (ja) * 1992-07-02 1998-04-02 トヨタ自動車株式会社 金属炭化物粒子分散金属基複合材料の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1289748C (fr) * 1985-03-01 1991-10-01 Abinash Banerji Production du carbure de titane
JPH07300634A (ja) * 1994-05-02 1995-11-14 Kobe Steel Ltd AlまたはAl合金複合材料の製法
JP4515548B2 (ja) * 1999-02-15 2010-08-04 株式会社東芝 バルク状非晶質合金およびこれを用いた高強度部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475641A (en) * 1987-09-18 1989-03-22 Takeshi Masumoto Amorphous alloy containing carbon grain and its manufacture
JP2734891B2 (ja) * 1992-07-02 1998-04-02 トヨタ自動車株式会社 金属炭化物粒子分散金属基複合材料の製造方法
JPH0688154A (ja) * 1992-09-04 1994-03-29 Mitsubishi Kasei Corp 金属組成物及び発泡金属組成物の製造方法
JPH07157834A (ja) * 1993-12-03 1995-06-20 Honda Motor Co Ltd 炭化物粒子分散強化Al合金の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092103A (ja) * 2005-09-27 2007-04-12 Japan Science & Technology Agency 延性を有するマグネシウム基金属ガラス合金−金属粒体複合材
JP4602210B2 (ja) * 2005-09-27 2010-12-22 独立行政法人科学技術振興機構 延性を有するマグネシウム基金属ガラス合金−金属粒体複合材
JP2009510267A (ja) * 2005-10-03 2009-03-12 エーテーハー チューリヒ バルク金属ガラス/グラファイト複合材料
CN102529191A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 一种非晶合金制品及其制造方法
CN105316603A (zh) * 2015-10-26 2016-02-10 宋佳 一种高韧性非晶合金及其制备方法
CN105316604A (zh) * 2015-10-26 2016-02-10 宋佳 一种高硬度非晶合金及其制备方法
CN105316604B (zh) * 2015-10-26 2017-04-19 宋佳 一种高硬度非晶合金及其制备方法

Also Published As

Publication number Publication date
JPWO2002027055A1 (ja) 2004-02-05
TWI235770B (en) 2005-07-11

Similar Documents

Publication Publication Date Title
US6692590B2 (en) Alloy with metallic glass and quasi-crystalline properties
US4050931A (en) Amorphous metal alloys in the beryllium-titanium-zirconium system
JP6435359B2 (ja) 延性を示す、金属ガラスをベースにした複合体の構造形成のメカニズム
JP4094030B2 (ja) 超高強度Ni基金属ガラス合金
EP2430205B1 (fr) Matériau composite d'alliage amorphe et procédé de fabrication de ce dernier
JP2001303219A (ja) ニッケル基の非晶質合金組成物
JP2000129378A (ja) 高強度・高靭性Zr系非晶質合金
JPS60121240A (ja) 最小寸法が少なくとも0.2mmの三次元物品の製造方法
JPH03158446A (ja) 加工性に優れた非晶質合金
CN101570837A (zh) 一种锆基非晶合金及其制备方法
CN111801187A (zh) 使用基于粉末的增材制造而生产大块金属玻璃复合材料
JPH1171660A (ja) 高強度非晶質合金およびその製造方法
WO2003040422A1 (fr) Alliage et procede de production de celui-ci
US20080202649A1 (en) TiZr-Based Metallic Alloys: Controllable Composite Phase Structures and Related Properties
Kato et al. Influence of nanoprecipitation on strength of Cu60Zr30Ti10 glass containing μm-ZrC particle reinforcements
JP4602210B2 (ja) 延性を有するマグネシウム基金属ガラス合金−金属粒体複合材
WO2002027055A1 (fr) Alliage amorphe et procede de preparation dudit alliage
JP2016534227A (ja) ジルコニウム系合金金属ガラス及びジルコニウム系合金金属ガラスの形成方法
US8163109B1 (en) High-density hafnium-based metallic glass alloys that include six or more elements
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
Zhang et al. Synthesis and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys containing ZrC particles
Eckert et al. Bulk nanostructured multicomponent alloys
Xie et al. Fabrication of ZrCuAlNi metallic glassy matrix composite containing ZrO2 particles by spark plasma sintering process
CN101347830A (zh) 一种通过控制凝固条件改善块状非晶合金塑性的方法
Liu et al. Formation of bulk Pd-Cu-Si-P glass with good mechanical properties

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002530815

Country of ref document: JP