WO2002014405A1 - Verbessertes verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl - Google Patents

Verbessertes verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl Download PDF

Info

Publication number
WO2002014405A1
WO2002014405A1 PCT/EP2001/008525 EP0108525W WO0214405A1 WO 2002014405 A1 WO2002014405 A1 WO 2002014405A1 EP 0108525 W EP0108525 W EP 0108525W WO 0214405 A1 WO0214405 A1 WO 0214405A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
macroporous
heterogeneous catalyst
tetrahydrofuran
weight
Prior art date
Application number
PCT/EP2001/008525
Other languages
English (en)
French (fr)
Inventor
Christoph Sigwart
Anton Meier
Michael Hesse
Volkmar Menger
Klaus-Peter Pfaff
Arthur Höhn
Lothar Franz
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP01960543A priority Critical patent/EP1311583A1/de
Priority to JP2002519539A priority patent/JP2004506763A/ja
Priority to US10/343,982 priority patent/US6852869B2/en
Priority to AU2001282013A priority patent/AU2001282013A1/en
Priority to KR10-2003-7002245A priority patent/KR20030031155A/ko
Publication of WO2002014405A1 publication Critical patent/WO2002014405A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/322Polymers modified by chemical after-treatment with inorganic compounds containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/20Tetrahydrofuran

Definitions

  • the present invention relates to a process for the preparation of polytetrahydrofuran, tetrahydrofuran copolymers, diesters or monoesters of these polymers with a low color number by hydrogenation of the polymers obtained by cationic polymerization of tetrahydrofuran in the presence of a macroporous heterogeneous catalyst.
  • PTHF Polytetrahydrofuran
  • polyoxybutylene glycol is a versatile intermediate in the plastic and synthetic fiber industry and is used, among other things, for the production of polyurethane, polyester and polyamide elastomers.
  • PTHF polytetrahydrofuran
  • it is a valuable auxiliary in many applications, for example as a dispersing agent or when decolorizing ("deinking") waste paper.
  • PTHF is technically advantageously produced by polymerizing tetrahydrofuran (THF) on suitable catalysts in the presence of reagents, the addition of which enables the chain length of the polymer chains to be controlled and the average molecular weight to be adjusted to the desired value (chain termination reagents or “telogens”) ).
  • the control is done by selecting the type and amount of the telogen.
  • telogens chain termination reagents
  • additional functional groups can be introduced at one end or both ends of the polymer chain.
  • the mono- or diesters of PTHF can be produced by using carboxylic acids or carboxylic anhydrides as telogens.
  • telogens not only act as chain termination reagents, but are also incorporated into the growing polymer chain of the PTHF, i.e. they not only function as a telogen, but also as a comonomer and can therefore be called telogen or comonomer with equal justification.
  • comonomers are telogens with two hydroxyl groups, such as the dialcohols.
  • dialcohols are ethylene glycol, propylene glycol, butylene glycol, 1,4-butanediol, 2-butyn-1, 4-diol, 1, 6-hexanediol or low molecular weight PTHF.
  • comonomers are 1,2-alkylene oxides, such as, for example, ethylene oxide or propylene oxide, 2-methyltetrahydrofuran or 3-methyltetrahydrofuran.
  • 1,2-alkylene oxides such as, for example, ethylene oxide or propylene oxide, 2-methyltetrahydrofuran or 3-methyltetrahydrofuran.
  • the use of such comonomers leads to the production of tetrahydrofuran copolymers.
  • the PTHF can be chemically modified.
  • acidic catalysts are suitable for the polymerization of THF on an industrial, economic scale, but they have the disadvantageous effect that polymers with yellow to brownish discolorations are obtained. The discoloration increases with the temperature during the polymerization.
  • the purity of the PTHF also depends on the quality of the THF used. Numerous processes for the pretreatment of technical THF for the purpose of quality improvement have therefore been proposed. For example, DE-A-2 801 792 describes a process in which THF is treated with bleaching earth before the polymerization. Although polymers with an improved color number are obtained, this treatment method cannot always be applied reproducibly to every available technical quality of the THF.
  • polytetramethylene ether glycol or glycol diester with a low color number is prepared by subjecting the polymers obtained by cationic polymerization of THF to a treatment with hydrogen in the presence of a hydrogenation catalyst. If you use a THF quality for the polymerization that is available on the market, you are forced to use hydrogenating decolorization at very high hydrogen pressures of e.g. 50 to 300 bar.
  • PCT / WO 94/05719 discloses a process for the production of polytetrahydrofuran diesters, in which the polymerization of the THF on acid-activated kaolin, zeolites or amorphous aluminum silicates is carried out in the presence of 1 to 10% by weight of a hydrogenation catalyst and hydrogen.
  • a process has now been found for the preparation of polytetrahydrofuran, tetrahydrofuran copolymers, diesters or monoesters of these polymers with a low color number, which is characterized in that the polymers obtained by cationic polymerization of tetrahydrofuran in the presence of a macroporous, supported heterogeneous catalyst which is known as Active metal at least one metal from VII.
  • Active metal at least one metal from VII.
  • X Subgroup of the Periodic Table of the Elements, are hydrogenated.
  • the new process enables high-purity polytetrahydrofuran, high-purity tetrahydrofuran copolymers and high-purity diesters or monoesters of these polymers with a low color number to be produced reliably and reproducibly. Because of the high activity and service life of the macroporous catalysts used, the hydrogenation can be carried out with short residence times and under gentle conditions.
  • the process according to the invention can be applied to all polymers which are obtained by cationic polymerization of tetrahydrofuran.
  • Polytetrahydrofuran, tetrahydrofuran copolymers, diesters or monoesters of these polymers can be obtained by processes known per se, as described, for example, in DE 44 33 606 and DE 19649803.
  • polymerization discharges of the cationic polymerization of tetrahydrofuran can be used directly for the process according to the invention, which contain, among other things, unreacted tetrahydrofuran, telogen and / or comonomer.
  • prepurified polymers i.e. polymers from which, for example, unreacted tetrahydrofuran or low molecular weight polymerization products have been separated off by distillation or other suitable processes.
  • the polymers are hydrogenated in the presence of a macroporous heterogeneous catalyst which contains at least one metal from subgroup VII to X of the periodic table of the elements, applied to a support, as the active metal.
  • a macroporous heterogeneous catalyst which contains at least one metal from subgroup VII to X of the periodic table of the elements, applied to a support, as the active metal.
  • the pri- The yellowish brown color of the polymers disappears and colorless products are formed.
  • the macroporous heterogeneous catalyst can in principle contain all metals from subgroups VII to X of the periodic table of the elements as active metal. Palladium, ruthenium, rhenium, nickel, iron and cobalt or a mixture of two or more active metals are preferably used as active metals,
  • macroporous is used in the context of the present invention as used in Pure Appl. Chem., 46., S 79 (1976), namely as pores whose diameter is above
  • the content of macropores of the heterogeneous catalyst used according to the invention with a pore diameter of more than 100 nm, based on the total pores, ie the macroporosity of the heterogeneous catalyst is more than 10% by volume, preferably more than 20% by volume, particularly preferably 25 to 90
  • the content of the active metal is generally 0.01 to 10% by weight, preferably 0.05 to 5% by weight and in particular 0.1 to 3% by weight, based on the total weight of the catalyst.
  • the total surface area of the metal on the macropous supported catalyst used according to the invention is preferably 0.01 to 10 m 2 / g, more preferably approximately 0.05 to 5 m 2 / g, in particular approximately 0.05 to 3 m 2 / g of the catalyst ,
  • the macroporous heterogeneous catalysts used according to the invention can be produced industrially by various processes known per se, for example by applying at least one metal from sub-groups VII to X. Subgroup of the Periodic Table of the Elements on a suitable macroporous support.
  • the application can be carried out by impregnating the carrier with aqueous metal salt solutions, such as. aqueous palladium salt solutions, by spraying on corresponding metal salt solutions the carrier or by other suitable methods.
  • aqueous metal salt solutions such as. aqueous palladium salt solutions
  • Subgroups of the Periodic Table of the Elements are nitrates, nitrosyl nitrates, halides, carbonates, carboxylates, acetylacetonates, chloro complexes, nitro complexes or amine complexes of the corresponding metals, nitrates and nitrosyl nitrates being preferred.
  • the metal salts or their solutions can be applied simultaneously or in succession.
  • the supports coated or impregnated with metal salt solutions are then dried, preferably at temperatures between 100 ° C. and 150 ° C., and optionally calcined at temperatures between 200 ° C. and 600 ° C., preferably 350 ° C. to 450 ° C.
