WO2002015268A2 - Kühlvorrichtung - Google Patents

Kühlvorrichtung Download PDF

Info

Publication number
WO2002015268A2
WO2002015268A2 PCT/DE2001/002865 DE0102865W WO0215268A2 WO 2002015268 A2 WO2002015268 A2 WO 2002015268A2 DE 0102865 W DE0102865 W DE 0102865W WO 0215268 A2 WO0215268 A2 WO 0215268A2
Authority
WO
WIPO (PCT)
Prior art keywords
structures
heat
cooling device
conducting element
counter
Prior art date
Application number
PCT/DE2001/002865
Other languages
English (en)
French (fr)
Other versions
WO2002015268A3 (de
Inventor
Robert Plikat
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP01956404A priority Critical patent/EP1366519A2/de
Publication of WO2002015268A2 publication Critical patent/WO2002015268A2/de
Publication of WO2002015268A3 publication Critical patent/WO2002015268A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • the invention relates to a cooling device for at least one power semiconductor and / or at least one integrated electronic circuit, according to the preamble of claim 1.
  • a cooling device of the type mentioned is known. This serves to remove the heat generated during the operation of power semiconductors and / or integrated electronic circuits. In particular in the case of power output stages and highly integrated circuits, there is heat loss which has to be removed.
  • a cooling device is known in the prior art, which is designed as a heat sink. This can be flowed through by a cooling medium, for example water.
  • This liquid cooler has a flat surface to which the power semiconductors or the electronic circuit are fastened — also with the interposition of a flat base plate. In some applications or for certain power semiconductors or circuits, cooling via the heat sink may not be sufficient.
  • EP 0 746 022 B1 discloses a heat sink designed as a heat-conducting element, on the flat surface of which the power semiconductors or the circuit are attached. On its surface facing away from the electronic elements, this heat sink has cooling fins so that air cooling can take place. In some applications, air cooling also does not seem sufficient to be able to safely transport away the heat loss.
  • the cooling device which shows the features of claim 1
  • a reduction of the thermal resistance of the on the mounting surface between the heat sink and the power semiconductor or of the electronic circuit is achieved in a particularly advantageous manner.
  • the structures or counter-structures expand when heated, so that the interlocking structures or counter-structures are pressed against one another, which advantageously further reduces the heat transfer resistance.
  • the structures and counter-structures lie in one another like a comb, so that a very large contact surface is created between the heat-conducting element and the heat sink, as a result of which the thermal resistance between the heat-conducting element and the heat sink is reduced. It is also advantageous with comb-like structures or counter-structures that they are pressed against one another by thermal expansion, so that, as already mentioned above, the heat transfer resistance is reduced.
  • the structures and the counter-structures are formed by rods, pins and / or ribs which are spaced apart from one another. Such structures or counter structures can be produced relatively simply and inexpensively.
  • heat-conducting paste is introduced between the structures and the counter-structures in an advantageous embodiment.
  • One exemplary embodiment is characterized in that the power semiconductor or the circuits are / is arranged in a housing which can be connected to the heat-conducting element.
  • the electrical connections for the power semiconductor and / or the electronic circuit can be led out of the housing.
  • the heat-conducting element is attached to a base plate of the housing.
  • the heat element is attached to a cover plate of the housing.
  • a heat-conducting element on the base plate and a further heat-conducting element on the cover plate is attached.
  • each heat conducting element is then assigned a heat sink.
  • the intermeshing of the structures and counter-structures which is suitable according to the invention, is advantageous in such a way that a thermally-induced length and width expansion of the structures and counter-structures is possible without thermally induced stresses which could damage the assembled structural unit. It is thus possible in a particularly advantageous manner to cool so-called power MultiChip modules from both sides, these modules being fixed on both cooling devices.
  • power Multichip modules include, for example, at least one power semiconductor and / or at least one electronic circuit. If several of these modules are arranged within the housing, at least one of the modules can be attached to both the housing cover and the housing base.
  • the structures and the counter-structures are formed so as to partially different thermal resistances between the politiciansleitele - ment and the heat sink are realized.
  • the number and / or size of the ribs, webs and / or pins can be varied in a preferred embodiment.
  • structures formed by webs are connected to one another at their free ends, in particular in a heat-conducting manner, and that the counterstructures are formed by tongues extending laterally from the heat sink, which tongues lie in the spaces between the webs ,
  • the heat-conducting element and the heat sink are connected to one another by a rod-shaped fastening means, in particular a screw, in a preferred embodiment this fastening means penetrating the structures and the counter-structures transversely to their direction of extension.
  • a rod-shaped fastening means in particular a screw
  • this fastening means penetrating the structures and the counter-structures transversely to their direction of extension.
  • the heat-conducting element and the heat sink have been screwed flat onto one another, so that both elements are pressed onto one another.
  • this screw variant can result in tension, which can damage the heat-conducting element and / or the heat sink. This disadvantage is avoided with the screw connection according to the invention.
  • a particularly preferred exemplary embodiment is characterized in that elongated holes are formed on the structures and / or counter structures through which the fastening means engage. It is thus possible in a particularly advantageous manner that the structures and the counter structures remain almost freely movable with one another and that no stress occurs between them.
  • a preferred exemplary embodiment is characterized in that the power semiconductor and / or the circuit are / is attached to a substrate, preferably a direct copper bond ceramic, and in that the structures of the heat-conducting element are attached to the substrate directly or via a carrier plate ,
  • This carrier plate can be planar and, in a further development of the invention, form the housing base. In a preferred embodiment, it is made of thermally conductive material.
  • Such a flat carrier or base plate can be produced particularly simply and inexpensively.
  • FIG. 1 shows a sectional view of a first exemplary embodiment of a cooling device
  • FIG. 2 shows in section a second exemplary embodiment of a cooling device
  • FIG. 3 shows a sectional illustration along the line III-III in FIG. 2
  • FIG. 4 shows a third exemplary embodiment of a cooling device in a sectional view
  • FIG. 5 is a sectional view of the cooling device of Figure 4, and
  • FIG. 1 shows a power multichip module 1, which can have at least one power semiconductor 2 and / or at least one integrated electronic circuit 3.
  • the power semiconductor 2 and the circuit 3 are arranged on at least one substrate 4, which in a preferred embodiment can be a direct copper bond ceramic.
  • One or more modules 1 can be arranged on one or more substrates 4.
  • the electrical connections 5 of the power semiconductor 2 or the circuit 3 are led out of a module housing 6, which the individual components of the
  • the substrates 4 are attached to a heat-conducting element 7, in particular bonded.
  • the heat-conducting element 7 has a base plate 8, which forms the base of the module housing 6 and supports the substrates 4 and can therefore also be referred to as a support plate.
  • the heat-conducting element 7 On its side facing away from the module housing 6, the heat-conducting element 7 has enlarged surfaces. ßerenden structures 9 which engage in surface-enlarging counter structures 10 which are formed on a cooling device 11.
  • the structures 9 and the counter structures 10 are designed such that they engage in one another in a precisely fitting manner, so that between the structures 9 and the counter structures 10 there are contact surfaces 12 on which the structural elements S and the counter structure elements G of the structures 9 and counter structures 10 touch.
  • a thermal paste can be attached to the contact surfaces 12.
  • the structures 9 and the counterstructures 10 mesh with one another in a comb-like manner.
  • the structures or counter-structures can thus be formed by webs 13, pins 14 (FIG. 6) or ribs 15 which are spaced apart from one another.
  • the webs 13, pins 14 and ribs 15 thus form the structural elements S, which interact with the counter-structural elements G.
  • the webs, pins or ribs can have any cross-section.
  • the ribs can extend over the entire length or width of the cooling device 11. They can also run diagonally. They can be spaced apart in parallel; however, they can also form an angle with one another.
  • Self-contained ribs 15 can also be provided, as can be seen from FIG.
  • the cooling device 11 thus has a heat sink 16 to which the counter structures 10 are attached.
  • the counter structures 10 can also be formed in one piece with the cooling body 16.
  • the structures 9 can also be present as a separate component and can be connected to the base plate 8.
  • the heat sink 16 of the cooling device 11, which forms a heat sink W has at least one cooling medium channel 17.
  • several cooling medium channels 17 can also be provided. The medium flowing in the channels 17 absorbs the heat generated at the module 1 and transports it away. In a preferred embodiment, cooling takes place via a liquid, in particular water.
  • the cooling device 11 can also comprise the heat-conducting element 7
  • the heat-conducting element 7, in particular its base plate 8, is firmly connected to the heat sink W, in particular screwed.
  • the screws 18 provided for this purpose thus reach through the base plate 8 and engage in corresponding recesses 19 which are formed on the cooling device or heat sink W.
  • the screws or fastening means 18 run essentially parallel to the longitudinal direction of the structural or counter-structural elements S or G.
  • FIG. 2 shows a second embodiment of a cooling device 11, the same or Parts acting in the same way as in FIG. 1 are provided with identical reference symbols, so that reference is made to the description thereof.
  • a cooling device 11 with its cooling body 16 is arranged. It can be seen that the structures 9 do not completely engage in the counter structures; rather, gaps 19 'are formed, which thus lie between the free ends of the structures and the ends of the counter structures. These intermediate spaces 19 'serve as thermal expansion compensation spaces, so that there is no material tension when the structures or counter-structures expand in length.
  • the base plate 8 of the heat-conducting element 7 is omitted here.
  • the individual structural elements S are connected to one another via shaped pieces 20 or bridge webs, the shaped pieces 20 not having to extend over the entire length of the structural elements.
  • the structures 9 are connected directly to the substrate 4, in particular by soldering.
  • FIG. 3 also shows that the fastening means 18 ′ extend through all structural and counter-structural elements S and G.
  • the fastening means 18 ' lie essentially ' transversely to the longitudinal direction of the structural or For example, counter-structure elements S or G.
  • elongated holes 21 are formed in the structures and / or counter-structures, through which the rod-shaped fastening means 18 ′ extend, so that a relative movement between the heat-conducting element 7 and the cooling device 11 in the direction of the longitudinal extent of the structures or counter-structures is possible.
  • the same or equivalent parts in FIG. 3 as in FIG. 2 are provided with the same reference numerals.
  • a third exemplary embodiment of a cooling device 1 is described below with reference to FIGS. 4 and 5.
  • the same or equivalent parts as in the figures described above are provided with identical reference numerals. It can be seen that, although cooling on both sides is formed on the modules 1 . only one cooling device 11 is required, which has two rows of tongues 21, wherein in each row of tongues 21 there are a plurality of tongues 22 arranged one behind the other and all tongues 22 extend laterally from the cooling device 11, that is to say from its cooling body 16, and into between the webs 13 or ribs 15 engage formed spaces 23.
  • FIG. 6 shows an exemplary embodiment of a cooling device 11 in a sectional view, as is obtained according to the section line VI-VI from FIG. 1.
  • the counter structures 10 extend from the cooling body 16 of the cooling device 11.
  • the number of webs 13, pins 14 and ribs 15 can partially Different heat transfer resistances can be created between the heat-conducting element 7 and the cooling device 11. These different heat transfer resistances can be realized by the number, density and / or length of the structural elements S or counter-structural elements G.
  • a small heat transfer resistance is formed between the heat-conducting element 7 and the cooling device 11 approximately in the center of the heat sink 11, since a large number of counter-structural elements G are provided here, which interact with corresponding structural elements S.
  • the number of webs 13, pins 14 and ribs 15 can be reduced.
  • different heat transfer resistances can be realized, depending on the location at which the power semiconductor 2 or the electronic circuit 3 are attached , so that, in particular in the area of these components, appropriate heat dissipation is provided, that is to say a large number of counter-structure elements and structural elements is provided, and overall a very large heat transfer surface is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Die Erfindung betrifft eine Kühlvorrichtung für zumindest einen Leistungshalbleiter und/oder zumindest eine integrierte elektronische Schaltung, der/die mit einem Wärmeleitelement verbindbar ist, mit einer mit dem Wärmeleitelement wärmeleitfähig verbindbaren Wärmesenke, wobei das Wärmeleitelement an seiner der Wärmesenke zugewandten Seite Oberflächen vergrössernde Strukturen aufweist, die sich dadurch auszeichnet, dass die Wärmesenke (W) an ihrer dem Wärmeleitelement (7) zugewandten Seite Oberflächen vergrössernde in die Strukturen (9) passend eingreifende Gegenstrukturen (10) aufweist.

Description

Kühlvorrichtung
Die Erfindung betrifft eine Kühlvorrichtung für zu- mindest einen Leistungshalbleiter und/oder zumindest eine integrierte elektronische Schaltung, gemäß Oberbegriff des Anspruchs 1.
Stand der Technik
Eine Kühlvorrichtung der eingangs genannten Art ist bekannt. Diese dient dem Abtransport der im Betrieb von Leistungshalbleitern und/oder integrierten elektronischen Schaltungen entstehenden Wärme. Ins- besondere bei Leistungsendstufen und hochintegrierten Schaltungen entsteht Verlustwärme, die abtransportiert werden muss. Hierfür ist im Stand der Technik eine Kühlvorrichtung bekannt, die als Wärmesenke ausgebildet ist . Diese kann von einem Kühl - medium, beispielsweise Wasser, durchflössen sein.. Dieser Flüssigkeitskühler weist eine ebene Fläche auf, an der die Leistungshalbleiter beziehungsweise die elektronische Schaltung -auch unter Zwischenschaltung einer ebenen Bodenplatte- befestigt sind. In einigen Anwendungsfällen beziehungsweise für bestimmte Leistungshalbleiter oder Schaltungen kann die Kühlung über die Wärmesenke nicht ausreichen. Aus der EP 0 746 022 Bl ist ein als Wärmeleitelement ausgebildeter Kühlkörper bekannt, an dessen ebener Fläche die Leistungshalbleiter beziehungsweise die Schaltung angebracht sind. An seiner den elektronischen Elementen abgewandten Fläche weist dieser Kühlkörper Kühlrippen auf, so dass eine Luftkühlung erfolgen kann. Auch die Luftkühlung erscheint in einigen Anwendungsfällen jedoch nicht ausreichend, um die entstehende Verlustwärme sicher abtransportieren zu können.
Vorteile der Erfindung
Mit der erfindungsgemäßen Kühlvorrichtung, die die Merkmale des Anspruchs 1 zeigt, wird in besonders vorteilhafter Weise eine Reduktion des thermischen Widerstands der an der Montagefläche zwischen der Wärmesenke und dem Leistungshalbleiter beziehungs - weise der elektronischen Schaltung erreicht. Bei zusammengesetzter Baueinheit aus Leistungshalbleiter beziehungsweise elektronischer Schaltung und Warmeleitelement sowie Wärmesenke dehnen sich bei Erwärmung die Strukturen beziehungsweise Gegen- Strukturen aus, so dass die ineinander greifenden Strukturen beziehungsweise Gegenstrukturen aneinander gepresst werden, wodurch in vorteilhafter Weise der Wärmeübergangswiderstand weiter reduziert wird .
In bevorzugter Ausführungsform ist vorgesehen, dass die Strukturen und Gegenstrukturen kammartig ineinander liegen, so dass eine sehr große Berührfläche zwischen Wärmeleitelement und Wärmesenke entsteht , wodurch der thermische Widerstand zwischen dem Wärmeleitelement und der Wärmesenke verringert ist . Vorteilhaft ist bei kammartigen Strukturen beziehungsweise Gegenstrukturen außerdem, dass sie durch Wärmeausdehnung aneinander gepresst werden, so dass -wie vorstehend bereits erwähnt- der Wärmeüber- gangswiderstand reduziert ist .
In vorteilhafter Ausführungsform werden die Strukturen und die Gegenstrukturen durch beabstandet zueinander liegende Stäbe, Stifte und/oder Rippen ge- bildet. Derartige Strukturen beziehungsweise Gegenstrukturen lassen sich relativ einfach und kostengünstig herstellen.
Um den Wärmewiderstand zwischen dem Wärmeleitele- ment und der Wärmesenke weiter reduzieren zu können, wird in vorteilhafter Ausführungsform Wärme- leitpaste zwischen die Strukturen und die Gegen- Strukturen eingebrach .
Ein Ausführungsbeispiel zeichnet sich dadurch aus, dass der Leistungshalbleiter oder die Schaltungen in einem Gehäuse angeordnet sind/ist, welches mit dem Wärmeleitelement verbindbar ist. Aus dem Gehäuse können die elektrischen Anschlüsse für den Leis - tungshalbleiter und/oder die elektronische Schaltung herausgeführt werden.
Bei einem bevorzugten Ausführungsbeispiel ist das Wärmeleitelement an einer Bodenplatte des Gehäuses befestigt. Es kann jedoch auch vorgesehen sein, dass das Wärmelei element an einer Deckelplatte des Gehäuses befestigt ist. Weiterhin kann vorgesehen sein, dass ein Wärmeleitelement an der Bodenplatte und ein weiteres Wärmeleitelement an der Deckel - platte befestigt ist. Jedem Wärmeleitelement ist dann in bevorzugter Ausführungsform eine Wärmesenke zugeordnet. Mit der erfindungsgemäßen Kühlvorrichtung kann somit eine zweiseitige Kühlung der Leis - tungshalbleiter beziehungsweise der Schaltung erreicht werden. Bei der beidseitigen Kühlung ist das erfindungsgemäß passende Ineinandergreifen der Strukturen und Gegenstrukturen derart vorteilhaft , dass eine thermisch bedingte Längen- und Breiten- ausdehnung der Strukturen und Gegenstrukturen möglich ist, ohne dass dabei thermisch bedingte Verspannungen entstehen, die die zusammengesetzte Baueinheit beschädigen könnten. Es ist so in besonders vorteilhafter Weise möglich, sogenannte Leistungs- MultiChip-Module von beiden Seiten zu kühlen, wobei diese Module an beiden Kühlvorrichtungen fixiert sind. Derartige Leistungs-Multichip-Module umfassen beispielsweise zumindest einen Leistungshalbleiter und/oder zumindest eine elektronische Schaltung . Werden mehrere dieser Module innerhalb des Gehäuses angeordnet, kann sowohl am Gehäusedeckel als auch am Gehäuseboden jeweils zumindest eines der Module angebracht sein.
Bei einem bevorzugten Ausführungsbeispiel ist vorgesehen, ' dass die Strukturen und die Gegenstrukturen so ausgebildet sind, dass partiell unterschiedliche Wärmewiderstände zwischen dem Wärmeleitele - ment und der Wärmesenke realisiert sind. Das heißt, dass insbesondere in den Bereichen, in denen eine hohe Wärmelast abgeführt werden muss, eine Vielzahl von Stegen, Stiften und/oder Rippen angebracht sind, um in diesen Bereichen die Wärmeübergangs läche zu vergrößern, so dass von dort die Wärmelast besonders schnell und sicher abtransportiert werden kann. In Bereichen, in denen eine geringere Wärmelast vorliegt, können entsprechend weniger Stifte, Rippen und/oder Stege angeordnet sein. Um die partiell unterschiedlichen Wärmewiderstände zu realisieren, kann also in bevorzugter Ausführungs- form die Anzahl und/oder Größe der Rippen, Stege und/oder Stifte variiert werden.
Bei einem bevorzugten Ausführungsbeispiel ist vorgesehen, dass durch Stege gebildete Strukturen an ihren freien Enden miteinander, insbesondere wärmeleitend, verbunden sind und dass die Gegenstrukturen von sich seitlich von der Wärmesenke er- streckenden Zungen gebildet sind, die in den Frei - räumen zwischen den Stegen liegen.
üblicherweise wird das Wärmeleitelement und die Wärmesenke durch ein stabförmiges Befestigungsmit - tel, insbesondere eine Schraube, miteinander verbunden, wobei bei einer bevorzugten Ausführungsform dieses Befestigungsmittel die Strukturen und die Gegenstrukturen quer zu ihrer Erstreckungsrichtung durchgreift. Im Stand der Technik hat man das Wär- meleitelement und die Wärmesenke flächig aufeinander geschraubt, so dass beide Elemente aufeinander gepresst werden. Bei Ausdehnungen in Folge von Wärme kann es bei dieser Verschraubungsvariante jedoch zu Verspannungen kommen, wodurch das Wärmeleitele- ment und/oder die Wärmesenke beschädigt werden können. Mit der erfindungsgemäßen Verschraubung wird dieser Nachteil vermieden. Ein besonders bevorzugtes Ausführungsbeispiel zeichnet sich dadurch aus, dass an den Strukturen und/oder Gegenstrukturen Langlöcher ausgebildet sind, durch die die Befestigungsmittel greifen. So- mit ist es in besonders vorteilhafter Weise möglich, dass die Strukturen und die Gegenstxukturen untereinander nahezu frei beweglich bleiben und kein Stress zwischen ihnen auftritt.
Ein bevorzugtes Ausfuhrungsbeispiel zeichnet sich dadurch aus, dass der Leistungshalbleiter und/oder die Schaltung auf einem Substrat, vorzugsweise einer Direct-Copper-Bond-Keramik, befestigt sind/ist und dass die Strukturen des Wärmeleitelements an dem Substrat direkt oder über eine Trägerplatte befestigt sind. Diese Trägerplatte kann planar ausgebildet sein, und in einer Weiterbildung der Erfindung den Gehäuseboden bilden. Sie ist in bevorzugter Ausführungsform aus wärmeleitfähigem Material hergestellt. Eine derartige ebene Träger- beziehungsweise Bodenplatte kann besonders einfach und kostengünstig hergestellt werden.
Zeichnungen
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen mit Bezug auf die Zeichnungen näher erläutert. Es zeigen:
Figur 1 in Schnittansieht ein erstes Ausführungs- beispiel einer Kühlvorrichtung,
Figur 2 in Schnittansieht ein zweites Ausführungsbeispiel einer Kühlvorrichtung, Figur 3 eine Schnittdarstellung entlang der Linie III-III in Figur 2,
Figur 4 ein drittes Ausführungsbeispiel einer Kühlvorrichtung in Schnittansicht,
Figur 5 eine Schnittdarstellung der Kühlvorrichtung nach Figur 4, und
Figur 6 entlang der Schnittlinie VI-VI in Figur 1 die Kühlvorrichtung.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt ein Leistungs-Multichip-Modul 1, wel- ches zumindest einen Leistungshalbleiter 2 und/oder zumindest eine integrierte elektronische Schaltung 3 aufweisen kann. Der Leistungshalbleiter 2 und die Schaltung 3 sind auf zumindest einem Substrat 4 angeordnet, welches in bevorzugter Ausführungsform eine Direct-Copper-Bond-Keramik sein kann. Ein oder mehrere Module 1 können auf einem oder mehreren Substraten 4 angeordnet sein. Die elektrischen Anschlüsse 5 des Leistungshalbleiters 2 beziehungsweise der Schaltung 3 sind aus einem Modulgehäuse 6 herausgeführt, welches die einzelnen Bauteile des
Moduls 1 aufnimmt .
Die Substrate 4 sind auf einem Wärmeleitelement 7 befestigt, insbesondere gebondet . Das Wärmeleitele- ment 7 weist eine Bodenplatte 8 auf, die den Boden des Modulgehäuses 6 bildet und die Substrate 4 trägt und somit auch als Trägerplatte bezeichnet werden kann. An seiner dem Modulgehäuse 6 abgewandten Seite besitzt das Wärmeleitelement 7 Oberflächen vergrö- ßernde Strukturen 9 , die in Oberflächen vergrößernde Gegenstrukturen 10 eingreifen, die an einer Kühlvorrichtung 11 ausgebildet sind. Die Strukturen 9 und die Gegenstrukturen 10 sind so ausgebildet, dass sie genau passend ineinander eingreifen, so dass zwischen den Strukturen 9 und den Gegenstrukturen 10 Kontaktflächen 12 vorliegen, an denen sich die Strukturelemente S und die Gegenstrukturelemente G der Strukturen 9 und Gegenstrukturen 10 berühren. An den Kontaktflächen 12 kann eine Wärmeleitpaste angebracht sein.
Wie es insbesondere aus Figur 1 hervorgeht, greifen die Strukturen 9 und die Gegenstrukturen 10 kammar- tig ineinander. Die Strukturen beziehungsweise Gegenstrukturen können somit durch beabstandet zueinander liegende Stege 13, Stifte 14 (Figur 6) oder Rippen 15 gebildet sein. Die Stege 13, Stifte 14 und Rippen 15 bilden somit die Strukturelemente S, die mit den Gegenstrukturelementen G zusammenwirken. Wie aus Figur 6 hervorgeht, können die Stege, Stifte beziehungsweise Rippen im Querschnitt beliebig ausgebildet sein. Die Rippen können sich über die gesamte Länge beziehungsweise Breite der Kühlvorrich- tung 11 erstrecken. Sie können auch diagonal verlaufen. Sie können parallel zueinander beabstandet sein; sie können jedoch auch einen Winkel miteinander einschließen. Es können auch in sich geschlossene Rippen 15 vorgesehen sein, wie dies aus Figur 6 hervorgeht, wobei mehrere Rippen 15 in sich geschlossen und in konzentrischen Kreisen angeordnet sind. Die Kühlvorrichtung 11 weist somit einen Kühlkörper 16 auf, an dem die Gegenstrukturen 10 angebracht sind. Die Gegenstrukturen 10 können jedoch auch einstückig mit dem Kühlkörper 16 ausgebildet sein. Gleiches gilt für die Strukturen, die einstückig mit der Bodenplatte 8 realisiert sein können. Die Strukturen 9 können jedoch auch als separates Bauteil vorliegen und mit der Bodenplatte 8 verbunden werden. Insbesondere ist vorgesehen, dass der Kühlkör- per 16 der Kühlvorrichtung 11, die eine Wärmesenke W bildet, zumindest einen Kühlmediumkanal 17 aufweist. Es können jedoch auch mehrere Kühlmediumkanäle 17 vorgesehen sein. Das in den Kanälen 17 strömende Medium nimmt die an dem Modul 1 entstehende Wärme auf und transportiert diese ab. In bevorzugter Ausführungsform erfolgt die Kühlung über eine Flüssigkeit, insbesondere Wasser. Die Kühlvorrichtung 11 kann neben dem Kühlkörper 16 beziehungsweise der Wärmesenke W auch das Wärmeleitelement 7 umfassen
Das Wärmeleitelement 7, insbesondere dessen Bodenplatte 8, ist mit der Wärmesenke W fest verbunden, insbesondere verschraubt . Die hierfür vorgesehenen Schrauben 18 durchgreifen somit die Bodenplatte 8 und greifen in entsprechende - Ausnehmungen 19 ein, die an der Kühlvorrichtung beziehungsweise Wärmesenke W ausgebildet sind. Die Schrauben beziehungsweise Befestigungsmittel 18 verlaufen im wesentlichen parallel zur Längserstreckungsrichtung der Struktur- beziehungsweise Gegenstrukturelemente S beziehungsweise G.
Figur 2 zeigt ein zweites Ausführungsbeispiel einer Kühlvorrichtung 11, wobei gleiche beziehungsweise gleichwirkende Teile wie in Figur 1 mit identischen Bezugszeichen versehen sind, so dass insofern auf deren Beschreibung verwiesen wird. Das Modulgehäuse
6 wird insbesondere durch zwei beabstandet zueinan- der liegende Substrate 4 gebildet, wobei die elektrischen Anschlüsse 5 Gehäuseseitenwandungen bilden können. Jedem Substrat 4 ist hier zumindest ein Modul 1 zugeordnet. An der Außenseite jedes Substrats 4 schließt sich ein Wärmeleitelement 7 an, welches die Strukturen 9 aufweist. An jedem Wärmeleitelement
7 ist eine Kühlvorrichtung 11 mit ihrem Kühlkörper 16 angeordnet. Es ist ersichtlich, dass die Strukturen 9 nicht vollständig in die Gegenstrukturen eingreifen; vielmehr sind Zwischenräume 19' gebildet, die somit zwischen den freien Enden der Strukturen und den Enden der Gegenstrukturen liegen. Diese Zwischenräume 19' dienen als Wärmeausdehnungskompensa- tionsräume, so dass bei einer Längenausdehnung der Strukturen beziehungsweise Gegenstrukturen keine Materialverspannungen auftreten.
Wie aus Figur 2 ersichtlich, ist die Bodenplatte 8 des Wärmeleitelements 7 hier weggelassen. Die einzelnen Strukturelernente S sind jedoch über Formstü- cke 20 beziehungsweise Brückenstege miteinander verbunden, wobei die Formstücke 20 sich nicht über die gesamte Länge der Strukturelemente erstrecken müssen. Es ist jedoch ersichtlich, dass die Strukturen 9 direkt mit dem Substrat 4, insbesondere durch Lö- ten, verbunden sind. Figur 3 zeigt noch, dass sich die Befestigungsmittel 18' durch sämtliche Struktur- und Gegenstrukturelemente S und G erstrecken. Die Befestigungsmittel 18' liegen im ' Wesentlichen quer zur LängserStreckungsrichtung der Struktur- bezie- hungsweise Gegenstrukturelemente S beziehungsweise G. Insbesondere sind hierfür in den Strukturen und/oder Gegenstrukturen Langlöcher 21 ausgebildet, durch die sich die stabförmigen Befestigungsmittel 18' erstrecken, so dass eine Relativbewegung zwischen dem Wärmeleitelement 7 und der Kühlvorrichtung 11 in Richtung der Längserstreckung der Strukturen beziehungsweise Gegenstrukturen möglich ist. Im Übrigen sind in Figur 3 gleiche beziehungsweise gleichwirkende Teile wie in Figur 2 mit denselben Bezugszeichen versehen.
Anhand der Figuren 4 und 5 wird, im Folgenden ein drittes Ausführungsbeispiel einer Kühlvorrichtung 1 beschrieben. Gleiche beziehungsweise gleichwirkende Teile wie in den vorstehend beschriebenen Figuren sind mit identischen Bezugszeichen versehen. Es ist ersichtlich, dass -obwohl eine beidseitige Kühlung an den Modulen 1 ausgebildet ist- . lediglich eine Kühlvorrichtung 11 benötigt wird, die zwei Zungenreihen 21 aufweist, wobei in jeder Zungenreihe 21 mehrere hintereinander angeordnete Zungen 22 liegen und sich sämtliche Zungen 22 seitlich von der Kühlvorrichtung 11, das heißt von deren Kühlkörper 16 weg erstrecken und in die zwischen den Stegen 13 beziehungsweise Rippen 15 ausgebildeten Freiräume 23 eingreifen.
Figur 6 zeigt ein Ausfuhrungsbeispiel einer Kühlvor- richtung 11 in Schnittansicht, wie sich diese gemäß der Schnittlinie VI-VI aus Figur 1 ergibt. Von dem Kühlkörper 16 der Kühlvorrichtung 11 gehen die Gegen- strukturen 10 aus. Durch die Anzahl der Stege 13, Stifte 14 beziehungsweise Rippen 15 können partiell unterschiedliche Wärmeübergangswiderstände zwischen dem Wärmeleitelement 7 und der Kühlvorrichtung 11 geschaffen sein. Diese unterschiedlichen Wärmeübergangswiderstände lassen sich durch die Anzahl, Dichte und/oder Länge der Strukturelemente S beziehungsweise Gegenstrukturelemente G realisieren. In Figur 6 ist zum Beispiel etwa mittig an dem Kühlkörper 11 ein geringer Wärmeübergangswiderstand zwischen dem Wärmeleitelement 7 und der Kühlvorrichtung 11 ausgebildet, da hier eine Vielzahl von Gegenstrukturelementen G vorgesehen sind, die mit entsprechenden Strukturelementen S zusammenwirken. Nach außen kann sich die Anzahl der Stege 13, Stifte 14 beziehungsweise Rippen 15 verringern. Insgesamt können je nach Wahl der Anzahl, Dichte und/oder Länge L (Figur 4) der Strukturelemente S beziehungsweise Gegenstrukturelemente G unterschiedliche Wärmeübergangswiderstände realisiert werden, und zwar je nach dem, an welcher Stelle der Leistungshalbleiter 2 beziehungsweise die elektroni- sehe Schaltung 3 angebracht sind, so dass insbesondere im Bereich dieser Bauelemente für entsprechende Wärmeableitung gesorgt ist, also eine Vielzahl von Gegenstrukturelementen und Strukturelementen vorgesehen ist und insgesamt eine sehr große Wärmeübergangs- fläche bereitgestellt wird.

Claims

Patentansprüche
1. Kühlvorrichtung für zumindest einen Leistungs - halbleiter und/oder zumindest eine integrierte elektronische Schaltung, der/die mit einem Wärme - leitelement verbindbar ist, mit einer mit dem Wär- meleitelement warmeleitfahig verbindbaren Wärmesenke, wobei das Wärmeleitelement an seiner der Wärme - senke zugewandten Seite Oberflächen vergrößernde Strukturen aufweist, dadurch gekennzeichnet, dass die Wärmesenke (W) an ihrer dem Wärmeleitelement (7) zugewandten Seite Oberflächen vergrößernde in die Strukturen (9) passend eingreifende Gegenstrukturen (10) aufweist.
2. Kühlvorrichtung nach Anspruch 1, dadurch geken - zeichnet, dass die Kühlvorrichtung (11) das Wärme - leitelement (8) und die Wärmesenke (W) aufweist.
3. Kühlvorrichtung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Strukturen (9) und Gegen- Strukturen (10) kammartig ineinander liegen.
. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (9) und Gegenstrukturen (10) durch beabstan- det zueinander liegende Stege (13), Stifte (14) und/oder Rippen (15) gebildet sind.
5. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Strukturen (9) und Gegenstrukturen (10) eine Wärmeleitpaste eingebracht ist.
6. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leistungshalbleiter (2) und/oder die Schaltung (3) in einem Gehäuse (6) angeordnet sind/ist, das mit dem Wärmeleitelement (7) verbindbar ist.
7. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärme - leitelement (7) an einer Bodenplatte (8) des Gehäuses (6) befestigt ist.
8. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärme - leitelement (7) an einer Deckelplatte des Gehäuses (6) befestigt ist.
9. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (9) und die Gegenstrukturen (10) so ausgebildet sind, das partiell unterschiedlich vorliegende Wärmewiderstände zwischen Wärmeleitelement (7) und Wärmesenke (W) realisiert sind.
10. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die partiell unterschiedlichen Wärmewiderstände durch die Anzahl und/oder Größe der Stege (13), Stifte (14) und/oder Rippen (15) gebildet sind.
11. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die durch Stege (13) gebildeten Strukturen (9) an ihren freien Enden miteinander, insbesondere wärmeleitend, verbunden sind und dass die Gegenstrukturen (10) von sich seitlich von der Wärmesenke (W) er- streckenden Zungen (22) gebildet sind, die in Frei- räumen (23) zwischen den Stegen liegen.
12. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärme - leitelement (7) und die Wärmesenke (W) durch stab- förmige Befestigungsmittel (18,18'), insbesondere Schrauben, miteinander verbunden sind, wobei diese Befestigungsmittel (18,18') die Strukturen (9) und Gegenstrukturen (10), insbesondere quer, zu ihrer Erstreckungsrichtung durchgreifen.
13. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an den Strukturen (9) oder Gegenstrukturen (10) Langlόcher (21) ausgebildet sind, durch die Befestigungsmittel (18 ' ) greifen.
14. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärme - senke (W) Durchströmkanäle (17) für ein Kühlmedium, insbesondere eine Flüssigkeit, aufweist.
15. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leis - tungshalbleiter (2) und/oder die Schaltung (3) auf einem Substrat (4), vorzugsweise einer Direkt - Copper-Bond-Keramik befestigt sind/ist und dass die Strukturen (9) des Wärmeleitelements (7) an dem Substrat (4) direkt oder über eine Trägerplatte (8) befestigt sind.
16. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Träger- platte (8) den Gehäuseboden bildet und aus wärme - leitfähigem Material besteht.
PCT/DE2001/002865 2000-08-16 2001-07-28 Kühlvorrichtung WO2002015268A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01956404A EP1366519A2 (de) 2000-08-16 2001-07-28 Kühlvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10039770A DE10039770A1 (de) 2000-08-16 2000-08-16 Kühlvorrichtung
DE10039770.0 2000-08-16

Publications (2)

Publication Number Publication Date
WO2002015268A2 true WO2002015268A2 (de) 2002-02-21
WO2002015268A3 WO2002015268A3 (de) 2003-10-09

Family

ID=7652437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002865 WO2002015268A2 (de) 2000-08-16 2001-07-28 Kühlvorrichtung

Country Status (3)

Country Link
EP (1) EP1366519A2 (de)
DE (1) DE10039770A1 (de)
WO (1) WO2002015268A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062534A1 (de) * 2007-11-13 2009-05-22 Siemens Aktiengesellschaft Leistungshalbleitermodul
FR2951019A1 (fr) * 2009-10-07 2011-04-08 Valeo Etudes Electroniques Module de puissance pour vehicule automobile

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335197B4 (de) * 2003-07-30 2005-10-27 Kermi Gmbh Kühlvorrichtung für ein elektronisches Bauelement, insbesondere für einen Mikroprozessor
DE102004012026B3 (de) * 2004-03-11 2005-11-17 Hüttinger Elektronik GmbH & Co. KG Anordnung zum Kühlen
DE102005048492B4 (de) * 2005-10-07 2009-06-04 Curamik Electronics Gmbh Elektrisches Modul
DE102007021206A1 (de) * 2007-05-05 2008-11-06 Hella Kgaa Hueck & Co. Kühlkörper
FR3128941B1 (fr) 2021-11-08 2024-03-08 Safran Systeme electrique a refroidissement par fluide caloporteur, aeronef comportant un tel systeme et procede de fabrication d’un tel systeme
US12075601B2 (en) * 2022-06-03 2024-08-27 Vitesco Technologies USA, LLC Heat dissipation structure for inverter ground screws of a belt starter generator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167248A (ja) * 1984-09-10 1986-04-07 Hitachi Ltd モジユ−ル冷却体構造
EP0286876A2 (de) * 1987-04-14 1988-10-19 International Business Machines Corporation Modul mit Kühlsystem für integrierte Schaltungen
US5083373A (en) * 1986-04-25 1992-01-28 Hamburgen William R Method for providing a thermal transfer device for the removal of heat from packaged elements
EP0644593A2 (de) * 1993-09-20 1995-03-22 Hitachi, Ltd. Halbleiterbauelementmodul
US5424919A (en) * 1993-03-31 1995-06-13 Export-Contor Aussenhandlesgesellschaft Mbh Repairable electronic circuit package
US5461542A (en) * 1992-12-18 1995-10-24 Robert Bosch Gmbh Multi-board electrical control device
EP0717440A2 (de) * 1994-12-15 1996-06-19 Hitachi, Ltd. Kühlvorrichtung für Mehrchipmodul
US5787976A (en) * 1996-07-01 1998-08-04 Digital Equipment Corporation Interleaved-fin thermal connector
US5814535A (en) * 1994-04-22 1998-09-29 Nec Corporation Supporting member for cooling means, electronic package and method of making the same
US5969950A (en) * 1998-11-04 1999-10-19 Sun Microsystems, Inc. Enhanced heat sink attachment
US6034430A (en) * 1996-07-01 2000-03-07 Digital Equipment Corporation Integrated thermal coupling for a heat generating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228470A (ja) * 1999-01-29 2000-08-15 Hewlett Packard Co <Hp> 熱接触面が改善された現場交換可能モジュ―ル

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167248A (ja) * 1984-09-10 1986-04-07 Hitachi Ltd モジユ−ル冷却体構造
US5083373A (en) * 1986-04-25 1992-01-28 Hamburgen William R Method for providing a thermal transfer device for the removal of heat from packaged elements
EP0286876A2 (de) * 1987-04-14 1988-10-19 International Business Machines Corporation Modul mit Kühlsystem für integrierte Schaltungen
US5461542A (en) * 1992-12-18 1995-10-24 Robert Bosch Gmbh Multi-board electrical control device
US5424919A (en) * 1993-03-31 1995-06-13 Export-Contor Aussenhandlesgesellschaft Mbh Repairable electronic circuit package
EP0644593A2 (de) * 1993-09-20 1995-03-22 Hitachi, Ltd. Halbleiterbauelementmodul
US5814535A (en) * 1994-04-22 1998-09-29 Nec Corporation Supporting member for cooling means, electronic package and method of making the same
EP0717440A2 (de) * 1994-12-15 1996-06-19 Hitachi, Ltd. Kühlvorrichtung für Mehrchipmodul
US5787976A (en) * 1996-07-01 1998-08-04 Digital Equipment Corporation Interleaved-fin thermal connector
US6034430A (en) * 1996-07-01 2000-03-07 Digital Equipment Corporation Integrated thermal coupling for a heat generating device
US5969950A (en) * 1998-11-04 1999-10-19 Sun Microsystems, Inc. Enhanced heat sink attachment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 236 (E-428), 15. August 1986 (1986-08-15) -& JP 61 067248 A (HITACHI LTD), 7. April 1986 (1986-04-07) *
See also references of EP1366519A2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062534A1 (de) * 2007-11-13 2009-05-22 Siemens Aktiengesellschaft Leistungshalbleitermodul
US9064737B2 (en) 2007-11-13 2015-06-23 Siemens Aktiengesellschaft Power semiconductor module
FR2951019A1 (fr) * 2009-10-07 2011-04-08 Valeo Etudes Electroniques Module de puissance pour vehicule automobile
WO2011042667A1 (fr) * 2009-10-07 2011-04-14 Valeo Etudes Electroniques Module de puissance pour vehicule automobile
US8916963B2 (en) 2009-10-07 2014-12-23 Valeo Etudes Electroniques Power module for an automobile

Also Published As

Publication number Publication date
WO2002015268A3 (de) 2003-10-09
DE10039770A1 (de) 2002-02-28
EP1366519A2 (de) 2003-12-03

Similar Documents

Publication Publication Date Title
DE69126686T2 (de) Wärmetransportmodul für Anwendungen ultrahoher Dichte und Silizium auf Siliziumpackungen
DE69821779T2 (de) Kühlmodul für elektronische bauelemente
EP1932407B1 (de) Elektrisches modul
DE10322745B4 (de) Leistungshalbleiter-Bauelement mit hoher Abstrahlungseffizienz
DE19734054C2 (de) Mit einer Kühleinrichtung versehene gedruckte Leiterplatte
EP0838988A2 (de) Flüssigkeits-Kühlvorrichtung für ein Hochleistungs-Halbleitermodul
DE3851077T2 (de) Kühlsystem für Halbleiterbauelementmodule.
DE102015109361B4 (de) Halbleiterbauteil
DE10327530A1 (de) Vorrichtung mit wenigstens einer von einem zu kühlenden Funktionselement gebildeten Wärmequelle, mit wenigstens einer Wärmesenke und mit wenigstens einer Zwischenlage aus einer thermischen leitenden Masse zwischen der Wärmequelle und der Wärmesenke sowie thermische leitende Masse, insbesondere zur Verwendung bei einer solchen Vorrichtung
DE10238843B4 (de) Halbleiterbauelement
DE19856771A1 (de) Thermoelektrisches Modul und Verfahren zur Herstellung desselben
DE4410029A1 (de) Mittels einer Feder vorgespannte Wärmesenkenanordnung für eine Mehrzahl von integrierten Schaltungen auf einem Substrat
DE112016006332T5 (de) Leistungsmodul
DE3716196A1 (de) Anordnung aus einem elektronische bauelemente tragenden keramiksubstrat und einer waermeabfuehreinrichtung
DE102021200016A1 (de) Halbleitermodul und verfahren zum herstellen eines halbleitermoduls
WO2002015268A2 (de) Kühlvorrichtung
DE19527867A1 (de) Metall-Substrat für elektrische und/oder elektronische Schaltkreise
DE68923778T2 (de) Halbleitermodul.
DE102014213545A1 (de) Leistungshalbleitermodul
DE19506091B4 (de) Kühlelement
DE19911205A1 (de) Kühlvorrichtung für elektronische Bauelemente
DE8427885U1 (de) Einrichtung zum Befestigen eines Kühlkörpers auf mehreren nebeneinander angeordneten integrierten Bausteinen
WO2018001525A1 (de) Kühldoseneinheit und leistungselektronische einrichtung mit kühldoseneinheit
DE10038178A1 (de) Kühlschiene für die direkte Fluidkühlung von Schaltungsmodulen, insbesondere Halbleitermodulen, Leistungshalbleitermodulen oder dergleichen
EP0942468A2 (de) Modulgrundplatte zur Kühlung elektrischer Bauelemente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001956404

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001956404

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001956404

Country of ref document: EP