WO2002026851A1 - Verfahren zur herstellung von holzwerkstoffen mit lagerstabile polyisocyanat-bindemitteln unter mitverwendung von latenten katalysatoren - Google Patents

Verfahren zur herstellung von holzwerkstoffen mit lagerstabile polyisocyanat-bindemitteln unter mitverwendung von latenten katalysatoren Download PDF

Info

Publication number
WO2002026851A1
WO2002026851A1 PCT/EP2001/010563 EP0110563W WO0226851A1 WO 2002026851 A1 WO2002026851 A1 WO 2002026851A1 EP 0110563 W EP0110563 W EP 0110563W WO 0226851 A1 WO0226851 A1 WO 0226851A1
Authority
WO
WIPO (PCT)
Prior art keywords
binders
storage
binder
polyisocyanate
stable
Prior art date
Application number
PCT/EP2001/010563
Other languages
English (en)
French (fr)
Inventor
Theodore Frick
Ernst-Martin Hoppe
Manfred Kapps
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to CA2423015A priority Critical patent/CA2423015C/en
Priority to AU2002213909A priority patent/AU2002213909A1/en
Priority to PL36054201A priority patent/PL360542A1/xx
Priority to EP01982281A priority patent/EP1325050A1/de
Publication of WO2002026851A1 publication Critical patent/WO2002026851A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6492Lignin containing materials; Wood resins; Wood tars; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the invention relates to a process for the production of wood-based materials by hot pressing of lignocellulose-containing materials glued with polyisocyanates as binders using amine catalysts which are stable in polyisocyanates.
  • Wood materials such as Particle boards, composite boards or other shaped bodies are usually manufactured by taking the inorganic or organic raw material, e.g. a mass of wood chips, wood fibers and / or other lignose cellulose-containing material, with polyisocyanates and water, optionally polyols or other binders such as urea-formaldehyde or phenol / formaldehyde resins, hot-pressed as a so-called mixed gluing.
  • polyisocyanates as binders improves the stability and moisture behavior of the
  • polyisocyanates have as binders, such as e.g. disclosed in DE-OS 21 09 686, far-reaching procedural advantages.
  • EP-A 133 680 discloses a process for producing wood-based materials using polyurethanes as binders, in which tertiary or quaternary ammonium phosphonates or quaternary ammonium phosphates are used as heat-activatable catalysts.
  • tertiary or quaternary ammonium phosphonates or quaternary ammonium phosphates are used as heat-activatable catalysts.
  • the shortening of the pressing time that can be observed when using these catalysts is not yet sufficient for an economical process run-through.
  • DE-OS 196 03 330 describes a process for the production of wood-based materials with polyisocyanates as binders using a latent catalyst system, in which ammonium salts are used as the catalyst, which are obtained by reacting amines with malonic acid.
  • These activated binders are effective press time shorteners and work even at high cutting temperatures. Due to their poor storage stability in isocyanates, however, separate metering of the catalyst to the isocyanate is necessary directly before the gluing. This separate dosing entails additional equipment costs and possible sources of error in production.
  • the invention relates to a process for the production of wood-based materials by hot pressing of lignocellulose-containing materials glued with storage-stable binders, amine catalysts containing as binders
  • Polyisocyanates are used.
  • the amine catalysts to be used according to the invention are preferably those which contain dimol holino compounds.
  • Dimorpholinodiethyl ether and dimorpholinopolyethylene glycol are particularly preferred.
  • Dimethylphino compounds have been proposed variously as storage-stable additives to moisture-curing MDI prepolymers or PMDI epoxy resins (EP-A 226 287, EP-A 668 302, EP-A 732 385, US-A 5 075 405, EP- A 811 645 or WO 94/18265); However, their use in unmodified isocyanate for the production of storage-stable binders for the production of wood-based materials by hot pressing was hitherto unknown.
  • the binders generally contain 0.01 to 30% by weight of catalyst, based on isocyanate. In a preferred variant, they contain 0.02 to 2% by weight, particularly preferably 0.05 to 1% by weight.
  • the addition of the catalyst to the isocyanate and the subsequent mixing must take place with the exclusion of moisture.
  • the mixed binder system can then be stored at temperatures of up to 40 ° C for at least two months and can also be exposed to temperatures of up to 60 ° C for a short time without impairing the properties of the binder.
  • Suitable isocyanate components when carrying out the process according to the invention are aliphatic, cycloaliphatic, araliphatic, aromatic and heterocychic polyisocyanates, as described by W. Siefken in Justus Liebigs Annalen der Chemie 562, pp. 75-136, for example those of the formula
  • n 2 to 4 preferably 2
  • Q is an aliphatic hydrocarbon residue with 2 to 18, preferably 6 to 10 C atoms, a cycloaliphatic hydrocarbon residue with 4 to 23, preferably 5 to 13 C atoms, an aromatic hydrocarbon residue with 6 to 23, preferably 6 to 13 C atoms, or an araliphatic hydrocarbon radical with 8 to 15, preferably 8 to 13, carbon atoms,
  • the technically easily accessible polyisocyanates e.g. 2,4- and 2,6-tolylene diisocyanate as well as any mixtures of these isomers (“TDI”), and particularly preferably polyphenyl-polymethylene polyisocyanates, such as those produced by aniline-formaldehyde condensation and subsequent phosgeny (“crude MDI”) , If necessary, the polyisocyanates used can also be modified.
  • Highly nuclei isocyanates of the diphenylamine diisocyanate series (pMDI types) are particularly preferably used as the polyisocyanate component.
  • prepolymers having terminal isocyanate groups and having an average molecular weight of about 275 to 2,000 as obtained by reacting higher molecular weight and / or low molecular weight polyols with an excess of polyisocyanate in a manner known per se.
  • Suitable polyols are all higher molecular weight polyols customary in polyurethane chemistry, in particular two to eight hydroxyl group-containing compounds, especially those having a molecular weight of 400 to 10,000, preferably 550 to 5,000, for example at least two, generally two to eight, but preferably two up to four hydroxyl-containing polyesters, polyethers, polythioethers, polyacetals, polycarbonates and polyesteramides, as are known per se for example for the production of homogeneous and cellular polyurethanes.
  • Suitable lignocellulose-containing raw materials that can be bound with the polyisocyanate activator formulation according to the invention are, for example, wood,
  • the material can be in the form of granules, beaches, chips, fibers or flour and have a water content of e.g. 0 to 35% by weight, preferably 5 to 25% by weight.
  • the binder is added in an amount of 1 to 100% by weight, preferably 2 to 12% by weight, and - generally under the action of pressure and heat - pressed into sheets or moldings.
  • multi-layer panels or molded parts can be produced from veneers, papers or fabrics. Even multi-layer panels or molded parts made of veneer and strip, strip or rod middle layers, so-called
  • Blockboards can be produced according to the invention by treating the veneers with the isocyanate activator formulation as described above and then pressing them with the middle layers - generally at elevated temperature and pressure. Temperatures of 80 to 250 ° C., particularly preferably 100 to 220 ° C., are preferably maintained. The initial pressure here is preferably between 5 and 150 bar; in the course of the pressing process, the pressure usually drops to around 0.
  • polyisocyanate activator formulations can also be combined with the polyhydroxyl compounds described above in an NCO / OH
  • Ratio of 1.1: 1 to 10: 1, preferably 1.5: 1 to 5: 1, are used. It is possible to use the two components separately or as a reactive mixture. Such combinations of polyisocyanate and polyhydroxyl compounds are of practical importance as binders, for example in the binding of cork pellets. It is also possible to use blowing agents known per se in an amount of about 0.5 to 30% by weight, based on binder or impregnating agent and / or other foaming or chemical reaction between polyisocyanates, hgnocellulose-containing material and optionally additives influencing polyhydroxyl compounds, such as stabilizers, in an amount of 0.05 to 10% by weight, based on binder or impregnating agent.
  • the polyisocyanate activator formulations to be used according to the invention as binders can also be combined with the aqueous solutions of condensation products made from formaldehyde with urea and / or melamine and / or phenol, which have been predominantly used in the wood-based panel industry (mixed gluing), but also with others, so far less usual binders and impregnating agents, such as Sulfite waste liquor (lignin sulfonate or other technical lignin solutions of wood pulping) or tannin-like compounds such as tannin, where e.g. a mixing ratio of the inventive binders with these additional binders between 1:10 and 10: 1, preferably between 1: 5 and 5: 1, and wherein the binders according to the invention and the additional ones
  • the sheets or molded parts produced according to the invention are based on lignocellulose-containing or other organic and / or inorganic raw materials, especially for use in construction.
  • the binders or the raw materials can be obtained from the commercially available ones
  • Additives e.g. aqueous polyethylene emulsions organic or inorganic protective medium, in pure form or as a solution in an amount of about 0.05 to 30% by weight, preferably 0.5 to 20% by weight, based on the total material.
  • Possible solvents are: water or organic solvents, for example residual oils from petroleum processing, chlorinated hydrocarbons, etc. The gluing quality is generally not adversely affected by this. In contrast to
  • Phenol / formaldehyde resin-glued boards advantageously neither salt efflorescence nor "bleeding" occur in the materials produced according to the invention.
  • the shaped bodies impregnated or bound with them frequently tend to adhere to the surfaces of the hot presses or molds. This can be avoided by means of release agents which are added to the binder.
  • Another solution is to apply the release agents in pure form or as a solution to the metallic surfaces that come into contact with the pressings or to the molded surface. All substances previously proposed for this purpose can be used as external release agents.
  • Urea formaldehyde resins have up to 50% greater flexural rigidity (besides an improvement in other mechanical properties) or to achieve the same mechanical properties with a binder concentration reduced by about 25 to 70%.
  • DABCO ® DA20 Air Products
  • DMDEE Dimorpholinodiethylether
  • DMPEG Dimorpholinopolyethylenglykol
  • PCCAT ® 1KSC Nitroil Europe
  • DMDEE and DMPEG can also be processed as stock solutions with a shelf life of more than 2 weeks at a catalyst concentration in pMDI of 20% by weight.
  • middle layer chips which consist of a mixture of softwood and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Holzwerkstoffen durch Heißverpressen von mit Polyisocyanaten als Bindemittel beleimten lignocellulosehaltigen Materialien unter Verwendung von in Polyisocyanaten lagerstabilen Aminkatalysatoren.

