WO2002016678A1 - Procede de production d'un monocristal de silicium - Google Patents
Procede de production d'un monocristal de silicium Download PDFInfo
- Publication number
- WO2002016678A1 WO2002016678A1 PCT/JP2001/007019 JP0107019W WO0216678A1 WO 2002016678 A1 WO2002016678 A1 WO 2002016678A1 JP 0107019 W JP0107019 W JP 0107019W WO 0216678 A1 WO0216678 A1 WO 0216678A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- single crystal
- crystal
- melt
- silicon
- upper furnace
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
- C30B15/22—Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
Definitions
- the present invention relates to a method for producing a semiconductor single crystal, and more particularly to a Czochralski method for growing a single crystal below a seed crystal by immersing the seed crystal in a melt stored in a rutu and pulling it up.
- Method and CZ method for producing silicon single crystals.
- a method of growing a silicon single crystal using the CZ method is that polycrystalline silicon as a raw material is placed in a quartz ruppo, heated to a high temperature of 140 ° C. or more in a furnace of a manufacturing apparatus, and melted. A seed crystal is immersed in the melt surface, and the seed crystal is gently pulled up while rotating to grow a single crystal below the seed crystal.
- the slip dislocations introduced when the seed crystal is immersed in the melt are When the crystal diameter is reduced to 5 mm or less, the crystal disappears when pulled up by about 5 to 20 cm, and thereafter, a single crystal free of slip dislocations can be grown. After the slip dislocations have disappeared, the diameter of the crystal to be grown is gradually increased and the diameter is increased until the desired crystal diameter is reached. Thereafter, the process shifts to a straight body process of growing a single crystal with a substantially constant diameter, and grows a single crystal rod having a desired crystal diameter.
- the single crystal part formed in the diameter expansion step is called a diameter expansion part, and the part pulled up with a substantially constant diameter after the diameter expansion step is called a straight body part or a constant diameter part.
- This constant diameter portion is processed into a semiconductor wafer, and becomes a substrate material for forming a semiconductor element.
- a single crystal can be grown without performing the drawing step by using a conical or pyramidal seed crystal having a pointed or truncated tip of the seed crystal.
- the method is to produce a single crystal by drawing or a method of producing a single crystal without forming a drawn part, the problem is to reliably remove or introduce slip dislocations. Whether or not a desired single crystal can be grown without success, that is, its success rate.
- the diameter of the constricted portion In the method of forming a constricted portion and growing a single crystal, it is necessary to reduce the diameter of the constricted portion to about 5 mm or less to remove slip dislocations. If the diameter is too large, the slip dislocations cannot be removed and the slip dislocations are introduced to the straight body, so that a single crystal as a product cannot be grown. On the other hand, if the diameter of the narrowed portion is made smaller than necessary, the shape cannot be maintained properly due to the temperature fluctuation of the melt, and the crystal separates from the melt during the formation of the narrowed portion and grows a single crystal. Becomes impossible.
- the tip of the seed crystal may be immersed in the melt again and the drawing process may be repeated from the beginning.
- the productivity and workability of the single crystal it is only one time It is desirable to remove slip dislocations and finish the drawing process.
- one failure can result in more than one hour Factors such as loss of process time, which promote deterioration of quartz rutupo filled with raw material melt at high temperatures, weaken durability, and alienation of crystal growth such as dislocation of crystals during growth. Will also be induced.
- re-executing the drawing step requires additional steps such as melting the drawn part at the tip of the formed seed crystal, adjusting the temperature of the raw material melt, and then immersing the seed crystal tip in the melt again. It is a burden for workers.
- the tip of the seed crystal is immersed to a desired diameter, and then the diameter is increased without forming a constricted part.
- slip dislocations may not be introduced into the seed crystal while melting the seed crystal having a sharp tip or a sharp-cut tip until it has a desired diameter. desired.
- the seed crystal is immersed in the raw material melt and dissolved from the part in contact with the melt at the same time.
- the single crystal is re-used using the same seed crystal. It is impossible to redo the training.
- it is essential to immerse the seed crystal to a desired diameter without introducing dislocations in a single melting operation.
- the upper furnace such as a gas straightening cylinder and heat shield screen surrounds the single crystals grown above the raw material melt contained in the rutupo.
- a method of arranging a structure and growing a single crystal while maintaining the thermal history of the crystal at a desired value is widely used.
- the upper furnace structure has to be improved to improve the heat history. It is necessary to make the distance between the object and the silicon melt surface relatively wide. Normally, the distance between the upper furnace structure and the silicon melt surface is about 10 mm to 30 mm, but when growing low defect or defect-free crystals, this distance is about 50 mm to 150 mm. Spread out. However, when a silicon single crystal is grown in this manner, there is a problem that the success rate of forming the above-described constricted portion and the success rate of dissolving the seed crystal are reduced. Disclosure of the invention
- the present invention has been made in view of such a problem, and when growing a silicon single crystal using the CZ method, the seed crystal is immersed in the raw material melt and then gently pulled up.
- the drawn diameter is stabilized at a desired value at the time of forming the drawn portion, and a drawn having a required diameter is formed. Slip dislocations are reliably eliminated from the crystal to increase the success rate of forming a narrowed portion that can grow a dislocation-free single crystal rod below the narrowed portion, and a sharp or sharp tip is cut off.
- the seed crystal is dissolved in the raw material melt. Slip into seed crystal when performing The seed crystal can be immersed to a desired diameter without causing crystallization. The success rate of dissolving the seed crystal is improved, and the space between the upper furnace internal structure and the silicon melt surface is desired when growing the single crystal constant diameter part. It is an object of the present invention to provide a method for manufacturing a silicon single crystal in which a single crystal having a constant diameter portion with low or no defect can be easily obtained by increasing the width of the silicon single crystal.
- a first aspect of the method for producing a silicon single crystal of the present invention is to provide a single crystal production apparatus in a cylindrical or conical upper furnace arranged so as to surround a single crystal grown in a furnace.
- the seed crystal is immersed in a silicon melt contained in a crucible in the furnace of the manufacturing equipment, and then the drawn part is formed while pulling up the seed crystal, and then the diameter is increased.
- the structure inside the upper furnace is required at least from the time when the seed crystal is immersed in the melt until the formation of the constricted portion is completed.
- the upper furnace internal structure or raw material melt After the crucible is formed, the distance between the upper furnace structure and the surface of the silicon melt is gradually widened to a position suitable for forming a single crystal constant diameter part. It is characterized by growing the single crystal by moving the upper furnace structure or crucible.
- the distance between the structure in the upper furnace and the silicon melt surface may be described as a gap or interval.
- the seed crystal When growing a silicon single crystal using the CZ method, the seed crystal is immersed in the raw material melt, and the seed crystal is gently pulled up from the melt to form a narrowed part.
- a cylinder or a conical upper furnace structure such as a gas rectifying cylinder or heat shield screen, is placed close to the melt surface to form a narrowed section.- Suitable for growing single crystals after forming the narrowed section If it is arranged at the position, the diameter of the narrowed portion is stable during the growth of the narrowed portion, the possibility that the narrowed portion separates from the melt during the formation of the narrowed portion is less likely to occur, and a stable narrowed portion diameter can be obtained.
- the distance between the upper furnace internal structure and the silicon melt surface can be set to a desired width, so that a single crystal having a constant diameter portion with low defects or no defect can be obtained. it can.
- the inside of the upper furnace such as a rectifying cylinder or heat shield screen placed just above the melt surface It is also possible to achieve the present invention without using a device for moving a structure.
- the manufacturing equipment used for growing single crystals is capable of efficiently dissolving polycrystalline silicon and making the melt surface constant for growing single crystal constant diameter parts to accurately form constant diameter parts.
- raising and lowering the roots filled with the raw material melt A movable mechanism is added. By using this mechanism, if the necessary positional relationship is adjusted by adjusting the inner structure of the upper furnace and the surface of the raw material melt filled with the crucible, a complicated device configuration can be achieved.
- the present invention can be used.
- the furnace internal structure or crucible placed above the melt can be moved up and down, and when forming a drawn part after immersing the seed crystal in the melt, the upper furnace
- the upper furnace structure or rutupo is placed at a position where the distance between the structure and the raw material melt surface is 5 to; LOO mm, preferably 5 to 5 Omm, more preferably 10 to 25 mm. It is preferable to form the constricted portion by performing the following.
- the gap between the raw material melt surface and the upper furnace internal structure is set within the range of 5 mm or more and 10 O mm or less to form the constriction, slip dislocations are removed with a high probability of 80% or more.
- a dislocation-free single crystal can be grown below the drawn portion. If the gap is set to 25 mm or less to form the narrowed portion, it is possible to almost certainly succeed in dislocation-free.
- the in-furnace structure and the melt surface are at least about 1 Omm. It is preferable to keep a gap.
- the second aspect of the method for producing a silicon single crystal of the present invention is a cylinder or a circle arranged so as to surround a single crystal grown in a furnace for producing a single crystal.
- the upper furnace internal structure At least while the seed crystal is immersed in the melt until the diameter of the portion at the tip of the seed crystal that is in contact with the melt reaches a desired diameter, the upper furnace internal structure A crucible containing the upper furnace internal structure or the raw material melt is placed so that the distance between the lower end and the silicon melt surface is 5 mm or more and 100 mm or less, and after the immersion of the seed crystal is completed. Gradually increase the distance between the upper furnace structure and the silicon melt surface. A position suitable for forming a single crystal constant diameter portion moves the upper reactor internal structure or Rutsupo characterized by growing a single crystal.
- the distance between the upper furnace internal structure such as a flow straightening tube or a heat shield screen and the surface of the raw material melt is 5 to: L 00 mm, preferably 5 to 5 O mm, more preferably 10 to 50 mm. It is preferable to dispose the seed crystal by disposing the upper furnace internal structure or crucible at a position within a range of 25 mm.
- the gap between the seed crystal raw material melt surface and the upper furnace internal structure must be Set the tip of the seed crystal in the range of 5 mm or more to 100 mm or less and cut off the pointed or sharp tip. If it dissolves into 0, it is possible to dissolve it without introducing slip dislocations into the seed crystal with a high probability of about 50% or more. In addition, if the gap is set to 25 mm or less and the seed crystal is melted, the melting can be succeeded almost certainly without introducing dislocations.
- a gap of at least about 10 mm between the furnace internals and the melt surface it is preferable to keep a gap of at least about 10 mm between the furnace internals and the melt surface.
- a method of growing a single crystal having a desired diameter by expanding the crystal diameter after forming the narrowed portion, or by narrowing using a seed crystal having a sharp tip or a shape with a sharp tip cut off. Even in the method of growing a single crystal having a desired diameter without forming a portion, the material is melted when the seed crystal is immersed in the raw material melt or immediately after the completion of the melting of the previous polycrystalline silicon material.
- the timing of moving the crucible to a position suitable for the growth condition of the single crystal constant diameter part is determined by moving the upper furnace internal structure or crucible to the desired size during the formation of the large diameter part, which is the step of expanding the crystal diameter. It is best to move it to a position.
- the upper furnace internal structure or the crucible is moved to a position suitable for growing the single crystal constant diameter portion while utilizing the portion where the enlarged diameter portion is formed.
- the upper furnace internal structure or the loophole filled with the melt is in a position suitable for growing the constant diameter part.
- a single crystal constant diameter portion having desired quality can be formed immediately after the growth of the constant diameter portion serving as a semiconductor wafer. As a result, a single crystal of stable quality can be obtained over the entire length of the grown constant diameter portion, and the yield is also improved.
- the furnace internals or crucible moves to a position suitable for forming the fixed diameter part. After the formation of the constriction, or after the melting of the seed crystal with a sharp or pointed tip, the upper furnace structure or rutupo is gradually moved to form the enlarged diameter part. It is recommended that the inside of the furnace or the crucible be moved gently so that the furnace structure or crucible is located at a position suitable for forming the fixed diameter portion before the completion of the process.
- the temperature and convection of the raw material melt become unstable due to a sudden change in the environment of the growth furnace ⁇ , and abnormal crystal growth And thermal shocks may cause slip dislocations.
- the crucible if the crucible is not moved in accordance with the growth rate of the crystal, the crystal is cut off from the melt and the crystal growth is interrupted.
- a cylindrical or conical upper furnace structure such as a gas straightening tube or heat shield screen, placed directly above the melt in the single crystal growing furnace is used to cool the single crystal pulled from the raw material melt. It is arranged for the purpose of adjusting the thermal history to a desired value.
- the crystal is kept warm to suppress defects in the crystal, or the radiant heat from the melt is cut off to increase the crystal cooling rate and increase the crystal size. It has the effect of pulling up at high speed.
- the upper furnace internal structure located just above the raw material melt also plays a role in controlling the thermal convection of the raw material melt.
- the raw material melt in the rutupo constantly generates heat convection due to heating from a heater arranged around the rutupo. Then, the heat given to the raw material melt by the heating of the heater is transferred to the surface layer of the melt by the heat convection, and a part of the heat is radiated to the outside by radiation from the melt surface. At this time, if a structure that suppresses heat radiation from the melt is placed just above the raw material melt surface, Thermal radiation from the surface is reduced, temperature fluctuations in the melt are suppressed, and thermal convection can be stabilized.
- the effect of suppressing the heat radiation of the melt is that, as long as the inner structure of the furnace has the same heat insulation effect, the shorter the distance to the surface of the melt, the greater the effect is, the more efficiently the heat radiation can be suppressed, and the more stable the convection of the melt. It is. And the effect becomes progressively smaller as the distance from the melt surface increases.
- melt temperature near the crystal growth interface When growing a single crystal by the CZ method, it is important to stabilize the melt temperature near the crystal growth interface. If the temperature near the crystal growth interface is not stable during crystal growth, problems such as deformation of the crystal during growth or sudden dislocation of the melt due to a sudden change in melt temperature may occur. . In particular, when forming the squeezed portion after the seed crystal is immersed in the melt, or when dissolving a seed crystal with a sharp or sharp-edged tip, The melt is susceptible to temperature fluctuations. This is because the diameter of the crystal is smaller and the surface of the raw material melt is largely exposed as compared to the growth of the single crystal at a constant diameter portion, and as a result, the amount of heat escaping from the melt surface increases, resulting in a lower melt temperature. It is considered that the temperature of the melt near the contact between the crystal and the melt becomes unstable due to dispersion.
- the shape of the crystal is not stable and it is necessary to eliminate the slip dislocations from the crystal.
- the force, the slip dislocations hardly disappear, and the drawing process time becomes longer than necessary, or the crystal separates from the melt and the crystal growth is interrupted Inconveniences such as doing so occur.
- the dissolution of the seed crystal occurs due to the unstable temperature. 'Around Recrystallization occurs in step 3, which causes problems such as slip dislocations being introduced into the seed crystal, making it impossible to pull up the crystal without dislocations.
- the melt temperature when dissolving the crystal in the melt.
- the space between the upper furnace internal structure and the silicon melt surface is about 10 mm to 30 mm, but when growing low-defect or defect-free crystals, this distance is from 50 mm to 150 mm. It can be spread to about 0 mm.
- FIG. 1 is a schematic sectional view showing an example of a single crystal apparatus for performing the method of the present invention.
- FIG. 2 is a schematic cross-sectional view showing another example of a single crystal apparatus for performing the method of the present invention.
- FIG. 3 is a graph showing the relationship between the distance between the melt surface and the upper furnace structure in Experimental Example 1 and the dislocation-free success rate.
- FIG. 4 is a graph showing the relationship between the distance between the melt surface and the upper furnace internal structure and the success rate of dislocation-free in Experimental Example 2.
- the present invention is not limited thereto.
- the method for growing a single crystal of the present invention can naturally be used also in the production of a single crystal using the MCZ method in which a single crystal is grown while applying a magnetic field to the raw material melt.
- FIG. 1 is a schematic sectional view showing an example of a single crystal manufacturing apparatus for carrying out the method of the present invention.
- the single crystal manufacturing apparatus 12 has a growth furnace main body 14 and an upper growth furnace 21.In the center of the growth furnace main body 14, a crucible support shaft 15 is used as an axis, and the inside is made of quartz.
- a truss C whose outer side is made of graphite is rotatably and vertically movable by a truss drive mechanism 16 attached to the lower end of the truss support shaft 15.
- Rutupo C contains a raw material melt (silicon melt) M, which is a raw material for growing silicon single crystals.
- a cylindrical or conical upper furnace internal structure 17 having a narrowed lower end is provided so as to surround the grown crystal.
- a single crystal manufacturing apparatus equipped with a cylindrical inert gas straightening cylinder as the upper furnace internal structure 17 is shown.
- a heating heater 18 made of graphite is arranged outside the crucible C so as to surround the crucible C. By heating the heater 18, the polycrystalline silicon material charged in the crucible C is melted.
- a single crystal S is pulled from the obtained silicon melt M.
- a heat insulating material 20 is provided between the heater 18 and the growth furnace main body 14, and serves to protect the growth furnace wall and keep the inside of the furnace warm.
- a wire winding mechanism 25 for winding or unwinding the wire 23 for pulling the grown single crystal S, which is opposite to Rutupo C during crystal growth. by that is similar rotating the wire 2 3 wound in al quietly direction, the seed crystal 2 8 promote the growth of crystals under the t wire 2 3 species holder for holding the seed crystal 2 8 to the tip 2
- the seed crystal 28 is engaged with the wire 23 by the seed holder 26.
- the growth furnace body 14 When growing the single crystal S, the growth furnace body 14 is filled with an inert gas such as Ar (argon) and the pressure inside the furnace is adjusted to a desired value to perform the growth operation. Is equipped with a gas amount control device 30 and a conductance pulp 32 for adjusting the flow rate of the inert gas and the pressure inside the furnace. The inert gas pressure and the flow rate in the growth furnace are adjusted to the growth conditions. It can be adjusted as needed.
- Ar argon
- polycrystalline silicon raw material is filled into Rutupo C in the growth furnace body 14 and the inside of the furnace is filled with an inert gas. While adjusting the amount and pressure of the inert gas Heat the heater 18 from 6 to melt the polycrystalline silicon raw material.
- the crucible C filled with the material melt M is moved up and down to a position suitable for allowing the seed crystal 28 to immerse the melt, that is, the upper furnace internal structure 17
- the distance between the seed crystal tip and the distance between the seed crystal tip and the method of growing a single crystal S without forming the constricted portion S1 by using a seed crystal 28 having a sharp or a sharp tip a position suitable for melting the seed crystal 28 is used.
- the crucible is moved to the upper furnace structure 17 so that a sufficient heat retaining effect can be obtained.
- the distance d between the upper furnace internal structure 17 and the melt surface M1 is set to 5 to 100 mm, preferably 5 to 50 mm, more preferably 10 to 25 mm.
- the position of the rutupo may be determined in advance.
- S 1 is a drawn portion or the tip of a sharp seed crystal
- S 2 is an enlarged diameter portion of a single crystal
- S 3 is a constant diameter portion of a single crystal.
- FIG. 2 is a schematic sectional view showing another example of a single crystal manufacturing apparatus for carrying out the method of the present invention. 2, the same or similar members as those in FIG. 1 are denoted by the same reference numerals.
- reference numeral 34 denotes an upper furnace internal structure elevating mechanism for moving the upper furnace internal structure 17 up and down, and a structure elevating wire 36 connected to the upper furnace internal structure 17 and a structure It has a wire winding drum 38 for winding the lifting wire 36.
- the upper furnace internal structure lifting mechanism 34 By operating the upper furnace internal structure lifting mechanism 34, the upper furnace internal structure 17 can be freely moved up and down. Therefore, the upper furnace internal structure 17 and the melt surface Ml position The distance d freely It can be adjusted to set a desired optimum value.
- the method for keeping the distance d between the upper furnace internal structure 17 and the melt surface Ml at a desired value is variously selected according to the structure of the equipment used for growing the single crystal and the growing conditions. Should be.
- the temperature of the raw material melt M is lowered to a temperature suitable for immersing the seed crystal 28, and the wire 23 is wound when the melt temperature is sufficiently lowered and stabilized.
- the seed crystal 28 is lowered to near the melt surface M 1 and the seed crystal 28 is heated. This operation is performed by heating the seed crystal 28 so that when the seed crystal 28 is immersed in the melt M, thermal shock to the seed crystal 28 caused by a temperature difference from the melt M is caused. This is an operation performed to reduce the size and reduce the slip dislocation generated in the seed crystal 28 due to thermal shock.
- the seed crystal 28 When the temperature of the seed crystal 28 rises to near the melt temperature, the seed crystal 28 is lowered again, and the tip of the seed crystal 28 is gently immersed in the melt M.
- a single crystal S is grown below the seed crystal 28 by gently winding the wire 23 while rotating the seed crystal 28.
- the diameter of the seed crystal 28 is reduced in order to remove slip dislocations caused by the temperature difference from the melt M. Is narrowed sufficiently to about 5 mm or less to form a constricted portion S1 having a length of about 5 to 20 cm.
- the diameter of the single crystal S to be grown is gradually increased, and the positional relationship between the melt ⁇ and the upper furnace internal structure 17 is determined by the single crystal constant.
- the crucible C is gently lowered to a predetermined position as the single crystal S grows.
- the upper furnace structure 17 is moved up and down instead of lowering the crucible C. It may be moved upward by the mechanism 34.
- the diameter of the crystal is gradually reduced to separate the crystal from the raw material melt M.
- the seed crystal 28 has a sharp or pointed tip. In the method of growing a single crystal S without forming a narrowed portion by using the seed crystal 28, the following operations (1) to (5) are performed.
- the diameter of the single crystal S to be grown is gradually increased. 9
- the upper furnace structure 17 is moved up and down. It can be moved upward by 4.
- the movement of the upper furnace internal structure 17 is terminated in a device having a rutupo C or the upper furnace internal structure lifting mechanism 34, and the single crystal S
- each movement is performed so that the crucible C or the upper furnace internal structure 17 is arranged at a position suitable for forming the constant diameter portion S3 of the single crystal S. It is desirable to carry out.
- the diameter of the crystal is gradually reduced to separate the crystal from the raw material melt M. After that, when the single crystal S is allowed to cool to near room temperature in the upper growth furnace 21, the crystal is taken out of the manufacturing apparatus and the growth is completed.
- the upper furnace is used for growing the single crystal.
- the distance or distance d between the internal structure 17 and the silicon melt surface M 1 can be set to a desired value. Therefore, by increasing the distance or distance d between the upper furnace internal structure 17 and the silicon melt surface M1 from 50 mm to about 150 mm, the single crystal constant diameter portion S3 is grown. It is possible to easily obtain a single crystal in which the constant diameter portion S has low defects or no defects. Example Hereinafter, the present invention will be described more specifically with reference to experimental examples, but the present invention is not construed as being limited thereto.
- the method of the present invention was carried out using the same apparatus as in FIG. First, a quartz crucible with a diameter of 70 cm was placed in a single crystal production apparatus, and 2 OO kg of the polycrystalline silicon material was filled into the crucible, and the inside of the single crystal growing furnace was filled with Ar gas, which is an inert gas. After that, the heater in the apparatus was heated to melt the polycrystalline silicon raw material to obtain a silicon melt.
- Ar gas which is an inert gas.
- the crucible After confirming that the polycrystalline silicon raw material has been completely melted, raise the crucible so that the distance (gap) between the melt surface and the upper furnace internal structure (gas rectifying cylinder in this embodiment) becomes a desired value.
- the temperature of the raw material melt was lowered to a temperature suitable for immersion of the seed crystal, and when the melt temperature became stable, the seed crystal was lowered close to the melt surface to heat the seed crystal.
- the temperature of the seed crystal became almost the same as the melt temperature, the seed crystal was immersed in the melt, and then a narrowed part with a minimum diameter of 5 mm and a narrowed part of 150 mm was formed.
- the diameter was expanded to 300 mm to obtain a silicon single crystal having a constant constant diameter portion.
- the roots move gently during the diameter expansion process, and when growing a single crystal constant diameter part, the constant diameter part is formed by repositioning so that the melt and the upper furnace internal structure are located at an appropriate position.
- Figure 3 shows the results.
- the horizontal axis is the distance between the melt and the upper furnace structure when forming the constriction
- the vertical axis is the percentage of the dislocation-free success rate when the crystal was dislocated when the crystal was pulled up to the fixed diameter part of 5 cm. It is shown by.
- the test is a compilation of the results of repeated crystal production with the distance (gap) between the melt and the upper furnace internal structure being 12 levels between 5 mm and 150 mm.
- the distance (gap) between the raw material melt and the upper furnace internal structure was 10 At O mm or less, the dislocation-free success rate was about 90% or more, but it was found that the success rate rapidly decreased when the distance (gap) exceeded 100 mm.
- the distance (gap) between the raw material melt and the upper furnace structure was 25 mm or less, a single crystal could be obtained with almost no failure.
- the furnace structure was brought closer to the melt and squeezed. It was confirmed that the effect of the formation of the crystal was higher as the distance (gap) was smaller, and it was preferable to grow the single crystal by bringing the upper furnace structure closer to the melt surface to 25 mm or less. did.
- a single crystal was manufactured under the same conditions as in Experimental Example 1. First, a quartz crucible with a diameter of 70 cm was placed in a single crystal production apparatus as shown in Fig. 1, 200 kg of polycrystalline silicon material was filled therein, and the interior of the single crystal growing furnace was inert gas. After filling with the Ar gas, the heater in the apparatus was heated to melt the polycrystalline silicon raw material to obtain a silicon melt.
- the crucible After confirming that the polycrystalline silicon raw material has been completely melted, raise the crucible so that the distance (gap) between the melt surface and the upper furnace internal structure (gas rectifying cylinder in this embodiment) becomes a desired value.
- the temperature of the melt is lowered to a temperature suitable for dissolving the seed crystal, and when the melt temperature is stable, the approximately conical seed crystal with a pointed angle of 20 ° is sharpened.
- the seed crystal was heated down to near the liquid surface. Since the temperature of the seed crystal tip became almost the same as the melt temperature, the seed crystal was gently melted into the melt, and then the seed crystal tip was melted until the minimum diameter became 5 mm. .
- the seed crystal was pulled up while expanding the crystal diameter, and when the crystal diameter reached 30 O mm, the process was shifted to the constant diameter portion forming step to obtain a desired silicon single crystal.
- the crucible is moved gently during the diameter expansion process, and redistributed so that the distance (gap) between the melt and the internal structure of the upper furnace is at an appropriate position when growing a single crystal of constant diameter. To form a constant diameter portion.
- Fig. 4 shows the results.
- the horizontal axis represents the distance between the melt and the upper furnace structure when the seed crystal was melted, and the vertical axis did not show any dislocations in the crystal when the crystal was pulled up to the fixed diameter part of 5 cm.
- the percentage of the dislocations is shown as a percentage of the dislocation-free success rate.
- the experiment summarizes the results of repeating the crystal production with the distance (gap) between the melt and the upper furnace internal structure set at 12 levels between 5 mm and 150 mm.
- the distance (gap) between the raw material melt and the upper furnace structure is less than 100 mm, it is difficult to melt the seed crystal without dislocation, and the success rate of dislocation-free single crystal becomes less than 50%.
- the distance (gap) between the raw material melt and the upper furnace internal structure is 50 mm or less, it is possible to dissolve the seed crystal without dislocation with a high probability of 80% or more. Yes, it was possible to confirm that the tip of the seed crystal could be successfully melted with almost no failure when approaching 25 mm or less.
- the method for producing a silicon single crystal of the present invention has been described by taking the CZ method for growing a single crystal without applying a magnetic field to the raw material melt as an example. It is needless to say that the same effect can be obtained also in the single crystal production using the MCZ method for growing the crystal.
- Industrial applicability As described above, when the production method of the present invention is used for growing a silicon single crystal using the CZ method, a method of growing a silicon single crystal after dipping a seed crystal in a raw material melt to form a narrowed portion. In this method, the slip dislocations caused when the seed crystal is brought into close contact with the original melt can be eliminated with a high probability in the process of forming the drawing portion. In addition, since the temperature fluctuation of the raw material melt in the step of forming the narrowed portion is reduced, the shape of the single crystal narrowed portion is stabilized, and a narrowed portion having a desired diameter can be easily formed.
- the seed crystal tip when the seed crystal tip is melted into the raw material melt, Since the dissolution can be performed while the liquid temperature is stabilized at a desired temperature, the seed crystal can be dissolved to a desired diameter without causing dislocation.
- the productivity of the crystal is further improved by improving the success rate of forming a narrowed portion or dissolving the seed crystal. It can be.
- the number of failures in forming the constricted portion or dissolving the seed crystal can be greatly reduced, so that the burden on the operator can be reduced.
- the method of the present invention exerts its effect sufficiently when a large crucible having a diameter exceeding 50 cm is used. .
- the distance between the upper furnace internal structure and the silicon melt can be made a desired width when growing the single crystal constant diameter portion, so that the constant diameter portion has low defect or no defect.
- the single crystal can easily be obtained, and a remarkable effect of achieving the same is achieved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
明 細 書 シリ コン単結晶の製造方法 技術分野
本発明は、 半導体単結晶の製造方法に関し、 より詳しくはルツポに収 容された融液に種結晶を浸漬し引上げることによって種結晶の下方に単 結晶を成長するチヨクラルスキー法 (Czochral ski Method、 C Z法) を 用いたシリ コン単結晶の製造方法に関する。 背景技術
C Z法を用いてシリコン単結晶を育成する方法は、 原料となる多結晶 シリコンを石英製のルツポに入れ製造装置炉内で 1 4 0 0 °C以上の高温 に加熱し融液とした後に、 融液表面に種結晶を着液させ、 この種結晶を 回転させながら静かに引上げることによってその下方に単結晶を育成す るものである。
しかし、 種結晶には高温の融液に着液した際に融液との温度差で生じ る熱衝撃により高密度にスリップ転位が導入されるため、 種結晶の下方 に単結晶を育成するにはこのスリ ップ転位を除去する操作が必要となる c そこで、 種結晶を融液に着液し温度が安定したら、 種結晶を引上げつ つ先端に育成される結晶の径を 5 m m程度以下まで細く して、 結晶から スリ ップ転位が除去されるまではその状態で結晶育成を行ない、 それ以 降の育成される結晶に種結晶着液時に生じたスリ ップ転位がおよばない ようにしている。 この工程を絞り工程と言い、 この時形成された単結晶 部分を絞り部と称する。
通常、 種結晶を融液に着液させた際に導入されたスリ ップ転位は、 結
晶径を 5 m m以下とした状態で 5 〜 2 0 c m程度引上げれば消滅し、 そ れ以降はスリ ップ転位を排除した単結晶を育成することができる。 スリ ップ転位が消滅した後は、 育成される結晶径を徐々に大きく して行き所 望の結晶径となるまで径を広げる拡径工程を経て、 所望の工程となった ところで径拡大を止め、 以降、 略一定の直径で単結晶の育成を行う直胴 工程に移り、 所望の結晶直径を持った単結晶棒を育成していく。 拡径ェ 程で形成された単結晶部位を拡径部と言い、 拡径工程の後、 略一定の直 径で引上げられた部分を直胴部あるいは定径部と呼んでいる。 この定径 部が半導体ゥエーハに加工され、 半導体素子を形成するための基板材料 となる。
また最近では、 特開平 4 — 1 0 4 9 8 8号公報に示されるような、 絞 り部を形成することなく単結晶を引上げる方法も用いられている。 絞り 工程を行わずに単結晶を育成するには、 種結晶の先端の尖ったあるいは 尖った先端を切り取った形の円錐または角錐状の種結晶を用いることに よって行われる。
このような種結晶を用いれば、 種結晶先端を原料融液に着液した際に 生じる熱衝撃によりスリ ツプ転位がもたらされること無く、 あるいは例 え種結晶にスリ ップ転位がもたらされたとしても軽微であり、 種結晶先 端が所望の径まで融液に浸漬される間に消滅してしまい、 所望の径まで 種結晶を浸漬した後は転位が無くなっているので絞り部を形成する必要 がなく、 直ちに結晶直径の拡大を図る拡径部を形成する工程に移行する ことができる。
この絞り部を形成することなく単結晶を引上げる方法では、 絞りを行 わない、 即ち種結晶の先端に形成される結晶を一端細くする必要がなく . 種結晶の先端部を所望の太さまで浸漬したら、 その後、 直ちに結晶直径 を所望の径まで広げる拡径工程へ移行できる点に特徴がある。
最近のシリコン単結晶の製造においては、 生産性の向上を目指し大直 径長尺の単結晶育成が行われており、 引上げられる結晶の重量は 2 0 0 k g以上にも達している。 このような高重量結晶を C Z法により育成す るためには、 絞り部の強度が重要な問題となる。 種結晶からもたらされ るスリ ップ転位を消滅させるために直径が 5 m m以下となる絞り部を形 成し、 その下方に 2 0 0 k gを超える高重量結晶を育成することは絞り 部の強度から考えても限界近くに達しており、 更なる大直径長尺単結晶 ゥエーハを効率良く生産する為に、 新たな単結晶の育成方法が必要とさ れていた。 この課題を解決する手段の一つとして、 絞り部を作らないで 単結晶を育成する技術が検討、 実用化されている。
しかし、 絞りを行い単結晶を製造する方法でも、 絞り部を形成するこ となく単結晶を製造する方法でも、 問題となるのはスリ ップ転位を確実 に除去あるいはスリ ップ転位を導入することなく所望の単結晶を育成で きるかどうカ 即ち、 その成功率である。
絞り部を形成し単結晶を育成する方法では、 絞り部の直径を 5 m m以 下程度までー且細く してスリ ップ転位を抜く必要があることから、 絞り 部径が最小となる絞り込み部の径が太いと、 スリ ップ転位を除去できず にスリ ップ転位が直胴部にまで導入され、 製品となる単結晶が育成する ことができなくなってしまう。 その一方で、 絞込み部の径を必要以上に 細くすると融液の温度変動により適切に形状を保つことができず、 絞り 部形成の途中で結晶が融液から離れてしまい単結晶を育成することが不 可能となる。
単結晶の育成工程で絞り部形成に失敗した場合は、 再度、 種結晶先端 を融液に浸漬し絞り工程を最初からやり直せば良いが、 単結晶の生産性 や作業性を考えると一回でスリップ転位を除去し絞り工程を終えること が望ましい。 特に、 絞り工程をやり直すと、 一回の失敗で 1時間以上余
計に工程時間をロスする等により、 高温下での原料融液を満たした石英 製ルツポの劣化を促進し耐久性を弱め、 育成途中で結晶が有転位化する 等の結晶成長を疎外する要因を誘導することにもなる。 また、 絞り工程 をやり直すことは、 ー且形成された種結晶先端の絞り部を溶かし、 原料 融液温度を調整した後に再び種結晶先端を融液に浸漬する等の工程が新 たに加わるため作業者にとっても負担になる。
このような理由から、 絞り部を形成し単結晶育成を行なう方法におい ては、 スリ ップ転位を確実に除去し、 所望の直径を持った絞り部を失敗 することなく一回で形成できる、 あるいは失敗する回数が可能な限り少 ないことが望まれる。
一方、 先端部の尖ったあるいは尖った先端を切り取った形状の種結晶' を用いて種結晶の先端部を所望の径となるまで浸漬した後、 絞り部を形 成することなく径を拡大して単結晶を育成する方法においても、 先端部 の尖ったあるいは尖った先端を切り取った形状の種結晶を所望の直径と なるまで溶かし込む間に、 スリ ップ転位が種結晶に導入されないことが 望まれる。 特に、 先端部の尖ったあるいは尖った先端を切り取った形の 特殊な形状の種結晶を用いる方法では、 種結晶を原料融液中に浸漬する と同時に融液に接した部分から溶解してしまうので、 種結晶の浸漬に失 敗し、 種結晶の着液時あるいは溶かし込みの途中でスリ ップ転位が種結 晶にもたらされた場合には、 再ぴ同じ種結晶を用いて単結晶育成をやり 直すことは不可能となる。 このような特殊な形状を持った種結晶を用い る単結晶育成においては、 一回の溶かし込み操作で転位が導入されるこ となく所望の直径まで種結晶を浸漬することが必須となる。
仮に、 先端部の尖ったあるいは尖った先端を切り取った形状の種結晶 を所望の太さとなるまで融液に浸漬した後に種結晶にスリ ップ転位がも たらされていた場合には、 種結晶を単結晶育成炉から取り出して新しい
種結晶と交換し、 再ぴ融液に種結晶を溶かし込み直す必要がある。 しか し、 種結晶を新しい物に交換する操作は、 不活性ガスで満たされた高温 の単結晶育成炉から種結晶を取り出し新しい種結晶に交換して再び炉内 に戻す操作が必要となるため作業は複雑で、 種結晶を融液に浸漬できる 状態に炉内環境を整えるのにも時間を必要とする作業となる為に、 絞り 部を形成しないで単結晶を育成する方法においては、 種結晶の溶かし込 みに失敗すると、 作業負担を増大し極端に生産性を落とす結果となるこ とから、 一回で種結晶の沈み込みを成功させることが単結晶育成の生産 性ゃ歩留りをあげる上で重要な課題となっている。
—方、 最近の C Z法によるシリ コン単結晶の育成においては、 結晶内 に存在する欠陥を所望の値にコントロールした高品質結晶を得る、 ある いは育成された結晶の冷却速度を速め高速で単結晶を育成し生産性の向 上を図る等の為に、 ルツポに収容した原料融液の上方に育成された単結 晶を囲繞するようにガス整流筒や遮熱スクリーン等の上部炉内構造物を 配置して、 結晶の熱履歴を所望の値に保ちながら単結晶を育成する方法 が広く用いられている。
特に、 シリ コン単結晶育成の熱履歴に起因して発生する、 いわゆる グローンィン欠陥が低減されたあるいは完全に排除されたシリ コン単結 晶の育成においては、 熱履歴改善のために上部炉內構造物とシリコン融 液面との間隔を比較的広めにする必要がある。 通常、 上部炉内構造物と シリコン融液面との距離は 1 0 m mから 3 0 m m程度であるが、 低欠陥 あるいは無欠陥結晶を育成する時にはこの距離が 5 0 m mから 1 5 0 m m程度に広げられる。 しかしながら、 このようにしてシリコン単結晶を 育成する場合には、 前記した絞り部の形成の成功率や種結晶溶かし込み の成功率が低下する問題があった。
発明の開示
本発明はこのような問題に鑑みて成されたものであり、 C Z法を用い てシリ コン単結晶を育成するにあたり、 種結晶を原料融液に浸潰した後 に種結晶を静かに引上げながら絞り部を形成し単結晶を育成する方法で は、 絞り部形成時に絞り径を所望の値に安定させ必要な直径をもつ絞り を形成するあるいは絞り部が融液から離れる絞り切れを無く し、 スリ ッ プ転位を結晶から確実に消滅させて絞り部の下方に無転位の単結晶棒を 育成することができる絞り部形成の成功率を高め、 また先端部の尖った あるいは尖った先端を切り取った形状の種結晶を用いて種結晶の先端部 を所望の径となるまで浸漬した後、 絞り部を形成することなく単結晶を 育成する方法においては、 種結晶を原料融液に溶かし込みを行う際に種 結晶にスリ ップ転位がもたらされることなく種結晶を所望の径まで浸漬 できる種結晶溶かし込みの成功率を向上させ、 さらに単結晶定径部の育 成時に上部炉内構造物とシリコン融液面との間隔を所望の広さとするこ とによって定径部が低欠陥あるいは無欠陥の単結晶を容易に得ることが できるようにしたシリコン単結晶の製造方法を提供することを目的とす る。
上記の課題を解決する為に、 本発明のシリコン単結晶の製造方法の第 1の態様は、 単結晶製造装置炉に育成した単結晶を囲繞するように配置 した円筒あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用 いて、 製造装置炉内のルツボに収容されたシリ コン融液に種結晶を浸漬 した後に種結晶を引上げながら絞り部を形成し、 その後径を拡大して単 結晶を育成するチヨクラルスキー法によるシリ コン単結晶の製造方法に おいて、 少なく とも種結晶を融液に着液させてから絞り部の形成が終了 するまでの間は、 上部炉内構造物の下端とシリ コン融液面間の距離が 5 m m以上 1 0 0 m m以下となる位置に上部炉内構造物あるいは原料融液
を収容したルツボを配置し、 絞り部の形成が終了した以降に上部炉内構 造物とシリ コン融液面間の距離を徐々に広げ、 単結晶定径部を形成する のに適した位置に上部炉内構造物あるいはルツボを移動させて単結晶を 育成することを特徴とする。 なお、 以下の記述において上記上部炉内構 造物とシリコン融液面間の距離は隙間又は間隔として説明することがあ る。
C Z法を用いてシリコン単結晶を育成するにあたり、 種結晶を原料融 液に浸漬し静かに融液から種結晶を引上げ絞り部を形成する際に、 単結 晶育成炉内の融液直上に配設されたガス整流筒や遮熱スクリーン等の円 筒あるいは円錐状の上部炉内構造物を融液面に近づけて絞り部を形成し- 絞り部形成が終了した後に単結晶育成に適した位置に配置すれば、 絞り 部育成時においては絞り部の径が安定し絞り部形成途中で絞り部が融液 から離れる絞り切れが生じる可能性も少なく、 また、 安定した絞り部径 が得られることで、 絞り部からスリ ップ転位を消滅させるのに必要な絞 り部径まで絞り部を細くする絞り込み部形成が容易となり、 ス リ ップ転 位の除去をより確実なものとすることができる。 そして、 単結晶定径部 の育成時には上部炉内構造物とシリコン融液面間の距離を所望の広さと することができるので、 定径部が低欠陥あるいは無欠陥の単結晶を得る ことができる。
そして、 これら上部炉内構造物をシリ コン単結晶の原料である多結晶 シリ コン融解時等には作業の妨げとならないよう、 単結晶育成に関係し ない作業では特許第 2 6 4 0 6 8 3号に示すような装置構造とすること で上部炉内構造物を上下動可能とし育成炉上方に収容する装置も知られ ている。 これらの機構や装置を用いることによってより容易に本発明を 実行することが可能である。
また、 融液面直上に配置された整流筒や遮熱スクリーン等の上部炉内
構造物を移動するような装置を用いることなく本発明を達成することも 可能である。
現在、 単結晶育成に用いられている製造装置には、 多結晶シリ コンを 効率的に溶解することや、 単結晶定径部の育成にあたり融液面を一定に して精度よく定径部を形成し、 原料融液から得られる単結晶の収率向上 を図る、 あるいは単結晶を半導体ゥエーハに加工する際の研削ロスを減 らすこと等を目的に、 原料融液を満たしたルツポを上下動可能な機構が 付加されている。 この機構を利用することにより、 上部炉内構造物とル ッボに満たされた原料融液面との間を調整して必要とする位置関係にす れば、 複雑な装置構成とすることなく本発明を利用することができる。
このような装置や方法を用いることにより、 融液上方に配置された炉 内構造物あるいはルツボを上下動可能とし、 種結晶を融液に浸漬した後 に絞り部を形成する時には、 上部炉内構造物と原料融液面の間の距離が 5〜; L O O m m、 好ましくは 5〜 5 O m m、 より好ましくは 1 0〜 2 5 m mの範囲となる位置に上部炉内構造物あるいはルツポを配置して絞り 部の形成を行うのがよい。
原料融液面と上部炉内構造物の隙間を 5 m m以上 1 0 O m m以下の範 囲に設定して絞り部の形成を行えば、 8 0 %以上の高い確率でスリ ップ 転位を除去し絞り部の下方に無転位の単結晶を育成することができる。 また、 隙間を 2 5 m m以下に設定して絞り部を形成すれば、 略確実に無 転位化を成功させることが可能となる。 なお、 絞り部形成工程中に絞り 部の育成状態を観察したり、 炉内構造物上方から下流する不活性ガス等 を考えれば、 炉内構造物と融液面は最低でも 1 O m m程度の隙間を保つ ておくのが好ましいものである。
そして、 本発明のシリ コン単結晶の製造方法の第 2の態様は、 単結晶 製造装置炉に育成した単結晶を囲繞するように配置した円筒あるいは円
錐状の上部炉内構造物を有する単結晶製造装置を用いて、 製造装置炉内 のルツボに収容されたシリコン融液に先端部の尖ったあるいは尖った先 端を切り取った形状を有する種結晶を用いて種結晶の先端部を所望の径 となるまで浸漬した後に、 絞り部を形成することなく径を拡大して単結 晶を育成するチヨクラルスキー法によるシリコン単結晶の製造方法にお いて、 少なく とも種結晶を融液に着液させてから該種結晶先端の融液と 接している部分の径が所望の径となるまで浸漬を行っている間は、 上部 炉内構造物の下端とシリ コン融液面間の距離を 5 m m以上 1 0 0 m m以 下となるように上部炉内構造物あるいは原料融液を収容したルツボを配 置し、 種結晶の浸漬が完了した以降に上部炉内構造物とシリ コン融液面 間の距離を徐々に広げ、 単結晶定径部を形成するのに適した位置に上部 炉内構造物あるいはルツポを移動させて単結晶を育成することを特徴と する。
C Z法を用いたシリ コン単結晶の育成において、 先端部の尖ったある いは尖った先端を切り取った形状を有する種結晶を用いて種結晶の先端 部を所望の径となるまで浸漬した後に絞り部を形成することなくシリコ ン単結晶を育成する方法であっても、 先端部の尖ったあるいは尖った先 端を切り取った形状の種結晶を所望の径となるまで原料融液に浸漬する までの間は、 整流筒や遮熱スクリーン等の上部炉内構造物と原料融液面 の間の距離が 5〜: L 0 0 m m、 好ましくは 5〜 5 O m m、 より好ましく は 1 0〜 2 5 m mの範囲となる位置に上部炉内構造物あるいはルツボを 配置して種結晶の溶かし込み操作を行うのが好ましい。
先端部の尖ったあるいは尖った先端を切り取った形状の種結晶を用い て絞りを作ることなく単.結晶を育成する方法の場合は、 種結晶原料融液 面と上部炉内構造物の隙間を 5 m m以上 1 0 0 m m以下の範囲に設定し て尖ったあるいは尖った先端を切り取った形状の種結晶先端を原料融液
0 へ溶かし込めば、 5 0 %程度以上の高い確率で種結晶にスリ ップ転位が 導入されることなく溶かし込みを行うことが可能である。 更には、 隙間 を 2 5 m m以下に設定して種結晶の溶かし込みを行えば、 より略確実に 転位を導入することなく溶かし込みを成功させることができる。 なお、 絞り部を形成して単結晶を育成する方法と同じ理由から、 炉内構造物と 融液面は最低でも 1 0 m m程度の隙間を保っておくのが好適である。 そして、 絞り部を形成した後に結晶径を拡径して所望の直径を有する 単結晶を育成する方法でも、 また、 先端部の尖ったあるいは尖った先端 を切り取った形状の種結晶を用いて絞り部を形成することなく所望の直 径を有する単結晶を育成する方法であっても、 種結晶を原料融液に浸漬 する時、 あるいはそれ以前の多結晶シリコン原料の溶融終了直後から原 料融液面の間の距離が 5〜 1 0 0 m m、 好ましくは 5〜 5 O m m、 より 好ましくは 1 0〜 2 5 m mとなる間隔に配置しておいた上部炉内構造物 あるいは融液を満たしたルツボを単結晶定径部の育成条件に適した位置 に移動するタイミングは、 結晶径を拡大する工程である拡径部の形成を 行っている間に上部炉内構造物あるいはルツポを所望の位置に移動させ るのが最適である。
このように単結晶育成工程の中で、 拡径部を形成している間を利用し て上部炉内構造物あるいはルツボを単結晶の定径部を育成するのに適し た位置まで移動させておけば、 単結晶の拡径部形成から定径部形成に移 行した直後には、 上部炉内構造物あるいは融液を満たしたルッポは定径 部の育成に適した位置にあることになり、 半導体ゥエーハとなる定径部 の育成開始直後から所望の品質を有する単結晶定径部を形成することが 可能となる。 これにより、 育成した定径部全長にわたって安定した品質 の単結晶が得られるため歩留りも向上する。
なお、 炉内構造物あるいはルツボを定径部形成に適した位置に移動す
るにあたっては、 絞り部形成後または先端部の尖ったあるいは尖った先 端を切り取った形状の種結晶の溶かし込み終了後から徐々に上部炉内構 造物またはルツポを移動させ、 拡径部の形成が終了する前あたりで炉内 構造物またはルツボが定径部を形成するのに適した位置に配置されるよ う静かに移動させるのがよい。
単結晶拡径部の形成途中で炉内構造物あるいはルツボを急いで移動さ せると、 育成炉內の環境が急激に変わることで原料融液の温度や対流が 不安定となり、 結晶の異常成長や熱衝撃によりスリ ップ転位の発生を招 くことになる。 また、 ルツボを移動させる場合は、 結晶の成長速度に合 わせてルツポを移動させないと結晶が融液から切り離され結晶育成が中 断することになる。
以下、 本発明の技術的思想について更に詳しく説明する。
単結晶育成炉内の融液直上に配置されたガス整流筒や遮熱スクリーン 等の円筒あるいは円錐状をした上部炉内構造物は、 原料融液から引上げ られた単結晶が冷却される時の熱履歴を所望の値に調整することを目的 として配置されている。 この上部炉内構造物の形状や材質を色々と変え ,ることにより、 結晶を保温して結晶中の欠陥を抑制したり、 あるいは融 液からの輻射熱を遮断して結晶冷却速度を高め結晶を高速で引上げる等 の効果を得ているものである。
しかし、 その一方で原料融液の直上に配置された上部炉内構造物は、 原料融液の熱対流を制御する役割も担っている。
ルツポ内の原料融液は、 ルツポの周囲に配設されたヒータからの加熱 により絶えず熱対流を生じている。 そして、 ヒータの加熱により原料融 液に与えられた熱はこの熱対流によって融液表層まで運ばれ、 その一部 を融液表面からの輻射によって外部へと放散する。 この時、 原料融液面 の直上に融液からの熱輻射を抑える構造物が配置されていると、 融液表
面からの熱輻射が小さくなり融液内の温度パラツキが抑制され熱対流を 安定させることができる。
融液の熱輻射を抑える効果は、 同じ断熱効果を持つ炉内構造物であれ ば融液表面との距離が小さい程その効果は大きく効率的に熱輻射を抑え 融液対流を安定させられるものである。 そして、 融液表面から離れるに 従ってその効果はしだいに小さなものとなる。
C Z法により単結晶を育成する場合には、 結晶成長界面近傍での融液 温度を安定させることが重要なボイン トとなる。 結晶育成時に結晶成長 界面近傍の温度が安定していないと、 育成途中で結晶に変形が生じたり あるいは融液温度の急激な変化によりスリ ップ転位が結晶にもたらされ る等の問題が起こる。 特に、 種結晶を融液に着液させた後に絞り部 ¾形 成する時や、 あるいは先端部の尖ったあるいは尖った先端を切り取った 形状の種結晶の溶かし込みを行っている作業の時には、 この融液の温度 変動の影響を受けやすい。 これは単結晶の定径部育成時に比べ結晶径が 細く原料融液の表面が大きく露出しているためであり、 これによつて融 液表面から逃げる熱量も多くなり、 結果、 融液温度にバラツキが出て結 晶と融液が接している付近の融液温度が安定しなくなる為と考えられて いる。
不安定な融液温度状態で、 種結晶を融液に浸漬し絞り部の形成を行つ た場合には、 結晶の形状が安定せず結晶からス リ ップ転位を消滅させる のに必要な太さまで結晶径を細くすることが難しくなるばかり力、、 スリ ップ転位が消滅し難くなり絞り工程の時間が必要以上に長くなったり、 あるいは融液から結晶が離れてしまい結晶の育成が中断してしまう等の 不具合が生じる。 また、 先端部の尖ったあるいは尖った先端を切り取つ た形状の種結晶を用いて絞り部を形成することなく単結晶を育成する方 法においては、 温度が安定しないことにより種結晶の溶かし込み'部周辺
3 で再結晶化が起こりこれが原因となって種結晶にスリ ップ転位が導入さ れ無転位で結晶を引上げることができなくなる等の問題が出る。
特に、 2 0 0 m mを超える大直径高重量結晶の生産にあたっては、 直 径が 5 0 c m以上の大口径石英ルツボを用いて単結晶を引上げるのが一 般的であり、 ルツボ周囲に配置されたヒータと種結晶を原料融液に着液 させた時の着液部の距離は広がる一方で、 ルツボに収容された融液温度 の変動は益々大きくなる傾向にあった。 その為、 このような大口径ルツ ポを用いた単結晶の生産では、 絞り部を形成して単結晶を育成する場合. または種結晶先端部の尖ったあるいは尖った先端を切り取った形状の種 結晶を融液に溶かし込む際の融液温度の安定が必要であり、 本発明の方 法を用いることによって絞り部形成時あるいは種結晶先端部の溶かし込 み時に結晶周辺の温度安定を図ることが容易に可能となったものである c 一方、 シリ コン単結晶育成の熱履歴に起因して発生する、 いわゆるグ ローンィン欠陥が低減されたあるいは完全に排除されたシリコン単結晶 の育成においては、 熱履歴改善のために上部炉内構造物とシリ コン融液 面との間隔を比較的広めにする必要がある。 通常、 上部炉内構造物とシ リコン融液面との距離は 1 0 m mから 3 0 m m程度であるが、 低欠陥あ るいは無欠陥結晶を育成する時にはこの距離が 5 O m mから 1 5 0 m m 程度に広げられる。 しかしながら、 このよ うにしてシリ コン単結晶を育 成する場合には、 前記した絞り部の形成の成功率や種結晶溶かし込みの 成功率が低下する問題があった。 本発明方法によれば、 絞り部の形成の 成功率や種結晶溶かし込みの成功率を向上させることができる他、 単結 晶定径部の育成時に上部炉内構造物とシリコン融液面間の距離を所望の 広さとすることができるので、 定径部が低欠陥あるいは無欠陥の単結晶 を容易に得ることができる。 定径部が低欠陥あるいは無欠陥の単結晶を 育成する場合に、 育成する単結晶の直径が大きくなるほどこの上部炉内
4 構造物とシリコン融液面間の距離を広げる必要があり、 この点において も本発明の有効性がある。 図面の簡単な説明
図 1は、 本発明方法を実施するための単結晶装置の一例を示す断面概 略図である。
図 2は、 本発明方法を実施するための単結晶装置の他の例を示す断面 概略図である。
図 3は、 実験例 1における融液面と上部炉內構造物の距離と無転位化 成功率との関係を示すグラフである。
図 4は、 実験例 2における融液面と上部炉内構造物の距離と無転位化 成功率との関係を示すグラフである。
発明を実施するための最良の形態
以下に本発明の実施の形態を添付図面を参照しながら C Z法によるシ リコン単結晶の育成例をあげて説明するが、 本発明はこれらにのみ限定 されるものではない。 例えば、 本発明の単結晶の育成方法は、 原料融液 に磁場を印加しながら単結晶を育成する M C Z法を用いた単結晶製造で も当然利用することは可能である。
図 1は、 本発明方法を実施するための単結晶製造装置の一例を示す断 面概略図である。 図 1において単結晶製造装置 1 2は、 育成炉本体 1 4 と上部育成炉 2 1を有しており、 育成炉本体 1 4内部の中央にはルツボ 支持軸 1 5を軸として、 内側を石英製で外側を黒鉛製で構成されたルツ ポ Cがルツポ支持軸 1 5の下端に取り付けられたルツポ駆動機構 1 6に より回転動可能かつ上下動可能に配置されている。 ルツポ Cにはシリコ ン単結晶を育成するための原料となる原料融液 (シリ コン融液) Mが収
容されており、 この原料融液 Mの上方には育成された結晶を囲繞するよ うに、 円筒状ないしはその下端部が狭められた円錐状の上部炉内構造物 1 7が設けられている。 図 1の例では、 上部炉内構造物 1 7として円筒 状の不活性ガス整流筒を装備した単結晶製造装置を示したものである。 また、 ルツボ Cの外側にはルツボ Cを取り囲むように黒鉛製の加熱ヒ ータ 1 8が配置され、 このヒータ 1 8を発熱させることでルツポ C内に 仕込まれた多結晶シリコン原料を溶解し、 得られたシリコン融液 Mから 単結晶 Sを引上げるものである。 更に、. 加熱ヒータ 1 8と育成炉本体 1 4の間には断熱材 2 0が設けられ、 育成炉壁の保護と炉内を保温する役 目を果たしている。
上部育成炉 2 1の上部には育成した単結晶 Sを引上げる為のワイヤー 2 3を卷き取るあるいは卷き出すためのワイヤー卷き取り機構 2 5があ り、 結晶育成時にはルツポ Cと反対方向にワイヤー 2 3を回転させなが ら静かに巻き取ることによって、 種結晶 2 8の下方に結晶の成長を図る t ワイヤー 2 3の先端には種結晶 2 8を保持する為の種ホルダー 2 6が取 り付けられ、 種結晶 2 8はこの種ホルダー 2 6によつてワイヤー 2 3と 係合されている。
そして、 単結晶 Sを育成するにあたっては育成炉本体 1 4内を A r (アルゴン) 等の不活性ガスで満たし炉内の圧力を所望の値に調整して 育成作業を行うため、 育成炉外には不活性ガスの流量と炉内圧力を調整 するガス量制御装置 3 0 とコンダクタンスパルプ 3 2が装備されており . これによつて育成炉内の不活性ガス圧力と流量を育成条件に合わせ適宜 調整可能としている。
この単結晶製造装置を用いてシリコン単結晶 Sを育成するには、 まず 多結晶シリコン原料を育成炉本体 1 4内のルツポ Cに充填し炉内を不活 性ガスで満たした後に、 炉内に流す不活性ガスの量と圧力を調整しなが
6 らヒータ 1 8を加熱して多結晶シリコン原料を融解する。 多結晶シリコ ン原料が完全に融解したら、 原料融液 Mを満たしたルツボ Cを上下動さ せ種結晶 2 8を融液に着液させるのに適した位置、 即ち上部炉内構造物 1 7と原料融液面 M 1の距離 (隙間又は間隔) dが絞り部 S 1を形成し て単結晶 Sを育成する方法では絞り部 S 1 の形成に適した間隔に、 種結 晶先端部の尖ったあるいは尖った先端を切り取った形状の種結晶 2 8を 用いて絞り部 S 1を形成せず単結晶 Sを育成する方法では、 種結晶 2 8 を溶かし込むのに適切となるような位置にルツボを移動させ、 上部炉内 構造物 1 7による保温効果が十分得られるようにする。 その為には、 上 部炉内構造物 1 7と融液面 M 1の距離 dを 5〜 1 0 0 m m、 好ましくは 5〜 5 0 m m、 より好ましくは 1 0〜 2 5 m mとなるようにルツポ位置 の位置決めを行えばよい。 なお、 図 1において、 S 1は絞り部又は尖つ た種結晶の先端部、 S 2は単結晶の拡径部、 S 3は単結晶の定径部であ る。
また、 図 1 の例では、 ルツポ駆動機構 1 6によりルツボ C高さを調整 し上部炉内構造物 1 7と融液面 M l位置との間隔 dが所望の値となるよ う調整したが、 その他の手段によって上記間隔 dを調整することも可能 であり、 図 2を用いて説明する。 図 2は本発明方法を実施するための単 結晶製造装置の他の例を示す断面概略図である。 図 2において、 図 1 と 同一または類似部材は同一の符号を用いて示されている。
図 2において、 3 4は上部炉内構造物 1 7を上下動させるための上部 炉内構造物昇降機構で、 該上部炉内構造物 1 7に接続された構造物昇降 ワイヤー 3 6及び構造物昇降ワイヤー 3 6を巻き取るためのワイヤー巻 き取り ドラム 3 8を有している。 この上部炉内構造物昇降機構 3 4を操 作することによって上部炉内構造物 1 7を自在に上下動することができ. したがって、 上部炉内構造物 1 7と融液面 M l位置との距離 dを自在に
調整して所望の最適値に設定することができる。
どのような方法によって上部炉内構造物 1 7 と融液面 M l位置の距離 dを所望の値に保つかは、 単結晶育成に使用する装置の構造や育成条件 に合わせて種々選択されるべきものである。
距離 dが所望の値に設定されたら、 原料融液 Mの温度を種結晶 2 8を 着液させるのに適した温度まで降温し、 融液温度が十分に低下安定した らワイヤー 2 3を巻き出して種結晶 2 8を融液表面 M 1近くまで降下さ せて種結晶 2 8を加温する。 この操作は、 種結晶 2 8を加温することに より種結晶 2 8を融液 Mに着液した際に融液 Mとの温度差によりもたら される種結晶 2 8への熱衝撃を小さく し、 熱衝撃によって種結晶 2 8に 生じるスリ ップ転位を抑制するために行う作業である。
種結晶 2 8の温度が融液温度近くまで上昇したら、 再度種結晶 2 8を 下降させ種結晶 2 8先端部を融液 Mに静かに着液させる。
その後、 絞り部 S 1を形成して単結晶 Sを育成する方法では、 次の① 〜⑥の操作が行われる。
①種結晶 2 8を回転させながらワイヤー 2 3を静かに巻き取ることに よって種結晶 2 8の下方に単結晶 Sを育成させる。
②この時、 種結晶 2 8を融液 Mに着液した際に融液 Mとの温度差によ りもたらされたスリ ツプ転位を結晶から除去するために、 種結晶 2 8の 径を 5 m m以下程度まで充分に細く して長さが 5〜 2 0 c m程度の絞り 部 S 1を形成する。
③絞り部 S 1を形成することにより結晶からスリ ップ転位が除去され たら、 結晶の引上げ速度および/または融液温度を所望の値に操作して 単結晶拡径部 S 2の形成に移 δ。
④拡径部 S 2を形成する工程では、 育成する単結晶 Sの直径を徐々に 拡大するとともに、 融液 Μと上部炉内構造物 1 7の位置関係を単結晶定
径部 S 3の形成に適した位置とするため、 単結晶 Sの成長に合わせて静 かにルツボ Cを所定位置まで降下させて行く。
なお、 図 2に示した上部炉内構造物 1 7を上下動させるための昇降機 構 3 4を備えた装置であれば、 ルツボ Cを下降させるのに替えて上部炉 内構造物 1 7を昇降機構 3 4により上方に移動させればよい。
⑤拡径部 S 2の径が必要とする定径部 S 3の径と同じになったら単結 晶径の拡径を終了し、 再び融液温度おょぴノまたは引上げ速度を所望の 値に調整して、 単結晶定径部 S 3の育成工程に移行する。
この時、 拡径部 S 2の形成が終了する少し前にルツボ Cあるいは上部 炉内構造物昇降機構 3 4がある装置では上部炉内構造物 1 7の移動を完 了させ、 単結晶 Sの育成が定径部 S 3形成工程に移行する前に、 単結晶 Sの定径部 S 3形成に適した位置にルツポ Cあるいは上部炉内構造物 1 7が配置されるようにそれぞれの移動を行うのが望ましい。
⑥定径部 S 3が所定の長さに達したら、 結晶の直径を徐々に縮径して 結晶を原料融液 Mから切り離す。 その後、 単結晶 Sが上部育成炉 2 1で 常温近くまで放冷したら製造装置から結晶を取り出して育成を終了する c 一方、 種結晶 2 8先端部の尖ったあるいは尖った先端を切り取った形 状の種結晶 2 8を用いて絞り部を形成せず単結晶 Sを育成する方法では、 次の(1)〜(5)の操作が行われる。
(1)種結晶 2 8先端が融液 Mに着液した後も、 種結晶 2 8先端の融液 Mと接している部分の径が所望の値になるまで種結晶 2 8の原料融液 M への溶かし込みを継続する。
(2)種結晶 2 8の先端が所望位置まで沈み込んだら種結晶 2 8の降下 を止め溶かし込みを終了し、 引上げ速度おょぴ Zまたは融液温度を調整 してワイヤー 2 3を巻き取り拡径部 S 2の形成工程に移る。
(3)拡径部 S 2の形成工程では、 育成する単結晶 Sの直径を徐々に拡
9 大すると同時に融液 Mと上部炉内構造物 1 7の位置関係を単結晶定径部 S 2の形成に適した位置とするため、 単結晶 Sの拡径に合わせて静かに ルツボ Cを所定位置まで降下させる。
なお、 図 2に示した上部炉内構造物 1 7を上下動させるための昇降機 構 3 4を備えた装置では、 ルツボ Cを下降させるのに替えて上部炉内構 造物 1 7を昇降機構 3 4により上方に移動させればよい。
(4)拡径部 S 2の径が所望の直径になったら単結晶径の拡径を終了し、 再ぴ融液温度および または引上げ速度を調整して単結晶定径部 S 3の 育成工程に移行する。
この時、 拡径部 S 2の形成が終了する少し前にルツポ Cあるいは上部 炉内構造物昇降機構 3 4がある装置では上部炉内構造物 1 7の移動を終 了し、 単結晶 Sの育成が定径部 S 3の形成工程に移行する前に単結晶 S の定径部 S 3の形成に適した位置にルツボ Cあるいは上部炉内構造物 1 7が配置されるよう、 それぞれの移動を行うのが望ましい。
(5)定径部 S 3が所定の長さに達したら、 結晶の直径を徐々に縮径し て結晶を原料融液 Mから切り離す。 その後、 上部育成炉 2 1で単結晶 S を常温近くまで放冷したら製造装置から結晶を取り出して育成を終了す る。
上述したように、 絞り部 S 1を形成して単結晶 Sを育成する方法ある いは絞り部を形成せず単結晶 Sを育成する方法のいずれを採用した場合 でも、 単結晶育成時には上部炉内構造物 1 7 とシリコン融液面 M 1 との 距離又は間隔 dを所望の値とすることができる。 したがって、 この上部 炉内構造物 1 7とシリコン融液面 M 1 との距離又は間隔 dを 5 0 m mか ら 1 5 0 m m程度に広げて単結晶定径部 S 3の育成を行うことによって 定径部 Sが低欠陥あるいは無欠陥の単結晶を容易に得ることができる。 実施例
以下、 実験例を挙げて本発明をより具体的に説明するが、 本発明はこ れらに限定して解釈されるものではない。
(実験例 1 :絞り部を形成して単結晶を引上げる場合)'
図 1 と同様の装置を用いて、 本発明の方法を実施した。 まず、 単結晶 製造装置に口径が 7 0 c mの石英製ルツボを入れ、 その中に多結晶シリ コン原料 2 O O k gを充填し単結晶育成炉内を不活性ガスである A rガ スで満たした後に、 装置内のヒータを加熱して多結晶シリコン原料を融 解しシリコン融液とした。
多結晶シリコン原料が完全に溶融したのを確認しルツボを上昇させ、 融液表面と上部炉内構造物 (本実施例ではガス整流筒) との距離 (隙 間) が所望の値となるように調整し原料融液を種結晶の浸漬に適した温 度まで下げ、 融液温度が安定したところで種結晶を融液表面直近まで降 下させて種結晶の加温を行った。 種結晶の温度が融液温度と略同じくな つたとことで種結晶を融液に浸漬し、 その後、 最小径が 5 m m、 絞り部 長さが 1 5 0 m mの絞り部の形成を行い、 絞り部形成の後は直径を 3 0 0 m mまで拡径して一定の定径部を有するシリコン単結晶を得た。 また- ルツポは拡径工程中に静かに移動し、 単結晶の定径部育成時には融液と 上部炉内構造物の間が適切な位置となるように再配置して定径部形成を 行った。
この結果を図 3に示す。 絞り部形成時の融液と上部炉内構造物の距離 を横軸に取り、 縦軸には結晶を定径部 5 c mまで引上げた時に無転位で あったものの比率を無転位化成功率として百分率で示したものである。 なお、 試験は融液と上部炉内構造物の距離 (隙間) を 5 m m〜 1 5 0 m mの間で 1 2水準を取り結晶製造を繰り返した結果を集計したものであ る。
この実験結果から、 原料融液と上部炉内構造物の距離 (隙間) が 1 0
O m m以下では略 9 0 %以上の無転位化成功率であつたが、 その距離 (隙間) が 1 0 0 m mを超えると急激に成功率が低下して行くことがわ かった。 また、 原料融液と上部炉内構造物の距離 (隙間) が 2 5 m m以 下では殆ど失敗することなく単結晶を得ることができており、 炉内構造 物を融液に近づけて絞り分を形成した時の効果は上記距離 (隙間) が小 さいほど高いく、 原料融液面に上部炉内構造物を 2 5 m m以下まで近づ けて単結晶育成を行うのが好ましいことを確認した。
(実験例 2 : 特殊な種結晶を用いて絞り部を形成しないで単結晶育成を 行う場合)
実験例 1 と同様の条件により単結晶の製造を行った。 まず、 図 1に示 すような単結晶製造装置に口径が 7 0 c mの石英製ルツボを入れ、 その 中に多結晶シリコン原料 2 0 0 k gを充填し単結晶育成炉内を不活性ガ スである A rガスで満たした後に、 装置内のヒータを加熱して多結晶シ リコン原料を融解しシリコン融液とした。
多結晶シリコン原料が完全に溶融したのを確認しルツボを上昇させ、 融液表面と上部炉内構造物 (本実施例ではガス整流筒) との距離 (隙 間) が所望の値となるように調整し原料融液を種結晶の溶かし込みを行 うのに適した温度まで下げ、 融液温度が安定したところで先端の角度が 2 0 ° の先の尖った略円錐状の種結晶を融液表面直近まで降下させて種 結晶の加温を行った。 種結晶先端部の温度が融液温度と略同じになった とことで種結晶を静かに融液に接融し、 その後、 最小径が 5 m m、 とな るまで種結晶先端を溶かし込んだ。 種結晶先端の溶かし込みが終了した 後は結晶径を拡大しながら種結晶を引上げ、 結晶直径が 3 0 O m mとな つたところで定径部形成工程に移行し所望のシリコン単結晶を得た。 ま た、 ルツボの移動は拡径工程中に静かに行い、 単結晶の定径部育成時に は融液と上部炉内構造物の距離 (隙間) が適切な位置となるように再配
置し定径部を形成した。
この結果を図 4に示す。 種結晶の溶かし込みを行った時の融液と上部 炉内構造物の距離を横軸に取り、 縦軸には結晶を定径部 5 c mまで引上 げた時に結晶に転位が発生していなかったものの比率を無転位化成功率 として百分率で示したものである。 なお、 実験は融液と上部炉内構造物 の距離 (隙間) を 5 m m〜 1 5 0 m mの間で 1 2水準を取り結晶製造を 繰り返した結果をまとめたものである。
この実験により、 原料融液と上部炉內構造物の距離 (隙間) が 1 0 0 m m以下では種結晶を無転位で溶かし込むことは難しく、 無転位化成功 率が 5 0 %以下となり単結晶の量産には適さなくなることがわかった。 しかし、 その一方で原料融液と上部炉内構造物の距離 (隙間) が 5 0 m m以下であれば 8 0 %以上という高い確率で無転位で種結晶の溶かし込 みを行うことが可能であり、 2 5 m m以下まで近づければ殆ど失敗する ことなく種結晶先端を溶かし込むのが成功できることを確かめることが できた。
なお、 本発明は上記した実施の形態に限定されるものではない。 上記 の実施の形態は単なる例示であり、 本発明の特許請求の範囲に記載され た技術的思想と実質的に同一な構成を有し、 同様の効果を奏するものは いかなるものであっても、 本発明の技術的範囲に包含されることは勿論 である。
例えば、 本発明のシリ コン単結晶の製造方法を原料融液に磁場を印加 しないで単結晶を育成する C Z法を例に挙げて説明したが、 原料融液に 磁場を印加しながら単結晶棒を成長させる M C Z法を用いた単結晶製造 においても同様の効果が得られることは言うまでもない。 産業上の利用可能性
以上述べたごとく、 C Z法を用いたシリ コン単結晶の育成において本 発明の製造方法を用いれば、 種結晶を原料融液に浸漬し絞り部を形成し た後にシリ コン単結晶を育成する方法では、 種結晶が原科融液に接融し たさいにもたらされるスリ ップ転位を絞り部形成工程で高い確率で消滅 させることが可能となる。 また、 絞り部形成工程での原料融液の温度変 動が小さくなることで、 単結晶絞り部の形状が安定し容易に所望径を有 する絞り部を形成することができる。
また、 先端の尖ったあるいは尖った部分を切り取った形状の種結晶を 用いて絞り部を形成することなく単結晶を育成する方法においては、 種 結晶先端を原料融液に溶かし込む際に、 融液温度を所望の温度に安定さ せて溶かし込みを行うことができるので、 種結晶を有転位化させること なく所望の径まで溶かし込むことが可能となる。
これによつて高重量大直径の結晶でも安定した引上げを行うことがで きるようになるとともに、 絞り部の形成あるいは種結晶の溶かし込みの 成功率が向上することにより結晶の生産性をより高いものとすることが できる。 また、 絞り部の形成あるいは種結晶の溶かし込みの際の失敗も 大幅に減らせるので、 作業者への負担も軽減することが可能である。 特 に、 本発明方法は口径が 5 0 c mを超えるような大型のルツボを使用す る際に、 その効果を十分発揮するものである。.
さらに、 本発明方法によれば、 単結晶定径部の育成時に上部炉内構 造物とシリ コン融液間の距離を所望の広さとすることができるので、 定 径部が低欠陥あるいは無欠陥の単結晶を容易に得ることができ,るという 著大な効果が達成される。
Claims
1 . 単結晶製造装置炉に育成した単結晶を囲繞するように配置した円筒 あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用いて、 製 造装置炉内のルツボに収容されたシリコン融液に種結晶を浸漬した後に 種結晶を引上げながら絞り部を形成し、 その後径を拡大して単結晶を育 成するチヨクラルスキー法によるシリコン単結晶の製造方法において、 少なく とも該種結晶を融液に着液させてから絞り部の形成が終了するま での間は、 上部炉内構造物の下端とシリ コン融液面間の距離が 5 m m以 上 1 0 0 m m以下となる位置に上部炉內構造物あるいは原料融液を収容 したルツポを配置し、 絞り部の形成が終了した以降に上部炉内構造物と シリコン融液面間の距離を徐々に広げ、 単結晶定径部を形成するのに適 した位置に上部炉内構造物あるいはルツボを移動させて単結晶を育成す ることを特徴とするシリ コン単結晶の製造方法。
2 . 請求項 1に記載したシリ コン単結晶の製造方法において、 前記上部 炉内構造物とシリ コン融液面との隙間を広げる操作は、 絞り部の形成が 終了した後の単結晶直径を拡大する拡径部を形成している間に行われる ことを特徴とするシリ コン単結晶の製造方法。
3 . 単結晶製造装置炉に育成した単結晶を囲繞するように配置した円筒 あるいは円錐状の上部炉内構造物を有する単結晶製造装置を用いて、 製 造装置炉内のルツボに収容されたシリ コン融液に先端部の尖ったあるい は尖った先端を切り取った形状を有する種結晶を用いて種結晶の先端部 を所望の径となるまで浸漬した後に、 絞り部を形成することなく径を拡 大して単結晶を育成するチヨクラルスキー法によるシリコン単結晶の製 造方法において、 少なく とも該種結晶を融液に着液させてから該種結晶 先端の融液と接している部分の径が所望の径となるまで浸漬を行ってい
る間は、 上部炉内構造物の下端とシリ コン融液面間の距離を 5 m m以上 1 0 0 m m以下となるように上部炉内構造物あるいは原料融液を収容し たルツボを配置し、 種結晶の浸漬が完了した以降に上部炉内構造物とシ リコン融液面間の距離を徐々に広げ、 単結晶定径部を形成するのに適し た位置に上部炉内構造物あるいはルツボを移動させて単結晶を育成する ことを特徴とするシリコン単結晶の製造方法。
4 . 請求項 3に記載したシリ コン単結晶の製造方法において、 前記上部 炉内構造物とシリ コン融液面との隙間を広げる操作は、 前記種結晶を所 望の径まで浸潰した後以降の単結晶直径を拡大する拡径部を形成してレヽ る間に行われることを特徴とするシリ コン単結晶の製造方法。
5 . 請求項 1〜請求項 4のいずれか 1項に記載したシリコン単結晶の製 造方法であって、 前記上部炉内構造物とシリコン融液面との隙間を広げ る操作は、 シリ コン融液を収容したルツポを降下させることによって行 うことを特徴とするシリコン単結晶の製造方法。
6 . 請求項 1〜請求項 4のいずれか 1項に記載したシリコン単結晶の製 造方法であって、 前記上部炉内構造物とシリコン融液面との隙間を広げ る操作は、 シリ コン融液直上に配置された上部炉内構造物を上昇させる ことによって行うことを特徴とするシリコン単結晶の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002522346A JP3690680B2 (ja) | 2000-08-18 | 2001-08-14 | シリコン単結晶の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-248859 | 2000-08-18 | ||
JP2000248859 | 2000-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002016678A1 true WO2002016678A1 (fr) | 2002-02-28 |
Family
ID=18738688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/007019 WO2002016678A1 (fr) | 2000-08-18 | 2001-08-14 | Procede de production d'un monocristal de silicium |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3690680B2 (ja) |
TW (1) | TW526299B (ja) |
WO (1) | WO2002016678A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222483A (ja) * | 2007-03-12 | 2008-09-25 | Covalent Materials Corp | シリコン単結晶の製造方法 |
JP2010013303A (ja) * | 2008-07-02 | 2010-01-21 | Sumco Corp | 単結晶の育成方法 |
JP2010018499A (ja) * | 2008-07-11 | 2010-01-28 | Sumco Corp | 単結晶の製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000016898A (ja) * | 1998-07-02 | 2000-01-18 | Mitsubishi Materials Silicon Corp | 単結晶引上方法および装置 |
-
2001
- 2001-08-14 WO PCT/JP2001/007019 patent/WO2002016678A1/ja active Application Filing
- 2001-08-14 JP JP2002522346A patent/JP3690680B2/ja not_active Expired - Fee Related
- 2001-08-17 TW TW90120306A patent/TW526299B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000016898A (ja) * | 1998-07-02 | 2000-01-18 | Mitsubishi Materials Silicon Corp | 単結晶引上方法および装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222483A (ja) * | 2007-03-12 | 2008-09-25 | Covalent Materials Corp | シリコン単結晶の製造方法 |
JP2010013303A (ja) * | 2008-07-02 | 2010-01-21 | Sumco Corp | 単結晶の育成方法 |
JP2010018499A (ja) * | 2008-07-11 | 2010-01-28 | Sumco Corp | 単結晶の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3690680B2 (ja) | 2005-08-31 |
TW526299B (en) | 2003-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3892496B2 (ja) | 半導体単結晶製造方法 | |
US20070101926A1 (en) | Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer | |
WO2000031325A1 (fr) | Procede de production de monocristal de silicium et dispositif de fabrication d'un lingot monocristallin, procede de traitement thermique d'une tranche de silicium monocristallin | |
JP2937115B2 (ja) | 単結晶引き上げ方法 | |
US6755910B2 (en) | Method for pulling single crystal | |
JP3050120B2 (ja) | 単結晶引き上げ用種結晶及び該種結晶を用いた単結晶引き上げ方法 | |
WO2023051616A1 (zh) | 一种用于拉制单晶硅棒的拉晶炉 | |
JP3016126B2 (ja) | 単結晶の引き上げ方法 | |
WO2002016678A1 (fr) | Procede de production d'un monocristal de silicium | |
JP4224906B2 (ja) | シリコン単結晶の引上げ方法 | |
JP5375636B2 (ja) | シリコン単結晶の製造方法 | |
JP4899608B2 (ja) | 半導体単結晶の製造装置及び製造方法 | |
JP4272449B2 (ja) | 単結晶引上方法 | |
JP4640796B2 (ja) | シリコン単結晶の製造方法 | |
JP2009274921A (ja) | シリコン単結晶の製造方法 | |
JP4341379B2 (ja) | 単結晶の製造方法 | |
WO2021162046A1 (ja) | シリコン単結晶の製造方法 | |
KR100581045B1 (ko) | 실리콘 단결정 제조방법 | |
JP3721977B2 (ja) | 単結晶引き上げ方法 | |
JP4082213B2 (ja) | 単結晶の成長方法及び単結晶製造装置並びにこの方法によって製造されたシリコン単結晶 | |
KR20100071507A (ko) | 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법 | |
JP2002137987A (ja) | シリコン単結晶引き上げ装置、該装置を使用したシリコン単結晶の製造方法、及びシリコン単結晶 | |
JPH11209197A (ja) | シリコン単結晶の製造方法 | |
JP2024088149A (ja) | 単結晶引上装置及び単結晶引上方法 | |
JP4273820B2 (ja) | 単結晶引き上げ方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 522346 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |