WO2002022012A1 - Systeme d'imagerie par resonance magnetique - Google Patents

Systeme d'imagerie par resonance magnetique Download PDF

Info

Publication number
WO2002022012A1
WO2002022012A1 PCT/JP2001/007870 JP0107870W WO0222012A1 WO 2002022012 A1 WO2002022012 A1 WO 2002022012A1 JP 0107870 W JP0107870 W JP 0107870W WO 0222012 A1 WO0222012 A1 WO 0222012A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
magnetic resonance
magnetic field
subject
Prior art date
Application number
PCT/JP2001/007870
Other languages
English (en)
French (fr)
Inventor
Shigeru Watanabe
Tetsuhiko Takahashi
Hirotaka Takeshima
Hiromichi Shimizu
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US10/380,115 priority Critical patent/US6876198B2/en
Priority to JP2002526271A priority patent/JPWO2002022012A1/ja
Publication of WO2002022012A1 publication Critical patent/WO2002022012A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus that obtains a tomographic image of a desired position of a subject using a nuclear magnetic resonance (hereinafter abbreviated as NMR) phenomenon.
  • NMR nuclear magnetic resonance
  • a magnetic resonance imaging device that guides the depth of penetration into the body for treatment purposes under a video guide, or a magnetic resonance image that displays moving images with sufficient time resolution of changes over time in the treatment area for monitoring the effect of treatment.
  • the magnetic resonance imaging device measures the density distribution, relaxation time distribution, and the like of nuclear spins (hereinafter, referred to as spins) at a desired inspection site in a subject using NMR phenomena, and uses the measured data as a basis. An arbitrary cross section of the subject is displayed as an image.
  • this magnetic resonance imaging apparatus for surgery and treatment is increasing.
  • an open type magnetic resonance imaging apparatus composed of a perpendicular magnetic field type (opposite type) magnet is used. This is because the vertical magnetic field type magnet does not make the subject feel closed and the operator feels open compared to the horizontal magnetic field type so-called cylindrical magnet. Type magnets are used.
  • an object of the present invention is to enable imaging, signal detection, image reconstruction, display, update, etc. without impairing real-time performance even when using a magnetic resonance imaging apparatus during surgery or treatment.
  • Disclosure of the invention is to enable imaging, signal detection, image reconstruction, display, update, etc. without impairing real-time performance even when using a magnetic resonance imaging apparatus during surgery or treatment.
  • the present invention provides a magnetic resonance imaging apparatus, comprising: a magnetic circuit having an open structure for applying a static magnetic field to a subject; a gradient magnetic field generating means for applying a gradient magnetic field to the subject; A sequencer that repeatedly applies a magnetic field in a predetermined pulse sequence, a transmission system that irradiates a high-frequency magnetic field to cause nuclear magnetic resonance in atomic nuclei of the living tissue of the subject, and is emitted by the nuclear magnetic resonance
  • a nuclear magnetic resonance system comprising: a receiving system that detects an echo signal; a signal processing system that creates one image using the echo signal detected by the receiving system; and a unit that displays the obtained image.
  • the receiving system is configured by overlapping a plurality of coils.
  • a plurality of series of echo signals are detected, and the signal processing system divides the plurality of echo signals into a plurality of regions using the plurality of echo signals, performs image reconstruction operations in parallel, and synthesizes the images of the plurality of regions.
  • One image is created, the sequencer executes an ultra-high-speed sequence, performs measurement while reducing the number of measurement phase codes, and further updates an imaging section based on position information regarding an arbitrary angle and direction. It is comprised including.
  • the magnetic resonance imaging apparatus includes an introduction device for entering the body of the subject, and the image updating unit updates an image section based on position information of the insertion device.
  • the image updating means of the magnetic resonance imaging apparatus updates an imaging section using a signal from a three-dimensional mouse as position information.
  • the image updating means of the magnetic resonance imaging apparatus may further include: providing a plurality of markers on the input device; and obtaining, as position information, a signal obtained based on information of a plurality of force sensors that capture the movement of the markers. Update the imaging section.
  • the magnetic circuit of the magnetic resonance imaging apparatus includes a magnet arranged in a vertical direction with respect to a subject on which the subject rests, and two or less supporting means for supporting the magnet.
  • the sequencer of the magnetic resonance imaging apparatus performs measurement by reducing the number of measurement phase codes in correspondence with the plurality of coils of the reception system.
  • another magnetic resonance imaging apparatus of the present invention is a magnetic circuit having an open structure for applying a static magnetic field to a subject, a gradient magnetic field generating means for applying a gradient magnetic field to the subject, and a gradient magnetic field and a high-frequency magnetic field.
  • a sequencer that repeatedly applies a predetermined pulse sequence, a transmission system that irradiates a high-frequency magnetic field to cause nuclear magnetic resonance in the nuclei of the living tissue of the subject, and an echo signal emitted by the nuclear magnetic resonance.
  • a magnetic resonance imaging apparatus including a control unit for controlling the sequencer, the transmission system, the reception system, and the signal processing system so as to continuously execute a display process for displaying each reconstructed image; Detecting a plurality of echo signals formed by overlapping a plurality of coils, wherein the signal processing system divides the plurality of echo signals into a plurality of regions by using the plurality of echo signals, and performs image reconstruction operations in parallel.
  • the sequencer executes an ultra-high-speed sequence, performs measurement while reducing the number of measurement phase encoders, and further performs measurement with respect to an arbitrary angle and direction. It is provided with an image updating means for
  • the magnetic resonance imaging apparatus includes an insertion device to be inserted into the body of the subject, and the image updating unit updates an image section based on the position information of the insertion device.
  • the image updating means of the magnetic resonance imaging apparatus updates an imaging section using a signal from a three-dimensional mouse as position information.
  • the image updating means of the magnetic resonance imaging apparatus may further comprise: a plurality of markers provided on the input device; and a signal obtained based on information of a plurality of cameras that capture the movement of the markers. To update the imaging section.
  • the magnetic circuit of the magnetic resonance imaging apparatus includes a magnet arranged in a vertical direction with respect to a subject on which the subject rests, and two or less supporting means for supporting the magnet. Further, the sequencer of the magnetic resonance imaging apparatus performs measurement by reducing the number of measurement phase codes corresponding to the plurality of coils of the reception system.