Description

VERFAHREN ZUR HERSTELLUNG VON HOLZWERKSTOFFEN MIT LAGERSTABILE POLYISOCYANAT- BINDEMITTELN UNTER MITVERWΞNDUNG VON LATENTEN KATALYSATOREN
Die Erfindung betrifft ein Nerfahren zur Herstellung von Holzwerkstoffen durch Heißverpressen von mit Polyisocyanaten als Bindemittel beleimten lignocellulose- haltigen Materialien unter Verwendung von in Polyisocyanaten lagerstabilen Amin- katalysatoren.
Holzwerkstoffe, wie z.B. Spanplatten, Verbundplatten oder andere Formkörper werden gewöhnlich so hergestellt, dass man das anorganische oder organische Rohmaterial, z.B. eine Masse aus Holzschnitzeln, Holzfasern und/oder anderen lignose- cellulosehaltigem Material, mit Polyisocyanaten und Wasser, gegebenenfalls Polyolen oder anderen Bindemitteln wie HarnstoffFormaldehyd- oder Phenol/Formaldehyd- Harzen, als sogenannte Mischverleimung heiß verpresst. Die Verwendung von Polyiso- cyanaten als Bindemittel verbessert die Stabilität und das Feuchteverhalten der
Produkte und erhöht deren mechanische Eigenschaften. Darüber hinaus besitzen Poly- isocyanate als Bindemittel, wie z.B. in DE-OS 21 09 686 offenbart, weitreichende verfahrenstechnische Vorteile.
Prinzipiell können bei den Verfahren des Standes der Technik (siehe z.B. DE- AS
27 11 958) auch Katalysatoren der aus der Polyurethanchemie an sich bekannten Art, z.B. solche, wie sie in der DE-OS 28 54384, S.26-29 und 31-33 genannt sind, mitverwendet werden, um Presszeiten zu verkürzen. Dies ist bei sogenannten Einetagenpressen von besonderer Wichtigkeit. Hierbei kommt es jedoch meist bereits beim Vermischen der Komponenten und der Lagerung der mit Isocyanaten belehnten
Späne vor der Verpressung zu unerwünschter Schaumbildung und vorzeitiger Abbindung infolge der sofort einsetzenden Katalysatorwirkung auf die reaktiven ΝCO- Gruppen. Deswegen muss man meist auf die Mitverwendung von Katalysatoren verzichten und längere Presszeiten in Kauf nehmen. Aus EP-A 133 680 ist ein Verfahren zur Herstellung von Holzwerkstoffen unter Einsatz von Polyurethanen als Bindemittel bekannt, bei dem man als wärmeaktivierbare Katalysatoren tertiäre oder quatemäre Ammomumphosphonate oder quatemäre Ammoniumphosphate einsetzt. Die bei Verwendung dieser Katalysatoren zu beobachtende Verkürzung der Presszeit ist für eine wirtschaftliche VerfahrensdurcMunrung jedoch noch nicht ausreichend. Auch mit den in DE-OS 42 29396 und DE-OS 34 38 735 beschriebenen Verfahren zur Herstellung von Span- oder Faserplatten unter Verwendung von Polyisocyanaten als Bindemittel sind noch keine ausreichend kurzen Presszeiten erreichbar.
DE-OS 196 03 330 beschreibt ein Verfahren zur Herstellung von Holzwerkstoffen mit Polyisocyanaten als Bindemittel unter der Mitverwendung eines latenten Katalysatorsystems, bei dem als Katalysator Ammoniumsalze eingesetzt werden, die durch Umsetzung von Aminen mit Malonsäure erhalten werden. Diese aktivierten Bindemittel sind effektive Presszeitverkürzungsmittel, und funktionieren auch bei erhöhter Spantemperatur. Bedingt durch deren mangelhafte Lagerstabilität in Isocyanaten ist jedoch eine separate Dosierung des Katalysators zum Isocyanat direkt vor der Beleimung erforderlich. Diese separate Dosierung bringt zusätzliche Apparatekosten und mögliche Fehlerquellen in der Produktion mit sich.
Es bestand daher ein Bedarf für ein einkomponentiges, katalysatorhaltiges Poly- isocyanat-Bindemittel, das über längeren Zeitraum bei erhöhter Temperatur stabil bleibt und eine Presszeitverkürzung während der Heißverpressung ermöglicht. Es wurden nun Bindemittelsysteme auf der Basis von Polyisocyanat und Aminkata- lysatoren gefunden, die für diesen Zweck sehr gut geeignet sind.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Holzwerkstoffen durch Heißverpressen von mit lagerstabilem Bindemittel beleimten lignocellu- losehaltigen Materialien, wobei als Bindemittel Aminkatalysatoren enthaltende
Polyisocyanate eingesetzt werden. Bei den erfindungsgemäß einzusetzenden Aminkatalysatoren handelt es sich bevorzugt um solche, die Dimo holinoverbindungen enthalten. Besonders bevorzugt sind Dimorpholinodiethylether und Dimorpholinopolyethylenglykol. Di- moφholinoverbindungen sind schon verschiedentlich als lagerstabile Zusätze zu feuchtigkeitsaushärtenden MDI-Prepolymeren oder PMDI-Epoxid-Harzen vorgeschlagen worden (EP-A 226 287, EP-A 668 302, EP-A 732 385, US-A 5 075 405, EP-A 811 645 oder WO 94/18265); ihr Einsatz in unmodifiziertem Isocyanat zur Herstellung von lagerstabilen Bindemitteln für die Herstellung von Holzwerkstoffen durch Heißverpressen war j edoch bislang noch nicht bekannt.
Die Bindemittel enthalten in der Regel 0,01 bis 30 Gew.-% Katalysator, bezogen auf Isocyanat. In einer bevorzugten Variante enthalten sie 0,02 bis 2 Gew.-%, besonders bevorzugt 0,05 bis 1 Gew.-%.
Die Zugabe des Katalysators zum Isocyanat und die nachfolgende Abmischung muss unter Ausschluss von Feuchtigkeit erfolgen. Das abgemischte Bindemittelsystem kann dann bei Temperaturen von bis zu 40°C für mindestens zwei Monate gelagert werden und auch kurzzeitig Temperaturen bis zu 60°C ausgesetzt werden, ohne dass eine Beeinträchtigung der Bindemittel-Eigenschaften auftritt.
Als Isocyanatkomponente kommen bei der Durchführung des erfindungsgemäßen Verfahrens aliphatische, cycloaliphatische, araliphatische, aromatische und heterocychsche Polyisocyanate in Betracht, wie sie von W. Siefken in Justus Liebigs Annalen der Chemie 562, S. 75-136 beschrieben werden, beispielsweise solche der Formel
