WO2002015233A2 - Integrated transistor devices - Google Patents

Integrated transistor devices Download PDF

Info

Publication number
WO2002015233A2
WO2002015233A2 PCT/US2001/025150 US0125150W WO0215233A2 WO 2002015233 A2 WO2002015233 A2 WO 2002015233A2 US 0125150 W US0125150 W US 0125150W WO 0215233 A2 WO0215233 A2 WO 0215233A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
oxide
layer
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2001/025150
Other languages
English (en)
French (fr)
Other versions
WO2002015233A3 (en
Inventor
Walter David Braddock Iv
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/636,484 external-priority patent/US6936900B1/en
Application filed by Individual filed Critical Individual
Priority to JP2002520272A priority Critical patent/JP2004507081A/ja
Priority to AU2001288239A priority patent/AU2001288239A1/en
Priority to EP01967960A priority patent/EP1312122A4/en
Priority to KR10-2003-7001947A priority patent/KR20030027017A/ko
Publication of WO2002015233A2 publication Critical patent/WO2002015233A2/en
Publication of WO2002015233A3 publication Critical patent/WO2002015233A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/80FETs having rectifying junction gate electrodes
    • H10D30/801FETs having heterojunction gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/473High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
    • H10D30/4732High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/685Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 

Definitions

  • the present invention pertains to low power and high speed integrated circuits in the compound semiconductor field utilizing field effect transistors and more specifically complementary field effect transistors used in concert including enhancement mode self- aligned metal-oxide-compound semiconductor transistors and depletion mode self-aligned metal-oxide-compound semiconductor transistors and methods of materials growth and fabrication of said structures and the ultra large scale integration of said transistors.
  • the gallium arsenide and indium phosphide integrated circuit industry has been limited without a technology that simultaneously allows the integration of complementary field effect transistor devices and transistors with low gate leakage currents.
  • CMOS complementary metal oxide semiconductor
  • FETs Field effect transistor
  • III-V semiconductor industry employ metal gates and Schottky gate contacts that are have quiescent-state leakage currents exceeding many microamps.
  • the use of metal gates in compound semiconductor technology further results in individual transistors and integrated circuits that have excessively high power dissipation, reduced transconductance, reduced logic swing and the inability to operate on a single power supply, and generally limited performance characteristics.
  • CMOS complementary metal-oxide-semiconductor
  • FIG. 1 is simplified cross sectional view of a self-aligned enhancement mode compound semiconductor MOSFET in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a simplified flow chart illustrating a method of manufacturing a self-aligned enhancement mode compound semiconductor MOSFET in accordance with a preferred embodiment of the present invention.
  • the exemplification set out herein illustrates a preferred embodiment of the invention in one form thereof, and such exemplification is not intended to be construed as limiting in any manner.
  • the present invention provides, among other things, a self-aligned enhancement mode metal-oxide-compound semiconductor FET.
  • the FET includes a gallium oxygen insulating structure that is composed of at least two distinct layers.
  • the first layer is most preferably more that 10 angstroms thick but less that 25 angstroms in thickness and composed substantially of gallium oxygen compounds including but not limited to stoichiometric Ga 2 O 3 and Ga 2 O, and possibly a lesser fraction of other gallium oxygen compounds.
  • the upper insulating layer in the gallium oxide insulating structure is composed of an insulator that does not intermix with the underlying gallium oxygen insulating structure.
