WO2002014799A1 - Procede servant a mesurer un debit et debitmetre - Google Patents

Procede servant a mesurer un debit et debitmetre Download PDF

Info

Publication number
WO2002014799A1
WO2002014799A1 PCT/JP2001/006923 JP0106923W WO0214799A1 WO 2002014799 A1 WO2002014799 A1 WO 2002014799A1 JP 0106923 W JP0106923 W JP 0106923W WO 0214799 A1 WO0214799 A1 WO 0214799A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
flow rate
temperature
fluid
measurement
Prior art date
Application number
PCT/JP2001/006923
Other languages
English (en)
French (fr)
Inventor
Kenichi Hiraizumi
Atsushi Koike
Hiromitsu Miyajima
Kiyoshi Yamagishi
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to KR10-2003-7001422A priority Critical patent/KR20030022342A/ko
Priority to EP01956839A priority patent/EP1326062A1/en
Priority to US10/344,033 priority patent/US6983214B2/en
Priority to CA002418661A priority patent/CA2418661A1/en
Publication of WO2002014799A1 publication Critical patent/WO2002014799A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature

Definitions

  • Flow meters are used to measure the flow of kerosene, water, gas and other fluids consumed in homes and businesses.
  • a thermal (especially indirectly heated) flow sensor that is easy to reduce in price is used.
  • an indirectly heated flow sensor a sensor chip consisting of a thin-film heating element and a thin-film temperature sensing element laminated on a substrate via an insulating layer using thin-film technology is connected to a pipe (flow meter that communicates with external pipes).
  • An arrangement is used in which heat transfer (that is, thermal interaction) can be performed with the fluid inside (including the fluid flow passage provided inside).
  • the temperature sensing element is heated by energizing the heating element to change the electrical characteristics of the temperature sensing element, for example, the value of the electrical resistance.
  • This change in the electric resistance value changes according to the flow rate (flow velocity) of the fluid flowing in the pipe. This is because part of the heat generated by the heating element is transmitted into the fluid, and the amount of heat diffused into the fluid and absorbed by the fluid changes according to the flow rate (flow velocity) of the fluid. This is because the amount of heat supplied to the temperature sensing element changes, and the electrical resistance value of the temperature sensing element changes.
  • the change in the electric resistance of the thermosensitive element also depends on the temperature of the fluid. Therefore, a temperature-compensating thermosensitive element is incorporated in the electric circuit for measuring the change in the electric resistance of the thermosensitive element. In addition, changes in flow measurement values due to fluid temperature are also minimized.
  • Such an indirectly heated flow sensor using a thin film element is described, for example, in Japanese Patent Application Laid-Open No. H11-118566.
  • a bridge circuit is provided to obtain an electrical output corresponding to the flow rate of the fluid.
  • electrical circuits including:
  • an object of the present invention is to perform a flow measurement with a small measurement error even when a fluid to be measured changes its volume due to a temperature change.
  • the invention aims to provide a method and a flow meter for such a flow measurement. Disclosure of the invention
  • a plurality of individual calibration curves indicating the relationship between the electric output of the electric circuit and the flow rate for each discrete temperature value are used as the calibration curve, and the flow rate is converted into a flow rate at a reference temperature when the individual calibration curve is created.
  • each of the individual calibration curves is created for discrete values among possible values of the electric output of the electric circuit, and the measurement is performed by performing an interpolation calculation.
  • the flow rate value corresponding to the temperature is obtained.
  • the flow rate conversion circuit performs an interpolation operation based on the temperature measured by the temperature measuring means and the plurality of individual calibration curves to obtain a calibration flow value corresponding to the temperature at the time of measurement.
  • the fluid to be measured is a mixture of a plurality of types of molecules having different molecular weights, for example, kerosene.
  • the reference temperature is a temperature within the range of 14 to 16 ° C. - ⁇
  • FIG. 3 is an exploded sectional view showing an embodiment of the flow meter according to the present invention.
  • FIG. 4 is a sectional view showing an embodiment of the flow meter according to the present invention.
  • FIG. 6 is a plan view showing an embodiment of the flow meter according to the present invention.
  • FIG. 8 is a block diagram showing a schematic configuration of an electric circuit section of the flow meter according to the present invention.
  • the housing of the flow meter includes a main body member 2 and an outer lid member 4.
  • the main body member 2 is made of die-cast aluminum or zinc, and the housing body member 2 has an outer lid member 4 made of die-cast aluminum or zinc in a specific direction (the direction of arrow A). Adapted by screwing.
  • a fluid inlet pipe 21 is formed on one side of the housing body member 2, and a fluid outlet pipe 22 is formed on the other side.
  • the housing main body member 2 is formed with two compartments. One compartment is an upper concave portion 23 for a storage portion, and the other is a lower concave portion 24 for a circuit member.
  • the recess 23 for the storage part is defined by the inner wall 26.
  • the outer peripheral surface of a die-cast inner lid member 6 made of aluminum, zinc, or the like is fitted with a screw in the direction of arrow A with respect to the end surface of the inner wall 26 so as to cover the recessed portion 23 for the storage portion.
  • rubber seals (such as corkscrew with cork) are interposed to prevent leakage of fluid from the conforming part.
  • a fluid storage portion for temporarily storing and distributing the fluid is formed between the housing body member 2 and the inner lid member 6.
  • the housing body member 2 is formed with an opening 21a communicating with the fluid inlet pipe 21 and opening at the recess 23 for the reservoir, and communicating with the fluid outlet pipe 22 and forming a recess for the reservoir.
  • a connection opening 22 a opened at 23 is provided.
  • a fluid flow path defining member 9 is attached to the inner lid member 6.
  • the flow path defining member 9 defines the flow path of the fluid flowing from the opening 21a in the fluid storage section by fitting the inner lid member 6 to the housing body member 2. Through the opening 21a, and then to the area where the flow rate measuring section 8 is arranged through the rush-shaped opening between the lower edge of the flow path defining member 9 and the bottom of the fluid storage section. It is to be.
  • the form in which the measurement flow passage 81 of the flow measurement unit 8 extends in the vertical direction is shown.
  • the opening at the lower end of the measurement flow passage 81 is a fluid inlet, and the opening at the upper end is closed by the inner wall surface of the housing body member 2 by fitting the inner lid member 6 to the housing body member 2.
  • a horizontal hole in the direction of arrow A is formed in the flow measurement section 8, and this is a fluid outlet 81a.
  • the fluid outlet 81a and the connection opening 22a on the housing body member 2 side are arranged at positions corresponding to the direction of arrow A, and a 0-ring is interposed between them.
  • Road joint 8a is arranged.
  • the flow rate measuring section 8 has two sensor insertion holes 8b connected to the measurement flow path 81, one of which has a flow rate sensor 10 and the other has a fluid temperature detection sensor 10 '. Each is inserted with an O-ring interposed.
  • the flow rate sensor 10 is configured such that the fin plate FP and the flow rate detection section FS are joined by a bonding material AD having good heat conductivity, and the electrode pad of the flow rate detection section FS and the external electrode terminal ET are provided. Can be connected with a bonding wire BW and sealed with a mold resin MR.
  • the fluid temperature detection sensor 10 'shall use a fluid temperature detection unit instead of the flow detection unit FS in the flow sensor 10 and have an external electrode terminal ET corresponding to this.
  • the flow rate detecting section and the fluid temperature detecting section those described in JP-A-11-118566 can be used.
  • the flow rate measuring section 8 is provided with a temperature sensor 112 for detecting the temperature of the fluid in the measurement flow passage 81. Since the flow measuring unit 8 has good thermal conductivity, the temperature thereof is almost the same as the temperature of the fluid in the measuring flow passage 81. Therefore, the fluid temperature can be measured by measuring the temperature of the flow rate measuring unit 8 near the measurement flow passage 81 with the temperature sensor 112.
  • These sensors 110, 10 ', and 12 are fixed in position by a pressing member 42, and an analog circuit board 44 is disposed thereon.
  • the analog circuit board 44 is electrically connected to the external electrode terminals ET of the flow rate sensor 10 and the fluid temperature detection sensor 10 '.
  • the outer cover member 4 includes a digital circuit board 34 constituting a flow rate detection circuit together with the analog circuit board 44, a transformer 36 constituting a power supply circuit section, and a power supply board serving as an input / output terminal section for the flow meter. 46 and 48 are attached, and a power supply cable attachment terminal 50 is attached to the power supply board 48.
  • the transformer 36 and the input / output terminal are arranged in the recess 24 for the circuit member.
  • a liquid crystal display element LCD is attached to the digital circuit board 34, and the instantaneous flow value or the integrated flow value of the digital display can be externally observed through the cover plate 52.
  • a detachable screw 53 is attached to the upper surface of the housing body member 2 for venting the air in the fluid reservoir. By removing the screw 53, unnecessary air remaining in the upper part in the storage part can be discharged.
  • a communication cable connector 56 is arranged inside the housing body 2.
  • a power cable bush 58 is attached to the lower surface of the housing body member 2.
  • a display section 60 using a liquid crystal display element LCD is arranged on a front portion of the housing body member 2.
  • the fluid is supplied from the fluid supply source to the fluid demanding device via the storage section of the flow meter, particularly via the measurement flow passage 81.
  • the main flow path of the fluid in such a flow meter is indicated by an arrow X in FIG.
  • a filter for removing foreign substances in the fluid can be provided in the flow path in the fluid storage section, for example, below the flow path defining member 9.
  • the gain is compared with a predetermined value in the comparator, and the output of the comparator is input to the heater control unit.
  • the heat control unit controls the heat generation of the heater of the flow rate sensor 10 via the buffer according to the input signal. This control is performed so that the temperature-sensitive resistor Tw of the flow rate sensor 10 maintains a predetermined temperature-sensitive state, that is, an input signal to the heater control unit maintains a predetermined value.
  • This control state corresponds to the instantaneous flow rate, and the data (measured flow rate data) is input to the flow rate conversion circuit.
  • the flow rate conversion circuit calculates and converts the flow rate of the fluid to be measured based on the flow rate data input from the flow rate detection circuit and the fluid temperature data input from the temperature sensor circuit.
  • a display unit, a communication circuit, an EPROM, and a reference clock are connected to the CPU including the flow rate conversion circuit as described above. Data required for the operation is stored in the memory EEPPR0M.
  • Fig. 9 shows the calibration curve of kerosene stored in the memory as the storage means in advance.
  • This calibration curve instantaneous flow rate conversion table
  • This calibration curve is a data table showing the relationship between the flow rate detection circuit output and the instantaneous flow rate corresponding to the integrated value of the heater applied voltage for 0.5 seconds, and is created for each discrete temperature. It consists of multiple individual calibration curves.
  • FIG. 9 shows individual calibration curves ⁇ to ⁇ 4 for four discrete temperatures T to T 4 (5 ° C., 15 ° C., 25 ° C., and 35 ° C.). Although each calibration curve is drawn as a continuous line in FIG. 9, this is for convenience of explanation, and in fact, the output voltage value of the discrete flow detection circuit shown in FIG. 9 ⁇ CJ It shows the correspondence between CJ « and the instantaneous flow rate.
  • Kerosene is supplied from a kerosene tank through piping.
  • a pipe is provided with a cock near the tip opening, and when the cock is opened, kerosene is supplied from the tip opening into the measuring container arranged on the balance, and is supplied into the measuring container. The weight of the kerosene is measured by a balance.
  • the pipe passes through a thermostat, and the pipe in the thermostat has a coil shape.
  • a flow meter is attached to the pipe section following the coil pipe section. The temperature in the thermostat is maintained at T, and kerosene, which has been brought to the temperature T by passing through the coil-shaped piping, passes through the flow meter.
  • F AB (F A -FB) (E h-E AR m) / (EARHI + I-E AR m)
  • the data capacity of the individual calibration curve can be reduced, and this flow rate is already at the reference temperature. Since it is a converted value (calibration value), it is possible to perform instantaneous flow measurement with extremely small measurement error.
  • the measured amount corresponds to the amount of heat generated by burning kerosene as much as possible.
  • the flow measurement of the embodiment of the present invention which measures the amount of the substance more accurately, is preferable.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

流量測定方法及び流量計 技術分野
本発明は、 流体流量測定技術に属するものであり、 特に、 配管内を流れ る流体の瞬時流量あるいは積算流量を測定するための流量測定方法及び流 量計に関する。 明 田
流量計は、 家庭や企業において消費される灯油、 水、 ガスなどの流体の 流量を測定するのに利用されている。 この流量計として、 低価格化が容易 な熱式 (特に傍熱型) の流量センサーを用いたものが利用されている。 傍熱型流量センサーとしては、 基板上に薄膜技術を利用して薄膜発熱体 と薄膜感温体とを絶縁層を介して積層してなるセンサーチップを配管 (外 部配管と連通して流量計内部に設けられた流体流通路を含む) 内の流体と の間で熱伝達 (即ち熱的相互作用) 可能なように配置したものが使用され ている。 発熱体に通電することにより感温体を加熱し、 該感温体の電気的 特性例えば電気抵抗の値を変化させる。 この電気抵抗値の変化 (感温体の 温度上昇に基づく) は、 配管内を流れる流体の流量 (流速) に応じて変化 する。 これは、 発熱体の発熱量のうちの一部が流体中へと伝達され、 この 流体中へ拡散して流体に吸収される熱量は流体の流量 (流速) に応じて変 化し、 これに応じて感温体へと供給される熱量が変化して、 該感温体の電 気抵抗値が変化するからである。 この感温体の電気抵抗値の変化は、 流体 の温度によっても異なり、 このため、 上記感温体の電気抵抗値の変化を測 定する電気回路中に温度補償用の感温素子を組み込んでおき、 流体の温度 による流量測定値の変化をできるだけ少なくすることも行われている。 このような、 薄膜素子を用いた傍熱型流量センサーに関しては、 例え ば、 特開平 1 1— 1 1 8 5 6 6号公報に記載がある。 この流量センサーに おいては、 流体の流量に対応する電気的出力を得るためにプリッジ回路を 含む電気回路を使用している。
以上のような流量計では、 センサーチップと流体との熱交換のための フィンプレートを流体流通路内へと突出させており、 流量センサーの周辺 部には、 流量演算のための回路基板を含む電気回路部、 表示部、 通信回線 接続部その他が配置されており、 これらを含む流量計の機能部の全体は筐 体内に収容されている。
ところで、 傍熱型の流量センサ一を用いた流量計では、 上記のように、 発熱体 (ヒータ) で発生した熱量の一部を流体へと伝達させており、 該流 体で流速に応じた吸熱がなされることに基づき、 この吸熱量に対応する電 気回路出力値から検量線を用いて流量値へと換算している。 この検量線 は、 流量測定される流体について予め行った実験等により得られるもので ある。 従って、 流量測定の際の流体及び環境条件が検量線作成の際と同一 の場合には、 本質的には流量測定誤差が発生することはない。
し力 し、 灯油のように互いに異なる分子量を持つ複数の種類の分子の混 合物からなる流体は温度によって体積が変化するので、 検量線作成の際と 異なる温度で検知が行われた場合の該検量線を用いた換算により得られた 流量値には誤差が含まれることがある。
そこで、 本発明は、 被測定流体が温度変化により体積変化するもので あっても測定誤差の少ない流量測定を行うことを目的とするものである。 特に、 本発明は、 そのような流量測定のための方法及び流量計を提供する ことを目的とするものである。 発明の開示
本発明によれば、 以上の如き目的を達成する'ものとして、
被測定流体を測定流通路に流通させ、 該測定流通路に配置された熱式流 量センサーから前記被測定流体への吸熱量が該被測定流体の前記測定流通 路内での流量に対応することを利用して、 前記熱式流量センサ一を含んで 構成された電気回路で前記測定流通路内での前記被測定流体の流量に対応 する電気的出力を得、 予め作成された検量線を用いて前記流量対応の電気 的出力に対応する流量値への換算を行うことにより前記被測定流体の流量 を測定する方法であって、
前記検量線として前記電気回路の電気的出力と流量との関係を離散的な 温度値ごとに示す複数の個別検量線を用い、 該個別検量線の作成に際し流 量として基準温度における流量に換算されたものを使用し、
温度測定を行い、 測定温度と前記複数の個別検量線とに基づき補間演算 を行って、 測定時の温度に対応する校正流量値を得ることを特徴とする流 量測定方法、
が提供される。
本発明の流量測定方法の一態様においては、 前記個別検量線のそれぞれ は前記電気回路の電気的出力のとり得る値のうちのとびとびの値について 作成されており、 補間演算を行って前記測定時の温度に対応する流量値を 得るようにしてなる。
更に、 本発明によれば、 以上の如き目的を達成するものとして、 被測定流体を流通させる測定流通路と、 該測定流通路に配置された熱式 流量センサ一と、 該熱式流量センサ一を含んで構成された流量検知回路 と、 温度測定手段と、 流量換算回路と、 記憶手段とを備えており、 前記記憶手段には検量線として前記流量検知回路の電気的出力と流量と の関係を離散的な温度値ごとに示す複数の個別検量線が記憶されており、 該個別検量線は流量として基準温度における流量に換算されたものを使用 して作成されており、
前記流量換算回路は、 前記温度測定手段により測定された温度と前記複 数の個別検量線とに基づき補間演算を行って、 測定時の温度に対応する校 正流量値を得ることを特徴とする熱式流量計、
が提供される。
本発明の流量計の一態様においては、 前記熱式流量センサーは前記測定 流通路へと突出した前記被測定流体との熱的相互作用のためのフィンプ レートを有している。
本発明の流量測定方法または流量計の一態様においては、 前記被測定流 体は互いに異なる分子量を持つ複数の種類の分子の混合物例えば灯油であ る。 また、 本発明の流量測定方法または流量計の一態様においては、 前記 基準温度は 1 4〜1 6 °Cの範囲内の温度である。 - ·
以上のような本発明により、 流量測定の精度が向上する理由を以下に説 明する。
各種灯油について温度変化に伴う体積変化を調べた結果、 次のことが見 出された。 即ち、 図 1に示されているように、 4種の灯油 (4社それぞれ の販売に係る灯油) について、 温度が変化すると、 それに伴って体積が変 化し、 その変化は 1 5 °Cの時の体積を基準 (1 . 0 0 ) としてほぼ直線的 な関係をもって変化することがわかった。 これは、 互いに異なる分子量を 持つ複数の種類の分子の混合物である灯油においては、 組成差があつたと しても、 温度変化に対する体積変化は大略同等であることを示すものであ る。
そこで、 本発明においては、 検量線として基準温度時に換算された流量 を使用して作成された離散的な温度値ごとの複数の個別検量線を用意して おき、 これらの個別検量線と測定温度とに基づき補間演算を行つて測定時 の温度に対応する校正された流量値を得ることにより、 流量測定の精度を 向上させている。 図面の簡単な説明
図 1は、 灯油における温度と体積との関係を示すグラフである。
図 2は、 本発明による流量計の実施形態を示す断面図である。
図 3は、 本発明による流量計の実施形態を示す分解断面図である。 図 4は、 本発明による流量計の実施形態を示す断面図である。
図 5は、 本発明による流量計の実施形態を示す正面図である。
図 6は、 本発明による流量計の実施形態を示す平面図である。
図 7は、 流量センサーを示す断面図である。
図 8は、 本発明による流量計の電気回路部の概略構成を示すプロック図 である。
図 9は、 灯油の検量線を示すグラフである。
図 1 0は、 検量線作成の説明図である。
図 1 1は、 本発明による流量計の流量換算回路の動作説明のためのフ 口一チャートである。 発明を実施するための最良の形態
以下、 本発明の実施の形態を、 図面を参照しながら説明する。
図 2〜6は本発明による流量計の一実施形態を示す図である。 流量計の 筐体は本体部材 2と外蓋部材 4とを含んでなる。 本体部材 2はアルミユウ ムゃ亜鉛などのダイカスト製のものであり、 該筐体本体部材 2にはアルミ 二ゥムゃ亜鉛などのダイカスト製の外蓋部材 4が特定方向 (矢印 Aの向 き) にネジ止めにより適合されている。 筐体本体部材 2の一方の側部には 流体入口管 2 1が形成されており他方の側部には流体出口管 2 2が形成さ れている。 筐体本体部材 2には、 2つの隔室が形成されている。 1つの隔 室は上側の貯留部用凹部 2 3であり、 他の 1つは下側の回路部材用凹部 2 4である。 貯留部用凹部 2 3は内壁 2 6により画定されている。
貯留部用凹部 2 3を塞ぐように内壁 2 6の端面に対して矢印 Aの向きに アルミニウムや亜鉛などのダイカスト製の中蓋部材 6の外周面がネジ止め により適合されている。 この適合に際しては、 ゴムシール (コルク入りゴ ムシ一ル等) が介在せしめられ、 適合部からの流体の漏れを防止してい る。 これにより、 筐体本体部材 2と中蓋部材 6との間に流体の一時貯留及 び流通のための流体貯留部が形成されている。 筐体本体部材 2には、 流体 入口管 2 1と連通し且つ貯留部用凹部 2 3にて開口せる開口 2 1 aが形成 されており、 流体出口管 2 2と連通し且つ貯留部用凹部 2 3にて開口せる 接続開口 2 2 aが設けられている。
中蓋部材 6には、 流体貯留部内に配置される流量計測部 8が付設されて いる。 該流量計測部 6には流体流量測定のための測定流通路 8 ίが形成さ れている。 測定流通路 8 1の入口は流量計測部 6の下面に流体貯留空間に 向けて開口している。 また、 測定流通路 8 1の出口には矢印 Αの向きに突 出せる継手部材 8 aが取り付けられており、 中蓋部材 6を筐体本体部材 2 に適合することで継手部材 8 aが筐体本体部材 2側の接続開口 2 2 aに適 合され、 これにより流量計測部 8の測定流通路 8 1の出口と流体出口管 2 2とが連通せしめられている。 流量計測部 8に形成された矢印 Aの方向のセンサー装着孔 8 b内には、 熱式流量センサ一 1 0が挿入されている (尚、 該熱式流量センサー 1 0に ついては、 図 7を参照して後述する) 。 熱式流量センサ一 1 0は熱交換の ための熱伝達部材としてのフィンプレート F P及び外部電極端子 E Tを 有しており、 フィンプレート F Pは流体流通路へと突出せしめられてい る。
中蓋部材 6には、 流体流通経路規定部材 9が取り付けられている。 この 流通経路規定部材 9は、 中蓋部材 6を筐体本体部材 2に適合することで、 流体貯留部内において、 開口 2 1 aから流入する流体の流通経路を規定す るものであり、 流入流体を開口 2 1 aの下方へと導き、 しかる後に流通経 路規定部材 9の下縁と流体貯留部の底面との藺に形成された開口を通じて 流量計測部 8の配置された領域へと導くようにするものである。
図 2他において、 流量計測部 8の測定流通路 8 1が上下方向に延びてい る形態が示されている。 この測定流通路 8 1の下端の開口が流体入口とさ れており、 上端の開口は中蓋部材 6を筐体本体部材 2に適合することで該 筐体本体部材 2の内壁面により閉ざされる。 測定流通路 8 1の上端直下に おいて、 流量計測部 8には矢印 Aの向きの水平孔が形成されており、 これ が流体出口 8 1 aとされている。 この流体出口 8 1 aと筐体本体部材 2側 の接続開□ 2 2 aとは、 矢印 A方向に対応する位置に配置されており、 これらの間には、 0 —リングを介在させて流路継手 8 aが配置されてい る。
流量計測部 8には、 測定流通路 8 1に連なる 2つのセンサ一挿入孔 8 b が形成されており、 その一方には流量センサー 1 0が他方には流体温度検 知センサ一 1 0 ' がそれぞれ 0リングを介在させて挿入されている。 流量 センサ一 1 0は、 例えば図 7に示すように、 フィンプレート F Pと流量検 知部 F Sとを熱伝導性良好な接合材 A Dにより接合し、 流量検知部 F Sの 電極パッドと外部電極端子 E Tとをボンディングワイヤー B Wで接続し、 モールド樹脂 M Rで封止したものとすることができる。 流体温度検知セン サ一 1 0 ' は、 流量センサ一 1 0において流量検知部 F Sの代わりに流体 温度検知部を用い且つこれに対応した外部電極端子 E Tを持つものとする ことができる。 これら流量検知部や流体温度検知部としては、 上記特開平 1 1 - 1 1 8 5 6 6号公報に記載の如きものを使用することができる。 また、 図 3に示されているように、 流量計測部 8には、 測定流通路 8 1 内の流体の温度を検知するための温度センサ一 1 2が配置されている。 流 量計測部 8は熱伝導性良好であるので、 その温度は測定流通路 8 1内の流 体の温度とほぼ同一である。 従って、 温度センサ一 1 2により測定流通路 8 1の近傍において流量計測部 8の温度を測定することで、 流体温度測定 を行うことが可能である。
これらのセンサ一 1 0 , 1 0 ' , 1 2は、 押え部材 4 2により位置固定 されており、 その上にアナログ回路基板 4 4が配置されている。 アナログ 回路基板 4 4は、 流量センサー 1 0及び流体温度検知センサー 1 0 ' の外 部電極端子 E Tと電気的に接続されている。
また、 外蓋部材 4には、 アナログ回路基板 4 4とともに流量検知回路を 構成するデジタル回路基板 3 4、 電源回路部を構成するトランス 3 6、 及 び流量計に対する入出力端子部としての電源基板 4 6, 4 8が取り付けら れており、 電源基板 4 8には電源ケーブル取り付け端子 5 0が取り付けら れている。 特に、 トランス 3 6及び入出力端子部は、 回路部材用凹部 2 4 内に配置されている。 デジタル回路基板 3 4には液晶表示素子 L C Dが取 り付けられており、 カバ一板 5 2を介して外部からデジタル表示の瞬時流 量値または積算流量値を観察することができる。
図 5及び図 6は、 それぞれ主として正面外観及び平面外観を示すもので ある。 筐体本体部材 2の上面部には、 流体貯留部内の空気抜きのための着 脱自在なねじ 5 3が取り付けられている。 このネジ 5 3を取り外すことで 貯留部内の上部に残留する不要空気を排出することができる。 筐体本体部 材 2の内部には、 電源ケーブル取り付け端子 5 0に加えて通信ケーブルコ ネクタ 5 6が配置されている。 筐体本体部材 2の下面部には電源ケ一ブル 用ブッシュ 5 8が取り付けられている。 また、 筐体本体部材 2の正面部に は、 液晶表示素子 L C Dを用いた表示部 6 0が配置されている。
以上の実施形態においては、 不図示の流体供給源から配管を通じて供給 される流体は、 流体入口管 2 1から開口 2 1 aを通って流体貯留部内へと 供給される。 供給された流体は、 先ず流通経路規定部材 9により規定され た下向きの流通経路に沿つて流体貯留部の底部へと進み、 流量計測部 8の 配置された領域に至る。 このようにして貯留された流体のレベルは、 次第 に貯留部内で上昇し、 やがて流量計測部 8をも完全に浸漬させる。 その際 に、 測定流通路 8 1内にも流体が浸入する。 測定流通路 8 1内に浸入した 流体は、 接続開口 2 2 aを通って流体出口管 2 2から排出され、 不図示の 流体需要機器へと供給される。 以後、 流体需要機器側で流体需要がある と、 流量計の貯留部内とくに測定流通路 8 1を経由して、 流体供給源から 流体需要機器へと流体が供給される。 このような流量計内の流体の主たる 流通の経路を図 2において矢印 Xで示す。 尚、 流体貯留部内の流通経路に は、 例えば流通経路規定部材 9の下部に、 流体中の異物除去のためのフィ ルタを設けておくことができる。
測定流通管 8 1内の流体流量が、 流量センサ一 1 0及び流体温度検知セ ンサー 1 0 ' を含む図 8に示すような流量検知回路を用いて計測される。 図 8において、 流量検知回路には流量センサ一 1 0及び流体温度検知セン サ一 1 0 ' が含まれている。 流量センサー 1 0では、 ヒータと感温抵抗体 T wとが絶縁膜を介して積層された流量検知部が形成されており、 ヒ一夕 の発熱の一部は上記フィンプレート F Pを介して測定流通路 8 1内を流通 する流体へと伝達される。 この流体との熱的相互作用の影響を受けた感温 力^ 感温抵抗体 T wにより実行される。 感温抵抗体 T wと流体温度検知セ ンサー 1 0 ' の流体温度検知部の感温抵抗体 T oと 2つの抵抗体とにより プリッジ回路が形成されており、 このプリッジ回路の出力が増幅回路で増 幅され、 コンパレー夕で所定値との比較がなされ、 該コンパレー夕の出力 がヒータ制御部に入力される。 ヒー夕制御部は、 入力信号に従い、 バッ ファを介して流量センサー 1 0のヒータの発熱を制御する。 この制御は、 流量センサー 1 0の感温抵抗体 T wが所定の感温状態を維持するように、 即ちヒータ制御部への入力信号が所定値を維持するように為される。 この 制御状態は瞬時流量に対応しており、 そのデータ (測定流量データ) は流 量換算回路へと入力される。
温度センサー 1 2を含む温度センサ回路から流量換算回路に流体温度を 示す信号が入力される。
流量換算回路では、 上記流量検知回路から入力される流量データと、 上 記温度センサ回路から入力される流体温度データとに基づき、 演算及び換 算を行って被測定流体の流量を得る。
以上のような流量換算回路を含む C P Uには、 表示部、 通信回路、 E E P R O M及び基準クロックが接続されている。 メモリである E E P R 0 M には演算に必要なデータが記憶されている。
以下に、 流量換算回路で実行される演算及び流量への換算の方法につい て説明する。
図 9に、 予め記憶手段たるメモリに記憶されている灯油の検量線を示 す。 この検量線 (瞬時流量換算テーブル) は、 ヒータ印加電圧の 0 . 5秒 間の積算値に対応する流量検知回路出力と瞬時流量との関係を示すデータ テーブルであり、 とびとびの温度ごとに作成された複数の個別検量線より なる。 図 9には、 4つの離散的な温度 T 〜T 4 ( 5 °C、 1 5 °C、 2 5 °C 及び 3 5 °C) についての個別検量線 Ί 〜Τ 4 が示されている。 図 9で は、 各検量線が連続した線として描かれているが、 これは説明の便宜上の ことであり、 実際には、 図 9に示されているとびとびの流量検知回路出力 電圧値 Ε CJ CJ … … と瞬 時流量との対応関係を示すものである。
以上のような個別検量線の作成方法について、 図 1 0を参照して説明す る。
灯油タンクから、 配管を通して灯油を供給する。 配管には先端開口部の 近傍においてコヅクが付されており、 該コックを開くことで先端開口部か ら天秤上に配置された計量容器内へと灯油が供給され '計量容器内へ供 紿された灯油の重量が天秤により測定される。 配管は恒温槽内を通ってお り、 該恒温槽内の配管部分はコイル状とされている。 恒温槽内では、 コィ ル状配管部分に続く配管部分に流量計が付設されている。 恒温槽内の温度 は Tに維持されており、 コィル状配管部分の通過により温度 Tとされた灯 油が流量計を通過する。
コックの開度を調節することで配管内の灯油の流量を調節し、 測定時間 内において計量容器に供給された灯油の重量を天秤により測定する。 そし て、 瞬時流量 Fの値として、 F = (測定された灯油重量) Z (基準温度 [例えば 1 5°C] での灯油の比重) / (測定時間) を得る。 従って、 -この 瞬時流量 Fは、 基準温度における流量に換算された値である。 一方、 この 時の流量計の検知回路出力 Vを測定する。 コックの開度を種々変化させて 同様な測定を行うことで、 温度 Tにおける個別検量線を得ることができ る。
このような測定を、 恒温槽内温度 Tのいくつかの離散的な値 (図 9の場 合には 5°C、 15。C、 25°C及び 35°C) について測定することで、 図 9 に示すような複数の個別検量線が得られる。
さて、 流量測定時において、 温度センサ回路かち流量換算回路へと温度— 値 Tが入力される。 流量換算回路では、 図 9のような複数の個別検量線を 用いて、 検知回路出力 V及び温度値 Tに基づき、 図 1 1で示されるような 手順によりデータ補間演算を行って瞬時流量値 Fを得る。
即ち、 先ず、 検知回路出力の値 Ehが入力される (S 1) 。
次に、 測定された温度値 T (図 9の例では 22°C) について Tn ≤Τ< Τη + ι となる個別検量線 Τη , Τη + ι (図 9の例では η= 2 ;即ち Τ2 [= 15°C] , Τ3 [=25°C] ) を選択する (S 2) 。
次に、 E ARm ≤Eh<E ARm+ 1 となる電圧値 E ARm ) ARm+ 1 を得る。 そして、 電圧値 EARm , EARm+1 を個別検量線 Tn , Τη + ι 上の瞬時流量 値 F。 , FA ; FB , FAへと換算する (S 3) 。
次に、 , FA ; FB , FA から、 データ補間演算により Ehに対応 する Tn , Τη + . 上の瞬時流量値 Fab, FABを得る。 この際には、 以下の 式 (1 ) , (2)
F ab= (Fa - Fb ) · (E h - E ARm ) / β ARm+1 - E ARm )
Figure imgf000012_0001
F AB= (FA - FB ) · (E h - EARm ) / (EARHI+I - EARm )
+ FB (2)
を用いる (S4) 。
次に、 Fatt, FABから、 データ補間演算により温度 Tの場合の Ehに対 応する瞬時流量値 Ftを得る。 この際には、 以下の式 (3)
F t二 (Fab— FAB) · (t -T3 ) / (Τ2 一 Τ3 ) +FAB
(3)
を用いる (S 5) 。
以上のようにしてデータ補間演算を行って測定時の温度 Tでの瞬時流量 値 F七を得ることで、 個別検量線のデータ容量を低減することができ、 し かもこの流量は既に基準温度に換算されたもの (校正値) であるので、 測 定誤差の極めて少ない瞬時流量測定を行うことが可能となる。
CPUでは、 得られた瞬時流量値を積分することで、 積算流量値を得る 演算をも行う。 以上のようにして得られた瞬時流量値及び積算流量値など の流量出力は、 表示部により表示される。 尚、 CPUからの指令により、 瞬時流量値及び積算流量値を適宜メモリに記憶させるようにすることがで き、 更に、 電話回線その他のネットワークからなる通信回線を介して外部 へと伝送させるようにすることができる。
灯油の消費量を測定する場合には、 灯油の使用目的からみて、 その測定 量はできるだけ灯油燃焼により発生する熱量に対応するものであることが 好ましく、 その意味で灯油の体積ではなく該灯油の物質量をより正確に測 定する本発明実施形態の流量測定は好ましいものである。 産業上の利用可能性
以上説明したように、 本発明の流量測定方法及び流量計によれば、 被測 定流体が温度により体積変化を来すものであつても測定誤差の少ない流量 測定を行うことが可能となる。

Claims

2
1 . 被測定流体を測定流通路に流通させ、 該測定流通路に配置された 熱式流量センサ一から前記被測定流体への吸熱量が該被測定流体の前記測 定流通路内での流量に対応することを利用して、 前記熱式流量センサ一を 含んで構成された電気回路で前記測定流通路内での前記被測定流体の流量
に対応する電気的出力を得、主冃予め作成された検量線を用いて前記流量対応 の電気的出力に対応する流量値への換算を行うことにより前記被測定流体 の流量を測定する方法であって、 の
前記検量線として前記電気回路の電気的出力と流量との関係を離散的な 温度値ごとに示す複数の個別検量線を用い、 囲該個別検量線の作成に際し流 量として基準温度における流量に換算されたものを使用し、
温度測定を行い、 測定温度と前記複数の個別検量線とに基づき補間演算 を行って、 測定時の温度に対応する校正流量値を得ることを特徴とする流 量測定方法。
2 . 前記個別検量線のそれぞれは前記電気回路の電気的出力のとり得 る値のうちのとびとびの値について作成されており、 補間演算を行って前 記測定時の温度に対応する流量値を得るようにしてなることを特徴とす る、 請求項 1に記載の流量測定方法。
3 . 前記被測定流体は互いに異なる分子量を持つ複数の種類の分子の 混合物であることを特徴とする、 請求項 1 〜 2のいずれかに記載の流量測 定方法。
4 . 前記被測定流体は灯油であることを特徴とする、 請求項 3に記載 の流量測定方法。
5 . 前記基準温度は 1 4〜 1 6 °Cの範囲内の温度であることを特徴と する、 請求項 1 〜 4のいずれかに記載の流量測定方法。
6 . 被測定流体を流通させる測定流通路と、 該測定流通路に配置され た熱式流量センサーと、 該熱式流量センサーを含んで構成された流量検知 回路と、 温度測定手段と、 流量換算回路と、 記憶手段とを備えており、 前記記憶手段には検量線として前記流量検知回路の電気的出力と流量と の関係を離散的な温度値ごとに示す複数の個別検量線が記憶されており、 該個別検量線は流量として基準温度における流量に換算されたものを使用 して作成されており、
前記流量換算回路は、 前記温度測定手段により測定された温度と前記複 数の個別検量線とに基づき補間演算を行つて、 測定時の温度に対応する校 正流量値を得ることを特徴とする熱式流量計。
7 . 前記熱式流量センサーは前記測定流通路へと突出した前記被測定 流体との熱的相互作用のためのフィンプレートを有していることを特徴と する、 請求項 6に記載の熱式流量計。
8 . 前記被測定流体は互いに異なる分子量を持つ複数の種類の分子の 混合物であることを特徴とする、 請求項 6〜7のいずれかに記載の熱式流
9 . 前記被測定流体は灯油であることを特徴とする、 請求項 8に記載 の熱式流量計。
1 0 . 前記基準温度は 1 4〜 1 6での範囲内の温度であることを特徴 とする、 請求項 6〜 9のいずれかに記載の熱式流量計。
PCT/JP2001/006923 2000-08-10 2001-08-10 Procede servant a mesurer un debit et debitmetre WO2002014799A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-7001422A KR20030022342A (ko) 2000-08-10 2001-08-10 유량 측정방법 및 유량계
EP01956839A EP1326062A1 (en) 2000-08-10 2001-08-10 Flow rate measuring method and flow-meter
US10/344,033 US6983214B2 (en) 2000-08-10 2001-08-10 Flow rate measuring method and flow-meter
CA002418661A CA2418661A1 (en) 2000-08-10 2001-08-10 Flow rate measuring method and flow-meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000243226A JP2002054964A (ja) 2000-08-10 2000-08-10 流量測定方法及び流量計
JP2000-243226 2000-08-10

Publications (1)

Publication Number Publication Date
WO2002014799A1 true WO2002014799A1 (fr) 2002-02-21

Family

ID=18734114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006923 WO2002014799A1 (fr) 2000-08-10 2001-08-10 Procede servant a mesurer un debit et debitmetre

Country Status (7)

Country Link
US (1) US6983214B2 (ja)
EP (1) EP1326062A1 (ja)
JP (1) JP2002054964A (ja)
KR (1) KR20030022342A (ja)
CN (1) CN1240997C (ja)
CA (1) CA2418661A1 (ja)
WO (1) WO2002014799A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536900B2 (en) 2003-07-11 2009-05-26 Mitsui Mining & Smelting Co., Ltd. Leak detector and leak detecting system using the same
US7030768B2 (en) * 2003-09-30 2006-04-18 Wanie Andrew J Water softener monitoring device
EP1779073A4 (en) * 2004-08-13 2008-05-07 Entegris Inc SYSTEM AND METHOD FOR CALIBRATING A FLOW APPARATUS
US20090122831A1 (en) * 2007-11-14 2009-05-14 Ema Electronics Corp. Intelligent flow/temperature measuring device
JP5276470B2 (ja) * 2009-02-25 2013-08-28 ベックマン コールター, インコーポレイテッド 分析装置および分析方法
KR101084275B1 (ko) * 2009-09-22 2011-11-16 삼성모바일디스플레이주식회사 소스 가스 공급 유닛, 이를 구비하는 증착 장치 및 방법
DE102010028267A1 (de) * 2010-04-27 2011-10-27 Robert Bosch Gmbh Vorrichtung zur Erfassung einer Eigenschaft eines strömenden fluiden Mediums
IL213767A (en) 2011-06-23 2017-05-29 Adler Michael A method and device for measuring fluid flow rate
JP5743922B2 (ja) * 2012-02-21 2015-07-01 日立オートモティブシステムズ株式会社 熱式空気流量測定装置
US9207109B2 (en) * 2013-04-09 2015-12-08 Honeywell International Inc. Flow sensor with improved linear output
US10591332B2 (en) * 2015-08-31 2020-03-17 Hitachi Automotive Systems, Ltd. Airflow meter
KR101776582B1 (ko) * 2017-01-23 2017-09-08 서명철 수도미터의 성능 검사방법
USD1011943S1 (en) 2017-10-13 2024-01-23 Aj1E Superior Solutions, Llc Salt tank monitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159838A (ja) * 1994-12-09 1996-06-21 Ricoh Co Ltd 流量計
JPH11153466A (ja) * 1997-11-21 1999-06-08 Mitsui Mining & Smelting Co Ltd 流量センサー

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891391A (en) * 1973-05-14 1975-06-24 George R Boone Fluid flow measuring system using improved temperature compensation apparatus and method
EP0132374B1 (en) * 1983-07-20 1988-01-20 Tokyo Tatsuno Company Limited Device for measuring liquid flow volume with temperature compensating
JPH0663803B2 (ja) * 1989-08-07 1994-08-22 山武ハネウエル株式会社 零点補償方法
JPH11118566A (ja) 1997-10-15 1999-04-30 Mitsui Mining & Smelting Co Ltd 流量センサー

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159838A (ja) * 1994-12-09 1996-06-21 Ricoh Co Ltd 流量計
JPH11153466A (ja) * 1997-11-21 1999-06-08 Mitsui Mining & Smelting Co Ltd 流量センサー

Also Published As

Publication number Publication date
CN1443301A (zh) 2003-09-17
KR20030022342A (ko) 2003-03-15
US6983214B2 (en) 2006-01-03
CA2418661A1 (en) 2002-02-21
CN1240997C (zh) 2006-02-08
EP1326062A1 (en) 2003-07-09
JP2002054964A (ja) 2002-02-20
US20030167837A1 (en) 2003-09-11

Similar Documents

Publication Publication Date Title
EP1314966A1 (en) Flow metering method and flowmeter
JP6731936B2 (ja) Mems熱式流量センサ、及び流体の流量を測定する方法
US6910387B2 (en) Vortex flow sensor for measuring fluid flow through a flow tube
US6681625B1 (en) Constant-temperature-difference bidirectional flow sensor
JP4316083B2 (ja) 流体判別機能を有する熱式流量計
WO2000079221A1 (fr) Detecteur de debit, debitmetre et capteur de flux
WO2002014799A1 (fr) Procede servant a mesurer un debit et debitmetre
US6474155B1 (en) Constant-temperature-difference flow sensor
WO2001031299A1 (fr) Debitmetre
US7334455B2 (en) Leak detector of liquid in tank
RU2286544C2 (ru) Измерительный преобразователь вихревого течения
US7650783B2 (en) Thermal mass flow meter
JP4808905B2 (ja) ガスメータ
WO2002077577A1 (en) A device for measuring gas flow-rate, particularly for burners
JP4828702B2 (ja) ガスメータ
JP2000028411A (ja) 流量センサー及び流量検出装置
JP2003302271A (ja) 流量測定部パッケージ及びそれを用いた流量測定ユニット
US6736005B2 (en) High accuracy measuring and control of low fluid flow rates
JP4443789B2 (ja) 流量測定方法及び流量計
JP4443739B2 (ja) 流量測定方法及び流量計
WO2002054021A1 (fr) Debitmetre
CN214251092U (zh) 一种集流量计和温度传感器为一体的检测器
RU2506543C1 (ru) Датчик контроля дискретных уровней жидкости с функцией измерения температуры и контроля массового расхода жидкой среды
RU2247330C2 (ru) Преобразователь расхода
JP2002022510A (ja) 流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 018129609

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037001422

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10344033

Country of ref document: US

Ref document number: 2418661

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001956839

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037001422

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001956839

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001956839

Country of ref document: EP