Q(NCO)n
in der
n 2 bis 4, vorzugsweise 2, und Q einen aliphatischen Kohlenwasserstoffrest mit 2 bis 18, vorzugsweise 6 bis 10 C-Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4 bis 23, vorzugsweise 5 bis 13 C-Atomen, einen aromatischen Kohlenwasserstoffrest mit 6 bis 23, vorzugsweise 6 bis 13 C-Atomen, oder einen araliphatischen Kohlen- wasserstoffrest mit 8 bis 15, vorzugsweise 8 bis 13 C-Atomen,
bedeuten, z.B. 4,4'-Diphenylmethandiisocyanat, 1,3- und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, 2,4'- und/oder 4,4'-DiphenyImethandiisocyanat sowie beliebige Gemische dieser Isomeren oder deren polymere Typen dieser Reihe.
Bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), sowie besonders bevorzugt Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenienmg hergestellt werden ("rohes MDI"). Gegebenenfalls können die eingesetzten Polyisocyanate auch modifiziert sein. Besonders bevorzugt setzt man als Polyisocyanatkomponente höherkernige Isocyanate der Diphenyhnethandiisocyanat-Reihe (pMDI-Typen) ein.
Für die Durchführung des erfindungsgemäßen Verfahrens können auch endständige Isocyanatgruppen aufweisende Prepolymere mit einem mittleren Molekulargewicht von ca. 275 bis 2 000 eingesetzt werden, wie sie durch Umsetzung von höhermolekularen und/oder niedermolekularen Polyolen mit einem Uberschuss an Polyisocyanat in an sich bekannter Weise erhalten werden.
Als Polyole können alle in der Polyurethanchemie gebräuchlichen höhermolekularen Polyole, insbesondere zwei bis acht Hydroxylgruppen aufweisende Verbindungen, speziell solche der Molmassen 400 bis 10 000, vorzugsweise 550 bis 5 000, z.B. min- destens zwei, in der Regel zwei bis acht, vorzugsweise aber zwei bis vier, Hydroxylgruppen aufweisende Polyester, Polyether, Polythioether, Polyacetale, Polycarbonate und Polyesteramide, wie sie beispielsweise für die Herstellung von homogenen und von zellförmigen Polyurethanen an sich bekannt sind, eingesetzt werden.
Geeignete lignocellulosehaltige Rohstoffe, die mit der erfindungsgemäßen Polyiso- cyanat-Aktivator-Formulierung gebunden werden können, sind beispielsweise Holz,
Rinde, Kork, Bagasse, Stroh, Flachs, Bambus, Alfagras, Reisschalen, Sisal- und Kokosfasern. Das Material kann dabei in Form von Granulaten, Strands, Spänen, Fasern oder Mehl vorliegen und einen Wassergehalt von z.B. 0 bis 35 Gew.-%, vorzugsweise von 5 bis 25 Gew.-%, aufweisen. Es wird mit dem Bindemittel in einer Menge von 1 bis 100, vorzugsweise 2 bis 12 Gew.-%, versetzt und - im allgemeinen unter Einwirkung von Druck und Hitze - zu Platten oder Formkörpern verpresst.
In analoger Weise können auch mehrlagige Platten oder Formteile aus Furnieren, Papieren oder Geweben hergestellt werden. Auch mehrschichtige Platten oder Form- teile aus Furnieren und Streifen-, Stab- oder Stäbchen-Mittellagen, sogenannte
Tischlerplatten, können erfindungsgemäß hergestellt werden, indem man die Furniere wie oben beschrieben mit der Isocyanat-Aktivator-Formulierung behandelt und anschließend mit den Mittellagen - in der Regel bei erhöhter Temperatur und erhöhtem Druck - verpresst. Vorzugsweise werden dabei Temperaturen von 80 bis 250°C, beson- ders bevorzugt 100 bis 220°C, eingehalten. Der Anfangspressdruck liegt auch hier vorzugsweise zwischen 5 und 150 bar; im Laufe des Pressvorganges fällt dann der Druck meist bis gegen 0 ab.
Erfindungsgemäß können die Polyisocyanat-Aktivator-Formulierungen auch in Kom- bination mit den oben beschriebenen Polyhydroxylverbindungen in einem NCO/OH-
Verhältnis von 1,1:1 bis 10:1, vorzugsweise 1,5:1 bis 5:1, eingesetzt werden. Es ist dabei möglich, die beiden Komponenten getrennt oder als reaktives Gemisch einzusetzen. Praktische Bedeutung haben derartige Kombinationen von Polyisocyanat und Polyhydroxylverbindungen als Bindemittel z.B. bei der Bindung von Korkschrot. Es ist auch möglich, an sich bekannte Treibmittel in einer Menge von ca. 0,5 bis 30 Gew.-%, bezogen auf Binde- oder Imprägniermittel und/oder andere die Schaumbildung oder die chemische Reaktion zwischen Polyisocyanaten, hgnocellulosehaltigem Material und gegebenenfalls Polyhydroxylverbindungen beeinflussende Additive wie Stabilisatoren, in einer Menge von 0,05 bis 10 Gew.-%, bezogen auf Bindemittel- bzw. Imprägniermittel, zuzusetzen.
Die erfindungsgemäß als Bindemittel zu verwendenden Polyisocyanat-Aktivator- Formulierungen können auch mit den in der Holzwerkstoffindustrie bisher überwiegend eingesetzten wässrigen Lösungen von Kondensationsprodukten aus Formaldehyd mit Harnstoff und/oder Melamin und/oder Phenol kombiniert werden (Mischverleimung), aber auch mit anderen, bisher weniger üblichen Binde- und Imprägniermitteln, wie z.B. Sulfitablauge (Lignin-Sulfonat oder anderen technischen Ligninlösungen des Holzaufschlusses) oder gerbstoffartigen Verbindungen wie Tannin, wo z.B. ein Mischungsverhältnis der erfindungsgemäßen mit diesen zusätzlichen Bindemitteln zwischen 1:10 und 10:1, vorzugsweise zwischen 1:5 und 5:1, eingehalten werden kann und wobei man die erfindungsgemäßen Bindemittel und die zusätzlichen
Bindemittel entweder separat oder auch in Mischung einsetzen kann.