  • control means of the magnetic resonance imaging apparatus performs imaging processing of a plurality of imaging sections during one imaging processing period, and performs image reconstruction of a plurality of imaging sections during one image reconstruction processing period.
  • the configuration processing is performed, and a plurality of imaging sections are displayed during one display processing period.
  • control means of the magnetic resonance imaging apparatus sets an imaging section based on the position information by the image updating means as a first imaging section, and sets other imaging sections as imaging sections parallel to the first imaging section. .
  • control unit of the magnetic resonance imaging apparatus sets an imaging section based on the position information by the image updating unit as a first imaging section, and sets other imaging sections as imaging sections orthogonal to the first imaging section.
  • FIG. 1 is an explanatory diagram showing a functional block configuration of a responsive MRI apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the overall configuration of the MRI apparatus of the present invention.
  • Fig. 3 shows the appearance of the static magnetic field generating magnet
  • Fig. 3A is an explanatory diagram of a static magnetic field generating magnet having two support means
  • Fig. 3B is an explanatory diagram of a static magnetic field generating magnet having one support means.
  • FIG. 4 shows a sequence applied to the present invention.
  • FIG. 4A is an explanatory diagram of the fast spin echo method (FSE method)
  • FIG. 4B is an explanatory diagram of the echo brainer method (EPI method).
  • Figure 5 is an illustration of Fluoroscopy.
  • FIG. 4A is an explanatory diagram of the fast spin echo method (FSE method)
  • FSE method fast spin echo method
  • EPI method echo brainer method
  • Figure 5 is an illustration of Fluoroscopy.
  • FIG. 6 is an explanatory diagram of the interactive scan.
  • Figure 7 is an explanatory diagram using interactive scan for Fluoroscopy.
  • Fig. 8 shows Partial Encoding
  • Fig. 8A is an illustration of Keyhole measurement
  • Fig. 8B is an illustration of Keyhole measurement that updates the outside sequentially
  • Fig. 8C is an illustration of the Parshallé encoding that measures the outside and the center alternately.
  • FIG. FIG. 9 shows a parallel MRI
  • FIG. 9A is an explanatory diagram of a multi-array coil used for the parallel MRI
  • FIG. 9B is an explanatory diagram of a parallel MRI.
  • This magnetic resonance imaging apparatus obtains a tomographic image of a subject using an NMR phenomenon, and includes a static magnetic field generating magnet 2, a magnetic field gradient generating system 3, a transmitting system 5, a receiving system 6, It comprises a signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8.
  • CPU central processing unit
  • the static magnetic field generating magnet 2 generates a uniform static magnetic field around the subject 1, and a permanent magnet type, a normal conduction type, or a superconducting type is provided in a certain space around the subject 1.
  • a magnetic field generating means is arranged, and it has an open-type structure with a wide opening so that the surgeon can easily access the subject.
  • This open type structure can be applied to an operator's subject if the support means 301 for supporting the upper and lower static magnetic field generating magnets 2a and 2b has an asymmetric two-pillar structure as shown in FIG. 3A, for example. Easy access.
  • the support means 302 as shown in FIG.
  • the shape of the support means 301, 302 is cylindrical in FIG. 3, but may be prismatic or various shapes in consideration of the accessibility of the operator. The same applies to the static magnetic field generating magnets 2a and 2b, and various shapes may be used as long as they are vertically opposed.
  • a superconducting coil is used as the static magnetic field generating magnet 2
  • it is necessary to shield a leakage magnetic field and a passive ferromagnetic material such as iron is arranged around the static magnetic field generating magnet 2.
  • An active shield is used that places the shield coil outside the superconducting coil.
  • the magnetic field gradient generating system 3 includes a gradient magnetic field coil 9 wound in three axial directions of X, ⁇ , and Z, and a gradient magnetic field power supply 10 for driving each gradient magnetic field coil.
  • the magnetic field gradient generator 3 drives a gradient magnetic field power supply 10 for each of the three-axis gradient magnetic field coils in accordance with a command from a sequencer 7 to be described later, so that gradient magnetic fields Gx, Gy and Gz are applied to the subject 1.
  • the slice plane for the subject 1 can be set by how to apply the gradient magnetic field.
  • the sequencer 4 repeatedly applies a high-frequency magnetic field pulse for causing nuclear magnetic resonance to the nuclei of the atoms constituting the living tissue of the subject 1 in a predetermined pulse sequence.
  • the sequencer 4 operates under the control of the CPU 8 and sends various commands necessary for data collection of tomographic images of the subject 1 to the transmission system 5, the magnetic field gradient generation system 3, and the reception system 6. .
  • the transmission system 5 irradiates a high-frequency magnetic field to cause nuclear magnetic resonance in the nuclei of the atoms constituting the living tissue of the subject 1 by the high-frequency pulse sent from the sequencer 4, and includes a high-frequency oscillator 11 and a modulator. 12, a high-frequency amplifier 13, and a high-frequency coil 14a on the transmission side.
  • the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by a modulator 12 according to a command of a sequencer 7, and the amplitude-modulated high-frequency pulse is amplified by a high-frequency amplifier 13 and then applied to the subject 1.
  • the electromagnetic wave is applied to the subject 1 by supplying it to the high-frequency coil 14a which is arranged in close proximity.
  • the receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of an atomic nucleus of a biological tissue of the subject 1, and is a multi-channel high-frequency high-frequency coil configured by overlapping a plurality of high-frequency coils. It comprises a coil (multi-array coil) 14b, an amplifier group 15, a quadrature phase detector 16, and an A / D converter 17.
  • the electromagnetic wave (NMR signal) of the response of the subject 1 due to the electromagnetic wave emitted from the high-frequency coil 14a on the transmitting side is detected by the multi-channel high-frequency coil 14b arranged close to the subject 1.
  • the signals are input to an A / D converter 17 via a group of amplifiers 15 and a quadrature detector 16 as echo signals of a plurality of sequences, and are converted into digital quantities. Further, the data is collected into two series of data sampled by the quadrature phase detector 16 at a timing according to an instruction from the sequencer 4, and the signal is sent to the signal processing system 7.
  • the signal processing system 7 includes a CPU 8, recording devices such as a magnetic disk 18 and a magneto-optical disk 19, and a display 20 such as a CRT.
  • the CPU 8 performs Fourier transform, correction, and the like for each channel of the multi-array coil. Process, image signal intensity distribution of the area assigned to each channel, combine them, and
  • the high-frequency coils 14a and 14b on the transmitting side and the receiving side and the gradient magnetic field coil 9 are installed in the magnetic field space of the static magnetic field generating magnet 2 arranged in the space around the subject 1. ing.
  • the high-speed imaging method includes an echo brainer (Echo Planar Imaging, hereinafter abbreviated as EPI) and a high-speed spin echo (Fast echo).
  • EPI Echo Planar Imaging
  • FSE Spin Echo
  • the FSE method uses the Marchechi method that generates multiple echoes by repeating the inversion pulse 402 with the transverse magnetization generated by excitation by a 90 ° pulse 401, and applying each echo signal
  • RARE method By splitting the RARE method, which gives a single image at high speed by adding different phase codes to the sequence sequence, to a practical high-speed sequence with image quality similar to the conventional SE method It is a method realized as.
  • the EPI method as shown in FIG. Ultra-fast imaging of 10 ms is possible, but it is extremely sensitive to static magnetic field inhomogeneity.
  • a high-speed sequence such as the FSE method or the EPI method is effective.
  • Fluoroscopy a real-time dynamic imaging method called Fluoroscopy.
  • Fluoroscopy short-time imaging of less than 1 second and real-time image reconstruction are repeated, and it is used for visualizing dynamics of internal tissues and ascertaining the position when inserting instruments from the outside into the body as if by X-ray fluoroscopy Can be. Fluoroscopy will be described with reference to FIG.
  • Fluoroscopy continuous imaging is repeated for a given slice, reconstruction is performed after each imaging, and images are displayed after each reconstruction, so that a continuous image, that is, a moving image can be captured.
  • the interactive scan means that three markers 602 for detecting the positions in the three axes are attached to a device 601 such as a puncture needle, and these markers 602 are measured with two force cameras 603 to determine the position of the Detect tilt. Then, as shown in FIG. 6B, the force camera 603 and the monitor 605 are attached to the magnetic resonance imaging device 604, and the marker 602 is attached to the device 601 operated by the operator.
  • the imaging plane is set in accordance with the direction of the depaise 601, and the operator moves the device 601, so that the camera 603 measures the movement of the marker 602, and the position and inclination of the depaise 601. Is detected, the imaging surface is reset based on this information, and displayed on the monitor 605 as needed. That is, as shown in FIG. 7, it is possible to always obtain a cross section of the device orientation in real time.
  • imaging with higher temporal resolution can be performed, the tracking response speed of the device can be improved, and the guide of the device can be completed in a short time.
  • a continuous image of a plurality of cross-sectional images can be obtained at one time.
  • the plurality of cross-sectional images may be cross-sectional images that are different from the cross-section in the direction of the device described above, or may be cross-sectional images that are orthogonal to the cross section.
  • the time resolution can be improved by simply reducing the repetition time (TR) and the number of phase encodes and shortening the imaging time per image, but in this case, the image S / N decreases. Also, the spatial resolution is deteriorated and the image quality is deteriorated.
  • a method called partial phase encoding shown in Fig.
  • Typical methods of this partial encoding include, for example, There is Keyhole measurement. Keyhole measurement is intended to improve the time resolution especially when the target tissue does not move and there is only a change in the signal strength.Contrast information is dominated by the data in the central part 801 of the k space. Utilizing the characteristic of being determined. When this keyhole method is applied to a moving object, since the outside 802 data (spatial high-frequency information) is not updated, arch-fat occurs, so the k-space outside as shown in Fig. 8B There is also a method to measure the data of 8021 802 sequentially. As another method, as shown in FIG.
  • Parallel MRI is a method of imaging by thinning out data in the phase encoding direction using a multi-array coil configured by overlapping multiple coils. More specifically, a plurality of multi-array coils as shown in FIG. 9A are used. Then, as shown in FIG. 9B, the phase encode is thinned out for each coil by a predetermined number (usually the same number as the number of coils) and photographed. Then, based on the sensitivity distribution obtained in advance from the whole-body coil or each coil, aliasing occurring in each image is removed using a matrix operation to obtain an image. As described above, since the phase encoding is thinned out for shooting, the shooting time can be reduced.
  • the sequencer executes an ultra-high-speed sequence (100 ms or less in full scan), and the measurement system reduces the number of measurement phase encodings by using partial channel measurement and multi-channel reception.
  • Multiple coils Perform parallel MRI to reconstruct images of multiple series of data and combine the reconstructed images of multiple regions to create one image.
  • coordinate information on the imaging cross section is captured from the depice at intervals that can be recognized in real time (about 0.1 second), and the imaging cross section is updated in real time. (50 frames per second or more).
  • FIG. 1 shows a functional configuration of the embodiment of the present invention.
  • a sequencer 4 that executes high-speed sequences such as EPI and FSE,
  • multi-channel coils 14b are used to perform multi-channel reception in parallel, and the detected multiple series echo signals are output to the amplifier group 15 through the amplifier group 15 respectively.
  • High-speed imaging for example, 100 images / s
  • Parallel measurement system 101 is achieved by performing / D conversion, dividing the image into multiple regions, performing image reconstruction operations in parallel, synthesizing the images in the multiple regions, and acquiring data for one image.
  • a real-time display system 103 for displaying the obtained image at a high frame rate (for example, 100 frames / second);
  • the gradient coil 9 and the transmission coil can be used to execute high-speed sequences.
  • 3D mouse 105 which allows the operator to freely enter imaging section information Can be achieved by further providing
  • a patient tomographic image including a puncture needle and a target tissue is obtained from information from a position information device 52 attached to the puncture needle or a pointing device 53 that can arbitrarily input position information.
  • the surface can be set instantaneously.
  • This position information can be updated in real time, specifically in 0.1 second units, so that the cross section including the needle can always be tracked even if the patient moves as the needle advances.
  • the number of phase encoders to be measured each time is reduced to 1/10 by using a partial scan and a multi-array coil with space division measurement (parallel measurement) in a 100 ms imaging sequence with full scan. By doing so, a new image can be created every 10 ms.
  • a real-time display system it is possible to update images with a high time resolution of 100 frames / s.
  • a device such as a puncture needle can be smoothly guided to the affected part.
  • the present invention is configured as described above, as the operator operates the puncture needle, it is possible to automatically determine the imaging cross section including the direction of movement of the needle, and even if the patient moves, the target cross section can be determined. Can follow.
  • the image is updated with a high time resolution, changes in the patient's body due to the depth operation can be confirmed in real time.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

明 細 書 磁気共鳴ィメ一ジング装置 技術分野
本発明は、核磁気共鳴(以下、 NMRと略す)現象を利用して被検体の所望部 位の断層画像を得る磁気共鳴ィメ一ジング装置に関する。 特に治療目的の体内 揷入デパイスを映像ガイド下で誘導する磁気共鳴イメージング装置、 または治 療効果モニタのため、 治療領域の経時変化を十分な時間分解能を持って動画表 示する磁気共鳴ィメ一ジング装置に関する。 背景技術
磁気共鳴ィメ一ジング装置は、 NMR現象を利用して被検体中の所望の検査 部位における原子核スピン (以下、 スピンと称す) の密度分布、 緩和時間分布 等を計測して、 この計測データから被検体の任意の断面を画像表示するもので ある。 そして、 この磁気共鳴イメージング装置を手術や治療に用いることも多 くなってきている。
手術や治療に用いるための構成として、 垂直磁場方式 (対向型) の磁石で構 成されたオープン型の磁気共鳴イメージング装置が用いられる。 それは、 垂直 磁場方式の磁石は、 水平磁場方式いわゆる円筒型の磁石に比べて、 被検体に閉 塞感を感じさせることなく、 また術者にとっても開放感を感じるものであるた め、 垂直磁場方式の磁石が用いられる。
しかしながら、 このような構成の磁気共鳴イメージング装置では、 術者がリ アルタイムで患部画像を見ながら手術や治療を行なうための十分な配慮がなさ れていないものであった。
そこで、 本発明の目的は、 磁気共鳴イメージング装置を手術や治療の最中に使 用する場合でもリアルタイム性を損なうことなく、 撮影、 信号の検出、 画像の 再構成、 表示、 更新等を行えるようにすることある。 発明の開示
本発明は、 上記目的を達成するために、 磁気共鳴イメージング装置は被検体 に静磁場を与えるオープン構造の磁気回路と、 前記被検体に傾斜磁場を与える 傾斜磁場発生手段と、 前記傾斜磁場並びに高周波磁場を所定のパルスシーケン スで繰り返し印加するシーケンサと、 前記被検体の生体組織の原子核に核磁気 共鳴を起こさせるために高周波磁場を照射する送信系と、 前記核磁気共鳴によ り放出されるェコ一信号を検出する受信系と、 この受信系で検出したェコ一信 号を用いて 1画像を作成する信号処理系と、 得られた画像を表示する手段とを 備え、 核磁気共鳴により放出されるエコー信号の計測を繰り返し行って断層像 を得る磁気共鳴イメージング装置において、 上記受信系は、 複数のコイルをォ 一パーラップさせて構成され複数系列のエコー信号を検出し、 上記信号処理系 は、 前記複数系列のェコ一信号を用いて複数領域に分割して画像再構成演算を 並列に行い、該複数領域の画像を合成して 1画像を作成し、上記シーケンサは、 超高速シーケンスを実行すると共に計測位相ェンコ一ド数を低減して計測し、 さらに任意の角度、 方向に関する位置情報に基づいて撮像断面を更新する画像 更新手段を備えて構成される。
また、 上記磁気共鳴ィメ一ジング装置は被検体の体内へ揷入する揷入用デバ イスを備え、 前記画像更新手段は前記挿入用デパイスの位置情報に基づいて撮 像断面を更新する。
また、 上記磁気共鳴イメージング装置の前記画像更新手段は、 三次元マウス からの信号を位置情報として撮像断面を更新する。
また、 上記磁気共鳴イメージング装置の前記画像更新手段は、 前記揷入用デ パイスに複数のマーカを設け、 このマーカの動きを捉える複数の力メラの情報 に基づいて得られた信号を位置情報として撮像断面を更新する。
また、 上記磁気共鳴イメージング装置の前記磁気回路は、 寝載した被検体に 対し上下方向に対向して配置された磁石と、 この磁石を支持する 2本以下の支 持手段で構成される。
また、 上記磁気共鳴イメージング装置の前記シーケンサは、 計測位相ェンコ 一ド数を前記受信系の複数のコィルに対応させて低減して計測する。 さらに、 本発明の他の磁気共鳴ィメ一ジング装置は被検体に静磁場を与える オープン構造の磁気回路と、 前記被検体に傾斜磁場を与える傾斜磁場発生手段 と、 前記傾斜磁場並びに高周波磁場を所定のパルスシーケンスで繰り返し印加 するシーケンサと、 前記被検体の生体組織の原子核に核磁気共鳴を起こさせる ために高周波磁場を照射する送信系と、 前記核磁気共鳴により放出されるェコ 一信号を検出する受信系と、 この受信系で検出したエコー信号を用いて 1画像 を作成する信号処理系と、 得られた画像を表示する手段とを備え、 前記パルス シーケンスを実行しエコー信号を取得する撮像処理を所定の回数連続して実行 し、 各撮像処理により得られたエコー信号を再構成する画像再構成処理を撮像 処理に対応して連続して実行し、 再構成された各画像を表示する表示処理を連 続して実行するよう上記シーケンサ、 送信系、 受信系、 信号処理系を制御する 制御手段を備えた磁気共鳴イメージング装置において、 上記受信系は、 複数の コィルをオーバーラップさせて構成され複数系列のェコ一信号を検出し、 上記 信号処理系は、 前記複数系列のエコー信号を用いて複数領域に分割して画像再 構成演算を並列に行い、 該複数領域の画像を合成して 1画像を作成し、 上記シ 一ケンサは、 超高速シーケンスを実行すると共に計測位相ェンコ一ド数を低減 して計測し、 さらに任意の角度、 方向に関する位置情報に基づいて撮像断面を 更新する画像更新手段を備えて構成される。
また、 上記磁気共鳴ィメ一ジング装置は被検体の体内へ挿入する揷入用デバ イスを備え、 前記画像更新手段は前記挿入用デパイスの位置情報に基づいて撮 像断面を更新する。
また、 上記磁気共鳴イメージング装置の前記画像更新手段は、 三次元マウス からの信号を位置情報として撮像断面を更新する。
また、 上記磁気共鳴イメージング装置の前記画像更新手段は、 前記揷入用デ パイスに複数のマーカを設け、 このマーカの動きを捉える複数のカメラの情報 に基づ 、て得られた信号を位置情報として撮像断面を更新する。
また、 上記磁気共鳴イメージング装置の前記磁気回路は、 寝載した被検体に 対し上下方向に対向して配置された磁石と、 この磁石を支持する 2本以下の支 持手段で構成される。 また、 上記磁気共鳴イメージング装置の前記シーケンサは、 計測位相ェンコ 一ド数を前記受信系の複数のコイルに対応させて低減して計測する。
また、 上記磁気共鳴イメージング装置の前記制御手段は、 1 回の撮像処理期 間中に複数の撮像断面の撮像処理を行ない、 1 回の画像再構成処理期間中に複 数の撮影断面の画像再構成処理を行ない、 1 回の表示処理期間中に複数の撮影 断面の表示を行なう。
また、 上記磁気共鳴イメージング装置の前記制御手段は、 前記画像更新手段 による位置情報に基づく撮像断面を第 1の撮像断面とし、 他の撮像断面は第 1 の撮像断面と平行な撮影断面に設定する。
また、 上記磁気共鳴イメージング装置の前記制御手段は、 前記画像更新手段 による位置情報に基づく撮像断面を第 1の撮像断面とし、 他の撮像断面は第 1 の撮像断面と直交する撮影断面に設定する。 図面の簡単な説明
図 1は本発明の実施例である即応型 MRI装置の機能プロック構成を示す説明 図である。 図 2は本発明の MRI装置の全体構成を示すプロック図である。 図 3 は静磁場発生磁石の外観を示し、 図 3Aは支持手段が 2本の静磁場発生磁石の 説明図、 図 3Bは支持手段が 1本の静磁場発生磁石の説明図である。 図 4は本 発明に適用するシーケンスを示し、 図 4Aは高速スピンエコー法 (FSE法) の 説明図、図 4Bはエコーブラナー法 (EPI法)の説明図である。図 5は Fluoroscopy の説明図である。 図 6はインタラクティブスキャンの説明図である。 図 7 は Fluoroscopyにインタラクティブスキャンを用いた説明図である。 図 8はパー シャルェンコ一ディングを示し、図 8Aは Keyhole計測の説明図、図 8Bは外側 を逐次更新する Keyhole計測の説明図、 図 8Cは外側と中央部分を交互に計測 するパーシャノレエンコーディングの説明図である。図 9はパラレル MRIを示し、 図 9Aはパラレル MRIに用いるマルチアレイコイルの説明図、 図 9Bはパラレ ル MRIの説明図である。 発明を実施するための最良の形態 以下、 本発明の実施例を添付図面を用いて説明する。
まず、 本発明が適用される磁気共鳴イメージング装置の全体構成を図 2によ り説明する。 この磁気共鳴ィメ一ジング装置は、 NMR現象を利用して被検体の 断層像を得るもので、静磁場発生磁石 2と、磁場勾配発生系 3と、送信系 5と、 受信系 6と、 信号処理系 7と、 シーケンサ 4と、 中央処理装置 (CPU) 8とを 備えて構成される。
上記静磁場発生磁石 2は、 被検体 1の周りに均一な静磁場を発生させるもの で、 上記被検体 1の周りのある広がりをもった空間に永久磁石方式または常電 導方式あるいは超電導方式の磁場発生手段が配置されており、 術者の被検体へ のアクセスが容易なように開口を広く取ったオープン型の構造となっている。 このオープン型の構造は、例えば図 3Aに示すような上下の静磁場発生磁石 2a, 2bを支持する支持手段 301が非対称の 2本柱構造のものであれば、術者の被検 体へのアクセスが容易になる。 さらに、 図 3Bに示すような支持手段 302が 1 本柱構造のものであれば、 さらに開放性が増し、 被検者へ閉塞感を与えず、 術 者のアクセス性も向上する。 なお、 支持手段 301, 302の形状であるが、 図 3 では円柱形状としているが、 角柱でもよいし、 術者のアクセス性等を考慮して 種々の形状でもよい。静磁場発生磁石 2a, 2bについても同様で、上下に対向配 置されていれば種々の形状でもよい。 また、 図示していないが、 静磁場発生磁 石 2に超電導コイルを用いた場合、 漏洩磁場を遮蔽する必要があり、 静磁場発 生磁石 2の外周に鉄等の強磁性体を配置するパッシブシールドゃ、 シールドコ ィルを超電導コィルの外側に配置するァクティブシールドを用いている。 静磁 場空間の均一度の向上には、 ポールピース、 シム材、 シムコイル等種々のもの が用いられ、 永久磁石、 超電導磁石を問わず状況に応じて用いられている。 磁場勾配発生系 3は、 X, Υ, Zの三軸方向に卷かれた傾斜磁場コイル 9と、 それぞれの傾斜磁場コイルを駆動する傾斜磁場電源 10とカ ら構成される。この 磁場勾配発生計 3は、 後述のシーケンサ 7からの命令に従って三軸の各傾斜磁 場コイルの傾斜磁場電源 10を駆動することにより、 X, Y, Zの三軸方向の傾 斜磁場 Gx, Gy, Gzを被検体 1に印加するようになっている。 この傾斜磁場の 加え方により被検体 1に対するスライス面を設定することができる。 シーケンサ 4は、 上記被検体 1の生体組織を構成する原子の原子核に核磁気 共鳴を起こさせる高周波磁場パルスをある所定のパルスシーケンスで繰り返し 印加するものである。 このシーケンサ 4は、 CPU8の制御で動作し、 被検体 1 の断層像のデータ収集に必要な種々の命令を、 送信系 5及ぴ磁場勾配発生系 3 並びに受信系 6に送るようになつている。
送信系 5は、上記シーケンサ 4から送り出される高周波パルスにより被検体 1 の生体組織を構成する原子の原子核に核磁気共鳴を起こさせるために高周波磁 場を照射するもので、高周波発振器 11と変調器 12と高周波増幅器 13と送信側 の高周波コイル 14aとから構成される。 この送信系 5では、 上記高周波発振器 11から出力された高周波パルスをシーケンサ 7の命令にしたがって変調器 12 で振幅変調し、この振幅変調された高周波パルスを高周波増幅器 13で増幅した 後に被検体 1に近接して配置された高周波コイル 14aに供給することにより、 電磁波が上記被検体 1に照射されるようになっている。
受信系 6は、 被検体 1の生体組織の原子核の核磁気共鳴により放出されるェ コー信号(NMR信号) を検出するもので、複数の高周波コイルをオーバーラッ プさせて構成される多チャンネル高周波コイル (マルチアレイコイル) 14b と 増幅器群 15と直交位相検波器 16と、 A/D変換器 17とから構成される。 この 受信系 6は、 上記送信側の高周波コイル 14aから照射された電磁波による被検 体 1の応答の電磁波 (NMR信号) は被検体 1に近接して配置された多チャン ネル高周波コイル 14bで検出され、 複数系列のエコー信号として増幅器群 15 及ぴ直交位相検波器 16を介して A/D変換器 17に入力してディジタル量に変 換される。 さらに、 シーケンサ 4からの命令によるタイミングで直交位相検波 器 16によりサンプリングされた各々二系列の収集データとされ、その信号が信 号処理系 7に送られるようになっている。
この信号処理系 7は、 CPU8と、 磁気ディスク 18及ぴ光磁気ディスク 19等 の記録装置と、 CRT等のディスプレイ 20とから構成され、 上記 CPU8でマル チアレイコイルのチャンネル毎にフーリエ変換、 補正等の処理を行い、 チャン ネル毎に割り当てられた領域の信号強度分布を画像ィ匕し、 これらを合成してデ
20に任意断面の断層像として表示するようになっている。 なお、 図 2において、 送信側及ぴ受信側の高周波コイル 14a, 14bと傾斜磁 場コイル 9は、 被検体 1の周りの空間に配置された静磁場発生磁石 2の磁場空 間内に設置されている。
次に、 本発明の磁気共鳴イメージング装置において、 リアルタイム性を向上 させるための手段を個別に説明する。
シーケンスとしては、 基本的な撮像シーケンスであるスピンエコー? έ及ぴグ ラジェントエコー法に加えて高速の撮像手法として、 エコーブラナー (Echo Planar Imaging:以下、 EPIと略す) や高速スピンエコー (Fast Spin Echo : 以下、 FSEと略す) 等がある。 FSE法は図 4Aに示すように、 90° パルス 401 による励起で発生した横磁化を反転パルス 402を繰り返すことで多重のェコ一 を発生させるマルチェコ一法を応用して各々のェコ一信号に異なる位相ェンコ 一ドを付与して 1枚の画像を高速に得られるようにした RARE法を複数のシー ケンス列に分割することで従来の SE法に近い画質を有する実用的な高速シー ケンスとして実現した方法である。一方 EPI法は図 4Bに示すように、 RFによ る反転を用いないで、 読み出しの傾斜磁場 404を高速で反転させ 1個の励起パ ルス 403で複数のエコーを取得する方法であり、 数十 msという超高速の撮像 が可能であるが、静磁場不均一に極めて敏感である。本発明は、このような FSE 法や EPI法等の高速シーケンスが有効である。
本願発明は、 これら高速シーケンスを応用して、 Fluoroscopy (透視撮像) と呼ばれるリアルタイム動態画像化法に適用する。 Fluoroscopyでは 1秒以下 程度の短時間撮像とリアルタイム画像再構成を繰り返し、 あたかも X線の透視 撮影のように体内組織の動態描出や体内に外部から器具を挿入する際などの位 置把握に用いることができる。 図 5を用いて Fluoroscopyについて説明する。
-Fluoroscopyでは、 所定のスライスに対し連続して撮像を繰り返し、 各撮像後 に再構成を行ない、 各再構成後に画像を表示させることで、 連続した画像つま り動画像的な撮影が行なえる。
この Fluoroscopy feN Minimum Invasive s的とし 7こ Interventional MRI (以下 IVMR と略す) と総称される術中撮像での応用が盛んになつている。
IVMRにおける Fluoroscopyの用途として最も期待されるのが、 穿刺針やカテ 一テル (以下、 デバイスと総称する) を患部に誘導する際の画像化手段として の応用である。 また、 デバイスが治療部位に到達した後においては、 治療の進 行によって生じる治療部位組織の物理的または化学的変化を画像ィヒすることで、 治療のモニタが行える。
このような治療用のモユタに Fluoroscopyを用いる場合には、 撮像断面を固 定した Fluoroscopyを行っていると患者の体動などでデバイスが撮像面から外 れ、 穿刺針等の先端が画像化できなくなることがある。 これを解決するための 一手法として図 6に示すようなインタラクティブスキャンと呼ばれるものがあ る。 インタラクティブスキャンとは、 穿刺針等のデバイス 601に 3軸方向の位 置を検出するための 3個のマーカ 602を取り付け、 このマーカ 602を 2台の力 メラ 603で計測し、 デパイス 601の位置及び傾きを検出する。 そして、 図 6B に示すように磁気共鳴ィメ一ジング装置 604に力メラ 603、 モニタ 605を取り 付け、 術者が操作するデパイス 601にマーカ 602を取り付ける。 このような構 成において、 デパイス 601の向きに併せて撮像面を設定しておき、 術者がデバ イス 601を動かすことで、 カメラ 603はマーカ 602の動きを計測し、 デパイス 601 の位置、 傾きを検出し、 この情報に基づいて撮像面を設定しなおし、 モニ タ 605に随時表示させる。 つまり、 図 7に示すように常にデバイスの向きの断 面をリアルタイムに得ることができる。 このようにインタラクティブスキャン と Fluoroscopyを対応させることで、 より高い時間分解能の撮像を行えデパイ スの追跡応答速度が向上し、 デパイスの誘導を短時間で終えることができる。 また、 この Fluoroscopyにマルチスライス撮影を組み合わせることで、 1度に 複数の断面像の連続画像を得ることができる。 この複数の断面像は、 上述した デバイスの向きの断面と 亍な断面像でもよいし、 直交する断面像でもよい。 次に、 単純に繰り返し時間 (TR) や位相エンコード数を削減し、 1枚の画像 当たりの撮像時間を短縮することで、 時間分解能を向上することはできるが、 この場合画像 S/Nの低下や空間分解能の劣化を生じ画質低下を招く。 そのため に、 図 7に示すような部分位相ェンコ一ディング (パーシャルェンコ一ディン グ) と呼ばれる計測データの流用による時間分解能向上手法を用いる。 このパ —シャルエンコーディングの代表的な方法には、 例えば図 8Aに示すような Keyhole計測がある。 Keyhole計測は、 特に対象組織が移動せず信号強度のみ の変化が存在するような場合の時間分解能向上を目的としたものであり、 k空 間の中央部分 801のデータが支配的にコントラスト情報を決定しているという 特性を活かしている。 この Keyhole法を移動する対象に適用した場合は、 k空 間の外側 802のデータ (空間高周波情報) の更新がなされないために、 アーチ ファタトが発生するため、図 8Bに示すような k空間外側 8021 802 のデータ も逐次計測する方法もある。 その他には図 8Cに示すように外側 803, 805のデ ータと中央部 804のデータとを交互に計測する方法もある。 何れの方法も時間 分解能の向上が図れ、 種々の状況に応じて使い分けることができる。 なお、 Keyhole 浅 !Jについては、 Brammer らの Composite k-space windows (keyhole Tecnniques) to improve temporal resolution in A dynamic series of images following contrast administration: SMRM Proc. ,P4236, 1996 "に 詳しく、 その他のパーシャルエンコード計測についても、 Mistlletta ら (USP 5713358および USP 5830143) において詳細に説明されている。
また、撮影時間を短縮する手法として、パラレル MRIと呼ばれる手法が用い られる。パラレル MRIとは、複数のコイルをオーバーラップさせて構成したマ ルチアレイコイルを用いて、 位相エンコード方向のデータを間引いて撮影する 手法である。具体的に説明すると、図 9Aに示すような複数配置されたマルチア レイコイルを用いる。そして、図 9Bに示すように各コイル毎に位相エンコード を所定の数 (通常はコイルの数と同数) 間引いて撮影する。 そして、 事前に全 身用コイルもしくは各コイルから取得しておいた感度分布に基づいて、 各画像 に生じる折り返しを行列演算を用いて除去し、 画像を得る。 このように位相ェ ンコードを間引いて撮影するため、 撮影時間が短縮できる。
上記の対応では、 高速に撮像を行う手段や撮像断面を自在に変更する手段に 関する改良はなされているが、 いずれの場合にもシステムとしての最適化がな されておらず、 それぞれの機能も有機的に結合していない。 そのため、 本願発 明では下記の構成とすることにより、 達成している。 つまり、 シーケンサでは 超高速シーケンス (フルスキャンで 100ms以下) を実行し、計測系では計測位 相エンコード数を低減するパーシャルェンコ一ド計測及び多チャンネル受信系 (マルチプルコイル) にて検出した複数系列のデータを画像再構成し再構成さ れた複数領域の画像を合成して 1画像を作成するパラレル MRIを実行する。ま た画像処理系ではデパイスより撮像断面に関する座標情報をリアルタイムで認 識できる程度 (0.1秒程度) の間隔にて取り込み、実時間で撮像断面を更新し、 表示系では得られた画像を高速で(50フレーム/秒以上のレート)で表示するこ とで達成できる。
次に、 本願発明の実施形態の機能的な構成を図 1に示す。
すなわち本発明では、
( 1 ) EPIや FSE等の高速シーケンスを実行させるシーケンサ 4と、
( 2 ) 位相エンコードの印加を低減するパーシャルエンコード計測機能に加 え、 マルチアレイコイル 14bを用いて多チヤンネルの受信を並列に行い、 検出した複数系列のェコ一信号を増幅器群 15を通してそれぞれ A/D変換 し、複数領域に分割して画像再構成演算を並列に行い、該複数領域の画像 を合成して 1 画像分のデータを取得することで高速撮像 (例えば 100 images/s) を達成するパラレル計測系 101と、
( 3 ) 上記高速撮像により得られた画像データに対し高速で画像再構成を実 行する高速画像処理系 102と、
( 4 ) 得られた画像を高いフレームレート (例えば 100フレーム/秒) で表示 するリアルタイム表示系 103と、
( 5 ) IVMR用のデパイス(穿刺針等に取り付けた位置情報デパイス 52ゃポ インティングデバイス 53) より撮像断面に関する座標情報を操作者がリ アルタイムで確認できる程度 (0.1秒程度) の間隔にて取り込み、 実時間 で撮像断面を更新するインタラクティブスキャンコントローラ 104と、
( 6 ) 高速シーケンスを実行可能な電力を傾斜磁場コイル 9や送信コイル
14aに供給するハイパワー MRユニット 106と
を備えている。 これにより、 高い時間分解能を有した Fluoroscopyと操作者の 各種操作への応答性の高いリアルタイム MRシステムを提供できる。
また、 操作者自身の操作で任意の撮影断面に切り換えて表示させる場合には
(7) 操作者により自在に撮影断面情報を入力できる 3Dマウス 105、 を更に備えることで達成できる。
このように構成された磁気共鳴イメージング装置では、 穿刺針に取り付けた 位置情報デバイス 52 または任意に位置情報を入力できるポインティングデバ イス 53からの情報により、穿刺針おょぴ目的の組織を含む患者断層面を瞬時に 設定することが可能となる。 この位置情報はリアルタイムで更新可能、 具体的 には 0.1秒単位で更新可能であり、 これにより針の進行に伴って患者の体動が あっても、 常に針を含む断面を追跡できる。 また得られる画像はフルスキャン で 100msの撮像シーケンスをパーシャルェンコ一ド及ぴマルチアレイコイルに よる空間分割計測 (パラレル計測) の併用により、 毎回計測する位相ェンコ一 ド数を 1/10に削減することで 10ms毎に新しい画像が作成できる。 さらにリア ルタイム表示系を用いることで、 100 frames/sの高時間分解能での画像更新を 可能とする。 これにより穿刺針等のデバイスをスムーズに患部に誘導できる。 本発明は以上のように構成されたので、 術者が穿刺針の操作をするにつれ、 針の進行方向を含む撮像断面を自動的に決定でき、 患者の体動があっても目的 の断面を追随できる。 また、 高い時間分解能で画像が更新されるため、 デパイ ス操作による患者体内の変化をリアルタイムで確認することができる。
またシステムとして最適化しているため、 臨床使用に際して目的の断面の情報 を効率よく取得することができ、 さらに個別の機能に対する仕様を不必要に高 くしてコストアップすることがなくなる。

Claims

請 求 の 範 囲
1. 被検体に静磁場を与えるオープン構造の磁気回路と、
前記被検体に傾斜磁場を与える傾斜磁場発生手段と、
前記傾斜磁場並びに高周波磁場を所定のパルスシーケンスで繰り返し印加す るシーケンサと、
前記被検体の生体組織の原子核に核磁気共鳴を起こさせるために高周波磁場 を照射する送信系と、
前記核磁気共鳴により放出されるェコ一信号を検出する受信系と、 この受信系で検出したェコ一信号を用いて 1画像を作成する信号処理系と、 得られた画像を表示する手段とを備え、
核磁気共鳴により放出されるェコ一信号の計測を繰り返し行って断層像を得 る磁気共鳴ィメ一ジング装置において、
上記受信系は、 複数のコイルをォーパーラップさせて構成され複数系列のェ コー信号を検出し、
上記信号処理系は、 前記複数系列のエコー信号を用いて複数領域に分割して 画像再構成演算を並列に行い、 該複数領域の画像を合成して 1画像を作成し、 上記シーケンサは、 超高速シーケンスを実行すると共に計測位相エンコード 数を低減して計測し、
さらに任意の角度、 方向に関する位置情報に基づいて撮像断面を更新する画 像更新手段を備えたことを特徴とする磁気共鳴ィメ一ジング装置。
2. 被検体の体内へ揷入する挿入用デバイスを備え、前記画像更新手段は前記挿 入用デパイスの位置情報に基づレヽて撮像断面を更新することを特徴とする請求 項 1記載の磁気共鳴ィメ一ジング装置。
3. 前記画像更新手段は、三次元マウスからの信号を位置情報として撮像断面を 更新することを特徴とする請求項 1記載の磁気共鳴ィメ一ジング装置。
4. 前記画像更新手段は、前記揷入用デバイスに複数のマーカを設け、 このマー 力の動きを捉える複数のカメラの情報に基づいて得られた信号を位置情報とし て撮像断面を更新することを特徴とする請求項 2記載の磁気共鳴ィメ一ジング
5. 前記磁気回路は、寝載した被検体に対し上下方向に対向して配置された磁石 と、 この磁石を支持する 2本以下の支持手段で構成されたことを特徴とする請 求項 1記載の磁気共鳴ィメ一ジング装置。
6. 前記シーケンサは、計測位相エンコード数を前記受信系の複数のコイルに対 応させて低減して計測することを特徴とする請求項 1記載の磁気共鳴ィメ一ジ ング装置。
7. 被検体に静磁場を与えるオープン構造の磁気回路と、
前記被検体に傾斜磁場を与える傾斜磁場発生手段と、
前記傾斜磁場並びに高周波磁場を所定のパルスシーケンスで繰り返し印加す るシーケンサと、
前記被検体の生体組織の原子核に核磁気共鳴を起こさせるために高周波磁場 を照射する送信系と、
前記核磁気共鳴により放出されるェコ一信号を検出する受信系と、 この受信系で検出したエコー信号を用いて 1画像を作成する信号処理系と、 得られた画像を表示する手段とを備え、
前記パルスシーケンスを実行しェコ一信号を取得する撮像処理を所定の回数 連続して実行し、 各撮像処理により得られたエコー信号を再構成する画像再構 成処理を撮像処理に対応して連続して実行し、 再構成された各画像を表示する 表示処理を連続して実行するよう上記シーケンサ、 送信系、 受信系、 信号処理 系を制御する制御手段を備えた磁気共鳴ィメ一ジング装置において、
上記受信系は、 複数のコイルをォーパーラップさせて構成され複数系列のェ コー信号を検出し、
上記信号処理系は、 前記複数系列のエコー信号を用いて複数領域に分割して 画像再構成演算を並列に行い、 該複数領域の画像を合成して 1画像を作成し、 上記シーケンサは、 超高速シーケンスを実行すると共に計測位相ェンコ一ド 数を低減して計測し、
さらに任意の角度、 方向に関する位置情報に基づいて撮像断面を更新する画像 更新手段を備えたことを特徴とする磁気共鳴ィメ一ジング装置。
8.被検体の体内へ揷入する揷入用デバイスを備え、前記画像更新手段は前記揷 入用デバイスの位置情報に基づいて撮像断面を更新することを特徴とする請求 項 7記載の磁気共鳴ィメ一ジング装置。
9. 前記画像更新手段は、三次元マウスからの信号を位置情報として撮像断面を 更新することを特徴とする請求項 7記載の磁気共鳴ィメ一ジング装置。
10. 前記画像更新手段は、 前記挿入用デバイスに複数のマーカを設け、 このマ 一力の動きを捉える複数の力メラの情報に基づいて得られた信号を位置情報と して撮像断面を更新することを特徴とする請求項 8記載の磁気共鳴ィメ一ジン
11. 前記磁気回路は、 寝載した被検体に対し上下方向に対向して配置された磁 石と、 この磁石を支持する 2本以下の支持手段で構成されたことを特徴とする 請求項 7記載の磁気共鳴ィメ一ジング装置。
12. 前記シーケンサは、 計測位相エンコード数を前記受信系の複数のコイルに 対応させて低減して計測することを特徴とする請求項 7記載の磁気共鳴ィメ一 ジング装置。
13. 前記制御手段は、 1 回の撮像処理期間中に複数の撮像断面の撮像処理を行 ない、 1回の画像再構成処理期間中に複数の撮影断面の画像再構成処理を行な い、 1 回の表示処理期間中に複数の撮影断面の表示を行なうことを特徴とする 請求項 7記載の磁気共鳴ィメ一ジング装置。
14. 前記制御手段は、 前記画像更新手段による位置情報に基づく撮像断面を第 1の撮像断面とし、 他の撮像断面は第 1の撮像断面と平行な撮影断面に設定す ることを特徴とする請求項 13に記載の磁気共鳴ィメ一ジング装置。
15. 前記制御手段は、 前記画像更新手段による位置情報に基づく撮像断面を第 1の撮像断面とし、 他の撮像断面は第 1の撮像断面と直交する撮影断面に設定 することを特徴とする請求項 13に記載の磁気共鳴ィメ一ジング装置。
PCT/JP2001/007870 2000-09-11 2001-09-11 Systeme d'imagerie par resonance magnetique WO2002022012A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/380,115 US6876198B2 (en) 2000-09-11 2001-09-11 Magnetic resonance imaging system
JP2002526271A JPWO2002022012A1 (ja) 2000-09-11 2001-09-11 磁気共鳴イメージング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-274832 2000-09-11
JP2000274832 2000-09-11

Publications (1)

Publication Number Publication Date
WO2002022012A1 true WO2002022012A1 (fr) 2002-03-21

Family

ID=18760534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007870 WO2002022012A1 (fr) 2000-09-11 2001-09-11 Systeme d'imagerie par resonance magnetique

Country Status (3)

Country Link
US (1) US6876198B2 (ja)
JP (1) JPWO2002022012A1 (ja)
WO (1) WO2002022012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110035A (ja) * 2004-10-14 2006-04-27 Hitachi Medical Corp 核磁気共鳴撮像装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069800A1 (fr) * 2001-03-01 2002-09-12 Hitachi Medical Corporation Appareil d'imagerie par resonance magnetique
JP4443079B2 (ja) * 2001-09-13 2010-03-31 株式会社日立メディコ 磁気共鳴イメージング装置及び磁気共鳴イメージング装置用rf受信コイル
US8457712B2 (en) * 2005-12-30 2013-06-04 Wisconsin Alumni Research Foundation Multi-mode medical device system and methods of manufacturing and using same
US20070156042A1 (en) * 2005-12-30 2007-07-05 Orhan Unal Medical device system and method for tracking and visualizing a medical device system under MR guidance
EP2023812B1 (en) 2006-05-19 2016-01-27 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
US10791957B1 (en) * 2006-11-09 2020-10-06 Fonar Corporation Magnetic resonance imaging
US8532742B2 (en) * 2006-11-15 2013-09-10 Wisconsin Alumni Research Foundation System and method for simultaneous 3DPR device tracking and imaging under MR-guidance for therapeutic endovascular interventions
US20080183070A1 (en) * 2007-01-29 2008-07-31 Wisconsin Alumni Research Foundation Multi-mode medical device system with thermal ablation capability and methods of using same
US8412306B2 (en) * 2007-02-28 2013-04-02 Wisconsin Alumni Research Foundation Voltage standing wave suppression for MR-guided therapeutic interventions
WO2009027899A2 (en) * 2007-08-24 2009-03-05 Koninklijke Philips Electronics N.V. Mri involving dynamic profile sharing such as keyhole and motion correction
EP2747641A4 (en) 2011-08-26 2015-04-01 Kineticor Inc METHOD, SYSTEMS AND DEVICES FOR SCAN INTERNAL MOTION CORRECTION
US10327708B2 (en) 2013-01-24 2019-06-25 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9305365B2 (en) 2013-01-24 2016-04-05 Kineticor, Inc. Systems, devices, and methods for tracking moving targets
US9717461B2 (en) 2013-01-24 2017-08-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
CN109008972A (zh) 2013-02-01 2018-12-18 凯内蒂科尔股份有限公司 生物医学成像中的实时适应性运动补偿的运动追踪系统
EP3157422A4 (en) 2014-03-24 2018-01-24 The University of Hawaii Systems, methods, and devices for removing prospective motion correction from medical imaging scans
EP3188660A4 (en) 2014-07-23 2018-05-16 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
CN106999092B (zh) * 2014-11-11 2022-03-15 海珀菲纳股份有限公司 用于低场磁共振的脉冲序列
US9805662B2 (en) * 2015-03-23 2017-10-31 Intel Corporation Content adaptive backlight power saving technology
US9943247B2 (en) 2015-07-28 2018-04-17 The University Of Hawai'i Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan
US10716515B2 (en) 2015-11-23 2020-07-21 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
TW202012951A (zh) 2018-07-31 2020-04-01 美商超精細研究股份有限公司 低場漫射加權成像
WO2021108216A1 (en) 2019-11-27 2021-06-03 Hyperfine Research, Inc. Techniques for noise suppression in an environment of a magnetic resonance imaging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207988A (ja) * 1992-01-31 1993-08-20 Shimadzu Corp Mri装置の信号検出装置
JPH06209912A (ja) * 1993-01-18 1994-08-02 Toshiba Corp 磁気共鳴イメージング装置
JPH1133013A (ja) * 1997-07-22 1999-02-09 Hitachi Medical Corp 磁気共鳴イメージング装置を用いた透視撮像法及び装置
JPH11347011A (ja) * 1998-06-11 1999-12-21 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2000210267A (ja) * 1999-01-25 2000-08-02 Ge Yokogawa Medical Systems Ltd 画像表示方法、画像表示装置およびmri装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708359A (en) * 1995-12-04 1998-01-13 The Board Of Trustees Of The University Of Illinois Interactive, stereoscopic magnetic resonance imaging system
US6400157B1 (en) * 1997-11-26 2002-06-04 Fonar Corporation MRI methods and systems
US6289233B1 (en) * 1998-11-25 2001-09-11 General Electric Company High speed tracking of interventional devices using an MRI system
US6680610B1 (en) * 1999-05-24 2004-01-20 Walid E. Kyriakos Apparatus and method for parallel MR data acquisition and parallel image reconstruction from multiple receiver coil arrays for fast MRI

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207988A (ja) * 1992-01-31 1993-08-20 Shimadzu Corp Mri装置の信号検出装置
JPH06209912A (ja) * 1993-01-18 1994-08-02 Toshiba Corp 磁気共鳴イメージング装置
JPH1133013A (ja) * 1997-07-22 1999-02-09 Hitachi Medical Corp 磁気共鳴イメージング装置を用いた透視撮像法及び装置
JPH11347011A (ja) * 1998-06-11 1999-12-21 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2000210267A (ja) * 1999-01-25 2000-08-02 Ge Yokogawa Medical Systems Ltd 画像表示方法、画像表示装置およびmri装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110035A (ja) * 2004-10-14 2006-04-27 Hitachi Medical Corp 核磁気共鳴撮像装置
JP4703161B2 (ja) * 2004-10-14 2011-06-15 株式会社日立メディコ 核磁気共鳴撮像装置

Also Published As

Publication number Publication date
JPWO2002022012A1 (ja) 2004-01-22
US6876198B2 (en) 2005-04-05
US20040039277A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
WO2002022012A1 (fr) Systeme d'imagerie par resonance magnetique
US5810728A (en) MR imaging method and apparatus for guiding a catheter
US7768263B2 (en) Magnetic resonance imaging apparatus and method
JP3440112B2 (ja) 器具の位置を監視するための磁気共鳴追跡システム
US6400157B1 (en) MRI methods and systems
WO2003005902A1 (fr) Procede de saisie d'images endoscopiques et dispositif d'irm l'utilisant
JP2004527301A (ja) 連続的テーブル移動を使用して大視野からmriデータを取得する方法
JP2001017408A (ja) Mriシステム及びmri走査を行う方法
US6879155B2 (en) Magnetic resonance acoustography
JPH0449949A (ja) 磁気共鳴サーモグラフィー方法
JP4493763B2 (ja) 磁気共鳴イメージング装置及び画像サイズ可変装置
JP3976845B2 (ja) 磁気共鳴イメージング装置
US20040092813A1 (en) Magnetic resonance imaging apparatus
US10548505B2 (en) System and method for real-time MRI-guided object navigation
JP2012115299A (ja) 磁気共鳴イメージング装置
JP3911602B2 (ja) 磁気共鳴撮像装置
JP3514547B2 (ja) 磁気共鳴イメージング装置
JP2002253524A (ja) 磁気共鳴撮像装置
JPH02261430A (ja) 磁気共鳴イメージング装置
JP2000316830A (ja) 磁気共鳴イメージング方法及びそれを用いた磁気共鳴イメージング装置
EP1379890B1 (en) Magnetic resonance acoustography
JP4219028B2 (ja) 磁気共鳴イメージング装置
US20080214924A1 (en) Magnetic Resonance Spectroscopy
JP4047457B2 (ja) 磁気共鳴イメージング装置
JPH09140686A (ja) 磁気共鳴画像撮像方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10380115

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2003107561

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2002526271

Country of ref document: JP

122 Ep: pct application non-entry in european phase