WO2002017585A1 - Metodo, transmisor y receptor para comunicacion digital de espectro ensanchado mediante modulacion de secuencias complementarias golay - Google Patents

Metodo, transmisor y receptor para comunicacion digital de espectro ensanchado mediante modulacion de secuencias complementarias golay Download PDF

Info

Publication number
WO2002017585A1
WO2002017585A1 PCT/ES2001/000160 ES0100160W WO0217585A1 WO 2002017585 A1 WO2002017585 A1 WO 2002017585A1 ES 0100160 W ES0100160 W ES 0100160W WO 0217585 A1 WO0217585 A1 WO 0217585A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequences
golay
phases
modulation
transmission
Prior art date
Application number
PCT/ES2001/000160
Other languages
English (en)
French (fr)
Inventor
Vicente Diaz Fuente
Original Assignee
Vicente Diaz Fuente
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI200130702T priority Critical patent/SI1311095T1/sl
Priority to US10/344,426 priority patent/US7711032B2/en
Priority to BR0113454-0A priority patent/BR0113454A/pt
Priority to EP01925586A priority patent/EP1311095B1/en
Priority to JP2002522152A priority patent/JP4771646B2/ja
Priority to DK01925586T priority patent/DK1311095T3/da
Application filed by Vicente Diaz Fuente filed Critical Vicente Diaz Fuente
Priority to DE60125190T priority patent/DE60125190T2/de
Priority to AU2001252286A priority patent/AU2001252286A1/en
Publication of WO2002017585A1 publication Critical patent/WO2002017585A1/es
Priority to ZA2003/01461A priority patent/ZA200301461B/en
Priority to HK04102516A priority patent/HK1059695A1/xx
Priority to US12/725,901 priority patent/US8369381B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0011Complementary
    • H04J13/0014Golay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • H04L23/02Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/102Combining codes

Definitions

  • the present invention relates to the method of modulation and demodulation, as well as the transmitter and receiver, which allow the transmission and reception of data through any means of transmission, particularly when it is necessary or desirable to use spread spectrum techniques.
  • spread spectrum or spread spectrum was developed for application in military communications, due to its characteristics of immunity against noise and interference. Its principle is based on the use of certain binary sequences that have certain characteristics similar to noise and that, however, a receiver that knows this sequence is able to detect as a signal.
  • SUBSTITUTE SHEET (RULE 26) local radio, deep space communications, etc. All of them based on digital modulations through the use of sequences that, due to their autocorrelation and cross correlation characteristics, are suitable for this type of applications. For this reason, international organizations (IEEE, ITU, etc.), have begun to normalize and standardize modulation systems that allow the use of certain sequences to modulate the transmitted binary data and thus obtain characteristics that allow to use, among others, certain frequencies designated for industrial, scientific and medical applications (ICM bands), and whose use and exploitation does not require any type of administrative license.
  • ICM bands industrial, scientific and medical applications
  • SUBSTITUTE SHEET (RULE 26) of the equipment of transmission of the ship, and to the reduced relation signal to noise that these signals present when they are received.
  • the length of the coding sequence (Barker, PN, Walsh, etc.) ... determines both the process gain and the bandwidth used.
  • the transmission speed is reduced if we try to increase the process gain, so we must always reach a compromise between both parameters.
  • the transmission speed can be increased by expanding the number of phases of the modulation, however this technique has greater restrictions the lower the signal to noise ratio in reception.
  • the invention presented uses pairs of complementary Golay sequences for the modulation by spread spectrum and DS-CDMA of the amplitude-modulated binary data, in combination with a
  • the main property of the sequences used in this invention is that, unlike the Barker sequences that have lateral lobes, the Golay sequences have an ideal autocorrelation characteristic, that is, it corresponds to a perfect Krónecker delta so that they meet:
  • the communications system object of the present invention allows a physical point-to-point or point-to-multipoint communications link to be made at a transmission rate that will depend on the medium used, as well as the available bandwidth and desirable error rate.
  • the transmitting team is responsible for performing the following tasks:
  • SUBSTITUTE SHEET (RULE 26) • Receive the data and generate the symbols corresponding to each group of [m) bits based on the number ( ⁇ ) of Golay sequences of length (M) chosen, number of amplitudes ⁇ A) per symbol, number of phases (N) used for modulation, and process gain necessary to meet system quality requirements.
  • the receiving team is responsible for performing the following tasks:
  • SUBSTITUTE SHEET (RULE 26) it is desired independently, as will be seen below, of the transmission speed and only by increasing the length of the chosen Golay sequences, so that large transmission powers are not necessary to obtain a high signal-to-noise ratio in reception.
  • the process gain (in decibels) is defined, in this case, as:
  • M corresponds to the length of the Golay sequences used in the modulation. This feature is very important in applications where low transmission power is desirable (portable terminals, spacecraft and communication satellites), communication takes place over long distances (deep space transmissions), and even military applications in which interference caused by the enemy or the need to encrypt the transmission determine the security and quality of the communication.
  • this method allows simultaneous information flows to be transmitted, in the same frequency band, by using different Golay sequences of low cross correlation, thus facilitating the creation of communication subnets within the same band, or multiplying the speed of transmission by a factor proportional to ⁇ .
  • B (hertz) is the bandwidth, null to null, used, N the number of phases used in the modulation (power of 4), A the number of amplitudes used in the coding of the binary data and ⁇ the number of pairs of complementary Golay sequences used.
  • C is independent of.
  • the invention described is a powerful communications system for use in spread spectrum applications, DS-CDMA, hostile environments, when there are restrictions on the transmission power, or simply when we want to improve the quality of communications without degrading The transmission speed.
  • Figure 1 shows the current basic transmission technique of a spread spectrum system, and in particular using an 11-bit Barker sequence that, by means of an exclusive OR function, performs the spread of the spectrum of the original data signal. It is observed that the bit frequency is 11 times lower than that used for the Barker sequence, which allows to obtain a process gain of 10 - logl0 (11) 10.4 dB.
  • Binary data (1) enters the sender in groups of ⁇ x bits. Each group m of m bits signed multiply (3) to both Golay sequences A and B (2) corresponding to BMB number i. The result of both multipliers is accumulated independently in each of the phases, and in each element, within the shift register (4) and move to the right waiting for the next symbol.
  • the output values of the displacement register of each BMB are added (5) and the result modulated in phase and quadrature by means of the product with, for example, a sine and cosine symbol
  • the analog phase (I) and quadrature (Q) signals obtained are quantified and introduced to all BDBs and the result of both correlated with the corresponding original sequences (2), the sum (3) of both flows will give us an encoded signal in amplitude corresponding to the data of each subset of original bits that are demodulated.
  • a multiplexer block (4) is responsible for decoding and ordering the bits to recover the original data stream.
  • Figure 4 corresponds to the scheme of a
  • SUBSTITUTE SHEET (RULE 26) possible realization of the modulation. For simplicity, only the realization of phase I is represented. Phase Q is identical but modulating with the complementary sequence. Therefore, only one of the Golay registers (1), one of the accumulators and displacement register (2) and a multiplier (3) appear.
  • the transmitter performs the following tasks, where R is the transmission speed in symbols / s:
  • Mul typifier It consists of two signed multipliers (bit of greater weight) of the sequence pair
  • Double accumulator and shift register Performs the arithmetic sum of the result of the multipliers with the content of the double shift register (the upper track with A and the lower track with B) and shifts one register to the right at each cycle of symbol, updating the register to the left of it to zero.
  • the shift register is made up of basic elements that store signal values and therefore the number (n) of bits used for each basic element of said register must be set so that there is no overflow in the accumulation operations. Likewise, the number of elements of the movement register must be equal to or greater than M for each of the routes A and B.
  • QPSK modulator Modulates the output signals of the adder by multiplying the output signal of the adders by two quadrature symbols, for example, a sinusoidal symbol with phase ⁇ 0 (via I) and another in quadrature ⁇ 0 + ⁇ / 2 (via Q), and adding the result of both phases, thus obtaining the transmission signal in QPSK.
  • Output stage It consists of a D / A conversion stage and a conventional radio frequency stage, for example, that sends the signal to the transmission medium.
  • QPSK receiver Amplifies the RF input signal and converts the signal, if necessary, to an intermediate frequency (IF), obtains the information of the phase and allows the demodulation and recovery of the different flows in phase I and quadrature Q corresponding to phases ⁇ 0 and ⁇ o + ⁇ / 2 -
  • IF intermediate frequency
  • the signals I and Q are digitized and their output delivered to the correlator blocks. This block is common to all BDBs.
  • SUBSTITUTE SHEET (RULE 26) different flows received with their corresponding Golay sequences. Since the sequences are normalized between +1 and -1, the correlation is reduced to addition and subtraction.
  • Adder and detector Performs the sum of the correlations, two by two, so that the result is the original data modulated in amplitude. These are thresholdized and converted to binary data generated at the symbol rate at the output of each block.
  • Decoder Performs the grouping of the ⁇ groups received within the data stream that corresponds to the data transmitted in the order that was transmitted to ⁇ xmxR bits / s.

Abstract

El espectro de frecuencias de un sistema de transmisión es ensanchado en el transmisor (1) mediante la codificación de los bits de información por medio de pares de secuencias complementarias Golay. El espectro es recibido en el receptor (2) y se le hace pasar por un filtro adaptado a las características de dichas secuencias que permite detectar niveles digitales correspondientes a la información transmitida original. Si se utilizan θ pares secuencias ortogonales, a amplitudes para modular los datos, y modulación N-PSK, es posible conseguir una velocidad de transmisión (C) igual a formula (I). Siendo B el ancho de banda ampliado, nulo a nulo, utilizado en hertzios. Permite mejorar la calidad frente a otros sistemas de comunicación digital que emplean técnicas de espectro ensanchado y CDMA, obteniendo una ganancia de proceso independiente de la velocidad de tansmisión.

Description

MÉTODO. TRANSMISOR Y RECEPTOR PARA COMUNICACIÓN DIGITAL
DE ESPECTRO ENSANCHADO MEDIANTE MODULACIÓN DE
SECUENCIAS COMPLEMENTARIAS GOLAY
D E S C R I P C I Ó N
SECTOR DE LA TÉCNICA
La presente invención se refiere al método de modulación y demodulación, así como el transmisor y receptor, que permiten la transmisión y recepción de datos a través de cualquier medio de transmisión, particularmente cuando es necesario o deseable utilizar técnicas de espectro ensanchado.
ESTADO DE LA TÉCNICA
El concepto de espectro ensanchado (o spread spectrum) fue desarrollado para su aplicación en comunicaciones militares, por sus características de inmunidad frente al ruido y las interferencias. Su principio está basado en la utilización de determinadas secuencias binarias que poseen ciertas características similares al ruido y que, sin embargo, un receptor que conoce dicha secuencia es capaz de detectar como señal .
Asimismo la compresión de impulsos mediante secuencias
• binarias es útil también para aplicaciones de RADAR,
SONAR y ecografía, pues permite mejorar la resolución de los objetos detectados. Sin embargo en los últimos años han cobrado fuerza en aplicaciones espaciales y de comunicaciones civiles tales como telefonía móvil DS- CD A (Acceso Múltiple por División de Código mediante modulación Directa de Secuencias) , bucle de acceso telefónico por radio, acceso a Internet, redes de área
HOJA DE SUSTITUCIÓN (REGLA 26) local por radio, comunicaciones en espacio profundo, etc. Todas ellas basadas en modulaciones digitales mediante el empleo de secuencias que, por sus características de autocorrelación y correlación cruzada, son idóneas para este tipo aplicaciones. Por este motivo, organismos internacionales (IEEE, UIT, etc.), han comenzado a normalizar y estandarizar sistemas de modulación que permiten la utilización de determinadas secuencias para modular los datos binarios transmitidos y así obtener características que permitan emplear, entre otras, determinadas frecuencias designadas para aplicaciones industriales, científicas y médicas (bandas ICM) , y cuya utilización y explotación no requiere ningún tipo de licencia administrativa. La necesidad de enviar la mayor cantidad posible de información en el mismo ancho de banda ha hecho que la industria de las telecomunicaciones desarrolle aplicaciones comerciales que emplean el estándar IEEE 802.11 para la transmisión de información por radio en redes locales, obteniéndose velocidades cada vez mayores mediante el empleo de secuencias binarias como la Barker de 11 bits de longitud (para obtener una ganancia de proceso mínima de 10.4 dB) , o Walsh de 8 bits, y distintas técnicas de modulación (BPSK, QPSK, MBOK, QMBOK, etc) que permiten conseguir velocidades de transmisión de hasta 11 Mbps . Este estándar permite trabajar dentro de tres bandas de frecuencias de 22Mhz de ancho de banda, nulo a nulo, ubicadas en la banda denominada de 2.4GHz.
Asimismo para comunicaciones, denominadas de espacio profundo, entre las naves espaciales y las bases en la Tierra se necesitan métodos de transmisión fiables que permitan una gran ganancia de proceso, debido a la necesidad de limitar la potencia de emisión
HOJA DE SUSTITUCIÓN (REGLA 26) de los equipos de transmisión de la nave, y a la reducida relación señal a ruido que presentan dichas señales cuando son recibidas .
En las aplicaciones actuales (figura 1) la longitud de la secuencia de codificación (Barker, PN, Walsh, etc.,...) determina tanto la ganancia de proceso como el ancho de banda utilizado. En general la velocidad de transmisión se reduce si tratamos de incrementar la ganancia de proceso, por lo que siempre hay que llegar a un compromiso entre ambos parámetros. La velocidad de transmisión puede incrementarse ampliando el número de fases de la modulación, sin embargo esta técnica posee mayores restricciones cuanto menor es la relación señal a ruido en recepción.
De todo lo anterior se deduce la necesidad de una técnica de modulación digital de espectro ensanchado que permita, por una parte incrementar la velocidad de transmisión, y por otra obtener una mayor ganancia de proceso que posibilite reducir la potencia necesaria de transmisión o mejorar la relación señal a ruido en recepción, y al mismo tiempo reducir la complejidad de los actuales esquemas de modulación.
No se conoce la existencia de patente o modelo de utilidad alguno, cuyas características sean el objeto de la presente invención.
EXPLICACIÓN DE LA INVENCIÓN
La invención que se presenta utiliza pares de secuencias complementarias Golay para la modulación mediante espectro ensanchado y DS-CDMA de los datos binarios modulados en amplitud, en combinación con una
HOJA DE SUSTITUCIÓN (REGLA 26) modulación N-PSK, ampliamente utilizada en sistemas de comunicación digital .
La principal propiedad de las secuencias empleadas en esta invención es que, al contrario que las secuencias Barker que poseen lóbulos laterales, las secuencias Golay poseen una característica de autocorrelación ideal, es decir corresponde a una delta de Krónecker perfecta de modo que cumplen:
CA [n] + CA [n] = { -! nn== 0
Figure imgf000006_0001
siendo CA y CB, las autocorrelaciones individuales de las secuencias A y B del par de secuencias complementarias Golay, de longitud M, elegidas, y cuyos valores pertenecen al conjunto bivaluado (1,-1).
La generación de tales secuencias se realiza a partir de los llamados kemel básicos conocidos hasta la fecha de 2, 10 y 26 bits (las reglas de generación de secuencias Golay se discuten en el artículo titulado "Complementary Sequences" de M.J.E. Golay, publicado en IRÉ Transactions on Information Theory, vol . IT-7, p.p. 82-87, abril de 1961) .
El sistema de comunicaciones objeto de la presente invención permite realizar un enlace físico de comunicaciones punto a punto o punto a multipunto a una velocidad de transmisión que dependerá del medio empleado, así como del ancho de banda disponible y tasa de error deseable .
Consta de dos equipos o aparatos : Uno transmisor y otro receptor.
El equipo transmisor se encarga de realizar las siguientes tareas:
HOJA DE SUSTITUCIÓN (REGLA 26) • Recibir los datos y generar los símbolos correspondientes a cada grupo de [m) bits en función del número ( η) de secuencias Golay de longitud (M) elegidas, número de amplitudes {A) por símbolo, número de fases (N) empleadas para la modulación, y ganancia de proceso necesaria para cumplir los requisitos de calidad del sistema.
• Realizar la suma de las distintas fases para formar una modulación Ν-PSK y generar así la señal de transmisión.
• Transmitir la señal compuesta al medio de transmisión mediante, por ejemplo, una etapa de
RF y antena.
El equipo receptor se encarga de realizar las siguientes tareas:
• Demodular la información N-PSK y extraer las componentes de cada una de las distintas fases.
• Adaptar, filtrar y correlar las componentes extraídas con sus correspondientes pares complementarios o Golay.
• Sumar las correlaciones y obtener así el flujo de datos original como niveles digitales .
• Realizar la decodificación de niveles para obtener los datos originales.
La primera ventaja de este método es la de poder obtener una ganancia de proceso tan grande como
HOJA DE SUSTITUCIÓN (REGLA 26) se desee independientemente, como se verá más adelante, de la velocidad de transmisión y sólo incrementando la longitud de las secuencias Golay elegidas, por lo que no son necesarias grandes potencias de transmisión para obtener una alta relación señal a ruido en recepción. La ganancia de proceso (en decibelios) se define, en este caso, como:
GP = 10 log10 (2M) dB. (1.1)
donde M corresponde a la longitud de las secuencias Golay empleadas en la modulación. Esta característica es muy importante en aplicaciones donde sea deseable una baja potencia de transmisión (terminales portátiles, naves espaciales y satélites de comunicación) , la comunicación se realice a grandes distancias (Transmisiones en espacio profundo) , e incluso aplicaciones militares en las que las interferencias causadas por el enemigo o la necesidad de encriptar la transmisión determinan la seguridad y calidad de la comunicación.
Además, este método permite transmitir flujos de información simultáneos, en la misma banda de frecuencias, mediante el uso de η distintas secuencias Golay de baja correlación cruzada, facilitando así la creación de η subredes de comunicación dentro de una misma banda, o multiplicar la velocidad de transmisión por un factor proporcional a η .
Asimismo es posible incrementar aún más la velocidad de transmisión si previamente realizamos una modulación de amplitud a los datos de entrada mediante A amplitudes.
HOJA DE SUSTITUCIÓN (REGLA 26) Así pues se deduce de todo lo anterior que la velocidad de transmisión, o capacidad (C) , que puede obtenerse en un sistema de comunicación de espectro ensanchado empleando este método será:
C= η - log2A - (1/2) - log2N- (B/2) bits/seg (1.2)
siendo B (hertzios) el ancho de banda, nulo a nulo, utilizado, N el número de fases empleadas en la modulación (potencia de 4) , A el número de amplitudes empleadas en la codificación de los datos binarios y η el número de pares de secuencias complementarias Golay empleadas. En la expresión anterior se observa que C es independiente de .
Por tanto, la invención que se describe constituye un potente sistema de comunicaciones para utilización en aplicaciones de espectro ensanchado, DS- CDMA, entornos hostiles, cuando existan restricciones en la potencia de transmisión, o simplemente cuando deseemos mejorar la calidad de las comunicaciones sin degradar la velocidad de transmisión.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La figura 1 muestra la técnica de transmisión básica actual de un sistema de espectro ensanchado, y en particular utilizando una secuencia Barker de 11 bits que, mediante una función OR exclusiva, realiza el ensanchado del espectro de la señal original de datos. Se observa que la frecuencia de bit es 11 veces inferior a la utilizada para la secuencia Barker, lo que permite obtener una ganancia de proceso de 10 - logl0 (11) 10.4 dB .
HOJA DE SUSTITUCIÓN (REGLA 26) La figura 2 muestra el esquema básico del método de transmisión y una posible implementación del transmisor que utiliza este método para N =4. Los datos binarios (1) entran en el emisor en grupos de ηx bits. Cada grupo í de m bits multiplica con signo (3) a ambas secuencias Golay A y B (2) correspondientes al BMB número i . El resultado de ambos multiplicadores se acumula independientemente en cada una de las fases, y en cada elemento, dentro del registro de desplazamiento (4) y se desplazan hacia la derecha a la espera del siguiente símbolo.
Los valores de salida del registro de desplazamiento de cada BMB son sumados (5) y el resultado modulado en fase y cuadratura mediante el producto con, por ejemplo, un símbolo seno y coseno
(6) . El resultado es enviado a una etapa de transmisión
(7) convencional.
La figura 3 muestra un esquema básico del método de recepción y, en particular, un ejemplo de receptor que emplea este método para N =4. Se reduce a una demodulación 4-PSK de ambas fases obteniendo una señal en fase y otra en cuadratura (1) . Las señales en fase (I) y cuadratura (Q) analógicas obtenidas son cuantificadas e introducidas a todos los BDB y el resultado de ambas correlado con las secuencias originales correspondientes (2) , la suma (3) de ambos flujos nos dará una señal codificada en amplitud correspondiente a los datos de cada subgrupo de bits originales que son demodulados . Un bloque multiplexor (4) se encarga de decodificar y ordenar los bits para recuperar el flujo de datos original.
La figura 4 corresponde al esquema de una
HOJA DE SUSTITUCIÓN (REGLA 26) posible realización de la modulación. Para simplificar, sólo se representa la realización de la fase I. La fase Q es idéntica pero modulando con la secuencia complementaria. Por tanto, sólo aparece uno de los registros Golay (1) , uno de los acumuladores y registro de desplazamiento (2) y un multiplicador (3) .
MODO DE REALIZACIÓN
A continuación se detalla una posible realización de este método aplicada a un sistema de comunicación punto a punto por radio en espacio libre. Por claridad, en la figura 2 aparece esquematizado la implementación para el caso de un transmisor QPSK (N=4) , el cual realiza la modulación de los datos utilizando η secuencias Golay, moduladas en amplitud mediante A amplitudes. Por tanto, aplicando la fórmula (1.2), la velocidad de transmisión será:
C= η-log2A- (_J2 ) bits/seg (1.3)
De acuerdo con lo explicado anteriormente, partimos de un conjunto de η pares de secuencias Golay de M bits, previamente generadas y almacenadas en el transmisor mediante, en general, 2xη registros binarios (valores 1 y -1) , que pretendemos modular en amplitud con A amplitudes y con 4 fases en Q-PSK (4 -PSK) . En la misma figura 2 se observa además, en detalle, uno de los bloques moduladores básicos (BMB) de los que consta el transmisor.
El transmisor realiza las siguientes tareas, siendo R la velocidad de transmisión en símbolos/s:
(1) Codificador: Los datos digitales NRZ recibidos
HOJA DE SUSTITUCIÓN (REGLA 26) a ηxmxR bits/s llegan codificados y son agrupados en η grupos de m=log2A bits. Cada BMB procesa en paralelo un grupo de m bits, por tanto el sistema transmitirá ηxm bits por símbolo. El bit de mayor peso de cada grupo corresponde con el signo, y los m-1 de menor peso al módulo .
(2) Registro Golay: Formado por dos registros binarios de longitud M que almacenan el par de secuencias complementarias A y B, cuyos valores pertenecen al conjunto (1,-1), que modularán los datos procesados por el BMB correspondiente .
(3) Mul tiplicador: Consta de dos multiplicadores con signo (bit de mayor peso) del par de secuencias
Golay A y B del BMB con el valor aritmético del grupo correspondiente dentro del conjunto de grupos del símbolo de entrada.
(4) Doble acumulador y registro de desplazamiento: Realiza la suma aritmética del resultado de los multiplicadores con el contenido del doble registro de desplazamiento (la vía superior con A y la inferior con B) y desplaza un registro a la derecha a cada ciclo de símbolo, actualizando al valor cero el registro que se encuentra más a la izquierda del mismo. El registro de desplazamiento está formado por elementos básicos que almacenan valores de señal y por tanto el número (n) de bits empleados para cada elemento básico de dicho registro debe di ensionarse para que no exista desborde en las operaciones de acumulación. Asimismo el número de elementos del registro de desplazamiento debe ser igual o superior a M por cada una de las vías A y B.
(5) Sumador: Suma los datos correspondientes a la
HOJA DE SUSTITUCIÓN (REGLA 26) salida de cada registro de desplazamiento de cada uno de los BMB de forma independiente obteniendo así las señales totales Iτ y Qτ que serán moduladas posteriormente .
(6) Modulador QPSK: Modula las señales de salida del sumador multiplicando la señal de salida de los sumadores por dos símbolos en cuadratura, por ejemplo, un símbolo sinusoidal con fase φ0 (vía I ) y otro en cuadratura φ0 + π/2 (vía Q ) , y sumando el resultado de ambas fases, obteniendo así la señal de transmisión en QPSK.
(7) Etapa de salida: Consta de una etapa de conversión D/A y una etapa convencional de radiofrecuencia, por ejemplo, que envía la señal al medio de transmisión.
La figura 3 representa un esquema ejemplo de receptor para N=4 , que está formado por η bloques demoduladores básicos (BDB) , detallado en la misma figura, y la estructura del receptor que está formado por los siguientes bloques:
(1) Receptor QPSK: Amplifica la señal de entrada RF y convierte la señal, si es necesario, a una frecuencia intermedia (IF) , obtiene la información de la fase y permite la demodulación y recuperación de los distintos flujos en fase I y cuadratura Q correspondientes a las fases φ0 y φo + π/2- Las señales I y Q son digitalizadas y su salida entregada a los bloques correladores . Este bloque es común a todos los BDB.
(2) Correladores Golay: Permiten correlar los
HOJA DE SUSTITUCIÓN (REGLA 26) distintos flujos recibidos con sus correspondientes secuencias Golay. Dado que las secuencias están normalizadas entre +1 y -1, la correlación se reduce a realizar sumas y restas.
(3) Sumador y detector: Realiza la suma de las correlaciones, dos a dos, de modo que el resultado son los datos originales modulados en amplitud. Estos son umbralizados y convertidos a datos binarios generados a la velocidad de símbolo a la salida de cada bloque.
(4) Decodificador: Realiza el agrupamiento de los η grupos recibidos dentro del flujo de datos que corresponde con los datos transmitidos en el orden que fueron transmitidos a ηxmxR bits/s .
Ambos aparatos conforman el sistema de transmisión.
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

R E I V I N D I C A C I O N E S
1.- Método, transmisor y receptor para comunicación digital de espectro ensanchado mediante modulación de secuencias complementarias Golay que permiten transmitir información a través de un canal de comunicaciones, caracterizado por la codificación de los datos binarios modulados en amplitud y su espectro ensanchado utilizando secuencias complementarias Golay moduladas en N-PSK, para conseguir una alta velocidad de transmisión, baja potencia de emisión, y mejorar de manera importante la relación señal a ruido en recepción independientemente de la velocidad de transmisión.
2.- El aparato, según la reivindicación 1, que permite transmitir información a través de un canal de comunicaciones, que comprende la generación de η secuencias binarias Golay de baja correlación cruzada, que codifican los datos de entrada, modulados a su vez en amplitud mediante A amplitudes, y que mediante modulación N-PSK transmite dicha información al medio de transmisión.
3. - Un aparato, según la reivindicación 2, donde el generador de las secuencias binarias para aplicaciones de espectro ensanchado utiliza secuencias complementarias Golay y las mismas cambiadas de signo para representar y enviar al menos un bit de información por intervalo de símbolo.
4.- Un aparato, según la reivindicación 2, donde el generador de las secuencias binarias para aplicaciones de espectro ensanchado utiliza secuencias complementarias Golay y las suma idénticas o cambiadas
HOJA DE SUSTITUCIÓN (REGLA 26) de signo y desplazadas en posición dentro del símbolo de transmisión, de modo que permite transmitir a una velocidad mínima de B/2 bits/seg. siendo B el ancho de banda, nulo a nulo, de transmisión en hertzios.
5. - Un aparato, según reivindicación 2, donde el generador de secuencias binarias para aplicaciones de espectro ensanchado está caracterizado por la posibilidad de multiplicar secuencias complementarias Golay moduladoras por A valores de amplitud que representan la información digital de entrada de modo que permite multiplicar por zn=log2A, la cantidad de bits de información por intervalo de símbolo.
6. - Un aparato, según reivindicación 2, donde el generador de secuencias binarias para aplicaciones de espectro ensanchado, se caracteriza por la posibilidad de generar una ganancia de proceso en decibelios igual a: 10logι0(2M) dB, siendo M la longitud de las secuencias Golay seleccionadas. Dicha ganancia de proceso no tiene límite teórico y es independiente de la velocidad de transmisión.
7.- Un aparato, según reivindicación 2, donde se utiliza un doble acumulador y registro de desplazamiento formado por elementos acumuladores, y caracterizado por acumular y desplazar las muestras de las secuencias generadas según las reivindicaciones 3, 4, 5, y 6, para obtener las distintas fases.
8.- Un aparato, según reivindicación 2, donde se emplea un sumador, que consiste en realizar la suma de todas las fases generadas mediante alguna de las reivindicaciones 3, 4, 5, 6, y 7, todas en conjunto, o combinaciones de ellas, de modo que obtiene las señales
HOJA DE SUSTITUCIÓN (REGLA 26) que posteriormente son moduladas mediante modulación N- PSK y enviadas al medio de transmisión mediante, por ejemplo, una etapa convencional de radio frecuencia.
9. - Método de modulación mediante secuencias
Golay (MSG o GCM [Golay Code Modulation], caracterizado por utilizar alguna de las reivindicaciones 3, 4, 5, 6, 7 y 8, todas en conjunto, o combinaciones de ellas, para modular y transmitir la información de un flujo de datos a una velocidad de transmisión C= η -log2A-l/2 -log2Ν-B/2 bits/seg siendo η el número de pares Golay empleados, A el número de amplitudes empleadas en modular los datos de entrada, N (potencia de 4) el número de fases empleadas en la modulación y B el ancho de banda, nulo a nulo, empleado en la modulación N-PSK.
10. - Un método para generar la modulación mediante secuencias Golay que comprende: (a) La modulación en amplitud, con A amplitudes, de los datos binarios de entrada agrupados en η grupos de m=log2A bi ts, que son introducidos a η bloques moduladores básicos (BMB) .
(b) El almacenamiento de los η pares de secuencias complementarias Golay, de longitud M, en registros binarios de longitud M cuyos valores están comprendidos entre 1 y -1.
(c) El producto con signo de cada grupo de bits, cuyo signo corresponde al bit de mayor peso y cuyo módulo son los 2T?-1 bits restantes, por cada una de las secuencias complementarias Golay de longitud M, correspondientes a dicho grupo, que formarán dos fases, I y Q, de M elementos de longitud.
(d) La acumulación, elemento a elemento, de los M primeros valores actuales contenidos en un doble
HOJA DE SUSTITUCIÓN (REGLA 26) registro de desplazamiento de longitud M con los M elementos correspondientes de los productos de cada una de las fases obtenidas en la etapa anterior.
(e) El desplazamiento de dichos registros en un elemento básico hacia el elemento M de dichos registros
(salida) añadiendo el valor cero en los elementos básicos de orden 1 del doble registro.
(f) La suma de los η valores obtenidos a la salida de las fases I y Q de cada uno de los BMB independientemente, para obtener las fases totales Iτ y
QT-
(g) La modulación, mediante símbolos en cuadratura, de ambas fases Iτ y QT y la suma de ambas para obtener la señal de transmisión. (h) Los medios para transmitir la señal obtenida a un medio de transmisión.
11.- Aparato para recibir bits de información a través de un canal de comunicaciones, que han sido codificados según el método correspondiente a las reivindicaciones 9 y 10, caracterizado por estar realizado sobre la base de una recepción N-PSK (coherente o no) que extrae las fases correspondientes y que comprende filtros adaptados a las secuencias Golay de transmisión (correladores o convolucionadores) y su suma, los medios para acondicionar y analizar la salida de dichos filtros adaptados para . detectar la polaridad y amplitud de los impulsos, y los medios para decodificar dichas amplitudes en bits de datos.
12.- Método de demodulación, que complementa al anterior de modulación, según reivindicación 9 y 10, caracterizado por estar realizado sobre la base de una recepción N-PSK (coherente o no) que extrae las fases y realiza la correlación con las η secuencias
HOJA DE SUSTITUCIÓN (REGLA 26) correspondientes por fase, sumándolas y obteniendo, mediante detección de amplitud, el flujo de datos binarios transmitidos en origen.
13. - Un método de demodulación, según la reivindicación 12, que comprende:
(a) Los medios para adaptar y sincronizar la señal recibida y demodular las fases en cuadratura de que se compone dicha señal y la introducción de todas ellas a cada uno de los η bloques demoduladores básicos (BDB) .
(b) El filtrado mediante correlación, convolución o filtro adaptado a las η pares de secuencias complementarias Golay de las distintas fases recuperadas . {c) Las η sumas de los resultados de cada dos correlaciones correspondientes a un mismo par de secuencias complementarias Golay para obtener un flujo de información modulado en amplitud con A amplitudes.
(d) Los medios para la demodulación de los η flujos modulados en amplitud para obtener η grupos de m=log2A bits.
(e) Los medios para la multiplexación de dichos grupos para formar el flujo de datos original.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2001/000160 2000-08-16 2001-04-27 Metodo, transmisor y receptor para comunicacion digital de espectro ensanchado mediante modulacion de secuencias complementarias golay WO2002017585A1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/344,426 US7711032B2 (en) 2000-08-16 2001-04-27 Method, transmitter and receiver for spread-spectrum digital communication by Golay complementary sequence modulation
BR0113454-0A BR0113454A (pt) 2000-08-16 2001-04-27 Método, transmissor e receptor para uma comunicação digital de espectro difuso pela modulação de sequência complementar de golay
EP01925586A EP1311095B1 (en) 2000-08-16 2001-04-27 Method for spread-spectrum digital communication by golay complementary sequence modulation
JP2002522152A JP4771646B2 (ja) 2000-08-16 2001-04-27 ゴレイ相補系列変調によるスペクトラム拡散ディジタル通信方法、送信機および受信機
DK01925586T DK1311095T3 (da) 2000-08-16 2001-04-27 Fremgangsmåde til digital spread-spektrum kommunikation ved Golay komplementær sekvensmodulation
SI200130702T SI1311095T1 (sl) 2000-08-16 2001-04-27 postopek za digitalno komunikacijo z razprtim spektrom z modulacijo z Golayevimi komplementarnimi sekvencami
DE60125190T DE60125190T2 (de) 2000-08-16 2001-04-27 Verfahren, überträger und empfänger für digitale spreizspektrumkommunikation durch modulation mit golay-komplementärsequenzen
AU2001252286A AU2001252286A1 (en) 2000-08-16 2001-04-27 Method, transmitter and receiver for spread-spectrum digital communication by golay complementary sequence modulation
ZA2003/01461A ZA200301461B (en) 2000-08-16 2003-02-24 Method transmitter and receiver for spread-spectrum digital communication by golay complentary sequence modulation
HK04102516A HK1059695A1 (en) 2000-08-16 2004-04-08 Method and communication system for spread-spectrum digital communication by golay complementary sequence modulation
US12/725,901 US8369381B2 (en) 2000-08-16 2010-03-17 Method, transmitter and receiver for spread-spectrum digital communication by Golay complementary sequence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200002086 2000-08-16
ES200002086A ES2164613B1 (es) 2000-08-16 2000-08-16 Metodo, transmisor y receptor para comunicacion digital de espectro ensanchado mediante modulacion de secuencias complementarias golay.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10344426 A-371-Of-International 2001-04-27
US12/725,901 Continuation US8369381B2 (en) 2000-08-16 2010-03-17 Method, transmitter and receiver for spread-spectrum digital communication by Golay complementary sequence

Publications (1)

Publication Number Publication Date
WO2002017585A1 true WO2002017585A1 (es) 2002-02-28

Family

ID=8494723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000160 WO2002017585A1 (es) 2000-08-16 2001-04-27 Metodo, transmisor y receptor para comunicacion digital de espectro ensanchado mediante modulacion de secuencias complementarias golay

Country Status (16)

Country Link
US (2) US7711032B2 (es)
EP (1) EP1311095B1 (es)
JP (1) JP4771646B2 (es)
CN (1) CN1222142C (es)
AT (1) ATE348469T1 (es)
AU (1) AU2001252286A1 (es)
BR (1) BR0113454A (es)
DE (1) DE60125190T2 (es)
DK (1) DK1311095T3 (es)
ES (1) ES2164613B1 (es)
HK (1) HK1059695A1 (es)
PT (1) PT1311095E (es)
RU (1) RU2280957C2 (es)
SI (1) SI1311095T1 (es)
WO (1) WO2002017585A1 (es)
ZA (1) ZA200301461B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009762A1 (es) 2006-07-20 2008-01-24 Sidsa (Semiconductores Investigación Y Diseño, S.A.) Método y sistema de estimación de canales de múltiple entrada y múltiple salida
US8379749B2 (en) 2007-06-19 2013-02-19 Ntt Docomo, Inc. Transmitter and transmission method

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2255390B1 (es) 2004-05-28 2008-02-01 Vicente Diaz Fuente Dispositivo y metodo de estimacion optima de la distorsion del medio de transmision mediante la emision secuencial de pares de secuencias complementarias en cuadratura.
CN1845487B (zh) * 2005-07-11 2011-04-06 西安电子科技大学 准正交时分复用传输方法及系统
US8429502B2 (en) * 2005-11-16 2013-04-23 Qualcomm Incorporated Frame format for millimeter-wave systems
US8910027B2 (en) * 2005-11-16 2014-12-09 Qualcomm Incorporated Golay-code generation
US8418040B2 (en) * 2005-11-16 2013-04-09 Qualcomm Incorporated Method and apparatus for single carrier and OFDM sub-block transmission
US8583995B2 (en) 2005-11-16 2013-11-12 Qualcomm Incorporated Multi-mode processor
CN1968029A (zh) * 2005-11-16 2007-05-23 弥亚微电子(上海)有限公司 一种采用特殊扩频序列的扩频调制解调方法及装置
EP1816817A1 (en) * 2006-02-06 2007-08-08 Siemens Aktiengesellschaft A method for reducing Peak-to-Average Power Ratio in an OFDM transmission system
DE602006015606D1 (de) * 2006-04-04 2010-09-02 Mitsubishi Electric Corp Verfahren zur Synchronisierung eines Signalrahmens in einem Telekommunikationssystem
US8472497B2 (en) * 2007-10-10 2013-06-25 Qualcomm Incorporated Millimeter wave beaconing with directional antennas
WO2009063098A1 (es) 2007-11-12 2009-05-22 Fundacion Robotiker Método y dispositivo de transmisión y de recepción digital de señales de información
JP5336511B2 (ja) 2007-12-21 2013-11-06 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Mbsfn dobセルサーチ及び同期符号の生成
EP2229735B1 (en) 2007-12-21 2016-09-14 Astrium Limited Filtering communications channels within telecommunications satellites
ES2335634B1 (es) * 2008-01-24 2011-02-10 Vicente Diaz Fuente Metodo y aparato de codificacion y decodificacion para la reduccion de las interferencias en sistemas de transmision de señales simultaneasy usuarios multiples.
CN101562462B (zh) * 2008-04-16 2013-04-24 展讯通信(上海)有限公司 具有零干扰窗的训练序列构造和分配方法以及信道估计器
ES2353087B1 (es) * 2008-07-18 2011-12-30 Fundacion Robotiker Método y dispositivo de transmisión y de recepción de señales digitales.
JP5394491B2 (ja) * 2008-08-20 2014-01-22 クゥアルコム・インコーポレイテッド 非darpおよびdarp遠隔局によって使用される1つのタイムスロット上での2つのユーザのための線形ガウスパルス整形を用いた線形ベースバンド合成を使用したmuros変調
WO2010021635A1 (en) 2008-08-20 2010-02-25 Qualcomm Incorporated Power control method for a geran system to increase geran network capacity
US8855222B2 (en) * 2008-10-07 2014-10-07 Qualcomm Incorporated Codes and preambles for single carrier and OFDM transmissions
DE102009014480B4 (de) 2009-03-23 2012-03-29 Reinhart Rudershausen Verfahren und Dekodierer zum verbesserten Entspreizen gespreizter Datensignale und eine Vorrichtung zur digitalen Kommunikation mit Spreizmodulation
US8369351B2 (en) * 2009-04-06 2013-02-05 Intel Corporation Method and apparatus for collision avoidance
JP5810287B2 (ja) 2010-07-29 2015-11-11 パナソニックIpマネジメント株式会社 レーダ装置
DE102011075650B4 (de) 2011-05-11 2013-07-11 Reinhart Rudershausen Verfahren und Decodierer zum Entspreizen von Datensignalen, die mit Walsh-Sequenzen gespreizt sind
US9712207B2 (en) 2011-05-11 2017-07-18 Reinhart Rudershausen Method and decoder for despreading data signals spread using walsh sequences
RU2475935C1 (ru) * 2011-06-28 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Московский технический университет связи и информатики (ГОУ ВПО МТУСИ) Способ цифрового квадратурного формирования фазоманипулированного радиосигнала с расширенным спектром
US9784826B2 (en) * 2014-07-15 2017-10-10 Garmin Switzerland Gmbh Marine multibeam sonar device
CN104394529B (zh) * 2014-11-27 2018-09-04 北京智谷睿拓技术服务有限公司 发射控制方法及装置、信息获取方法及装置
RU2583862C1 (ru) * 2015-02-04 2016-05-10 ОАО "Камчатский гидрофизический институт" Приёмник цифровой акустической антенны
CN106899529A (zh) * 2015-12-21 2017-06-27 晨星半导体股份有限公司 载波频率偏移侦测电路与方法
CN105866257B (zh) * 2016-06-12 2018-05-08 华南理工大学 一种基于Golay互补卷积码的多元调制超声编码单次激励方法
US11012106B2 (en) 2016-09-23 2021-05-18 Qualcomm Incorporated Implementation of improved omni mode signal reception
CN106814352B (zh) * 2017-01-19 2019-07-23 中国人民解放军国防科学技术大学 一种基于格雷互补波形的多目标检测方法
CN107390276B (zh) * 2017-07-21 2019-01-22 太原理工大学 一种基于互补格雷码的地下管线定位装置及方法
CN109257046B (zh) * 2018-11-07 2022-03-22 太原理工大学 基于fpga的速率可调的高速格雷互补码发生系统
US10862608B2 (en) 2018-12-04 2020-12-08 National Cheng Kung University Communication device and communication method
RU192243U1 (ru) * 2019-04-25 2019-09-10 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" Двухканальное гидроакустическое устройство управления объектами с повышенной помехоустойчивостью
US10637530B1 (en) * 2019-06-13 2020-04-28 Qualcomm Incorporated Space time frequency multiplexing (STFM) for radar systems using complementary pair waveforms
KR20210002989A (ko) * 2019-07-01 2021-01-11 삼성전자주식회사 사물 인식을 위한 골레이 시퀀스 길이 조절 방법 및 그 전자 장치
CN112865856B (zh) * 2021-01-28 2022-09-02 中国科学院微小卫星创新研究院 一种基于互补码分布式扩频方法的卫星通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993295A (ja) * 1995-09-20 1997-04-04 Matsushita Electric Ind Co Ltd 符号化変調装置
EP0952461A2 (en) * 1998-04-20 1999-10-27 General Electric Company Ultrasonic beamforming with improved signal-to-noise ratio using orthogonal complementary sets
US6095977A (en) * 1998-03-26 2000-08-01 Hall; Anne Lindsay Method and apparatus for color flow imaging using Golay-coded excitation on transmit and pulse compression on receive

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681579A (en) * 1970-10-20 1972-08-01 Hughes Aircraft Co Non-interacting complementary coding system
US3751596A (en) * 1971-11-29 1973-08-07 Ibm Data transmission system using complementary coding sequences
US3889065A (en) * 1974-07-01 1975-06-10 Us Navy Acoustic devices for time-multiplexed communication
US5353110A (en) * 1991-07-12 1994-10-04 Tektronix, Inc. Method and apparatus for carrying out optical time domain reflectometry using weighing techniques
US5668795A (en) * 1992-11-24 1997-09-16 Stanford Telecommunications, Inc. Modulation system for spread spectrum CDMA communiction
FI925472A (fi) * 1992-12-01 1994-06-02 Nokia Mobile Phones Ltd Tiedonsiirtomenetelmä sekä -järjestelmä
US6452958B1 (en) * 1996-07-30 2002-09-17 Agere Systems Guardian Corp Digital modulation system using extended code set
US5841813A (en) * 1996-09-04 1998-11-24 Lucent Technologies Inc. Digital communications system using complementary codes and amplitude modulation
US6301221B1 (en) * 1997-09-10 2001-10-09 Hewlett-Packard Company Methods and apparatus for encoding data
EP0924909A1 (en) * 1997-12-17 1999-06-23 Hewlett-Packard Company Methods and apparatus for decoding DOFDM-data
US6567482B1 (en) * 1999-03-05 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient synchronization in spread spectrum communications
US7039036B1 (en) * 1999-04-01 2006-05-02 Texas Instruments Incorporated Reduced complexity primary and secondary synchronization codes with good correlation properties for WCDMA
ES2233356T3 (es) * 1999-04-29 2005-06-16 Siemens Aktiengesellschaft Procedimiento para establecer o determinar una secuencia de señales, procedimiento para la sincronizacion , estacion de base y estacion movil.
DE19932692A1 (de) * 1999-07-15 2001-01-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Abtastung biphase codierter digitaler Signale
FR2803467B1 (fr) * 1999-12-30 2002-02-08 Mitsubishi Electric Inf Tech Methode d'estimation d'un canal de transmission ou de telecommunication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993295A (ja) * 1995-09-20 1997-04-04 Matsushita Electric Ind Co Ltd 符号化変調装置
US6095977A (en) * 1998-03-26 2000-08-01 Hall; Anne Lindsay Method and apparatus for color flow imaging using Golay-coded excitation on transmit and pulse compression on receive
EP0952461A2 (en) * 1998-04-20 1999-10-27 General Electric Company Ultrasonic beamforming with improved signal-to-noise ratio using orthogonal complementary sets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009762A1 (es) 2006-07-20 2008-01-24 Sidsa (Semiconductores Investigación Y Diseño, S.A.) Método y sistema de estimación de canales de múltiple entrada y múltiple salida
US8379749B2 (en) 2007-06-19 2013-02-19 Ntt Docomo, Inc. Transmitter and transmission method
US8731102B2 (en) 2007-06-19 2014-05-20 Ntt Docomo, Inc. Transmitter and transmission method

Also Published As

Publication number Publication date
BR0113454A (pt) 2003-07-15
JP4771646B2 (ja) 2011-09-14
CN1448014A (zh) 2003-10-08
RU2280957C2 (ru) 2006-07-27
ZA200301461B (en) 2005-08-31
ATE348469T1 (de) 2007-01-15
DE60125190D1 (de) 2007-01-25
HK1059695A1 (en) 2004-07-09
US7711032B2 (en) 2010-05-04
AU2001252286A1 (en) 2002-03-04
US8369381B2 (en) 2013-02-05
US20030179811A1 (en) 2003-09-25
DK1311095T3 (da) 2007-04-10
ES2164613B1 (es) 2003-05-16
EP1311095A1 (en) 2003-05-14
EP1311095B1 (en) 2006-12-13
SI1311095T1 (sl) 2007-06-30
ES2164613A1 (es) 2002-02-16
PT1311095E (pt) 2007-03-30
US20110019720A1 (en) 2011-01-27
DE60125190T2 (de) 2007-09-27
JP2004515935A (ja) 2004-05-27
CN1222142C (zh) 2005-10-05

Similar Documents

Publication Publication Date Title
WO2002017585A1 (es) Metodo, transmisor y receptor para comunicacion digital de espectro ensanchado mediante modulacion de secuencias complementarias golay
EP1311075B9 (en) Random access channel preamble detection
US5822363A (en) Transmission process having spectrum spread phase differential modulation adn demodulation using orthogonal pseudorandom sequences
US6317452B1 (en) Method and apparatus for wireless spread spectrum communication with preamble sounding gap
CA2176401C (en) A high-data-rate wireless local-area network
KR100665325B1 (ko) 온-오프 키잉을 적용한 코드분할 다중화 무선통신 시스템에서의 송신 장치 및 송신 방법
US5809060A (en) High-data-rate wireless local-area network
CN110601717B (zh) 一种基于码分复用的通信与测距一体化系统和方法
EP0949765A2 (en) Digital modulation system using extended code set
US9780902B2 (en) Communication systems and methods
JPH06296171A (ja) 広帯域伝送システム
JP2007524267A (ja) 並列スペクトラム拡散通信システムおよび方法
EP1834461A1 (en) Method and apparatus for differentially orthogonal modulation by using repetition time period of chirp signal
CN110266344A (zh) 一种混沌混合扩频保密水声通信方法
US6282228B1 (en) Spread spectrum codes for use in communication
Trivedi et al. Performance evaluation of MC-CDMA over hybrid satellite/underwater acoustic channel
JPH05252134A (ja) 直交化周波数拡散通信方式
Zhang et al. A novel M-ary differential underwater acoustic direct sequence spread spectrum communication system
KR100778330B1 (ko) 순환 직교 시퀀스를 이용한 직교 코드분할 다중접근통신시스템 및 방법
WO2020210762A1 (en) Analog pulse sequence encoding and cycle recovery for spectrum efficient high density data
Kotkar et al. BER improvement of DSCDMA for AWGN and Rayleigh fading channel with Kasami code
AU684905C (en) A high-data-rate wireless local-area network
Hu PERFORMANCE OF AN INDOOR MOBILE RADIO COMMUNICATION SYSTEM USING DIRECT-SEQUENCE SPREAD SPECTRUM WITH DMSK MODULATION AND DIVERSITY
AU2388199A (en) Digital modulation system using extended code set
AU2002244019A1 (en) System and method for spread spectrum communication using orthogonal coding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001925586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 97/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10344426

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002522152

Country of ref document: JP

Ref document number: 018141382

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003/01461

Country of ref document: ZA

Ref document number: 200301461

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2003105158

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 2001925586

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001925586

Country of ref document: EP