Besonders vorteilhaft sind derartige Kombinationen bei der Herstellung von mehrschichtigen Platten mit speziellen Eigenschaften. Man kann z.B. die äußeren Schichten mit konventionellen Klebstoffen (allein oder gemeinsam mit dem Polyisocyanat-Binde- mittel und eine oder mehrere innere Schichten mit dem erfindungsgemäß zu verwendenden Polyisocyanat-Bindemittel (allein oder gemeinsam mit konventionellen Klebstoffen) versetzen und anschließend miteinander verpressen.
Infolge ihrer hervorragenden mechanischen Eigenschaften eignen sich die erfindungsgemäß hergestellten Platten oder Formteile auf Basis von lignocellulosehaltigen oder anderen organischen und/oder anorganischen Rohstoffen vor allem für eine Verwendung im Bauwesen. Um den Platten oder Formteilen die hierfür im allgemeinen erforderliche Beständigkeit gegen Pilzbefall, Insektenfiraß oder Feuereinwirkung zu verleihen, kann man den Bindemitteln oder den Rohstoffen die handelsüblichen
Additive, z.B. wässrige Polyeihylenemulsionen organische oder anorganische Schutz- mittel, in reiner Form oder als Lösung in einer Menge von ca. 0,05 bis 30 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-%, bezogen auf das gesamte Material, zusetzen. Als Lösungsmittel kommen in Frage: Wasser oder organische Lösungsmittel, z.B. Rückstandsöle aus der Erdölaufarbeitung, Chlorkohlenwasserstoffe u.a. Die Verleimungs- qualität wird hierdurch im allgemeinen nicht beeinträchtigt. Im Gegensatz zu
Phenol/Formaldehyd-Harz-verleimten Platten treten bei den erfindungsgemäß hergestellten Werkstoffen dabei vorteilhafterweise weder Salzausblühungen noch "Ausbluten" ein.
Bedingt durch die hohe Klebkraft der erfindungsgemäßen Bindemittel neigen die hiermit imprägnierten bzw. gebundenen Formkörper häufig dazu, an den Oberflächen der heißen Pressen oder Formen zu haften. Dies kann durch Trennmittel, welche man dem Bindemittel zusetzt, vermieden werden. Eine andere Lösung besteht darin, die Trennmittel in reiner Form oder als Lösung auf die mit den Pressungen in Berührung kommenden metallischen Oberflächen oder die Formlingsoberfläche aufzubringen. Als äußere Trennmittel kommen hierbei alle bisher zu diesem Zweck vorgeschlagenen Substanzen in Frage. Bevorzugt sind jedoch gemäß DE-OS 23 25 926 Verbindungen, welche bei Isocyanaten eine Isocyanuratbildung katalysieren, beispielsweise Phenol- Mannichbasen, Derivate des Hexahydrotriazins oder Alkalisalze von Carbonsäuren und/oder Seifen, gegebenenfalls in Lösung wie z.B. wässrigem Diethylenglykol. Ein weiterer Lösungsweg, die Haftung auszuschalten, besteht darin, eine Trennschicht zwischen Pressung und metallischer Pressenoberfläche anzuordnen, wobei die Trennschicht aus Bahnen, Folien oder Zerkleinerungsmaterial verschiedener Rohstoffe (z.B. Kunststoffe, Papier, Holz, Metall) bestehen kann. Wie schon mehrfach erwähnt, können mit den erfindungsgemäß zu verwendenden Isocyanat-Bindemitteln im
Vergleich zu herkömmlichen Bindemitteln auf Basis von Phenol/Formaldehyd- oder Harnstoff/Formaldehyd-Harzen bei der Spanplattenherstellung wesentliche Verbesserungen, sowohl im Hinblick auf die mechanischen Eigenschaften als auch in verfahrenstechnischer Hinsicht, erzielt werden. So ist es im Falle von Holzspanplatten möglich, entweder bei gleicher Bindemittelmenge wie bei Phenol/Formaldehyd- bzw.
Harnstoff Formaldehyd-Harzen eine um bis zu 50 % erhöhte Biegesteifigkeit (neben einer Verbesserung anderer mechanischer Eigenschaften) oder aber bei einer um etwa 25 bis 70 % erniedrigten Bindemittelkonzentration ein gleiches mechanisches Eigenschaftsbild zu erreichen.
Beispiele
Als Ausgangskomponenten wurden eingesetzt:
A. Bis(dimethylaminoethyl)ether (DABCO® DA20, Air Products)
B. 1,8 Diazobicyclo[5,4,0]undecen-7 (PCCAT® DBU, Nitroil Europe Handels GmbH)
C. Säureblockiertes 1,8 Diazobicyclo[5,4,0]undecen-7 (PCCAT® DBU TA, Nitroil Europe Handels GmbH) D. Dibutylzinndilaurat (DBTL) (DABCO® T12, Air Products)
E. Dimorpholinodiethylether (DMDEE) (PCCAT® DMDEE, Nitroil Europe
Handels GmbH)
F. Dimorpholinopolyethylenglykol (DMPEG) (PCCAT® 1KSC, Nitroil Europe
Handels GmbH) G. Polyether der OH-Zahl 190, hergestellt durch Umsetzung von Propylenglykol mit Propylenoxid und Ethylenoxid (Zusatzmittel VP.PU 1706, Bayer AG), H. polymeres MDI (,pMDI') mit einem NCO-Gehalt von ca. 31,5 Gew.-% (Desmodur® 44V20 L , Bayer AG),
Zur Vorprüfung der Katalysatoren wurde 1 Gew.-%, bezogen auf die Menge Isocyanat, des jeweiligen Katalysators in Isocyanat H (Desmodur® 44V20 L, Bayer AG) eingemischt. Das Misch- und Reaktionsverhalten wurde über einen Zeitraum von mehreren Stunden beobachtet. Die Resultate sind in Tab.l wiedergegeben.
Diejenige Produkte, die die Vorprüfung bestanden, wurden einem Lagertest unterzogen, bei dem die Proben über einen Zeitraum von zwei Monaten bei erhöhter Temperatur (40°C) gelagert wurden. Nach der Lagerung wurde die Lagerstabilität anhand von Viskositätsanstieg und NCO- Verlust beurteilt. Die Ergebnisse sind in Tab.2 wiedergegeben. Tabelle 1
Figure imgf000011_0001
Tabelle 2
Figure imgf000011_0002
Es ergibt sich, dass mit DMDEE und DMPEG pMDI-Holzbindemittel erhalten werden, die alle Anforderungen an die Lagerstabilität erfüllen. Die Katalysatoren A bis C zeigten schon in der Vorprüfung Unverträglichkeiten mit pMDI, die Viskosität der Mischung aus pMDI und DBTL stieg im Laufe der zweimonatigen Lagerung bei 40°C stark an.
Es kann auch vorkommen, dass der Katalysator als Stammlösung eingesetzt wird. Dafür wird eine kurzzeitige Lagerstabilität bei höheren Konzentrationen verlangt. Lagerstabilitäts-Proben wurden aus dem Katalysator und Isocyanat H (Desmodur
44V20 L der Bayer AG unter Feuchtigkeits-Ausschluss abgemischt und bei 40°C gelagert. Nach der Lagerung wurde die Lagerstabilität optisch beurteilt. Die Ergebnisse der Versuche sind in Tab.3 wiedergegeben. Tabelle 3
Figure imgf000012_0001
Es zeigt sich, dass DMDEE und DMPEG auch als Stammlösungen verarbeitbar sind, mit einer Lagerfähigkeit von über 2 Wochen bei einer Katalysator-Konzentration in pMDI von 20 Gew.-%.
Anwendungsbeispiele zur Herstellung einer 3-Schicht-Platten
4900 Gew.-Teile Mittelschichtspäne, die aus einem Gemisch aus Nadelholz und
Laubholz bestanden und einen Feuchtigkeitsgehalt von ca. 8 Gew.-% aufwiesen, wurden auf eine Temperatur von 60°C aufgeheizt und bei einer Temperatur von 60°C mit 240 Gew.-Teilen Abmischungen aus Isocyanat H (Desmodur® 44V20 L) und den erfindungsgemäßen Katalysatoren beleimt, bzw. mit 264 Gew.-Teilen einer direkt vor der Beleimung hergestellten Abmischungen aus 90 % Isocyanat H und 10 Gew.-% Polyol G (Zusatzmittel VP.PU 1706). 2850 Gew.-Teile Deckschichtspäne, die aus einem Gemisch aus Nadelholz und Laubholz bestanden und einen Feuchtigkeitsgehalt von ca. 15 Gew.-% aufwiesen, wurden auf eine Temperatur von 60°C aufgeheizt und bei einer Temperatur von 60°C mit 136 Gew.- Teilen Abmischungen aus Isocyanat H und den erfmdungsgemäßen Katalysatoren beleimt, bzw. mit 150 Gew.-Teilen einer direkt vor der Beleimung hergestellten Abmischung aus 90 Gew.-% Isocyanat H und 10 Gew.-% Polol G. Es wurde ein 3-Schicht-Formling der Größe 460 x 460 mm aus einer unteren Deckschicht, einer Mittelschicht und einer oberen Deckschicht hergestellt und bei 200°C verpresst. Die Querzugsfestigkeit der erhaltenen Spanplatten (Dicke 16 mm) nach zwei- stündiger Lagerung in kochendem Wasser wurde bestimmt. Die Ergebnisse sind in Tab. 4 zusammengefasst.
Tabelle 4
Figure imgf000013_0001
Es zeigt sich, dass reines pMDI als Holzbindemittel allein eine verkürzte Presszeit von 1,6 min bei 16 mm Plattendicke nicht erlaubt. Bei dieser verkürzten Presszeit gab es beim Öffnen der Presse Dampfspalter in der Platte. Der Einsatz eines Presszeitverkürzungsadditivs G (Zusatzmittel VP.PU 1706) ermöglichte eine kürzere Presszeit, jedoch mit einem Abfall der Querzugfestigkeit von 20 %. Der Einsatz der erfindungsgemäßen Katalysatoren E und F ergab ähnliche Ergebnisse, es wurden Platten guter Qualität bei der 16 % kürzeren Presszeit erhalten und der Abfall der Querzugfestigkeit betrug nur 9 % bzw. 16 %.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Holzwerkstoffen, bei dem mit lagerstabilem Bindemittel beleimte lignocellulosehaltige Materialien heiß verpresst werden, wobei als lagerstabile Bindemittel Aminkatalysatoren enthaltende Polyisocyanate eingesetzt werden.
2. Verfahren gemäß Anspruch 1, bei dem als Aminkatalysatoren Dimor- pholinoverbindungen eingesetzt werden.
3. Verfahren gemäß Anspruch 2, bei dem die Dimorpholinoverbindungen Dimorpholinodiethylether oder Dimorpholinopolyethylenglykol sind.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, bei dem ein Bindemittel eingesetzt wird, das 0,01 bis 30 Gew.-% Katalysator, bezogen auf
Polyisocyanat, enthält.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass neben dem Polyisocyanat-Bindemittel Bindemittel auf Basis HarnstoffForm- aldehyd- und/oder Melamin/Formaldehyd- und/oder Phenol/Formaldehy-
Harzen mit eingesetzt und gegebenenfalls weitere Hilfs- und Zusatzmittel, Trennmittel, Holzschutzmittel, Flammschutzmittel oder Polyethylendisper- sionen zugesetzt werden.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Polyisocyanat polymeres Diphenylmethandiisocyanat (pMDI) eingesetzt wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Polyisocyanat durch Polyetherpolyole oder Polyesterpolyole modifizierte polymere Diphenylmethandiisocyanate eingesetzt werden.
8. Lagerstabiles Bindemittel, enthaltend polymeres Diphenylmethandiisocyanat und Dimorpholinoverbindungen.
9. Verwendung des lagerstabilen Bindemittels gemäß Anspruch 8 bei der Herstellung von hgnocellulosehaltige Materialien enthaltenden Werkstoffen.
PCT/EP2001/010563 2000-09-26 2001-09-13 Verfahren zur herstellung von holzwerkstoffen mit lagerstabile polyisocyanat-bindemitteln unter mitverwendung von latenten katalysatoren WO2002026851A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2423015A CA2423015C (en) 2000-09-26 2001-09-13 Storage-stable isocyanate binders containing latent catalysts
AU2002213909A AU2002213909A1 (en) 2000-09-26 2001-09-13 Method for producing wood materials containing storage-stable polyisocyanate binders using latent catalysts
PL36054201A PL360542A1 (en) 2000-09-26 2001-09-13 Method for producing wood materials containing storage-stable polyisocyanate binders using latent catalysts
EP01982281A EP1325050A1 (de) 2000-09-26 2001-09-13 Verfahren zur herstellung von holzwerkstoffen mit lagerstabile polyisocyanat-bindemitteln unter mitverwendung von latenten katalysatoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10047485.3 2000-09-26
DE10047485A DE10047485A1 (de) 2000-09-26 2000-09-26 Lagerstabile latente Katalysatoren enthaltende Isocyanat-Bindemittel

Publications (1)

Publication Number Publication Date
WO2002026851A1 true WO2002026851A1 (de) 2002-04-04

Family

ID=7657563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/010563 WO2002026851A1 (de) 2000-09-26 2001-09-13 Verfahren zur herstellung von holzwerkstoffen mit lagerstabile polyisocyanat-bindemitteln unter mitverwendung von latenten katalysatoren

Country Status (9)

Country Link
US (2) US6524652B2 (de)
EP (1) EP1325050A1 (de)
AR (2) AR030799A1 (de)
AU (1) AU2002213909A1 (de)
CA (1) CA2423015C (de)
DE (1) DE10047485A1 (de)
MY (1) MY137947A (de)
PL (1) PL360542A1 (de)
WO (1) WO2002026851A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037240A1 (de) * 2007-09-19 2009-03-26 Basf Se Leichte holzwerkstoffe mit guten mechanischen eigenschaften und geringer formaldehyd-emission
WO2011070040A1 (de) * 2009-12-08 2011-06-16 Basf Se Hochreaktiver, stabilisierter klebstoff auf polyisocyanatbasis
WO2019038116A1 (de) 2017-08-23 2019-02-28 Basf Se Verfahren zur herstellung von lignocellulosewerkstoffen mittels bestimmung von nco-werten

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439280B2 (en) * 2004-04-06 2008-10-21 Basf Corporation Lignocellulosic composite material and method for preparing the same
US20050242459A1 (en) * 2004-04-29 2005-11-03 Savino Thomas G Lignocellulosic composite material and method for preparing the same
US7781501B2 (en) * 2005-09-02 2010-08-24 Georgia-Pacific Chemicals Llc Thermosetting adhesives comprising a resin having azetidinium functional groups
KR20170042633A (ko) * 2014-08-08 2017-04-19 바스프 에스이 일체형 매트를 형성하기 위한 연속식 방법
HUE055224T2 (hu) * 2014-12-23 2021-12-28 Ecosynthetix Inc Biopolimer és izocianát alapú kötõanyagok és kompozit anyagok
EP3733366B1 (de) 2019-04-30 2022-11-16 Fritz Egger GmbH & Co. OG Bindemittel zur herstellung von holzwerkstoffen
EP3733368B1 (de) 2019-04-30 2024-05-22 Fritz Egger GmbH & Co. OG Bindemittel zur herstellung von holzwerkstoffen
PL3733367T3 (pl) 2019-04-30 2022-05-02 Fritz Egger Gmbh & Co. Og Tworzywa drzewne i kompozycie spoiw
CN114058311B (zh) * 2020-08-05 2023-12-19 万华化学集团股份有限公司 一种改性异氰酸酯胶粘剂及其制备方法、一种无醛模压托盘及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133680A1 (de) * 1983-08-09 1985-03-06 Bayer Ag Verfahren zur Herstellung von Presswerkstoffen mit Polyisocyanat-Bindemitteln unter Mitverwendung von latenten, wärmeaktivierbaren Katalysatoren
EP0226287A1 (de) * 1985-10-04 1987-06-24 Minnesota Mining And Manufacturing Company Katalysatoren für die Härtung eines wasserhärtbaren Isocyanatgruppen enthaltenden Prepolymers
EP0264675A2 (de) * 1986-10-20 1988-04-27 Essex Specialty Products, Inc. Unter Feuchtigkeit Härtbare Dichtungszusammensetzung
US5002713A (en) * 1989-12-22 1991-03-26 Board Of Control Of Michigan Technological University Method for compression molding articles from lignocellulosic materials
DE4229396A1 (de) * 1992-09-03 1994-03-10 Glunz Ag Verfahren zur Herstellung von Span- oder Faserplatten
WO1997028202A1 (de) * 1996-01-31 1997-08-07 Bayer Aktiengesellschaft Verfahren zur herstellung von presswerkstoffen mit polyisocyanat-bindemitteln unter mitverwendung von latenten, wärmeaktivierbaren katalysatoren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109686C3 (de) 1971-03-02 1980-09-25 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung oder Veredlung lignozellulosehaltiger Werkstoffe
DE2711958B2 (de) 1977-03-18 1981-08-13 Bayer Ag, 5090 Leverkusen Binde- oder Imprägnierungsmittel für lignocellulosehaltige Materialien
DE2854384A1 (de) 1978-12-16 1980-07-03 Bayer Ag Verfahren zur herstellung von polyurethan-kunststoffen
NL8204144A (nl) 1982-10-27 1984-05-16 Methanol Chemie Nederland Fabricage van spaanplaat.
DE3322078A1 (de) 1983-06-20 1984-12-20 Merck Patent Gmbh, 6100 Darmstadt Verwendung von sucralfat zur bekaempfung von emesis und/oder diarrhoe
DE3438735A1 (de) 1984-10-23 1986-06-26 Desowag-Bayer Holzschutz GmbH, 4000 Düsseldorf Verfahren zur herstellung von span- oder faserplatten
CH669955A5 (de) 1986-08-04 1989-04-28 Sika Ag
AU667448B2 (en) 1994-02-22 1996-03-21 National Starch And Chemical Investment Holding Corporation Catalyst for reactive hot melt adhesives
DK0812866T3 (da) 1996-06-12 2004-02-23 Sika Schweiz Ag Lagerstabil fugtighedshærdende klæbestofmasse
CA2208180C (en) 1996-06-19 2011-11-22 H.B. Fuller Licensing & Financing, Inc. Bookbinding applications utilizing warm melt polyurethanes
JPH1171565A (ja) 1997-08-29 1999-03-16 Nippon Nsc Ltd 化粧シート被覆用の反応性ホットメルト接着剤組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133680A1 (de) * 1983-08-09 1985-03-06 Bayer Ag Verfahren zur Herstellung von Presswerkstoffen mit Polyisocyanat-Bindemitteln unter Mitverwendung von latenten, wärmeaktivierbaren Katalysatoren
EP0226287A1 (de) * 1985-10-04 1987-06-24 Minnesota Mining And Manufacturing Company Katalysatoren für die Härtung eines wasserhärtbaren Isocyanatgruppen enthaltenden Prepolymers
EP0264675A2 (de) * 1986-10-20 1988-04-27 Essex Specialty Products, Inc. Unter Feuchtigkeit Härtbare Dichtungszusammensetzung
US5002713A (en) * 1989-12-22 1991-03-26 Board Of Control Of Michigan Technological University Method for compression molding articles from lignocellulosic materials
DE4229396A1 (de) * 1992-09-03 1994-03-10 Glunz Ag Verfahren zur Herstellung von Span- oder Faserplatten
WO1997028202A1 (de) * 1996-01-31 1997-08-07 Bayer Aktiengesellschaft Verfahren zur herstellung von presswerkstoffen mit polyisocyanat-bindemitteln unter mitverwendung von latenten, wärmeaktivierbaren katalysatoren

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037240A1 (de) * 2007-09-19 2009-03-26 Basf Se Leichte holzwerkstoffe mit guten mechanischen eigenschaften und geringer formaldehyd-emission
EP2042560A1 (de) * 2007-09-19 2009-04-01 Basf Se Leichte Holzwerkstoffe mit guten mechanischen Eigenschaften und geringer Formaldehyd-Emission
US8187709B2 (en) 2007-09-19 2012-05-29 Basf Se Light wood-based materials having good mechanical properties and low formaldehyde emission
WO2011070040A1 (de) * 2009-12-08 2011-06-16 Basf Se Hochreaktiver, stabilisierter klebstoff auf polyisocyanatbasis
CN102648224A (zh) * 2009-12-08 2012-08-22 巴斯夫欧洲公司 基于多异氰酸酯的高度反应性的稳定化粘合剂
WO2019038116A1 (de) 2017-08-23 2019-02-28 Basf Se Verfahren zur herstellung von lignocellulosewerkstoffen mittels bestimmung von nco-werten

Also Published As

Publication number Publication date
MY137947A (en) 2009-04-30
PL360542A1 (en) 2004-09-06
US6524652B2 (en) 2003-02-25
US20020114892A1 (en) 2002-08-22
EP1325050A1 (de) 2003-07-09
US20030109604A1 (en) 2003-06-12
AU2002213909A1 (en) 2002-04-08
CA2423015A1 (en) 2003-03-21
US6723818B2 (en) 2004-04-20
DE10047485A1 (de) 2002-04-11
CA2423015C (en) 2010-11-23
AR059654A2 (es) 2008-04-23
AR030799A1 (es) 2003-09-03

Similar Documents

Publication Publication Date Title
EP0877767B1 (de) Verfahren zur herstellung von presswerkstoffen mit polyisocyanat-bindemitteln unter mitverwendung von latenten, wärmeaktivierbaren katalysatoren
DE2109686C3 (de) Verfahren zur Herstellung oder Veredlung lignozellulosehaltiger Werkstoffe
EP0093357B1 (de) Verfahren zum Verleimen von lignocellulosehaltigen Rohstoffen mit einem Präpolymeren auf Basis eines urethanmodifizierten Diphenylmethandiisocyanatgemisches
DE3150626C2 (de)
EP0634433B1 (de) Verwendung von Mischungen als Bindemittel zur Herstellung von Verbundmaterialien
DE2921681A1 (de) Neue emulgatoren, diese emulgatoren enthaltende waessrige isocyanat-emulsionen sowie deren verwendung als bindemittel in einem verfahren zur herstellung von formkoerpern
DE60132476T2 (de) Polyisocyanatzusammensetzungen als bindemittel für verbundstoffe aus lignocellulosematerial
DE3328662A1 (de) Verfahren zur herstellung von presswerkstoffen mit polyisocyanat-bindemitteln unter mitverwendung von latenten, waermeaktivierbaren katalysatoren
EP0019859B1 (de) Verwendung selbsttrennender Bindemittel auf Isocyanat-/Sulfonsäure-Basis zur Herstellung von Formkörpern
DE2711958B2 (de) Binde- oder Imprägnierungsmittel für lignocellulosehaltige Materialien
WO2002026851A1 (de) Verfahren zur herstellung von holzwerkstoffen mit lagerstabile polyisocyanat-bindemitteln unter mitverwendung von latenten katalysatoren
EP0084313B1 (de) Verfahren zur Herstellung wässriger Polyisocyanat-Emulsionen
DE3128808A1 (de) Klebstoffmasse und ihre verwendung
WO2011070040A1 (de) Hochreaktiver, stabilisierter klebstoff auf polyisocyanatbasis
EP2567798B1 (de) Verwendung von Polyamin in Holzwerkstoffen zur Reduzierung der Emission von Aldehyden und/oder Säuren
EP0700762A2 (de) Verfahren zur Herstellung von Holzspan- und Faserplatten
DE3147407A1 (de) Pressplatte und verfahren zu deren herstellung
EP3733367A1 (de) Holzwerkstoffe und bindemittelzusammensetzungen
EP0067426B1 (de) Herstellung von Bauplatten unter Verwendung von Isocyanat/Aldehyd-Bindemitteln
EP4015173B1 (de) Erhöhung der reaktivität von isocyanatklebstoffen durch ammoniumverbindungen
DE4200324A1 (de) Verwendung eines isocyanatgruppen aufweisenden sumpfprodukts als bindemittel bei der verpressung von substraten zur herstellung von presswerkstoffen
DE10112609A1 (de) Verfahren zur Herstellung von Holzspan- und Holzfaserplatten mit Diisocyanatbindung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001982281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2423015

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001982281

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP