WO2002017666A1 - Station radioelectrique de base et programme correspondant - Google Patents

Station radioelectrique de base et programme correspondant Download PDF

Info

Publication number
WO2002017666A1
WO2002017666A1 PCT/JP2001/007298 JP0107298W WO0217666A1 WO 2002017666 A1 WO2002017666 A1 WO 2002017666A1 JP 0107298 W JP0107298 W JP 0107298W WO 0217666 A1 WO0217666 A1 WO 0217666A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
base station
radio base
signal
communication
Prior art date
Application number
PCT/JP2001/007298
Other languages
English (en)
French (fr)
Inventor
Takeo Miyata
Tadayoshi Itou
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US10/362,648 priority Critical patent/US7623488B2/en
Priority to DE60118762T priority patent/DE60118762D1/de
Priority to EP01958499A priority patent/EP1324627B1/en
Priority to AU2001280169A priority patent/AU2001280169A1/en
Publication of WO2002017666A1 publication Critical patent/WO2002017666A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the wireless base station follows the mobile station whose signal arrival direction is unknown by the adaptive array method and forms an optimal directivity pattern.
  • One of its operating principles is the minimum square error (MMSE) method.
  • MMSE requires a reference signal.
  • the reference signal is a target signal of a signal obtained by weighting each received signal.
  • the wireless base station using the MMSE determines the weight vector so that the difference between the reference signal and the signal obtained by weighting is minimized. Then, the directivity pattern formed using the weight vector forms an optimal directivity pattern for the signal of the mobile station to be received.
  • the radio base station first sets an appropriate weight vector as an initial value, and compares the reference signal such as a preamble or unique word with the actual signal obtained by weighting with the weight vector. The errors are compared, and the values of the weight vectors are varied and adjusted to minimize the errors. If this operation is repeated for each symbol of the bit pattern, the value of the weight vector converges to a constant value over time, and the signal of the information part is extracted by being weighted by the converged weight vector. After receiving a known bit pattern such as a preamble or a unique word, the radio base station identifies the extracted signal, assumes that the sign of the identification result is correct, and uses the identification result as a reference signal. At the time of transmission, a signal is transmitted using the vector calculated at the time of the previous reception.
  • the reference signal such as a preamble or unique word
  • the radio base station judges whether or not spatial multiplexing is appropriate for each slot, and prohibits spatial multiplexing in slots determined to be inappropriate. In addition, spatial multiplexing is permitted for slots determined to be suitable. There are the following two methods for this judgment. .
  • One method is to make a judgment based on the correlation value of the reception response vectors of two mobile stations to be spatially multiplexed.
  • the radio base station calculates a reception response vector for each of the two mobile stations, and calculates a correlation value between the two reception response vectors.
  • the response vector is information on the direction of arrival of the signal from the mobile station, and the correlation value represents an index indicating the proximity of the signal arrival direction of the two mobile stations.
  • the correlation value is large, the two mobile stations exist in almost the same direction, and it is considered impossible to separate the two signals by the difference in the directivity patterns. Therefore, when the correlation value is larger than the predetermined threshold, the radio base station determines that the spatial multiplexing is inappropriate.
  • Another method is to make a judgment based on the electric field strength ratio of the signals of two mobile stations to be spatially multiplexed.
  • the radio base station calculates the electric field strengths of the signals of the two mobile stations based on the reception response vector, and calculates the ratio of the two electric field strengths.
  • the radio base station determines that spatial multiplexing is inappropriate when the electric field strength ratio is larger than the predetermined threshold.
  • the radio base station fails to calculate the vector for the two mobile stations and the correct directivity pattern is obtained. May not be formed.
  • the present invention provides a radio base station and a radio base station capable of improving the accuracy of determining whether or not spatial multiplexing is appropriate and ensuring a certain communication quality between a radio base station and a mobile station.
  • the purpose is to provide an office program.
  • the indicator is an error calculated from a signal obtained from the first mobile station and a desired signal, and the determining unit is configured to determine that spatial multiplex communication is to be performed when the error is lower than a predetermined value. May be.
  • the error is the difference between the ideal directivity pattern and the actual directivity pattern, and thus indicates the accuracy of directivity formation most accurately. If a mobile station with low directivity is spatially multiplexed with another mobile station, it interferes not only with the mobile station with low accuracy but also with other mobile stations, and has an adverse effect. Therefore, when the error is lower than a predetermined value, it is determined that the spatial multiplexing is performed, and when the error is higher, the spatial multiplexing is not performed.
  • the index is a movement amount per unit time of the first mobile station calculated by a wireless base station, and the determining unit determines that spatial multiplexing communication is performed when the movement amount is smaller than a predetermined movement amount. May be.
  • the spacing between individual antennas is widened to obtain diversity gain. If the interval is large, the formed directional pattern is weak to changes in the movement of the mobile station, and it is very difficult for a mobile station moving at high speed to follow. Therefore, if the moving amount is smaller than the predetermined moving amount, spatial multiplexing is performed, and if the moving amount is larger than the predetermined moving amount, it is determined not to perform spatial multiplexing.
  • the determining means when receiving a channel assignment request from the first mobile station, performs space multiplex communication between the first mobile station and the second mobile station already communicating with the first mobile station based on the index. It may be configured to determine whether or not to perform.
  • the index is a transmission timing difference between a transmission timing of a signal from a radio base station to the first mobile station and a transmission timing of a signal from a radio base station to the second mobile station; An error calculated from a signal obtained from a mobile station and a desired signal, an amount of movement of the first mobile station per unit time calculated by a radio base station, and an amount of movement of a signal received from the first mobile station. An electric field strength, a correlation value between a response vector of the first mobile station and a response vector of the second mobile station, and an electric field strength of a signal received from the first mobile station and the second movement. A ratio between the first mobile station and the second mobile station by comparing at least three of the indices with respective thresholds. Configuration to determine whether to perform spatial multiplex communication with mobile station May be.
  • whether spatial multiplexing is possible is determined using at least three indices from among a plurality of indices, so that spatial multiplexing is performed rather than determining whether spatial multiplexing is possible using only two or less indices.
  • the probability is low, the accuracy of directivity formation is high and the effect is that communication quality is maintained.
  • the radio base station is a radio base station having a spatial multiplexing communication mechanism, wherein the first mobile station and the second mobile station that are performing spatial multiplexing communication are the first mobile station.
  • Determining means for determining whether or not to continue spatial multiplexing of the first mobile station and the second mobile station based on an index indicating communication quality of the station; and Releasing means for releasing spatial multiplexing between the mobile station and the second mobile station, wherein the index is a signal transmission timing from a radio base station to the first mobile station, and A transmission timing difference between the transmission timing of the signal to the second mobile station, an error calculated from a signal obtained from the first mobile station and a desired signal, and the first calculated by the radio base station.
  • FIG. 1 is a block diagram showing a configuration of the wireless base station 100 of the present embodiment.
  • FIG. 2 shows a configuration of the threshold value table 200.
  • FIG. 3 shows an example of the quality index value table 300.
  • FIG. 4 shows the structure of the new PS information 400.
  • FIG. 5 is a sequence diagram showing a processing procedure centered on the control unit 80 when a link channel is established.
  • FIG. 6 is a flowchart showing details of the multiplexing determination process of FIG.
  • FIG. 7 is a flowchart showing a procedure of a monitoring process performed by the control unit 80.
  • the wireless base station 100 A mobile station that has requested allocation of a mobile station, that is, a mobile station that has transmitted a link channel establishment request (hereinafter referred to as a new mobile station), and a mobile station that has already allocated a communication channel (hereinafter referred to as a mobile station during communication) It determines the suitability of spatial multiplexing with various stations from various information, and determines the communication channel to be assigned to the new PS according to the result of this determination.
  • Transmission / reception switching switches 21 to 24 are switches for switching between transmission and reception in accordance with transmission / reception of TDMA / TDD frames.
  • the receiving unit 31 converts a high-frequency signal received via the antenna 11 and the transmission / reception switch 21 into a low-frequency signal when receiving a TDMA / TDD frame, and further converts the A / D-converted signal into a signal processing unit 50a. To (! The same applies to the receiving units 32 to 34.
  • the transmitting unit 51 converts the low-frequency signal from the adding unit 41 into a high-frequency signal by D / A conversion, amplifies the signal, and outputs the amplified signal to the antenna 11 via the transmission / reception switch 21.
  • the signal processing unit 50a is realized by a DSP (Digital Signal Processor), and under the control of the control unit 80, performs signal processing related to adaptive array control for each mobile station that is time-division multiplexed in a TDMA / TDD frame. I do.
  • the signal processing unit 50a in FIG. 5 functionally shows the configuration of the signal processing, and includes an array receiving unit 55, a weight calculating unit 56, and an array transmitting unit 57.
  • the array receiving section 55 weights and combines the signals from the receiving sections 31 to 34 with the byte vector from the byte calculating section 56 in each receiving time slot, thereby obtaining a received signal corresponding to one mobile station. Extract and output to TDMA processing unit 60.
  • Array transmission section 57 weights the transmission signal from TDMA processing section 60 to one mobile station with the weight vector from weight calculation section 56 at each transmission time slot and outputs the weighted transmission signal to addition sections 41 to 44.
  • the byte calculation unit 6 performs one shift based on signals from the reception units 31 to 34 in each reception time slot.
  • a vector for calculating the received signal corresponding to the mobile station is calculated and supplied to the array receiving unit 55, and in each transmission time slot, the same vector as that supplied to the array receiving unit 55 is used. Is supplied to the array transmitter 57.
  • the signal processing units 50a to 50d allocate one set of transmission / reception time slots to the control channel, and allocate the remaining three sets of transmission / reception time slots to the communication channel, thereby time-division multiplexing up to three mobile stations.