  • This upper layer must possess excellent insulating qualities, and is most typically composed of gallium oxygen and a third rare earth element that together form a ternary insulating material. Therefore the entire gallium oxide rare earth gate insulator structure is composed of at least two layers and may contain a third intermediate graded layers that consists of a mixture of the upper insulating material and the gallium oxygen compounds that compose the initial layer. Together the initial gallium oxygen layer, any intermediate graded layer and the top insulating region form both a gallium oxide insulating structure and the gate insulator region of a metal-oxide- compound semiconductor field effect transistor.
  • the initial substantially gallium oxygen layer forms an atomically abrupt interface with the top layer of the compound semiconductor wafer structure, and does not introduce midgap surface states into the compound semiconductor material.
  • a refractory metal gate electrode is preferably positioned on the upper surface of the gate insulator structure layer.
  • the refractory metal is stable on the gate insulator structure layer at elevated temperature.
  • Self-aligned source and drain areas, and source and drain contacts are positioned on the source and drain areas.
  • the metal-oxide-compound semiconductor transistor includes multilayer gate insulator structure including an initial gallium oxygen layer, intermediate transition layer, and upper insulating layer of 30-250 angstroms in thickness positioned on upper surface of a compound semiconductor heterostructure that form the gate insulator structure.
  • the preferred embodiment also comprises a compound semiconductor heterostructure including a GaAs, Al x Ga ⁇ -x As and In y Ga ⁇ -y As layers with or wothout n-type and/or p-type charge supplying layers which are grown on a compound semiconductor substrate, a refractory metal gate of W, WN, or WSi, self aligned donor (n-channel FET) or acceptor (p- channel FET) implants, and source and drain ohmic contacts.
  • the compound semiconductor heterostructure comprises an friyGaj.
  • y As, ALIn ⁇ x As, and InP compound semiconductor heterostructure and n-type and/or p-type charge supplying layers which are grown on an InP substrate, and a refractory metal gate of W, WN, or WSi, self aligned donor (n-channel FET) or acceptor (p-channel FET) implants, and source and drain ohmic contacts.
  • FIG. 1 is simplified cross sectional view of a self-aligned enhancement mode compound semiconductor MOSFET in accordance with a preferred embodiment of the present invention.
  • Device 10 includes a compound semiconductor material, such as any III-V material employed in any semiconductor device, represented herein by a III-V semiconductor substrate 11 and a compound semiconductor epitaxial layer structure 12.
  • a compound semiconductor wafer structure which in FIG. 1 is designated 13.
  • Methods of fabricating semiconductor wafer structure 13 include, but are not limited to, molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD).
  • Device H) further comprises a gate insulator structures (30) that includes at least two or more layers.
  • the first layer of the gate insulator structure (31) is composed entirely of gallium oxide compounds and is directly adjacent to and deposited upon the compound semiconductor structure.
  • the second layer of the gate insulator structure (32) is composed of a compound of gallium, oxygen, and one or more rare earth elements from the periodic table.
  • the initial gallium oxygen layer (31) forms an atomically abrupt interface 14 with the upper surface of top layer 15, the top layer of the compound semiconductor structure.
  • a refractory metal gate electrode 17 which is stable in the presence of top insulating material at elevated temperature is positioned on upper surface 18 of the gate insulator structure.
  • Dielectric spacers 26 are positioned to cover the sidewalls of metal gate electrode 17.
  • Source and drain contacts 19 and 20 are deposited on self-aligned source and drain areas 21 and 22, respectively.
  • the compound semiconductor epitaxial layer structure consists of a ⁇ 11 angstrom GaAs top layer (15), a ⁇ 101 angstrom Al x Ga 1-x As spacer layer (23), a ⁇ 251 angstrom In y Ga 1-y As channel layer (24), and a GaAs buffer layer (25) grown on a GaAs substrate (11).
  • Top GaAs layer (15) is used to form an atomically abrupt layer with the gate insulator structure with an abrupt interface with low defect density.
  • a III-V compound semiconductor wafer structure 13 with an atomically ordered and chemically clean upper surface of top layer 15 is prepared in an ultra-high vacuum semiconductor growth chamber and transferred via a ultra high vacuum transfer chamber to a second ultra high vacuum oxide and insulator deposition chamber.
  • the initial gallium oxygen layer (31) is deposited on upper compound semiconductor surface layer 15 using thermal evaporation from a high purity Ga 2 O 3 source or from crystalline gadolinium gallium garnet, Ga 3 Gd 5 O ⁇ 2 .
  • This initial gallium oxygen layer is deposited while holding the substrate temperature of the compound semiconductor structure at ⁇ 580°C, and most preferably at a substrate temperature ⁇ 495°C.
  • deposition of the second insulator layer is initiated.
  • the deposition of the -second insulator layer starts by directing the flux from a low power oxygen plasma source into the ultra high vacuum system such that the oxygen plasma effluent and species are largely directed toward and impinging upon said compound semiconductor structure with initial gallium oxygen layer.
  • the flux from the oxygen plasma source should be directed at the surface for between 2-5 seconds, subsequently followed by the co-evaporation of gallium oxygen compounds from Ga 2 O 3 and a second thermal evaporation source that contains a rare-earth element.
  • the flux beams from the oxygen source, Ga 2 O 3 and rare-earth evaporation source thermal evaporation sources are carefully balanced to provide a ternary insulator layer on top of the initial gallium oxygen layer on said compound semiconductor structure.
  • the substrate temperature is simultaneously adjusted to provide an optimized substrate temperature for the deposition of this layer.
  • the substrate temperature required to deposit the gallium+oxygen+rare earth layer is ⁇ 530°C.
  • this second insulator layer proceeds until the total insulator thickness of 200-250 angstroms is achieved.
  • Shutters and valves are utilized to stop the deposition of the ternary gallium+oxygen+rare earth layer upon the deposition of the required thickness of the insulator layer.
  • the substrate temperature is cooled in-vacuum to approximately 200°C, and the deposition of a refractory metal which is stable and does not interdiffuse with on the top layer of the gate insulator structure at elevated temperature such as WSi or WN is deposited on upper surface 18 of oxide layer 32 and subsequently patterned using standard lithography.
  • the refractory metal layer is etched until oxide layer 31 is exposed using a refractory metal etching technique such as a fluorine based dry etching process.
  • the refractory metal etching procedure does not etch the oxide layer 31, thus, oxide layer 31 functions as an etch stop layer such that upper surface of top layer 15 remains protected by oxide layer 31. All processing steps are performed using low damage plasma processing.
  • Self-aligned source and drain areas 21 and 22, respectively are realized by ion implantation of Si (n-channel device) and Be/F or C/F (p-channel device) using the refractory metal gate electrode 17 and the dielectric spacers 26 as implantation masks.
  • Such ion implantation schemes are compatible with standard processing of complementary compound semiconductor heterostructure FET technologies and are well known to those skilled in the art.
  • the implants are activated at 700-900°C using rapid thermal annealing in an ultra high vacuum environment such that degradation of the interface 16 established between top layer 15 and oxide layer 31 is completely excluded.
  • ohmic source and drain contacts 19 and 20 are deposited on the self-aligned source and drain areas 21 and 22, respectively.
  • the devices may then be interconnected using the standard methods to those skilled in the art of integrated microelectronics and integrated circuit manufacture.
  • FIG. 2 is a simplified flow chart illustrating a method of manufacturing a self-aligned enhancement mode compound semiconductor MOSFET in accordance with a preferred embodiment of the present invention.
  • a compound semiconductor wafer structure is produced using standard epitaxial growth methods in the art.
  • a layer consisting of gallium oxygen compounds including but not limited to Ga 2 O 3 and Ga 2 O is deposited on upper surface of said compound semiconductor wafer structure.
  • an insulating layer of gallium oxygen and one or more rare earth elements is deposited on the upper surface of the initial gallium oxygen compound layer.
  • the gallium oxide gate insulator structure is formed in steps 104 and 105.
  • a stable refractory gate metal is positioned on upper surface of said gate insulator structure.
  • source and drain ion implants are provided self-aligned to the gate electrode.
  • source and drain ohmic contacts are positioned on ion implanted source and drain areas.
  • step 100 provides a compound semiconductor substrate such as GaAs or InP.
  • Step 102 includes the preparation and epitaxial growth of an atomically ordered and chemically clean upper surface of the compound semiconductor wafer structure.
  • Step 103 preferably comprises thermal evaporation from a purified and crystalline gadolinium gallium garnet or Ga 2 O 3 source on an atomically ordered and chemically clean upper surface of the compound semiconductor wafer structure.
  • Step 104 comprises the formation of a gallium+oxygen+rare earth elemental insulating layer formed through the simultaneous vacuum evaporation of gallium oxygen species and at least one rare earth element such as Gadolinium with the simultaneous oxidation using the effluent of an oxygen gas plasma source directed in simultaneous combination with other thermal evaporation sources toward substrate 100.
  • the initial gallium oxygen compound layer of the gate insulator structure preferably functions as an etch stop layer such that the upper surface of the compound semiconductor wafer structure remains protected by the gate oxide during and after gate metal etching.
  • the refractory gate metal desirably does not react with or diffuse into the gate oxide layer during high temperature annealing of the self-aligned source and drain ion implants.
  • the quality of the interface formed by the gate oxide layer and the upper surface of the compound semiconductor structure is desirably preserved during high temperature annealing of the self-aligned source and drain ion implants.
  • the self-aligned source and drain implants are desirably annealed at approximately 700°C in an ultra high vacuum environment.
  • the self-aligned source and drain implants are desirably realized by positioning dielectric spacers on the sidewalls of the refractory gate metal.
  • new and improved compound semiconductor devices and methods of fabrication are disclosed.
  • the new and improved self-aligned enhancement mode metal- oxide-compound semiconductor heterostructure field effect transistors enable stable and reliable device operation, provide optimum compound semiconductor device performance for low power/high performance complementary circuits and architectures, keep interconnection delay in ULSI under control, and provide optimum efficiency and output power for RF and microwave applications as well as for digital integrated circuits that require very high integration densities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
PCT/US2001/025150 2000-08-10 2001-08-10 Integrated transistor devices Ceased WO2002015233A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002520272A JP2004507081A (ja) 2000-08-10 2001-08-10 集積トランジスタ素子
AU2001288239A AU2001288239A1 (en) 2000-08-10 2001-08-10 Integrated transistor devices
EP01967960A EP1312122A4 (en) 2000-08-10 2001-08-10 INTEGRATED TRANSISTOR DEVICES
KR10-2003-7001947A KR20030027017A (ko) 2000-08-10 2001-08-10 집적형 트랜지스터 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/636,484 2000-08-10
US09/636,484 US6936900B1 (en) 2000-05-04 2000-08-10 Integrated transistor devices

Publications (2)

Publication Number Publication Date
WO2002015233A2 true WO2002015233A2 (en) 2002-02-21
WO2002015233A3 WO2002015233A3 (en) 2002-06-27

Family

ID=24552107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/025150 Ceased WO2002015233A2 (en) 2000-08-10 2001-08-10 Integrated transistor devices

Country Status (5)

Country Link
EP (1) EP1312122A4 (enExample)
JP (1) JP2004507081A (enExample)
KR (1) KR20030027017A (enExample)
AU (1) AU2001288239A1 (enExample)
WO (1) WO2002015233A2 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063227A3 (en) * 2002-01-22 2004-04-15 Massachusetts Inst Technology A method of fabrication for iii-v semiconductor surface passivation
WO2005093851A1 (en) * 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including gallium oxide
US7187045B2 (en) 2002-07-16 2007-03-06 Osemi, Inc. Junction field effect metal oxide compound semiconductor integrated transistor devices
US7190037B2 (en) 2000-05-04 2007-03-13 Osemi, Inc. Integrated transistor devices
CN116072707A (zh) * 2023-02-08 2023-05-05 厦门大学 一种含稀土栅介质层的平面型SiC MOSFET及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756320B2 (en) * 2002-01-18 2004-06-29 Freescale Semiconductor, Inc. Method of forming article comprising an oxide layer on a GaAs-based semiconductor structure
US7382001B2 (en) * 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
JP7067702B2 (ja) * 2017-06-30 2022-05-16 国立研究開発法人物質・材料研究機構 窒化ガリウム系の半導体装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962883A (en) * 1994-03-23 1999-10-05 Lucent Technologies Inc. Article comprising an oxide layer on a GaAs-based semiconductor body
US5665658A (en) * 1996-03-21 1997-09-09 Motorola Method of forming a dielectric layer structure
US5945718A (en) * 1998-02-12 1999-08-31 Motorola Inc. Self-aligned metal-oxide-compound semiconductor device and method of fabrication

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190037B2 (en) 2000-05-04 2007-03-13 Osemi, Inc. Integrated transistor devices
WO2003063227A3 (en) * 2002-01-22 2004-04-15 Massachusetts Inst Technology A method of fabrication for iii-v semiconductor surface passivation
US6933244B2 (en) 2002-01-22 2005-08-23 Massachusetts Institute Of Technology Method of fabrication for III-V semiconductor surface passivation
US7187045B2 (en) 2002-07-16 2007-03-06 Osemi, Inc. Junction field effect metal oxide compound semiconductor integrated transistor devices
WO2005093851A1 (en) * 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including gallium oxide
US7250627B2 (en) 2004-03-12 2007-07-31 Hewlett-Packard Development Company, L.P. Semiconductor device
CN116072707A (zh) * 2023-02-08 2023-05-05 厦门大学 一种含稀土栅介质层的平面型SiC MOSFET及其制造方法

Also Published As

Publication number Publication date
KR20030027017A (ko) 2003-04-03
AU2001288239A1 (en) 2002-02-25
EP1312122A2 (en) 2003-05-21
JP2004507081A (ja) 2004-03-04
EP1312122A4 (en) 2006-08-02
WO2002015233A3 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
US6445015B1 (en) Metal sulfide semiconductor transistor devices
US7187045B2 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
US6989556B2 (en) Metal oxide compound semiconductor integrated transistor devices with a gate insulator structure
Ren et al. Ga 2 O 3 (Gd 2 O 3)/InGaAs enhancement-mode n-channel MOSFETs
US7442657B2 (en) Producing stress-relaxed crystalline layer on a substrate
US5879996A (en) Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
US6670651B1 (en) Metal sulfide-oxide semiconductor transistor devices
US5866925A (en) Gallium nitride junction field-effect transistor
Abrokwah et al. A manufacturable complementary GaAs process
US20070138506A1 (en) Nitride metal oxide semiconductor integrated transistor devices
US5945718A (en) Self-aligned metal-oxide-compound semiconductor device and method of fabrication
US7190037B2 (en) Integrated transistor devices
JPH0260063B2 (enExample)
JPS5891682A (ja) 半導体装置
EP1312122A2 (en) Integrated transistor devices
US5895929A (en) Low subthreshold leakage current HFET
EP0987746B1 (en) Method of making an integrated circuit comprising an oxide layer on a GaAs-based semiconductor substrate
KR20000011954A (ko) 갈륨아세닉베이스반도체본체상에산화물층을포함하는제품제조방법
US5107314A (en) Gallium antimonide field-effect transistor
US6953729B2 (en) Heterojunction field effect transistor and manufacturing method thereof
US20080157073A1 (en) Integrated Transistor Devices
JP2633009B2 (ja) 化合物半導体電界効果トランジスタとその製造方法
JPS6292327A (ja) 半導体装置及びその製造方法
JPH0354851B2 (enExample)
WO2007146859A1 (en) Integrated transistor devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002520272

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037001947

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001967960

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037001947

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001967960

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642