  • the signal processing units 50a to 50d allocate one set of transmission / reception time slots to the control channel, and allocate the remaining three sets of transmission / reception time slots to the communication channel, thereby time-division multiplexing up to three mobile stations.
  • up to four mobile stations are spatially multiplexed, so that a total of up to twelve mobile stations can be multiplexed and communicated.
  • the TDMA processing unit 60 decomposes and assembles TDMA / TDD frames for each call between the signal processing units 50a to 50d and the digital network interface 70.
  • the TDMA processing unit 60 includes a timing control unit 61.
  • the timing control section 61 generates a reference timing of the TDMA / TDD frame, and also manages a reception timing and a transmission timing for each TDMA / TDD frame.
  • the transmission timing managed here is also used for judging the suitability of spatial multiplexing in the same manner as the various parameters calculated or detected by the bit calculation unit 56.
  • the received signals x, x 2 , x 3 , x 4 , complex bit vectors *, w 2 *, w 3 *, w 4 *, etc. are signal sequences whose t values are 1, 2, ... .
  • the weight calculator 56 calculates the vector using the least mean square error method (MMSE method) as follows.
  • the weight vector has an appropriate initial value, and w (t) is set within a predetermined range so as to minimize the error between the reference signal d (t) and the extracted signal). It is updated to w (t + l) every unit time by changing and adjusting the value of. If the error between the reference signal d (t) and the extracted signal is e (t),
  • the weight calculation unit 56 includes a response vector calculation unit 561, an RSSI (Receive Signal Strength Indication) measurement unit 562, an MSE (Mean Square Error) calculation unit 563, and an FD calculation unit 564.
  • RSSI Receiveive Signal Strength Indication
  • MSE Mobile Square Error
  • 1 ⁇ ⁇ is a complex number representing the propagation path from the mobile station j to the i-th antenna.
  • Te 2, ⁇ , Te or, based on the t This is the reception timing at the radio base station 100 when is set, and represents the difference in arrival time caused by the difference in the distance between each mobile station and the radio base station 100.
  • Response base vector calculation unit 561 of the signal processing unit 50a includes an extraction signal S ⁇ t) of the complex conjugate der Ru S (t), the signal xt), 3 ⁇ 4 (t), x 3 (t), x 4 (t ) Are used to calculate h u , h 21 , h 31 , and h 41 as components of the reception response vector as in the following equation.
  • Equation 5 can be derived from Equation 6. In this way, the effect of the noise component is removed from the mathematical expression.
  • the response vector calculation unit 561 in the signal processing unit 50a calculates the response vector h3j , h4j ) for the mobile station j by performing the calculation shown in Expression 5.
  • Each of the response vector calculation units 561 in the signal processing units 50b to 50d also calculates a response vector in the same procedure.
  • the response vector calculation unit 56 when receiving a communication channel assignment request from the mobile station as well as the communicating mobile station, receives the response of the new mobile station in the control channel. Calculate the vector.
  • RSSI measuring section 562 detects the electric field strength from the received signal of the mobile station at each time slot.
  • the RSSI measuring unit 562 also detects electric field strength on the control channel when receiving a communication channel assignment request from a new mobile station.
  • the RSSI measuring unit 562 also calculates the MSE of the new mobile station on the control channel when receiving a communication channel assignment request from the new mobile station.
  • Phasing speed is represented by the correlation between the mobile station's past response vector and the current response vector.
  • the past response vector is, for example, the response vector of the frame immediately before the frame of the current response vector.
  • the higher the fusing speed the greater the difference between the past arrival direction of the signal from the mobile station and the current arrival direction of the signal from the mobile station. The larger the difference, the smaller the gap. Therefore, the fader speed is an index indicating the moving speed of the mobile station from the past to the present. If the moving speed is too high, it is difficult to form a directivity pattern that follows the mobile station, and it is easy to affect the signals of other mobile stations, so it is suitable for spatial multiplexing with other mobile stations at the same time. Absent.
  • the FD calculation unit 564 also calculates the fogging speed of the new mobile station using the control channel when receiving a communication channel allocation request from the new mobile station.
  • each component of the byte calculation unit 56 in each of the signal processing units 50a to (!) Calculates or detects various parameters of the communicating mobile station or the new mobile station for each time slot.
  • Each component of the unit 56 outputs the obtained parameters to the control unit 80, and the control unit 80 stores those parameters in the information storage unit 90.
  • the configurations of the threshold table 200, the quality index value table 300, and the new PS information 400 stored in the information storage unit 90 will be described.
  • Threshold ⁇ As shown in the drawing - table 200, the correlation value threshold J t (column 201), the field intensity ratio threshold K t (column 202), transmission timing difference threshold L t (column 203) , mean Noayama difference threshold E t (column 204), full We chromatography Managing speed threshold S t (column 205), a field strength threshold I t (column 206).
  • Correlation threshold J t is a threshold value for the correlation value between the response base-vector responses base vector and the new mobile station communicating mobile station.
  • the electric field strength ratio threshold value Kt is a threshold value relating to the ratio between the electric field strength of a signal received from a mobile station during communication and the electric field strength of a signal received from a new mobile station. .
  • the mean square error threshold Et is a threshold value related to the MSE of the communicating mobile station and the new mobile station.
  • Fading speed threshold ⁇ S t is a threshold related to FD communication in the mobile station and the new mobile station.
  • the threshold table 200 may be appropriately updated via a digital network or using the threshold calculated by the control unit 80.
  • FIG. 3 shows an example of the quality index value table 300.
  • the quality index value table 300 includes columns for time slot number 301, channel number 302, response vector 303, electric field strength 304, transmission timing 305, mean square error 306, and fading speed 307. Is done.
  • time slot number 301 indicates the numbers of the three time slots to which the communication channels are assigned.
  • the set of channel numbers (1, 2, 3, 4), the set of (5, 6, 7, 8) and the set of (9, 10, 11, 12,) in channel number 302 are time slot numbers 2, 3, These numbers are assigned to the processing of the signal processing units 50a, 50b, 50c, and 50d in the slot of No. 4.
  • Each row shows the time slot number, channel number and various parameters corresponding to one communicating mobile station.
  • various parameters of a mobile station communicating in time slot number 2 and channel number 1 are as follows: response vector, electric field strength is 1 transmission timing, mean square error is E, and femazing speed is Si It is. (Blank) indicates that communication with the mobile station is not being performed on the channel with that channel number.
  • the table in the figure shows that the radio base station 100 spatially multiplexes two i] stations using channel numbers 1 and 2 (signal processing units 50a and 50b) for the time slot 3 ⁇ 2. Communicates with one mobile station using channel number 5 (signal processing unit 50a) in time slot number 3 slot, and communicates with channel numbers 9, 10, 11, 12 (signal processing Indicates that the mobile unit is communicating with the four mobile stations by spatial multiplexing using the units 50a, b, c, and d).
  • the new PS information 400 includes various parameters corresponding to the new mobile station, that is, the response vector R NEir of the new mobile station (column 401), the electric field strength ⁇ ⁇ (column 402), and the transmission timing ⁇ ⁇ ( Column 403), mean square error ⁇ (Column 404), and fusing speed S ra (Column 405).
  • the response vector RM is a response vector of the new mobile station, and is calculated by the response vector calculation unit 56 from a signal on the control channel when the radio base station 100 receives a link channel establishment request from the new mobile station, and Stored in the new PS information 400 by the section 80.
  • the electric field strength I NEW is the electric field strength of the new mobile station, and is calculated by the RSSI measuring section 562 from the signal on the control channel when the radio base station 100 receives the link channel establishment request from the new mobile station, and Is stored in the new PS information 400.
  • the transmission timing P NEW is transmission timing of a new mobile station, and is estimated from the reception timing when the timing control unit 61 receives a link channel establishment request from the new mobile station, and is stored in the new PS information 400 by the control unit 80. You.
  • the timing control unit 61 estimates the transmission timing of the new mobile station, but does not estimate it, but always determines a predetermined timing as the transmission timing of the new mobile station and outputs it to the control unit 80. May be.
  • Mean square error E NEW is the mean square error of the new mobile station.
  • Fading speed S NOT is the fading speed of the new mobile station. Calculated from the signal received on the control channel when a link channel establishment request is received from a new mobile station.
  • the fader speed of the communicating mobile station is the correlation between the response vector of the previous frame and the current response vector, while the fogging speed of the new mobile station has no response vector of the previous frame.
  • the correlation between the response vector in the first half of the reception time slot of the current frame and the response vector in the second half is determined.
  • FIG. 5 is a sequence diagram illustrating a processing procedure centered on the control unit 80 when a link channel is established.
  • the control unit 80 Upon receiving the link channel establishment request from the new mobile station (step S181), the control unit 80 sends the weight calculation unit 56 and the timing control unit 61 various parameters of the new mobile station.
  • the response vector R ra , the electric field strength ⁇ ⁇ , the transmission timing Pra, the mean square error E NEW , and the fusing speed S ra are obtained (step S184), and the information is stored. It is stored in the new PS information 400 of the section 90 (step S183).
  • control unit 80 performs a process of determining which channel is to be assigned to a new mobile station by determining whether or not spatial multiplexing is appropriate in each time slot.
  • the control unit 80 selects one of the time slot numbers 2, 3, and 4 (step S186), and determines whether there is a channel used in the time slot, that is, uses the time slot. To determine if there is a mobile station communicating with the mobile station. This determination is made by referring to the quality index value table 300 based on whether there are channels in which various parameters are stored in the time slot, or whether all the parameters of all the channels are blank.
  • control unit 80 transmits the link channel including the notification of the free channel of the time slot to the new mobile station.
  • Assignment is performed (step S192), and a TCH synchronization burst is transmitted and received between the new mobile station and the radio base station to establish a link channel (S193).
  • control unit 80 If it is determined that multiplexing is not possible in all time slots, the control unit 80 notifies the new mobile station of rejection of link channel assignment (step S191). As a result, the new mobile station enters standby (step S194).
  • FIG. 6 is a flowchart showing details of the multiplexing determination process of FIG.
  • the control unit 80 determines whether there is an empty channel in the time slot by referring to the quality index value table 300 (step S601).
  • control unit 80 determines the maximum correlation value J MAX , the maximum field strength ratio K, and the shortest transmission from the parameters stored in the quality index value table 300 and the data stored in the new PS information 400. Calculate and acquire the timing difference L thigh (steps S602, S603, S604).
  • the maximum correlation value J MAX is the most significant of the correlation between the response vector (i is the channel number of each communicating mobile station) of each communicating mobile station in the time slot and the response vector R NEW of the new mobile station. Use a high value.
  • the response vector of each communicating mobile station in the slot of the time slot number 2 is and. Calculate the correlation J 2 between the correlation with? ⁇ And the correlation between and ⁇ , and determine the larger of J and 2 as the maximum correlation value J MAX .
  • the radio base station determines that both are inappropriate for spatial multiplexing.
  • the radio base station measures the electric field strength of the signals from both mobile stations, and calculates the ratio of the two measured electric field strengths.
  • the maximum electric field intensity ratio K MAX is calculated from the electric field intensity of the new mobile station ⁇ ⁇ and the electric field intensity Ii of each communicating mobile station in the corresponding time slot (i is the channel number of each communicating mobile station) using Equation 7. Of the electric field strength ratios to be used.
  • Equation 7 For example, in the case of the quality index value table 300 of FIG. 3, because the electric field intensity of each communicating mobile station in the slot of the timeslot number 2 are I, and 1 2, the control unit 80 1 "and I, electric field strength the ratio, iota NEI and calculates the field intensity ratio between 1 2, and kappa value among the 2 is better the maximum electric field intensity ratio kappa Myuarufakai large.
  • Shikabane PNEW - ⁇ i For example, in the case of quality index value Te one pull 300 of FIG. 3, person transmission timing of each communication in the mobile station in the slot of the time slot number 2 and a P 2, the control unit 80 calculates the transmission timing difference between P NEW and the transmission timing difference L 2 between ⁇ ⁇ and ⁇ 2, and determines the shortest of L 2 as the shortest transmission timing difference L MAX .
  • the two mobile stations cannot correctly separate the signal from the wireless base station 100, and may mix and demodulate the signal. Therefore, the transmission timing difference between the new mobile station and the communicating mobile station is calculated, and this is used as an index for determining whether or not space multiplexing is appropriate.
  • the mean square error is used as an index for judging the suitability of spatial multiplexing.
  • the fusing speed is high, that is, the amount of movement per unit time is large. ⁇ ⁇
  • the directivity pattern formation during array reception can be performed with high accuracy, from the reception slot to the transmission slot Due to the time lag of the mobile station, the mobile station moves greatly. Even if the same directivity pattern is formed at the time of transmission as at the time of reception, the directivity pattern deviates greatly from the direction of the mobile station. If the directivity pattern of a mobile station cannot be correctly formed in this way, the formation of the directivity pattern of another mobile station will be adversely affected. This is because it is difficult for the directivity pattern formed for other mobile stations to correctly point null to mobile stations with a high fender speed. Therefore, fusing speed is used as an index for judging whether or not spatial multiplexing is appropriate.
  • the electric field strength is used as an index for judging the suitability of spatial multiplexing.
  • Control unit 80 first compares the maximum correlation value J MAX correlation value threshold J t (Sutetsu flop S605). If the result of the comparison indicates that the maximum correlation value J MAX is equal to or smaller than the correlation value threshold value J t , the process proceeds to step S606, otherwise, it is determined that multiplexing is not possible (step S612).
  • the maximum electric field intensity ratio K MAX is compared with the electric field intensity ratio K t (step S607). Result of comparison, if the maximum electric field strength ratio K MAX is less than the electric field intensity ratio threshold K t, the process proceeds to the step S608, the determined otherwise and multiplexing is not possible (step S612). Then compares the mean square error E NEI and the mean square error threshold E t (step S608). As a result of the comparison, if the mean square error E NEff is equal to or less than the mean square error threshold, The process proceeds to step S609, otherwise, it is determined that multiplexing is not possible (step S612).
  • step S610 comparing the field intensity I and the electric field strength threshold I t (step S610). Result of comparison, if the electric field strength iota NEI is above the field strength threshold value I t, the flow proceeds to processing in step S611, determines otherwise and multiplexing is not possible (step S612).
  • control unit 80 determines that the new mobile station can be multiplexed with the communicating mobile station in the time slot to be communicable (step S611).
  • the multiplexing determination process shown in FIG. 6 determines that multiplexing is possible when all of the six determination conditions in steps S605 to S610 are satisfied. One or some of these six determination conditions If the determination condition is satisfied, it may be determined that multiplexing is possible.
  • the control unit 80 determines the suitability of spatial multiplexing for the new mobile station. If the determination condition is not satisfied, the control unit 80 does not allocate the channel of that time slot. Assign a slot channel that satisfies the judgment conditions. As a result, a time slot without spatial multiplexing or a channel with a time slot that is spatially multiplexed but whose communication quality is guaranteed is allocated to the new mobile station, and communication stability is improved. As a result, it is possible to improve the communication characteristics, reduce the number of interference occurrences, and avoid a bad state such as abnormal disconnection.
  • the suitability of space multiplexing is determined using four determination conditions (steps S606, S608, S609, and S610) in addition to the determination regarding the correlation value and the electric field strength ratio (steps S605 and S607).
  • the probability of determining that spatial multiplexing is possible is lower than in the past, this makes it possible to determine the suitability of spatial multiplexing with high accuracy.
  • FIG. 7 is a flowchart illustrating a procedure of the monitoring process performed by the control unit 80.
  • the control unit 80 performs the monitoring processing of FIG. 7 for each time slot.
  • the control unit 80 acquires the maximum correlation value J MAX (step S702).
  • This maximum correlation value J MAX is calculated in the same manner as that of the multiplex judgment processing, but differs in that two response vectors during communication are used.
  • the highest correlation value J MAX is obtained by combining two of the plurality of communicating mobile stations spatially multiplexed in the time slot, and each pair of the communicating mobile station i and the communicating mobile station j (i, j are Channel number) and the highest correlation.
  • the control unit 80 acquires the shortest transmission timing difference L MiN (step S704).
  • the shortest transmission timing difference J MAX is obtained by combining two of the plurality of communicating mobile stations spatially multiplexed in the time slot, and each pair of the communicating mobile station i and the communicating mobile station j (i, j Is the shortest of the transmission timing differences between
  • the control unit 80 acquires the maximum mean square error E MAX (step S705).
  • the maximum mean square error E omega shall be the largest among the mean square error among the plurality of communication mobile stations spatially multiplexed in the timeslot Bok.
  • control unit 80 acquires the maximum fusing speed S MAX (step S706).
  • This maximum fading speed S MAX is spatially multiplexed in the time slot. Of the fading speeds Si of multiple communicating mobile stations during communication.
  • control unit 80 acquires the minimum electric field intensity I MIN (step S707).
  • This minimum electric field strength I MAX is the smallest of the maximum electric field strengths of a plurality of communicating mobile stations spatially multiplexed in the time slot.
  • Step S708 when acquiring various indices for judging suitability for spatial multiplexing, the control unit 80 performs a process of comparing these indices with threshold values stored in the threshold value table 200.
  • the processing of this threshold value determination is the same as the processing of steps S606 to S612 shown in the flowchart of FIG. However, in steps S608 to S610, the mean square error E, the fading speed S NEff, and the electric field strength I are replaced by the maximum mean square error E, the maximum hull speed S MAX, and the minimum electric field strength I. The points are different.
  • the control unit 80 performs processing for releasing spatial multiplexing of the time slot (step S710).
  • Spatial demultiplexing refers to selecting at least one mobile station among a plurality of communicating mobile stations spatially multiplexed in the time slot, transmitting a channel switching request or a handover request to the mobile station, Channel switching or handover is performed.
  • There are several methods for selecting a mobile station to be subjected to spatial demultiplexing For example, communication using parameters for calculating the maximum correlation value J MAX , the maximum electric field strength ratio K MAX, and the shortest transmission timing difference L MIN can be performed. Select at least one of the middle mobile station i and the communicating mobile station j, or at least one of the mobile stations i corresponding to the maximum mean square error E, the maximum fusing speed S MAX and the minimum field strength I MIN There is also one to choose.
  • a new mobile station when allocating a channel to a new mobile station, it is configured to determine whether to perform spatial multiplexing by sharing a time slot used by a mobile station during communication.
  • a new mobile station is a mobile station that has moved by handover from a wireless zone of another wireless base station or a wireless zone of the wireless base station 100.
  • the switching destination slot when a channel is allocated to a mobile station that switches slots from one time slot of the wireless base station 100 to another time slot by switching channels during communication, the switching destination slot is already used. It may be configured to determine whether to perform spatial multiplexing by sharing the mobile slot and the time slot that are communicating.
  • spatial multiplexing determination for a new mobile station is performed using various parameters obtained from a mobile station during communication. It may be configured to do so.
  • the number of the slot from which spatial multiplexing has been released is stored, and for a predetermined period from the time when the spatial multiplexing is released, it is determined that the new mobile station in the slot will not be spatially multiplexed with the communicating mobile station. It may be configured to do so.
  • a time slot having an unstable element that affects the accuracy of directivity formation is detected from the parameters of the communicating mobile station stored in the quality index value table 300, and a new mobile station is spatially identified in the time slot. It may be configured to make a decision not to multiplex.
  • the quality index value table 300 it is determined that spatial multiplexing of a new mobile station is not performed in a time slot in which the electric field strength of a mobile station during communication is higher than a predetermined threshold. You may comprise.
  • the quality index value table 300 it may be configured that it is determined that a new mobile station is not spatially multiplexed in a time slot in which the fusing speed of the communicating mobile station is higher than a predetermined threshold.
  • Such recording media include an IC card, an optical disk, a flexible disk, and a ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

明 細 書
無線基地局及び無線基地局用プログラム
技術分野
本発明は、 複数の移動局と空間多重通信を行う無線基地局に関する。 背景技術
近年、 移動通信サービスの加入者数の増加に伴い、 各無線基地局がカバーする セルの収容能力の拡大が課題となっている。 この課題に応えるマルチプルァクセ ス技術の 1つに空間多重通信 (SDMA: Space Division Multiple Access) がある。 空間多重通信とは、 無線基地局が、 同一時刻、 同一周波数で、 空間を分割して、 複数の移動局それぞれと通信を行う方式である。 空間の分割は、 無線基地局が 個々の移動局に対して最適な指向性パターンを形成することで実現される。 指向 性パターンは、 放射又は受信される電波がどの方向にどのくらいの強さで放射又 は受信されるかを表すものである。
無線基地局は、 指向性パターンを形成する機構として、 複数のアンテナと DSP (ディジタルシグナルプロセッサ) とを備え、 各アンテナより放射又は受信され る各信号の振幅及び位相を適当な値で重み付けすることにより自在に指向性バタ ーンを形成して信号の送受信を行う。 ここで重み付けのための各値を重み係数と 呼び、 1つの指向性パターン形成のための重み係数の集合をゥヱイトべクトノレと 呼ぶ。
無線基地局は、 ァダプティプアレー方式により、 信号の到来方向が未知の移動 局に追従して最適な指向性パターンを形成する。 その動作原理の 1つとして、 最 小 2乗誤差法 (Miniimini Mean Square Error: MM S E) がある。 MM S Eは、 参照信号を必要とする。 参照信号とは受信される各信号の重み付けにより得られ る信号の目標となる信号である。 MM S Eを用いた無線基地局は、 参照信号と重 み付けにより得られる信号との差が最小となるようにウェイトべクトルを決定す る。 そうすれば、 そのゥヱイ トベクトルを用いて形成された指向性パターンは、 受信すべき移動局の信号に対して最適な指向性パターンを形成していることとな る。 ところで他のマルチプルアクセス技術である時分割多重通信 (TDMA/TDD: Time Division Multiple Access/Time Division Duplex) の場合、 各スロットは、 情 報部分の信号より前の部分にプリアンブルやユニークヮ一ド等、 受信側が既知の ビット ·パターンを含む。
よって無線基地局が、 MM S Eを用いた空間多重通信と時分割多重通信とを組 み合わせて通信を行う場合、 プリアンブルやユニークヮード等を参照信号として 用いることができる。
より詳しくは、 無線基地局は、 最初に適当なゥヱイ トベクトルを初期値として 設定し、 プリアンプルやユニークワード等の参照信号と、 ゥヱイトベクトルで重 み付けすることにより得られる実際の信号との誤差を比較し、 誤差が最小となる ようにウェイ トベクトルの値を変動させて調整する。 この操作をビット 'パター ンのシンボル単位に繰り返せば、 時間経過とともにゥヱイトべクトルの値は一定 値に収束し、 情報部分の信号が、 収束したウェイトべクトルにより重み付けられ て抽出される。 プリアンブル、 ユニークワード等の既知のビット 'パターンの受 信後は、 無線基地局は、 抽出された信号を識別し、 識別結果の符号が正しいと仮 定して識別結果を参照信号に用いる。 送信時には、 直前の受信時に算出したゥェ ィトべクトルを用いて信号を送信する。
ところで無線基地局は、 空間多重通信による混信を防ぎ、 適切な通信品質を保 つて通信を行うために、 スロッ ト毎に空間多重の適否判断を行い、 不適と判断し たスロットでは空間多重を禁止し、 適すると判断したスロットでは空間多重を許 可する。 この適否判断には次のような 2つの方法がある。.
1つは、 空間多重しょうとする 2つの移動局の受信応答べクトルの相関値によ り判断する方法である。 無線基地局は、 2つの移動局それぞれについて受信応答 ベクトルを算出し、 2つの受信応答ベクトル間の相関値を算出する。 ここで応答 ベクトルとは、 移動局からの信号の到来方向に関する情報であり、 相関値は、 2 つの移動局の信号到来方向の近さを示す指標を表す。 つまり相関値が大きい場合 には、 2つの移動局がほぼ同方向に存在し、 指向性パターンの差異によって両者 の信号を分離することは不可能であると考えられる。 よって、 無線基地局は、 相 関値が所定の閾値より大きい場合に空間多重不適と判断する。 他の 1つは、 空間多重しょうとする 2つの移動局の信号の電界強度比により判 断する方法である。 無線基地局は、 2つの移動局の信号の電界強度を受信応答べ クトルに基づいて求め、 2つの電界強度比を算出する。
電界強度比が大きい場合、 指向性パターンを最善に形成しても、 両者の信号の 電界強度比がアンテナの利得比を上回るため、 両者の信号を適切に分離できない と考えられる。 よって、 無線基地局は、 電界強度比が所定の閾値より大きい場合 に空間多重不適と判断する。 しかしながら、 上記従来技術の適否判断によつて適すると判断された上で空間 多重を行った場合でも、 無線基地局は 2つの移動局に対してゥヱイトべクトルの 算出に失敗し、 正しい指向性パターンを形成できない場合がある。
正しい指向性パターンを形成できない場合、 新たに通信チャネルの割当てを要 求してきた移動局である場合は通信を開始することができず、 既に通信中の移動 局である場合は通信が途切れる場合もあり、 各移動局に適切な通信品質を保証で きないという問題があった。 発明の開示
上記目的を達成するため、 本発明は、 空間多重の適否判断の精度を向上し、 無 線基地局と移動局との間において一定の通信品質を保証することができる無線基 地局及び無線基地局用プ ϋグラムを提供することを目的とする。
上記目的を達成する無線基地局は、 空間多重通信の機構を有する無線基地局で あって、 第 1及び第 2の移動局について、 少なくとも一方の移動局の通信品質を 示す指標を取得し、 前記指標に基づいて空間多重通信するか否かを判定する判定 手段と、 前記判定手段により空間多重通信すると判定された場合に前記第 1及び 第 2の移動局と空間多重通信を行う通信手段とを備える。
前記指標は、 無線基地局から前記第 1の移動局への送信タイミングと無線基地 局から前記第 2の移動局への信号の送信タイミングとの間の送信タイミング差で あり、 前記判定手段は前記送信タイミング差が所定タイミング差より大きい場合 に空間多重通信すると判定することを特徴とする。 この構成により以下の効果を生じる。 送信タイミング差が 0に近い場合、 つま り無線基地局が第 1の移動局への信号と第 2の移動局への信号とをほぼ同時に送 信した場合、 ユニークワードが同じであるため、 第 1の移動局は自分に送信され てきた信号と第 2の移動局宛に送信されてきた信号とを分離しにくくなり、 自分 宛の信号とみなして第 2の移動局宛の信号を間違って抽出することがある。 第 2 の移動局についても同じことが起こる。 よって本発明は、 送信タイミング差が所 定タイミング差より大きい場合に空間多重し、 小さい場合には空間多重をしない よう判定することで、 移動局が他の移動局宛の信号を間違つて抽出するという事 態が防止できる.という効果がある。
前記指標は、 前記第 1の移動局から得られる信号と所望の信号とから算出され る誤差であり、 前記判定手段は前記誤差が所定値より低い場合に空間多重通信す ると判定するよう構成してもよい。
この構成において誤差は、 すなわち理想の指向性パターンと実際の指向性バタ ーンとの差であるから、 指向性形成の精度を最も正確に示す。 指向性の精度が低 い移動局を他の移動局と空間多重すると、 精度の低い移動局だけでなく他の移動 局に干渉して悪影響を与えることとなる。 よって誤差が所定値より低い場合に空 間多重し、 高い場合に空間多重しないよう判定することで各移動局に対する指向 性形成の精度がたもたれ通信品質が向上する。
前記指標は、 無線基地局が算出する前記第 1の移動局の単位時間あたりの移動 量であり、 前記判定手段は前記移動量が所定移動量より小さい場合に空間多重通 信すると判定するよう構成してもよい。
無線基地局の実際の運用においては、 ダイバーシチゲインを稼ぐために個々の アンテナの間隔を広くして設置している。 間隔が広い場合、 形成される指向性パ ターンは移動局の移動変化に弱くなり、 高速に移動する移動局の追随は大変困難 となる。 よって移動量が所定移動量より小さい場合に空間多重して、 大きい場合 に空間多重しないよう判定することで、 上記と同様に指向性形成の精度がたもた れ通信品質が向上する。 ' 前記判定手段は、 前記第 1の移動局からチャネル割当要求を受付けた場合に、 前記指標に基づいて、 前記第 1の移動局と既に通信中の前記第 2の移動局とを空 間多重通信するか否かを判定するよう構成してもよい。
この構成によれば、 既に通信中の移動局の通信時間帯と同じ時間帯に、 新規に チャネル割当て要求を受けた移動局を空間多重により多重することができるか否 かを判定することができる。
前記指標は、 無線基地局から前記第 1の移動局への信号の送信タイミングと無 線基地局から前記第 2の移動局への信号の送信タイミングとの間の送信タイミン グ差、 前記第 1の移動局から得られる信号と所望の信号とから算出される誤差、 無線基地局が算出する前記第 1の移動局の単位時間あたりの移動量、 前記第 1の 移動局より受信される信号の電界強度、 前記第 1の移動局の応答べクトルと前記 第 2の移動局の応答べクトルとの相関値、 及び前記第 1の移動局より受信される 信号の電界強度と前記第 2の移動局より受信される信号の電界強度との比であり、 前記判定手段は、 前記指標の少なくとも 3つをそれぞれのしきい値と比較するこ とにより、 前記第 1の移動局と前記第 2の移動局とを空間多重通信するか否かを 判定するよう構成してもよい。
この構成によれば、 複数の指標のなかから少なくとも 3つの指標を使って空間 多重の可否を判定するので、 2つ以下の指標のみで空間多重の可否を判定するよ りも、 空間多重される確率は低くなるものの、 指向性形成の精度は高くなり通信 品質が保たれるという効果がある。
また本発明の無線機基地局は、 空間多重通信の機構を有する無線基地局であつ て、 空間多重して通信している第 1の移動局と第 2の移動局について、 前記第 1 の移動局の通信品質を示す指標に基づいて、 前記第 1の移動局と第 2の移動局と の空間多重を継続するか否かを判定する判定手段と、 継続しないと判定した場合 に前記第 1の移動局と前記第 2の移動局との空間多重を解除する解除手段とを備 え、 前記指標は、 無線基地局から前記第 1の移動局への信号の送信タイミングと 無線基地局から前記第 2の移動局への信号の送信タイミングとの間の送信タイミ ング差、 前記第 1の移動局から得られる信号と所望の信号とから算出される誤差、 無線基地局が算出する前記第 1の移動局の単位時間あたりの移動量、 前記第 1の 移動局より受信される信号の電界強度、 前記第 1の移動局の応答べクトルと前記 第 2の移動局の応答べクトルとの相関値、 及び前記第 1の移動局より受信される 信号の電界強度と前記第 2の移動局より受信される信号の電界強度との比のうち の少なくとも 3つであるよう構成してもよい。
この構成によれば空間多重して通信している各移動局について、 少なくとも 3 つの指標から空間多重を維持するか解除するかを判定するので、 空間多重して通 信している間において、 指向性形成の精度が劣化することなく通信品質が保たれ るという効果がある。 図面の簡単な説明
第 1図は、 本実施形態の無線基地局 100の構成を示すブロック図である。 . 第 2図は、 しきい値テーブル 200の構成を示す。
第 3図は、 品質指標値テ一ブル 300の一例を示す。
第 4図は、 新規 PS情報 400の構成を示す。
第 5図は、 リンクチャネル確立時の制御部 80を中心とする処理手順を示すシ 一ケンス図である。
第 6図は、 図 5の多重判定処理の詳細を示すフローチャートである。
第 7図は、 制御部 80が行う監視処理の手順を示すフローチャートである。 発明を実施するための最良の形態
以下、 本発明の実施形態における無線基地局について図面を用いて説明する。 く無線基地局 100の構成〉
図 1は、 本実施形態の無線基地局 100の構成を示すプロック図である。
同図において無線基地局 100は、 アンテナ 11〜14、 送受信切替スィッチ 21〜 24、 受信部 31〜34、 加算部 41〜44、 送信部 51〜55、 信号処理部 50a〜d、 TDMA 処理部 60、 ディジタル網インタフヱ一ス部 70、 制御部 80、 情報記憶部 90から 構成され、 4チャネル多重マルチキャリア TDMA/TDD方式による時分割多重双方 向通信を行い、 かつ TDMAZTDDフレームの各スロットにおいてァダプティブァレ ィ方式による空間多重通信を行う。 特に無線基地局 100は、 新たに通信チャネル の割り当てを要求してきた移動局、 すなわちリンクチャネル確立要求を送信して きた移動局(以下、 新規移動局と呼ぶこととする)と、 既に通信チャネルを割当て ている移動局(以下、 通信中移動局と呼ぶこととする)との空間多重の適否を各種 情報から判定し、 この判定結果に応じて新規 PSに割当てる通信チャネルの決定 を行う。
送受信切替スィッチ 21〜24は、 TDMA/TDDフレームの送受信に応じて送信と受 信とを切替えるためのスィツチである。
受信部 31は、 TDMA/TDDフレームの受信時においてアンテナ 11、 送受信切替ス イッチ 21を介して受信される高周波信号を低周波の信号に変換し、 さらに A/D 変換した信号を信号処理部 50a〜(!へ出力する。 受信部 32〜34についても同様で ある。
加算部 41は、 信号処理部 50a〜(!より出力される信号を加算して送信部 51に 出力する。 つまり加算部 41は、 アンテナ 11用に重み付けされた各移動局への送 信信号を多重化して送信部 51に出力している。
加算部 42〜44についても同様である。
送信部 51は、 加算部 41からの低周波の信号を D/A変換して高周波信号に変換、 増幅し、 送受信切替スィッチ 21を介してアンテナ 11に出力する。 送信部 52〜 53についても同様である。
信号処理部 50aは、 DSP (Digital Signal Processor)により実現され、 制御部 80の制御下で、 TDMA/TDDフレームにおいて時分割多重している各移動局に対応 してァダプティブアレイ制御に関する信号処理を行う。 同図の信号処理部 50aは、 その信号処理の構成を機能的に示し、 アレイ受信部 55、 ウェイ ト計算部 56、 ァ -レイ送信部 57から構成される。 アレイ受信部 55は、 各受信タイムスロットにお いて受信部 31~34からの信号をゥヱイ ト計算部 56からのゥヱイトべクトルで重 み付け合成することにより 1つの移動局に対応する受信信号を抽出して TDMA処 理部 60に出力する。 アレイ送信部 57は、 各送信タイムスロッ トにおいて TDMA 処理部 60からの 1つの移動局に対する送信信号をウェイ ト計算部 56からのゥェ ィトベクトルで重み付けして加算部 41~44に出力する。 ゥヱイト計算部 6は、 各受信タイムスロットにおいては受信部 31〜34からの信号に基づいて 1つの移 動局に対応する受信信号を抽出するためのゥヱイ トべクトルを計算してアレイ受 信部 55に供給し、 各送信タイムスロットにおいてはアレイ受信部 55に供給した ものと同じゥ イ トべクトルをアレイ送信部 57に供給する。
またゥヱイト計算部 56は、 移動局から受信される信号に基づいて、 各タイム スロッ卜における空間多重の適否判定に用いるための各種パラメータの検出ゃ算 出等を行う。 ゥヱイ ト計算部 56については後に詳しく説明する。
信号処理部 50b〜(!についても信号処理部 aと同じ構成であり、 各タイムス口 ットにっき 1つの移動局のァダプティプアレイ制御の信号処理及び空間多重適否 判定用の各種パラメータの検出等を行う。
すなわち信号処理部 50a~dは、 1組の送受信タイムスロッ トを制御チャネル に割当て、 残り 3組の送受信タイムスロットを通信チャネルに割当てることによ り最大 3つの移動局を時分割多重し、 かつそれぞれがァダプティブァレイ制御を 行うことにより最大 4つの移動局を空間多重するので、 合計最大 12の移動局を 多重して通信することができる。
TDMA処理部 60は、 信号処理部 50a〜50dとディジタル網インタフヱース 70と の間で呼毎の TDMA/TDDフレームの分解及び組み立てを行う。
また TDMA処理部 60は、 タイミング制御部 61を備える。 タイミング制御部 61 は、 TDMA/TDDフレームの基準タイミングを発生する他、 個毎の受信タイミング 及ひ、送信タイミングを管理する。 ここで管理される送信夕イミングもゥヱイ ト計 算部 56で計算または検出される各種パラメータと同様に空間多重の適否判定に 用いられる。
ディジタル網ィンタフヱ一ス 70は、 ISDN回線を介して交換機(図外)と接続さ れており、 TDMA処理部 60と交換機との間で伝送方式に応じた信号の変換等を行 情報記憶部 90は、 しきい値テーブル 200、 品質指標値テーブル 300、 新規 PS 情報 400を記憶する。 これらは制御部 80により読み書きされる。 詳しいデータ 構成については図 2~4を用いて後に説明する。 制御部 80は、 具体的には、 マイクロプロセッサ、 ROM (Read Only Memory)及び RAM (Random Access Memory)などから構成され、 マイクロプロセッサが ROMに記 録されているプログラムを実行することにより、 その機能を達成する。
<ウエイ ト計算部 56の詳細説明 >
以下、 ゥ Iイ ト計算部 56のウェイ トベクトルの算出について説明する。
(数 1) yi(t) =
Figure imgf000011_0001
+ w2*(t)x2(t) + w*(t)x3(t) + w4*(i)x4(t) 数 1に示すように、 アレイ受信部 55は、 受信部 31〜34から渡される受信信号 ベクトル x^t x2(t)、 x3(t)、 x4(t)のそれぞれに対して、 ウェイ トベクトル w, (t), ff2(t)、 ff3(t)、 ff4(t)の複素共役である複素ウェイ トベクトル ffl* (t)、 w2* (t)、 w3* (t) , w4* (t)をそれぞれ掛け合せた値の総和である仮受信信号 (1)を求 め、 判定部 (不図示)により位相を補正した結果である抽出信号 ^ (t)に変換する。 なお、 tは信号が到達する時間を示し、 PHS規格における 1シンボルを受信す る時間を単位としたタイムスロット内での経過時間を示す値をとる。
従って、 受信信号 x,、 x2、 x3、 x4、 複素ゥヱイ トベクトル *、 w2*、 w3*、 w4*等 は tの値が 1、 2、 · · · という信号列である。 ここでは、 ウェイ ト計算機 56 は、 最小二乗平均誤差方式 (MMSE方式)を用いて次のようにしてゥヱイ卜べクト ルを算出するものとする。
ウェイ トべクトルは、 適当な値の初期値が定められており、 参照信号 d(t)と、 抽出信号 )との誤差を最小とするように、 予め定められた範囲内で w(t)の値 を変動させて調整することにより、 単位時間毎に w(t+l)に更新されるものであ る。 参照信号 d(t)と抽出信号 との誤差を e(t)とすると、
(数 2) e(t) = d(t)-y\(t)
=
Figure imgf000011_0002
よって、 誤差 e(t)の平均 2乗誤差は次のように表される。
(数 3)
Figure imgf000012_0001
ここで E []はアンサンブル平均を表す。
, (t+l) , w2(t+l)は、 この平均 2乗誤差を小さくするようにそれぞれ )、 w2(t)を修正した値をとる。 時間経過と共にウェイトべクトル 値は一定値に収 束し、 プリアンブル、 ユニークワード等に続いて送られると iろの通信内容であ る本体的なデータの受信段階では、 抽出信号 S^t)は正確なものとなる。 なお、 通信が開始された後は、 前回のタイムスロッ卜において最終的に得られたゥヱイ トべクトルの値がその次の回のタイム'スロッ トに関レてのウェイ トべクトルの初 期値として用いられることもある。 '
次に、 ウェイ ト計算部 56における空間多重適否判定用の各種パラメータの検 出及び算出について説明する。
ウェイ ト計算部 56は、 応答べクトル計算部 561、 RSSI (Receive Signal Strength Indication)測定部 562、 MSE(Mean Square Error)計算部 563、 FD計算 部 564から構成される。
応答べク トル計算部 561は、 各.受信タイムスロッ 卜において、 受信部 31~34 より信号処理部 50aに入力される各信号と、 アレイ受信部 55で重み付け合成さ れた信号とに基づいて、 移動局の応答ベクトルを算出する。 応答ベク トルは、 移 動局から無線基地局 100までの信号の伝播路、 すなわち移動局から無線基地局 100への信号の到来方向等を表すものである。
以下、 応答べクトル計算部 561が行う応答べクトル算出方法について説明する。 移動局 1、 移動局 2、 移動局 3、 移動局 4が送信する信号を S (t-て 、 S2' (t- r 2) , S3' (t-て 3)、 S4' (t-て 4)とし、 アンテナ 11〜14(それぞれ第 1 アンテナ〜第 4アンテナともいう)及ぴ受信部 31〜34を介して信号処理部 50aに入力される各 信号を ! )、 x2(t)、 x3(t)、 x4(t)とする。 また 1ιυは、 移動局 jから第 iアンテ ナまでの伝播路を表す複素数である。 ここで て!、 て 2、 τ 、 て ま、 tを基準 としたときの無線基地局 100における受信タイミングであり、 個々の移動局と 無線基地局 100との間の距離の違いによって生じる到来時間の差を表す。
Si ' (トて 〜S4' (t- 7: 4)と X! (t)〜x4(t)との間には次の関係が成立する。
(数 4)
Xift) = hnS(t -τλ) + huS2'(t一て 2
+ h3S3'(t—て 3リ + huS ft—て 4リ + n t)
x2(t) = hxS{(t— iリ + h22S2'(t一て 2)
+ hsSsft—て 3リ + h24S4'(t—て 4リ + n2(t)
x2(t) = h (t― τλ) + h32S2'(t一て 2ノ
+ h33S3 r(t一て 3リ + h34S4'(t - ) + n3(t)
x—つ (t) = h4iSi(t -τχ) + h S2'(t一て 2
+ h S3'(t一て 3リ + h S ft一て 4リ + nA(t)
なお、 )、 n2(t)、 n3(t)、 n4(t)は雑音である。 また、 無線基地局 100が分離 抽出した抽出信号 Si (t)と、 ユーザ Aが送信する信号である S Ct-て とは、 送 信された信号が正常に受信でき分離抽出が適切に行えたとすれば等しいものとな る。
信号処理部 50aの応答べクトル計算部 561は、 抽出信号 S^t)の複素共役であ る S (t)と、 信号 x t)、 ¾(t)、 x3(t)、 x4(t)とを用いて次式のように受信応答 ベクトルの成分である hu、 h21、 h31、 h41を算出する。
(数 5)
Figure imgf000013_0001
¾ =£7¾(0&* — 7
Figure imgf000013_0002
ここで E[]はアンサンブル平均を表しており、 ある程度の期間、 t=l、
2、 · · ·、 nにおける平均値を意味する。 例えば nを 100とし、 100シンボル期 間における平均値を算出する。
抽出信号 S!O:) S2(t)、 S3(t)、 S4(t)が正常に得られ、 それぞれ送信された信 号 S (t - )、 S2'(t-て 2)、 S3'(t-r3), S4'(t -て 4)と同等とみなせる状態におい ては、 数 4について、 Ξ,' -て 、 S2'(t—て 2)、 S3'(t-zr3)、 S4'(t -て 4)をそれぞ れ310:)、 s2(t)、 s3(t)、 s4(t)と置き換え、 両辺に (ϋを乗じてアンサンブル 平均をとると、 次の数 6が得られる '- (数 6)
E[x t)S (t -
Figure imgf000014_0001
― r2)S (t― τ)]
+E[huS3(t一 r^S^t -て ] +E[hwS t - TA)Si (t一 τχ)]
+E[nx(t)Sx*(t- Tx)]
E[x2(t)S (t -
Figure imgf000014_0002
- rx)Su(t― T J+Efh22S2(t一て 2リ&丫 ί - τ)]
+E[h (t―て H ― T,)]+E[h2,S,(t - )S (t -て ]
+E[n2(t)S (t-r ]
E[x t)S (t― Tx)]=E[h„S(t - T,)S;(t - r ]+E[hnS2(t― r2)S (t一 τ)]
+E[h33S3(t―て 3 )Sr*(t -て〜)] +E[h3 (t -て 4リ&丫一て、)]
+E[ (t)S (t— τθ]
E[x,(t)S;(t -て)]=E[h S《t - T,)S (t― )]+E[h S t― r2)S (t一 τ)]
+E[h43S3(t―て s)S (t― vx)]+E[h 4S,(t -
Figure imgf000014_0003
― τχ)]
Figure imgf000014_0004
ここで
Figure imgf000014_0005
であり、 また、 基本的に各移動局から送信された信号 s (t -て 、 s2'(t-て 2)、 s3'(t-て 3)、 s4' a -て 4)の間には相関関係がなく、 信号
Si ' (t-て!)と雑音成分にも相関関係がないため、 EG S^t)]^)
Figure imgf000014_0006
E [n3 (t) S (t) ] =0、 E [n4 (t) (t) ] =0である。
従って、 数 6から数 5が導出できることになる。 なお、 これにより雑音成分の 影響を数式上除去している。 信号処理部 50aにおける応答べクトル計算部 561は、 数 5に示した計算を行つ て移動局 jに対する応答べクトル h3j, h4j)を求める。 また信号処理部 50b〜dにおける応答べクトル計算部 561それぞれも、 同様の手順により応答べ クトルを算出する。
また応答べクトル計算部 561は、 通信中の移動局だけでなく、 新規移動局につ ても当該移動局から通信チャネル割当て要求を受付けたときに、 制御チャネルに おいて新規移動局の応答べクトルの計算を行う。
RSSI測定部 562は、 タイムスロッ ト毎に移動局の受信信号から電界強度を検 出する。
また RSSI測定部 562は、 新規移動局から通信チャネルの割当て要求を受付け たときにも制御チヤネルにて電界強度の検出を行う。
MSE計算部 563は、 タイムスロット毎に移動局の数 3に示した平均 2乗誤差を 算出する。
また RSSI測定部 562は、 新規移動局から通信チャネルの割当て要求を受け付 けたときにも制御チャネルにて新規移動局の MSEを計算する。
FD計算部 564は、 タイムスロット毎に移動局のフヱージングスピードを計算 する。 フヱージングスピードは、 移動局の過去の応答ベクトルと現在の応答べク トルとの相関で表される。 過去の応答べクトルと現在の応答べクトルについては 応答べクトル計算部 561から得られるものを内部メモリ等に記憶しておいて用い る。 過去の応答ベクトルは、 例えば現在の応答ベクトルのフレームの 1つ前のフ レームの応答ベクトルである。 フヱ一ジングスピードが大きいほど、 過去の移動 局からの信号の到来方向と現在の移動局からの信号の到来方向との角度の開きが 大きいことを示し、 、 フ: c—ジングスピードが小さいほど、 開きが小さいことを 示す。 故にフェージンダスピードは過去から現在までの移動局の移動速度を示す 指標となる。 移動速度が大き過ぎると、 移動局に追随した指向性パターンを形成 し難く、 また他の移動局の信号に干渉の影響を与えやすいため、 他の移動局と同 時刻に空間多重するのに適さない。
また FD計算部 564は、 新規移動局から通信チャネルの割当て要求を受け付け たときにも制御チヤネルにて新規移動局のフエ一ジングスピードを計算する。 以上のようにして信号処理部 50a〜(!それぞれにおけるゥヱイト計算部 56の各 構成要素は、 タイムスロット毎に通信中移動局または新規移動局の各種パラメ一 タを算出または検出する。 ゥヱイ ト計算部 56の各構成要素は、 求めたパラメ一 タを制御部 80に出力し、 制御部 80はそれらパラメータを情報記憶部 90に格納 する。 '
ぐ情報記憶部 90の詳細〉
以下、 情報記憶部 90に記憶されるしきい値テーブル 200、 品質指標値テープ ル 300及び新規 PS情報 400の構成について説明する。
図 2はしきい値テーブル 200の構成を示す。
同図に示すようにしきい値^—ブル 200は、 相関値しきい値 Jt (欄 201)、 電界 強度比しきい値 Kt (欄 202)、 送信タイミング差しきい値 Lt (欄 203)、 平均 2乗誤 差しきい値 Et (欄 204)、 フヱージングスピードしきい値 St (欄 205)、 電界強度し きい値 It (欄 206)からなる。
相関値しきい値 Jtは、 通信中移動局の応答べクトルと新規移動局の応答べク トルとの相関値に関するしきい値である。
電界強度比しきい値 Ktは、 通信中移動局から受信した信号の電界強度と新規 移動局から受信した信号の電界強度との比に関するしきい値である。 .
送信タイミング差しきい値 Ltは、 通信中移動局の送信タイミングと新規移動 局の送信タイミングとの差に関するしきい値である。
平均 2乗誤差しきい値 Etは、 通信中移動局及び新規移動局の MSEに関するし きい値である。
フェージングスピードしきい儕 Stは、 通信中移動局及び新規移動局の FDに関 するしきい値である。
電界強度しきい値 Itは、 通信中移動局及び新規移動局の電界強度に関するし きい値である。
しき V、値テ一ブル 200には予めこれらのしきい値が格納されているものとする。 ディジタル網を介してまたは制御部 80が算出したしきい値を用いてしきい値テ 一ブル 200を適宜更新するよう構成してもよい。
図 3は品質指標値テーブル 300の一例を示す。 同図に示すように品質指標値テーブル 300は、 タイムスロッ ト番号 301、 チヤ ネル番号 302、 応答ベク トル 303、 電界強度 304、 送信タイミング 305、 平均 2乗 誤差 306及びフェージングスピード 307の各欄から構成される。
タイムスロット番号 301における 2、 3、 4は、 通信チャネルが割当てられた 3 つのタイムスロッ トの番号を示す。
チャネル番号 302におけるチャネル番号(1、 2、 3、 4)の組、 (5、 6、 7、 8)の組 及び(9、 10、 1 1、 12)の組はタイムスロット番号 2、 3、 4のスロットにおける信 号処理部 50a、 50b、 50c、 50dの処理に対応してつけられる番号である。
各行それぞれは、 1つの通信中移動局に対応するタイムスロッ ト番号、 チヤネ ル番号及び各種パラメータを示す。 例えば、 タイムスロット番号 2、 チャネル番 号 1において通信中の移動局の各種パラメータは、 応答ベクトルが 、 電界強 度が 1ぃ 送信タイミングが 、 平均 2乗誤差が E,、 フエマジングスピードが Si である。 (空白)は、 そのチャネル番号のチャネルにおいて移動局と通信していな いことを示す。
同図のテーブルは、 無線基地局 100は、 タィムスロット3^^ 2のスロットにぉ いてチャネル番号 1、 2 (信号処理部 50a及び 50b)を用いて 2つの移 i]局を空間多 重して通信し、 タイムスロット番号 3のスロットにおいてチャネル番号 5(信号 処理部 50a)を用いて 1つの移動局と通信し、 タイムスロット番号 4のスロット においてチャネル番号 9、 10、 11、 12 (信号処理部 50a、 b、 c、 d)を用いて 4つの 移動局と空間多重して通信していることを示す。
品質指標値テーブル 300の各種パラメータは、 ウェイト計算部 56の各構成要 素及ぴタイミング制御部 61より出力されるパラメータであり、 制御部 80により タイムスロット毎に更新される。
図 4は新規 PS情報 400の構成を示す。
同図に示すように新規 PS情報 400は、 新規移動局に対応する各種パラメータ、 すなわち新規移動局の応答ベクトル RNEir (欄 401)、 電界強度 ΙΝΕΪ (欄 402)、 送信タ イミング ΡΝΕΪ (欄 403)、 平均 2乗誤差 Ε (欄 404)、 フエ一ジングスピード Sra (欄 405)から構成される。 応答ベクトル RMは、 新規移動局の応答ベクトルであり、 無線基地局 100が新 規移動局よりリンクチャネル確立要求を受付けたとき制御チャネル上の信号から 応答べクトル計算部 56によって計算され、 制御部 80により新規 PS情報 400に 格納される。
電界強度 INEWは、 新規移動局の電界強度であり、 無線基地局 100が新規移動局 よりリンクチヤネル確立要求を受けたとき制御チャネル上の信号から RSSI測定 部 562により計算されて、 制御部 80により新規 PS情報 400に格納される。 送信タイミング PNEWは、 新規移動局の送信タィミングであり、 タイミング制御 部 61が新規移動局よりリンクチャネル確立要求を受けたときの受信タイミング から推定し、 制御部 80により新規 PS情報 400に格納される。 ここでタイミング 制御部 61は、 新規移動局の送信タイミングを推定することとしているが、 推定 せずに、 常に所定のタイミングを新規移動局の送信タイミングと決定して制御部 80に出力するよう構成してもよい。
平均 2乗誤差 ENEWは、 新規移動局の平均 2乗誤差である。 新規移動局からリン クチャネル確立要求を受けたとき制御チヤネル上で受信される信号から平均 2乗 誤差が計算されて、 制御部 80により新規 PS情報 400に格納される。
フェージングスピード SNOTは、 新規移動局のフエ一ジングスピードである。 新 規移動局からリンクチヤネル確立要求を.受けたとき制御チヤネル上で受信される 信号から計算される。 通信中移動局のフェージンダスピードは前回のフレームの 応答ベクトルと現在の応答ベクトルとの相関であるのに対し、 新規移動局のフエ 一ジングスピードは前回のフレームの応答ベクトルがないので、 例えば、 現在の フレームの受信タイムスロッ トの前半の応答べク トルと後半の応答べクトルとの 相関をとることとしている。
くリンクチヤネル確立時の動作 >
制御部 80を中心とする無線基地局 100の動作について説明する。
図 5は、 リンクチャネル確立時の制御部 80を中心とする処理手順を示すシー ケンス図である。
制御部 80は、 新規移動局からリンクチャネル確立要求を受信すると (ステツ プ S181) 、 ウェイ ト計算部 56及びタイミング制御部 61に新規移動局の各種パ ラメ一夕を求めさせ、 その結果である応答ベクトル Rra、 電界強度 ΙΝΕΪ、 送信タ ィミング Pra、 平均 2乗誤差 ENEW、 フヱージングスピード Sraを取得し (ステップ S184) 、 情報記憶部 90の新規 PS情報 400に格納する (ステップ S183) 。
次に制御部 80は、 各タイムスロットにおける空間多重の適否を判定すること により新規移動局にどのチャネルを割当てるかを決定する処理を行う。
制御部 80は、 タイムスロット番号 2、 3、 4のうち 1つのタイムスロットを選 択し (ステップ S186) 、 当該タイムスロッ トで使用しているチャネルがあるか 否か、 すなわち当該タイムスロットを使用して通信している移動局があるか否か を判定する。 この判定は品質指標値テーブル 300を参照して、 当該タイムスロッ トにおいて各種パラメータが格納されているチャネルがあるか、 又は全てのチヤ ネルの各種パラメータが空白であるかによりなされる。
この判定において当該タイムスロットを使用しているチャネルがないと判定し た場合 (ステップ S187、 NO) 、 制御部 80は、 新規移動局に対して当該タイムス ロッ卜の空きチャネルの通知を含むリンクチャネル割当てを行い (ステップ S192) 、 新規移動局と無線基地局との間で TCH同期パーストを送受信してリンク チャネルが確立する (S193) 。
ステップ S187の判定において、 当該タイムスロッ トを使用しているチャネル があると判定した場合 (ステップ S187、 YES) 、 制御部 80は、.多重判定処理を 行い (ステップ S188) 、 その判定の結果、 多重可と判定した場合には(ステップ S189、 可)、 先と同様のリンクチャネル割当てを行い、 リンクチャネルを確立す る (ステップ S192、 SI 93) 。
ステップ SI 88の多重判定処理の結果、 多重不可と判定した場合には.(ステッ プ 189、 不可) 、 制御部 80は、 他のタイムスロットについて処理を繰り返す (ステップ S190) 。
全てのタイムスロットにおいて多重不可と判定された場合には、 制御部 80 は、 新規移動局に対してリンクチャネル割当て拒否の通知を行う (ステップ S191) 。 その結果、 新規移動局は、 待ち受けに入る (ステップ S194) 。
図 6は、 図 5の多重判定処理の詳細を示すフローチャートである。 制御部 80は、 品質指標値テーブル 300を参照することにより当該タイムス口 ッ トに空きチャネルがあるか否かを判定する (ステップ S601) 。
判定の結果、 当該タイムスロッ トに空きチャネルがない場合は、 多重不可と判 定して多重判定処理を終了する(ステップ S612) 。
空きチャネルがある場合には、 制御部 80は、 品質指標値テーブル 300に格納 されたパラメータと新規 PS情報 400に格納されたデータとから、 最高相関値 JMAX、 最大電界強度比 K 、 最短送信タイミング差 L腿を計算して取得する (ステ ップ S602、 S603、 S604) 。
最高相関値 JMAXは、 当該タイムスロットにおける各通信中移動局の応答べクト ル (iは各通信中移動局のチャネル番号) と、 新規移動局の応答ベクトル RNEW との各相関のうち最も高い値とする。
例えば図 3の品質指標値テーブル 300の場合、 タイムスロッ ト番号 2のスロッ トにおける各通信中移動局の応答べクトルは 及び. であるから、 制御部 80は、 と!?^との相関 と、 と ΕΪとの相関 J2を計算し、 と J2のうち値が大きい 方を最高相関値 JMAXとする。
つの移動局の間の相関値が大きい場合には、 両者が略同方向に存在するため、 指向性パターンの差異によつて両者の信号を分離することは不可能であると考え られる。 よって新規移動局と通信中移動局との相関を計算し、 これを空間多重適 否判定の指標として用いている。
この場合には、 無線基地局は、 両者を空間多重不適と判断する。
また、 無線基地局は、 前記両移動局からの信号の電界強度を測定し、 測定した 2個の電界強度の比を算出する。
最大電界強度比 KMAXは、 新規移動局の電界強度 ΙΝΕΪと、 当該タイムスロッ トに おける各通信中移動局の電界強度 Ii (iは各通信中移動局のチャネル番号) とか ら数 7により計算される各電界強度比のうち最大のものとする。
(数 7)
Figure imgf000020_0001
例えば図 3の品質指標値テーブル 300の場合、 タイムスロッ ト番号 2のスロッ トにおける各通信中移動局の電界強度は I,及び 12であるから、 制御部 80は 1„ と I,の電界強度比 と、 ΙΝΕΪと 12との電界強度比 を計算し、 と Κ2のうち値 が大きい方を最大電界強度比 ΚΜΑΧとする。
2つの移動局の電界強度比が大きい場合には、 指向性パターンを最善に形成し ても、 両者の信号の強度比がァダプティブアレー装置の利得比を上回るため、 両 者の信号を適切に分離できないと考えられる。 よって新規移動局と通信中移動局 との電界強度比を計算し、 これを空間多重適否の判定の指標として用いている。 最短送信タイミング差 LM1Nは、 新規移動局の送信夕イミング ΡΝΕΪと各通信中移 動局の送信タイミング (iは各通信中移動局のチャネル番号) とから数 8によ り計算される各送信タイミング差のうち最短のものとする。
(数 8) 尸 PNEW -丄 i 例えば図 3の品質指標値テ一プル 300の場合、 タイムスロット番号 2のスロッ トにおける各通信中移動局の送信タイミングは 及び P2であるかた、 制御部 80 は PNEWと との送信タイミング差 と、 ΡΝΕΪと Ρ2との送信タイミング差 L2とを計 算し と L2のうち最短の方を最短送信タイミング差 LMAXとする。
2つの移動局の送信タイミング差が短い場合、 2つの移動局は無線基地局 100 からの信号を正しく分離することができず、 信号を取り違えて復調することがあ る。 よって新規移動局と通信中移動局との送信タイミング差を計算し、 これを空 間多重適否の判定の指標として用いている。
ここまでの処理によって制御部 80は、 新規移動局の空間多重適否判定のため の指標、 すなわち最高相関値 JMAX、 最大電界強度比 KMAX及び最短送信タイミング 差 LMINを計算により取得する。 また制御部 80は、 また新規 PS情報 400から平均 2乗誤差 E腳、 フヱージンダスピード SNCT及び電界強度 1„を取得する。
平均 2乗誤差が大きい場合、 アレイ受信に用いる誤差が収束していないか大き なレベルで残留する結果となっているはずであるので、 この場合その誤差にかか る移動局に対して指向性パターンが高精度に形成できない。 よって平均 2乗誤差 を空間多重適否の判定の指標として用いている。
またフヱージングスピードが激しい、 つまり単位時間あたりの移動量が大き ヽ 移動局についてはアレイ受信時の指向性パターン形成が高精度に行えた場合であ つても、 受信スロッ トから送信スロットまでのタイムラグにより移動局が大きく 移動するので、 受信時と同じ指向性パターンを送信時に形成しても、 その指向性 パターンは移動局の方向とは大きくずれる。 このように移動局の指向性パターン が正しく形成できない場合、 他の移動局の指向性パターン形成にも悪影響を与え ることとなる。 なぜなら他の移動局に対して形成する指向性パターンは、 フエ一 ジンダスピードの激しい移動局に対して正しくヌルを向けることが難しいからで ある。 よってフ X—ジングスピードを空間多重適否の判定の指標として用いてい る。
また電界強度が低すぎる場合にも指向性パターン形成が高精度に行えないので、 電界強度を空間多重適否の判定の指標として用いている。
以降ステップ S605~S610において制御部 80は、 これらの指標をしきい値テ一 ブル 200に格納されたしきい値と比較する処理を行う。
制御部 80は、 まず最高相関値 JMAXと相関値しきい値 Jtとを比較する (ステツ プ S605) 。 比較の結果、 最高相関値 JMAXが相関値しきい値 Jt以下の場合、 ステ. ップ S606の処理に進み、 それ以外の場合は多重不可と判定する (ステップ S612)
次に最短送信タイミング差 Lraと送信タイミング差しきい値 Ltとを比較する (ステップ 606) 。 比較の結果、 最短送信タイミング差 L謹が送信タイミング差 しきい値 Lt以上の場合、 ステップ S607の処理に進み、 それ以外の場合は多重不 可と判定する (ステップ S612) 。
次に最大電界強度比 KMAXと電界強度比 Ktとを比較する (ステップ S607) 。 比 較の結果、 最大電界強度比 KMAXが電界強度比しきい値 Kt以下の場合、 ステップ S608の処理に進み、 それ以外の場合は多重不可と判定する (ステップ S612) 。 次に平均 2乗誤差 ΕΝΕΪと平均 2乗誤差しきい値 Etとを比較する (ステップ S608) 。 比較の結果、 平均 2乗誤差 ENEffが平均 2乗誤差しきい値 以下の場合、 ステップ S609の処理に進み、 それ以外の場合は多重不可と判定する (ステップ S612) 。
次にフエ一ジンダスピ一ド Sraとフエ一ジングスピード Stとを比較する (ステ ップ S609) 。 比較の結果、 フェージングスピード S がフエ一ジングスピードし きい値 St以下の場合、 ステップ S610の処理に進み、 それ以外の場合は多重不可 と判定する (ステップ S612) 。
次に電界強度 I と電界強度しきい値 Itとを比較する (ステップ S610) 。 比 較の結果、 電界強度 ΙΝΕΪが電界強度しきい値 It以上の場合、 ステップ S611の処 理に進み、 それ以外の場合は多重不可と判定する (ステップ S612) 。
以上の処理によりステツプ S605〜S610の判定において全て YESである場合、 制御部 80は新規移動局を当該タィムスロッ トにおいて通信中移動局と多重して 通信可能と判定する(ステップ S611) 。
図 6に示す多重判定処理は、 ステップ S605〜S610の 6つの判定条件を全て満 足する場合に多重可と判定するものであるが、 これら 6つの判定条件のうちの 1 つ、 あるいはいくつかの判定条件を満足する場合に多重可と判定してもよい。 以上の処理により制御部 80 は、 新規移動局に対して空間多重の適否を判定し、 判定条件を満たさない場合にはそのタイムスロットのチャネルを割当てないよう にし、 空間多重のないタイムスロットかまたは判定条件を満たすスロッ卜のチヤ ネルを割当てる。 これにより新規移動局には、 空間多重のないタイムスロットか 又は空間多重するが通信品質が保証されたタイムスロッ トのチャネルが割当てら れることとなり、 通信の安定性が向上する。 その結果、 通信特性の向上、 干渉起 動数の低下、 異常切断等の劣悪状態を回避することができる。
また本実施形態においては相関値や電界強度比に関する判定 (ステップ S605、 S607) の他に 4つの判定条件 (ステップ S606、 S608、 S609、 S610) を用いて空 間多重の適否を判定するので、 従来より空間多重可と判定される確率が低いがこ れにより精度高く空間多重適否の判定を行う。
以上ではリンクチヤネル確立時における空間多重の可不可を判定する実施形態 について説明したが、 リンクチャネル確立時のみでなく、 制御部 80は、 リンク チャネル確立後も空間多重している複数の通信中移動局について監視して空間多 重の可不可の判定を行い、 不可と判定した通信中移動局についてはチャネル切替 えやハンドオーバ等を行わせて空間多重を解除する。 以下に、 その監視処理につ いて説明する。
く監視処理 >
図 7は、 制御部 80が行う監視処理の手順を示すフローチャートである。
制御部 80は、 タイムスロット毎に図 7の監視処理を行う。
まず制御部 80は、 現在のタイムスロッ卜において空間多重しているか否かを 判定する。 この判定は、 品質指標値テーブル 300のデータ格納状況を見るか、 信 号処理部 50a〜(!の少なくとも 2つが動作しているかにより行われる。
判定の結果、 空間多重していない場合は監視処理を終了する。
空間多重している場合、 制御部 80は、 最高相関値 JMAXを取得する .(ステップ S702) 。 この最高相関値 JMAXは、 多重判定処理のものと計算方法は同じであるが、 2つの通信中の応答べクトルを用いている点で異なる。 すなわち最高相関値 JMAX は、 当該タイムスロッ 卜で空間多重している複数の通信中移動局のうちの 2つを 組み合わせ、 各組の通信中移動局 iと通信中移動局 j (i , jはチャネル番号) と の相関のうち最高のものとする。
次に制御部 80は、 最大電界強度比 Mを取得する (ステップ S703) 。 この最 大電界強度比 KMは、 当該タイムスロットで空間多重している複数の通信中移動 局のうちの 2つを組み合わせ、 各組の通信中移動局 i と通信中移動局 j (i , jは チャネル番号) との電界強度比のうち最大のものとする。
次に制御部 80は、 最短送信タイミング差 LMiNを取得する (ステップ S704) 。 この最短送信タイミング差 JMAXは、 当該タイムスロットで空間多重している複数 の通信中移動局のうちの 2つを組み合わせ、 各組の通信中移動局 iと通信中移動 局 j (i , j はチャネル番号) との間の送信タイミング差のうち最短のものとする。 次に制御部 80は、 最大平均 2乗誤差 EMAXを取得する (ステップ S705) 。 この 最大平均 2乗誤差 Εωは、 当該タイムスロッ卜で空間多重している複数の通信中 移動局の各平均 2乗誤差 のうち最大のものとする。
次に制御部 80は、 最大フヱ一ジングスピード SMAXを取得する (ステップ S706) 。 この最大フェージングスピード SMAXは、 当該タイムスロッ トで空間多重 している複数の通信中移動局の各フェージングスピード Siのうち最大のものと する。
さらに制御部 80は、 最小電界強度 IMINを取得する (ステップ S707) 。 この最 小電界強度 IMAXは、 当該タイムスロットで空間多重している複数の通信中移動局 の各最大電界強度 のうち最小のものとする。
以上のようにして制御部 80は、 空間多重適否判定のための各種指標を取得す ると、 これらの指標をしきい値テーブル 200に格^内されたしきい値と比較する処 理を行う (ステップ S708) 。 このしきい値判定の処理は、 図 6のフ口一チヤ一 トに示したステップ S606〜S612の処理と同じである。 ただしステップ S608〜 S610において平均 2乗誤差 E歸、 フェージングスピード SNEff及び電界強度 I腿の 替わりに最大平均 2乗誤差 E 、 最大フ —ジンダスピード SMAX及び最小電界強 度 I画を用いている点が異なる。
しきい値判定の結果、 多重不可と判定した場合には (ステップ S709) 、 制御 部 80は当該タイムスロットの空間多重を解除する処理を行う (ステップ S710)。 空間多重解除とは、 当該タイムスロットにおいて空間多重している複数の通信中 移動局のうち少なくとも 1つの移動局を選択し、 その移動局に対してチャネル切 替え要求又はハンドオーバ要求を送信して、 チャネル切替え又はハンドオーバを 行わせることである。 空間多重解除の対象となる移動局の選択の仕方としては、 いくつかあげられるが、 例えば、 最高相関値 JMAX、 最大電界強度比 KMAX及び最短 送信タイミング差 LMIN算出のパラメータとなった通信中移動局 i及び通信中移動 局 jのうち少なくとも 1つを選択する、 または最大平均 2乗誤差 E 、 最大フエ 一ジングスピード SMAX及び最小電界強度 IMINに対応する移動局 iのうち少なくと も 1つを選択する等がある。
以上本発明の実施形態にかかる無線基地局 1 0 0について説明したが、 本発明 は上記実施形態に限らず、 以下のようにしてもよい。
( 1 ) 上記実施形態では、 新規移動局にチャネル割当てを行う際に、 通信中移動 局が使用しているタイムスロットを共用させて空間多重するか否かを判定すると いう構成であった。 ここで新規移動局とは、 他の無線基地局の無線ゾーンからハ ンドオーバにより移動してきた移動局や無線基地局 1 0 0の無線ゾーンで電源投 入後にリンクチヤネル確立要求を出してきた移動局等である。 この構成に限らず、 通信中チャネル切替えにより無線基地局 1 0 0の 1つのタイムスロッ 卜から他の 1つのタイムスロッ トにスロット切替える移動局に対してチャネル割当てを行う 際に、 切替え先のスロットで既に通信している移動烏と当該タイムスロッ トを共 用させて空間多重するか否かを判定するよう構成してもよい。
( 2 ) 上記実施形態において、 新規移動局より得られる各種パラメータを用いて 空間多重判定を行うかわりに、 通信中移動局より得られる各種パラメータ等をも ちいて新規移動局についての空間多重判定を行うよう構成してもよい。
例えば、 本実施形態における監視処理の結果、 空間多重を解除したスロッ 卜の 番号を記憶し、 解除したときから所定期間は、 当該スロッ トにおいて新規移動局 を通信中移動局と空間多重しない判定を行うよう構成してもよい。
また、 品質指標値テーブル 3 0 0に格納されている通信中移動局のパラメータ から指向性形成の精度に影響する不安定な要素をもつタイムスロットを検出し、 当該タイムスロッ トでは新規移動局を空間多重しない判定を行うよう構成しても よい。
より具体的には、 品質指標値テーブル 3 0 0を参照して、 通信中移動局の電界 強度が所定のしきい値よりも高いタイムスロッ トでは、 新規移動局を空間多重し ないと判定するよう構成してもよい。
さらに、 品質指標値テーブル 3 0 0を参照して、 通信中移動局のフヱージング スピードが所定のしきい値より高いタイムスロットでは新規移動局を空間多重し ないと判定するよう構成してもよい。
( 3 ) 上記実施の形態における各動作手順を、 汎用のコンピュータ又はプログラ ム実行機能を有する機器等に実行させるためのコンピュータプログラムにし、 当 該プログラムを記録媒体に記録し又は各種通信経路等を介して流通させ頒布する こともできる。 このような記録媒体には I Cカード、 光ディスク、 フレキシブル ディスク、 R O M等がある。
( 4 ) ·また上記プログラムの手順を方法としてもよい。 産業上の利用可能性' 以上のように本発明の無線基地局は、 PHSや携帯電話機等、 加入者の収容量増 加と通信品質の向上が要求される移動通信システムの基地局として有用である。

Claims

an 求 の 範 囲
1 . 空間多重通信の機構を有する無線基地局であって、
第 1及び第 2の移動局について、 少なくとも一方の移動局の通信品質を示す指 標を取得し、 前記指標に基づいて空間多重通信するか否かを判定する判定手段と、 前記判定手段により空間多重通信すると判定された場合に前記第 1及び第 2の 移動局と空間多重通信を行う通信手段と
を備えることを特徴とする無線基地局。
2. 前記指標は、 無線基地局から前記第 1の移動局への送信タイミングと無線基 地局から前記第 2の移動局への信号の送信タイミングとの間の送信タイミング差 であり、
前記判定手段は前記送信タイミング差が所定タイミング差より大きい場合に空 間多重通信すると判定する
ことを特徴とする請求の範囲第 1項記載の無線基地局。
3. 前記指標は、 前記第 1の移動局から得られる信号と所望の信号とから算出さ れる誤差であり、
前記判定手段は前記誤差が所定値より低い場合に空間多重通信すると判定する ことを特徴とする請求項 1項記載の無線基地局。
4. 前記指標は、 無線基地局が算出する前記第 1の移動局の単位時間あたりの移 動量であり、
前記判定手段は前記移動量が所定移動量より小さい場合に空間多重通信すると 判定する
ことを特徴とする請求の範囲第 1項記載の無線基地局。
5. 前記判定手段は、 前記第 1の移動局からチャネル割当要求を受付けた場合に、 前記指標に基づい て、 前記第 1の移動局と既に通信中の前記第 2の移動局とを空間多重通信するか 否かを判定する
ことを特徴とする請求の範囲第 1項から第 4項のいずれかに記載の無線基地局 c
6. 前記指標は、
無線基地局から前記第 1の移動局への信号の送信タイミングと無線基地局から 前記第 2の移動局への信号の送信タイミングとの間の送信タイミング差、
前記第 1の移動局から得られる信号と所望の信号とから算出される誤差、 無線基地局が算出ずる前記第 1の移動局の単位時間あたりの移動量、 前記第 1の移動局より受信される信号の電界強度、
前記第 1の移動局の応答べクトルと前記第 2の移動局の応答べクトルとの相関 値、
及び前記第 1の移動局より受信される信号の電界強度と前記第 2の移動局より 受信される信号の電界強度との比であり、
前記判定手段は、 前記指標の少なくとも 3つをそれぞれのしきい値と比較する ことにより、 前記第 1の移動局と前記第 2の移動局とを空間多重通信するか否か を判定する
ことを特徴とする請求の範囲第 1項記載の無線基地局。
7. 空間多重通信の機構を有する無線基地局であって、
空間多重して通信している第 1の移動局と第 2の移動局について、 前記第 1の 移動局の通信品質を示す指標に基づいて、 前記第 1の移動局と第 2の移動局との 空間多重を継続するか否かを判定する判定手段と、
. 継続しないと判定した場合に前記第 1の移動局と前記第 2の移動局との空間多 重を解除する解除手段と
を備え、
前記指標は、 無線基地局から前記第 1の移動局への信号の送信タイミングと無線基地局から 前記第 2の移動局への信号の送信タイミングとの間の送信タイミング差、 前記第 1の移動局から得られる信号と所望の信号とから算出される誤差、 無線基地局が算出する前記第 1の移動局の単位時間あたりの移動量、 前記第 1の移動局より受信される信号の電界強度、
前記第 1の移動局の応答べクトルと前記第 2の移動局の応答べクトルとの相関 値、
及び前記第 1の移動局より受信される信号の電界強度と前記第 2の移動局より 受信される信号の電界強度との比のうちの少なくとも 3つである
ことを特徴とする無線基地局。
8. 空間多重通信の機構を有する無線装置に備えられたコンピュータが実行可能 な無線基地局用プログラムであって、
第 1及び第 2の移動局について、 少なくとも一方の移動局の通信品質を示す指 標を取得し、 前記指標に基づいて空間多重通信するか否かを判定する判定ステツ プと、
前記判定手段により空間多重通信すると判定された場合に前記第 1及び第 2の 移動局と空間多重通信を行う通信ステップと
からなることを特徴とする無線基地局用プログラム。
PCT/JP2001/007298 2000-08-25 2001-08-27 Station radioelectrique de base et programme correspondant WO2002017666A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/362,648 US7623488B2 (en) 2000-08-25 2001-08-27 Radio base station and program for radio base station
DE60118762T DE60118762D1 (de) 2000-08-25 2001-08-27 Funkbasisstation und programm für die funkbasisstation
EP01958499A EP1324627B1 (en) 2000-08-25 2001-08-27 Radio base station and program for radio base station
AU2001280169A AU2001280169A1 (en) 2000-08-25 2001-08-27 Radio base station and program for radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-256525 2000-08-25
JP2000256525A JP3574055B2 (ja) 2000-08-25 2000-08-25 無線基地局

Publications (1)

Publication Number Publication Date
WO2002017666A1 true WO2002017666A1 (fr) 2002-02-28

Family

ID=18745121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007298 WO2002017666A1 (fr) 2000-08-25 2001-08-27 Station radioelectrique de base et programme correspondant

Country Status (9)

Country Link
US (1) US7623488B2 (ja)
EP (1) EP1324627B1 (ja)
JP (1) JP3574055B2 (ja)
CN (1) CN1248533C (ja)
AT (1) ATE323384T1 (ja)
AU (1) AU2001280169A1 (ja)
DE (1) DE60118762D1 (ja)
TW (1) TWI275310B (ja)
WO (1) WO2002017666A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520026B2 (ja) * 2000-04-03 2004-04-19 三洋電機株式会社 無線基地局、その制御方法およびプログラム記録媒体
US7039356B2 (en) * 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
JP4514463B2 (ja) 2003-02-12 2010-07-28 パナソニック株式会社 送信装置及び無線通信方法
JP4546177B2 (ja) 2003-07-28 2010-09-15 パナソニック株式会社 無線通信装置および無線通信方法
JP3923050B2 (ja) * 2004-01-30 2007-05-30 松下電器産業株式会社 送受信装置および送受信方法
JP4663369B2 (ja) * 2004-05-20 2011-04-06 パナソニック株式会社 無線通信システム、無線通信方法、基地局装置及び端末装置
JP4208828B2 (ja) 2004-12-10 2009-01-14 三洋電機株式会社 タイムスロット割当方法およびそれを利用した基地局装置
JP4510681B2 (ja) * 2005-04-01 2010-07-28 京セラ株式会社 無線基地装置、通信方式選択方法および通信方式選択プログラム
EP1901446A1 (en) * 2005-06-29 2008-03-19 Kyocera Corporation Radio communication device, radio communication method, and radio communication program
JP4778822B2 (ja) * 2006-03-29 2011-09-21 京セラ株式会社 無線基地局及びチャネル割当方法
US8374132B2 (en) * 2006-05-29 2013-02-12 Kyocera Corporation Base station device, method for controlling base station device, receiving device, adaptation algorithm control method, radio communication device, and radio communication method
JP4773910B2 (ja) * 2006-08-10 2011-09-14 京セラ株式会社 基地局装置及び空間分割多重化方法
CN101267235B (zh) * 2007-03-16 2013-01-09 电信科学技术研究院 一种实现空分复用的方法及装置
JP4803281B2 (ja) * 2009-06-03 2011-10-26 カシオ計算機株式会社 無線通信装置及びプログラム
US8670432B2 (en) * 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
JP2018152723A (ja) * 2017-03-13 2018-09-27 株式会社東芝 無線通信装置および無線通信方法
JP2018174401A (ja) * 2017-03-31 2018-11-08 富士通株式会社 送信局、無線通信システム、及び、送信局における処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012590A1 (en) * 1991-12-12 1993-06-24 Arraycomm, Incorporated Spatial division multiple access wireless communication systems
JPH10285104A (ja) * 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd 適応受信ダイバーシチ装置及び適応送信ダイバーシチ装置
JP2000106696A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 伝送チャネル割当方法およびそれを用いた無線装置
JP2000224097A (ja) * 1999-02-01 2000-08-11 Hitachi Ltd アダプティブアレイアンテナを使用した無線通信装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2436535A1 (fr) * 1978-09-15 1980-04-11 Ibm France Procede et systeme de synchronisation d'un reseau de communication a acces multiple par repartition dans le temps et utilisant un satellite ayant plusieurs antennes a faisceau directif sur des frequences differentes
US5634199A (en) 1993-04-14 1997-05-27 Stanford University Method of subspace beamforming using adaptive transmitting antennas with feedback
US5508707A (en) * 1994-09-28 1996-04-16 U S West Technologies, Inc. Method for determining position by obtaining directional information from spatial division multiple access (SDMA)-equipped and non-SDMA-equipped base stations
FI98172C (fi) * 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottisignaalin lähettämiseksi ja solukkoradiojärjestelmä
US5802046A (en) * 1995-06-05 1998-09-01 Omnipoint Corporation Efficient time division duplex communication system with interleaved format and timing adjustment control
DK0846378T3 (da) * 1995-08-22 2000-04-17 Thomson Csf Fremgangsmåde og indretning til rumlig multipleksning og demultipleksning af radioelektriske signaler i et SDMA mobilradios
GB2309616B (en) * 1996-01-27 2000-05-17 Motorola Ltd A space division multiple access radio communication system and method for allocating channels therein
US5886988A (en) 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
DE19713666C2 (de) * 1997-04-02 1999-01-14 Siemens Ag Verfahren und Einrichtung zur Kanalzuteilung
US5923655A (en) 1997-06-10 1999-07-13 E--Net, Inc. Interactive video communication over a packet data network
JPH11313364A (ja) 1997-10-28 1999-11-09 Sanyo Electric Co Ltd 伝送チャネル割当方法およびその装置
US6037898A (en) 1997-10-10 2000-03-14 Arraycomm, Inc. Method and apparatus for calibrating radio frequency base stations using antenna arrays
US6185440B1 (en) 1997-12-10 2001-02-06 Arraycomm, Inc. Method for sequentially transmitting a downlink signal from a communication station that has an antenna array to achieve an omnidirectional radiation
WO2000028757A1 (en) 1998-11-11 2000-05-18 Nokia Networks Oy Method and apparatus for directional radio communication
EP1133836B1 (en) 1998-11-24 2013-11-13 Intel Corporation Method and apparatus for calibrating a wireless communications station having an antenna array
SE521227C2 (sv) * 1999-02-22 2003-10-14 Ericsson Telefon Ab L M Mobilradiosystem och ett förfarande för kanallokering i ett mobilradiosystem
US6650630B1 (en) * 1999-06-25 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Resource management and traffic control in time-division-duplex communication systems
JP2001106696A (ja) 1999-10-07 2001-04-17 Ajinomoto Co Inc アスパルテーム誘導体の製造方法
US7177298B2 (en) * 2000-01-07 2007-02-13 Gopal Chillariga Dynamic channel allocation in multiple-access communication systems
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012590A1 (en) * 1991-12-12 1993-06-24 Arraycomm, Incorporated Spatial division multiple access wireless communication systems
JPH10285104A (ja) * 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd 適応受信ダイバーシチ装置及び適応送信ダイバーシチ装置
JP2000106696A (ja) * 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 伝送チャネル割当方法およびそれを用いた無線装置
JP2000224097A (ja) * 1999-02-01 2000-08-11 Hitachi Ltd アダプティブアレイアンテナを使用した無線通信装置

Also Published As

Publication number Publication date
EP1324627B1 (en) 2006-04-12
DE60118762D1 (de) 2006-05-24
US20040022205A1 (en) 2004-02-05
TWI275310B (en) 2007-03-01
ATE323384T1 (de) 2006-04-15
JP3574055B2 (ja) 2004-10-06
EP1324627A4 (en) 2004-08-25
EP1324627A1 (en) 2003-07-02
JP2002077980A (ja) 2002-03-15
AU2001280169A1 (en) 2002-03-04
CN1248533C (zh) 2006-03-29
US7623488B2 (en) 2009-11-24
CN1470143A (zh) 2004-01-21

Similar Documents

Publication Publication Date Title
WO2002017666A1 (fr) Station radioelectrique de base et programme correspondant
JP4230535B2 (ja) スペクトル的に効率的な大容量ワイヤレス通信システム
JP4166026B2 (ja) 無線装置、空間パス制御方法および空間パス制御プログラム
US6005854A (en) Synchronous wireless access protocol method and apparatus
AU2009243503B2 (en) Measurement Support for a Smart Antenna in a Wireless Communication System
EP1587338B1 (en) Reselecting antennas in a cellular mobile communication system with multiple antennas
TWI385943B (zh) 改善系統性能之頻道發聲
US6041237A (en) Method of channel allocation
CN108111286A (zh) 信息发送、接收方法及装置、存储介质、处理器
JPH08508865A (ja) 異なる容量を有する2クラスのチャネルの使用
NO336959B1 (no) Kanalkvalitetsmålinger for nedlinjeressurstildeling.
JP3939165B2 (ja) 無線装置、無線通信システム、空間パス制御方法および空間パス制御プログラム
JP2005006287A6 (ja) パイロット信号の送受信方法及び基地局装置及び端末装置
JP2002016538A (ja) 通信システムにおいて端末装置とアクセス・ポイント間で通信を行う方法
WO2009049535A1 (fr) Procédé et dispositif d&#39;allocation de ressource sans fil dans un système de communication sans fil
CN1947361B (zh) 无线通信系统、基站装置和发送功率控制方法
JP3416597B2 (ja) 無線基地局
US6915116B2 (en) Transmission diversity
JP2000509238A (ja) 方向性無線通信方法及び装置
JP4163014B2 (ja) 無線装置および通信制御方法
TWI838471B (zh) 無線通訊裝置、其通道估計方法及無線通訊系統
US7738438B2 (en) Radio base system, channel allocation method and channel allocating program
CN111937320B (zh) 无线通信装置、用于该装置的方法和布置、以及可读介质
Zorzi Performance of a MAC protocol with smart antennas in a multicellular environment
KR101971682B1 (ko) 무선 단말기의 수신 안테나 선택 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001958499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018173969

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001958499

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10362648

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001958499

Country of ref document: EP