  • the catalyst is dried after each impregnation step and optionally calcined, as described above. The order in which the active components are soaked is freely selectable.
  • the coated and dried and optionally calcined supports are then activated by treatment in a gas stream which contains free hydrogen at temperatures from 30 ° C. to 600 ° C., preferably between 150 ° C. and 450 ° C.
  • the gas stream preferably consists of 50 to 100% by volume of H 2 and 0 to 50% by volume of N 2 .
  • the support materials which can be used to prepare the catalysts used according to the invention are those which are macroporous and have an average pore diameter of at least 50 nm, preferably at least 100 nm, in particular 500 nm, and whose surface area according to BET is at most approximately 300 m 2 / g, preferably about 15 m 2 / g, more preferably about 10 m 2 / g, in particular about 5 m 2 / g and more preferably at most 3 m 2 / g.
  • the surface of the support is determined by the BET method by N 2 adsorption, in particular in accordance with DIN 66131.
  • the pore diameter and pore distribution are determined by mercury porosimetry, in particular in accordance with DIN 66133.
  • activated carbon silicon carbide, silicon oxide, mullite, cordierite, aluminum oxide, titanium oxide, zirconium oxide, magnesium oxide, zinc oxide or de- mixtures, more preferably aluminum oxide and zirconium dioxide and mullite, are used, particularly preferably aluminum oxide.
  • the macroporous heterogeneous catalysts used according to the invention can be produced industrially by the process known from EP-A-653 243, in which active metal and macropores are introduced in one step.
  • the macroporous heterogeneous catalysts used according to the invention are obtained by dissolving a water-soluble salt of a metal from VII. To X. Subgroup of the Periodic Table of the Elements in an organic solvent, adding the solution thus obtained with an organic polymer , which is able to bind at least ten times its own weight in water, then mixing the polymer with a catalyst support material and molding the resulting mass, drying and calcining.
  • Suitable water-soluble salts of a metal from VII. To X. Subgroup of the Periodic Table of the Elements are preferably nitrates, nitosyl nitrates, halides, carbonates, carboxylates, acetyl acetonates, chloro complexes, nitro complexes or amine complexes of the corresponding metals, nitrates and nitrosyl nitrates being particularly preferred are.
  • Preferred solvents are water-miscible solvents such as alcohols, ethers and amines.
  • Alcohols in particular include Cl-C4 alcohols such as methanol, ethanol, isopropanol and n-butanol; tetrahydrofuran can be used as an ether.
  • Suitable amines are, for example, ammonia, monoamines such as diethylamine, methylamine, triethylamine, ethylamine, propylamine and butylamine.
  • Crosslinked polymers of acrylic acid, acrylic acid and acrylamide and of acrylamide are preferably used as the organic polymer, partially neutralized sodium polyacrylates which are weakly crosslinked being particularly preferred.
  • Suitable chemical crosslinking agents are, for example, diols such as ethylene glycol, polyethylene glycol and polyols, diamines, dienes in amounts of 0.1 to 5% by weight, based on the polymer.
  • Preferred carrier materials are activated carbon, silicon carbide, aluminum oxide, titanium oxide, mullite, cordierite, zirconium oxide, magnesium oxide, zinc oxide or mixtures thereof, more preferably aluminum oxide and zirconium dioxide and mullite, particularly preferably aluminum oxide.
  • the macroporous catalysts used according to the invention can be produced industrially using pore formers by the process known from EP-A 842 699.
  • All water-miscible polymers can be used as pore formers, provided that they have a molar mass of more than approximately 6,000 to 500,000 g / mol.
  • Their molecular weight is preferably from about 10,000 to about 200,000 g / mol, more preferably from about 13,000 to about 150,000 g / mol, and in particular from about 13,000 to about 50,000 g / mol.
  • useful polymers include polyvinyl chloride, copolymers of an olefin with polar comonomers, e.g.
  • Meth (methyl) acrylate copolymers such as e.g. Methacrylonitrile-styrene copolymers, polyalkyl (meth) acrylates, cellulose acetate, cellulose aceate butyrate, polycarbonates, polysulfones, polyphenyl oxide, polyesters, such as e.g. Butylene terephthalate and polyvinyl alcohol, with polyvinyl alcohol being particularly preferred.
  • X. Subgroup of the Periodic Table of the Elements is first produced in a known manner according to the method known from DE 2 159 736.
  • a kneading compound is then produced from this alloy, a shaping agent, water and the pore former, this kneading compound is deformed into shaped bodies, the shaped body is calcined, and finally the calcined shaped body is treated with a alkali metal hydroxide.
  • the macroporous catalysts used according to the invention are preferably produced by impregnating at least one metal from sub-groups VII to X. Subgroup of the Periodic Table of the Elements on a suitable macroporous support.
  • the macroporous catalysts used according to the invention can additionally be doped with bases in order to avoid cleavage of the polymer during the hydrogenation, especially at high hydrogenation temperatures.
  • bases are, for example, basic oxides such as alkali or alkaline earth metal oxides such as sodium oxides, potassium oxides, calcium oxides, barium oxides. Sodium oxides are particularly preferred.
  • These oxides, or their precursors such as the respective hydroxides, carbonates or hydroxide carbonates, can be concentrated, for example, by impregnation in the supernatant solution, spray impregnation or during the build-up agglomeration of the carrier in concentrations of 0.05-5%, based on the weight of the Catalyst to which catalyst is applied. If appropriate, this is followed by tempering for the thermal decomposition of the precursors.
  • the macroporous catalysts used according to the invention can be pre-reduced with hydrogen before they are used in the hydrogenation.
  • the macroporous catalysts which can be used according to the invention can be in the form of powder, for example when carrying out the process in suspension mode, or expediently as shaped articles, e.g. in the form of strands, cylinders, balls, rings or grit, in particular in the case of a fixed bed arrangement of the catalyst, can be used in the process according to the invention.
  • the hydrogenation according to the invention can be carried out batchwise or continuously, the continuous mode of operation being generally preferred for economic reasons.
  • the hydrogenation can be carried out in conventional reactors or reactor arrangements suitable for continuous processes in suspension or fixed bed procedures, for example in loop reactors or stirred reactors in the suspension mode or in the fixed bed mode in tubular reactors or fixed bed reactors, the fixed bed mode being preferred.
  • the hydrogenation according to the invention will move at hydrogen from 1 to 200 bar of hydrogen, preferably at 1 to 50 bar, particularly preferably at 5 to 25 bar, and temperatures from 20 to 200 ° C., preferably at 50 to 150 ° C., particularly preferably 70 up to 140 ° C.
  • the residence time depends on the desired color number result and is usually a maximum of approximately 20 h, preferably 15 h, particularly preferably a maximum of approximately 10 h.
  • the catalyst loading is usually 0.05 to 2.0 kg of polymer / (1 catalyst * h), preferably 0.1 to 1.0 kg of polymer / (1 catalyst * h), particularly preferably 0.1 to 0 , 5 kg polymer / (1 catalyst * h).
  • the hydrogenation according to the invention can be carried out in the presence and absence of a solvent or diluent.
  • a solvent or diluent can be used as the solvent or diluent, which forms a homogeneous solution with the polymer to be hydrogenated and is largely inert under the reaction conditions, for example ethers such as tetrahydrofuran, dioxane or aliphatic alcohols, in which the alkyl radical preferably has a length of 1 to 10 carbon atoms, such as Methanol, ethanol and propanol. Tetrahydrofuran and / or methanol is preferably used.
  • the amount of solvent or diluent used is not particularly limited and can be freely selected as required, but preference is given to amounts which are 10 to 90% by weight, preferably 20 to 50% by weight. lead solution of the polymer intended for hydrogenation.
  • Catalyst B contained 0.22% by weight of palladium and a macropore content of approximately 36%.
  • aqueous palladium nitrate solution (11% by weight palladium) were diluted with 420 ml of water and onto 730 g of a macroporous aluminum carrier in spherical form (2-4 mm spheres, gamma Al 0, BET surface area 230 m 2 / g) sprayed on.
  • the drying and tempering was carried out as described for catalyst A.
  • Catalyst C contained 0.21% by weight of palladium and a macropore content of approximately 32%.
  • aqueous palladium nitrate solution (11% by weight palladium) were diluted with 1000 ml of water and on 1042 g of a macroporous aluminum support in the form of a strand (1.5 mm strands, gamma / theta-Al0 3 , BET surface area 85 m 2 / g) sprayed on.
  • the drying and tempering was carried out as described for catalyst A.
  • the catalyst D contained 0.22% by weight of palladium and a macropore fraction of approximately 33%.
  • 59.3 g of an aqueous palladium nitrate solution (12.6% by weight palladium) were diluted with 940 ml of water and on 2993 g of a macroporous aluminum support in the form of a strand (4 mm strands, alpha-Al 0 3 , BET surface area 6, 4 m 2 / g) sprayed on.
  • the drying and tempering was carried out as described for catalyst A.
  • Catalyst E contained 0.24% by weight of palladium and a macropore content of approximately 70%.
  • 59.3 g of an aqueous palladium nitrate solution (12.6% by weight of palladium) were diluted with 1020 ml of water and onto 2993 g of a macroporous aluminum support in the form of a strand (4 mm strands, alpha- A1 2 0 3 , BET surface 8 , 9 m 2 / g) sprayed on. Drying was carried out as described for Catalyst A. Then 2 h annealed at 650 ° c. Catalyst F contained 0.24% by weight of palladium and a macropore fraction of approximately 49%.
  • Silicon dioxide in strand form (4 mm, BET surface area 140 m 2 / g) was mixed with a supernatant solution of nickel, copper and manganese nitrate and phosphoric acid (9.2% by weight Ni, 3.2% by weight Cu, 0 , 8% by weight of Mn and 0.65% by weight of phosphoric acid) soaked twice for 15 minutes. After each impregnation, the strands were dried at 120 ° C and annealed at 630 ° C.
  • the catalyst H contained 21% by weight of NiO, 7.3% by weight of CuO, 2% by weight of Mn 3 0 4 and 1.2% by weight of H 3 P0 4 and a macropore fraction of less than 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Polytetrahydrofuran, Tetrahydrofuran-Copolymeren, Diestern oder Monoestern dieser Polymere mit niedriger Farbzahl, das dadurch gekennzeichnet ist, dass die durch kationische Polymerisation von Tetrahydrofuran erhaltenen Polymerisate in Gegenwart eines makroporösen, geträgerten Heterogenkatalysators, der als Aktivmetall mindestens ein Metall der VII. bis X. Nebengruppe des Periodensystems der Elemente enthält, hydriert werden.

Description

Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran mit niedriger Farbzahl
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polytetrahydrofuran, Tetrahydrofuran-Copolymeren, Diestern oder Monoestern dieser Polymere mit niedriger Farbzahl durch Hydrierung der durch kationische Polymerisation von Tetrahydrofuran erhaltenen Polymerisate in Gegenwart eines makroporösen Heterogenkatalysators .
Polytetrahydrofuran ("PTHF") , auch Polyoxybutylenglykol genannt, ist in der Kunststoff- und Kunstfaserindustrie ein vielseitiges Zwischenprodukt und dient unter anderem zur Herstellung von Polyurethan-, Polyester- und Polyamid-Elastomeren. Daneben ist es wie auch manche seiner Derivate in vielen Anwendungs ällen ein wertvoller Hilfsstoff, so zum Beispiel als Dispergiermittel oder etwa beim Entfärben ("Deinken") von Altpapier.
PTHF wird technisch vorteilhafterweise hergestellt durch Polymerisation von Tetrahydrofuran (THF) an geeigneten Katalysatoren in Gegenwart von Reagenzien, deren Zugabe die Steuerung der Ketten- länge der Polymerketten und so die Einstellung des mittleren Molekulargewichts auf den gewünschten Wert ermöglicht (Kettenab- bruchreagenzien oder "Telogene") . Die Steuerung erfolgt dabei durch Wahl von Art und Menge des Telogens. Durch Wahl geeigneter Telogene können zusätzlich funktioneile Gruppen an ein Ende oder beide Enden der Polymerkette eingeführt werden. So können zum Beispiel durch Verwendung von Carbonsäuren oder Carbonsäureanhydriden als Telogene die Mono- oder Diester des PTHFs hergestellt werden. Andere Telogene wirken nicht nur als Kettenabbruchreagenzien, sondern werden auch in die wachsende Polymerisatkette des PTHFs eingebaut, haben also nicht nur die Funktion eines Telogens, sondern auch die eines Comonomers und können daher mit gleicher Berechtigung als Telogen oder als Comonomer bezeichnet werden. Beispiele für solche Comonomere sind Telogene mit zwei Hydroxygruppen wie die Dialkohole. Beispiele für solche Dialko- hole sind Ethylenglykol, Propylenglykol, Butylenglykol, 1,4-Bu- tandiol, 2-Butin-l, 4-diol, 1, 6-Hexandiol oder niedermolekulares PTHF. Weiterhin sind als Comonomere 1, 2-Alkylenoxide, wie zum Beispiel Ethylenoxid oder Propylenoxid, 2-Methyltetrahydrofuran oder 3-Methyltetrahydrofuran geeignet. Die Verwendung solcher Co- monomere führt zur Herstellung von Tetrahydrofuran-Copolymeren. Auf diese Weise kann das PTHF chemisch modifiziert werden. Wie umfangreiche Untersuchungen ergeben haben, sind für die Polymerisation von THF in technischem wirtschaftlichem Maßstab saure Katalysatoren geeignet, die allerdings die nachteilige Wirkung haben, daß Polymerisate mit gelb bis bräunlichen Verfärbungen er- halten werden. Die Verfärbungen nehmen mit der Temperatur bei der Polymerisation zu. Darüber hinaus beobachtet man gleichzeitig mit der Verfärbung eine veränderte Reaktionsfähigkeit bei der Herstellung von Polyestern oder Polyurethanen aus den Polytetra- methylenetherglykolen. Dies sind gravierende Mängel, denn Farbe und reproduzierbare Verarbeitung gehören zu den wichtigsten
Eigenschaften eines Polymerisates, das technische Anwendung finden soll.
Die Reinheit des PTHF hängt auch von der Qualität des eingesetz- ten THF ab. Es sind deshalb zahlreiche Verfahren für die Vorbehandlung von technischem THF zum Zwecke der Qualitätsverbesserung vorgeschlagen worden. So wird z.B. in der DE-A-2 801 792 ein Verfahren beschrieben, bei dem man THF vor der Polymerisation mit Bleicherden behandelt. Man erhält dabei zwar Polymerisate mit verbesserter Farbzahl, jedoch läßt sich diese Behandlungsmethode nicht in jedem Fall reproduzierbar auf jede verfügbare technische Qualität des THF anwenden.
Weiterhin sind Verfahren bekannt, die der Entfärbung der an sau- ren heterogenen Katalysatoren erhaltenen Polymerisate nach Abschluß der Polymerisation in einem gesonderten Entfärbungsver ahren dienen.
Nach den Angaben der EP-A 61 668 stellt man Polytetramethylen- etherglykol oder -glykoldiester mit geringer Farbzahl dadurch her, daß man die durch kationische Polymerisation von THF erhaltenen Polymerisate in Gegenwart eines Hydrierkatalysators einer Behandlung mit Wasserstoff unterwirft. Verwendet man bei der Polymerisation eine THF-Qualität, wie sie der Markt anbietet, so ist man gezwungen, die hydrierende Entfärbung bei sehr hohen Wasserstoffdrücken von z.B. 50 bis 300 bar durchzuführen.
Aus der PCT/WO 94/05719 ist ein Verfahren zur Herstellung von Po- lytetrahydrofurandiestern bekannt, bei dem die Polymerisation des THF an säureaktiviertem Kaolin, Zeolithen oder amorphen Aluminiumsilikaten in Gegenwart von 1 bis 10 Gew.-% eines Hydrierkatalysators und Wasserstoff durchgeführt wird.
Die in der PCT/WO 94/05719 und der EP-A 61668 beschriebenen Hydrierkatalysatoren blieben hinsichtlich ihrer Aktivität und
Standzeit hinter dem zurück was wünschenswert wäre, um die Erwartungen hinsichtlich der Reinheit der Produkte zu erreichen, bzw. die entsprechenden Verfahren tatsächlich wirtschaftlich durchführen zu können.
Es bestand daher die Aufgabe, nach einem Verfahren zur Herstel- lung von Polytetrahydrofuran, Tetrahydrofuran-Copolymeren, Di- estern und Monoestern dieser Polymere zu suchen, mit dem einfach und wirtschaftlich Polymerisate und Copolymerisate des THF mit niedriger Farbzahl hergestellt werden können.
Es wurde nun ein Verfahren zur Herstellung von Polytetrahydrofuran, Tetrahydrofuran-Copolymeren, Diestern oder Monoestern dieser Polymere mit niedriger Farbzahl gefunden, das dadurch gekennzeichnet ist, dass die durch kationische Polymerisation von Tetrahydrofuran erhaltenen Polymerisate in Gegenwart eines makropo- rösen, geträgerten Heterogenkatalysators, der als Aktivmetall mindestens ein Metall der VII. bis X. Nebengruppe des Periodensystems der Elemente, hydriert werden.
Nach dem neuen Verfahren lassen sich hochreines Polytetrahydrofu- ran, hochreine Tetrahydrofuran-Copolymere sowie hochreine Diester oder Monoester dieser Polymere mit niedriger Farbzahl sicher und reproduzierbar herstellen. Aufgrund der hohen Aktivität und Standzeit der verwendeten makroporösen Katalysatoren läßt sich die Hydrierung mit kurzen Verweilzeiten und unter schonenden Be- dingungen durchführen.
Das erfindungsgemäße Verfahren läßt sich auf alle Polymerisate, die durch kationische Polymerisation von Tetrahydrofuran erhalten werden, anwenden. Polytetrahydrofuran, Tetrahydrofuran-Copolyme- ren, Diestern oder Monoestern dieser Polymere sind nach an sich bekannten Verfahren, wie sie zum Beispiel in der DE 44 33 606 und der DE 19649803 beschrieben werden, zugänglich.
Grundsätzlich können für das erfindungsgemäße Verfahren Polymeri- sationausträge der kationischen Polymerisation von Tetrahydrofuran direkt verwendet werden, die unter anderem noch nicht umgesetztes Tetrahydrofuran, Telogen, und/oder Comonomer enthalten. Es ist jedoch auch möglich vorgereinigte Polymerisate, d.h Polymerisate, aus denen durch Destillation oder andere geeignete Ver- fahren beispielsweise nicht umgesetztes Tetrahydrofuran oder niedermolekulare Polymerisationsprodukte abgetrennt wurden, zu verwenden.
Erfindungsgemäß werden die Polymerisate in Gegenwart eines makro- porösen Heterogenkatalysators, der als Aktivmetall mindestens ein Metall der VII. bis X. Nebengruppe des Periodensystems der Elemente, aufgebracht auf einem Träger, enthält, hydriert. Die pri- mär gelblich braune Farbe der Polymerisate verschwindet und es entstehen farblose Produkte.
Mit dem neuen Verfahren können selbst aus minderen THF-Qualitäten 5 THF-Polymerisate und -Copolymerisate mit niedrigen Farbzahlen von maximal ca. 20 APHA, bevorzugt maximal ca. 15 APHA hergestellt werden. Die Bestimmung der Farbzahlen wird in den Normen DIN 6271 beschrieben.
10 Der makroporöse Heterogenkatalysator kann als Aktivmetall prinzipiell alle Metalle der VII. bis X. Nebengruppe des Periodensystems der Elemente enthalten. Vorzugsweise werden als Aktivmetalle Palladium, Ruthenium, Rhenium, Nickel, Eisen und Cobalt oder ein Gemisch aus zwei oder mehreren Aktivmetallen eingesetzt,
15 wobei insbesondere Palladium als Aktivmetall verwendet wird.
Der Begriff "makroporös" wird im Rahmen der vorliegenden Erfindung so verwendet, wie er in Pure Appl. Chem. , 46., S 79 (1976) definiert ist, nämlich als Poren, deren Durchmesser oberhalb von
20 50 n liegen. Der Gehalt an Makroporen des erfindungsgemäß verwendeten Heterogenkatalysators mit einem Porendurchmesser von mehr als lOOnm, bezogen auf die Gesamtporen, d.h die Makroporosität des Heterogenkatalysators liegt bei mehr als 10 Vol.-%, bevorzugt bei mehr als 20 Vol.-%, besonders bevorzugt bei 25 bis 90
25 Vol.-% jeweils bezogen auf die Gesamtporen.
Der Gehalt des Aktivmetalls beträgt im allgemeinen 0,01 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-% und insbesondere 0,1 bis 3 Gew.-% bezogen auf das Gesamtgewicht des Katalysators.
30
Die Metalloberfläche auf dem erfindungsgemäß verwendeten makropö- sen Trägerkatalysator beträgt dabei insgesamt vorzugsweise 0,01 bis 10 m2/g, weiter bevorzugt ungefähr 0,05 bis 5 m2/g, insbesondere ungefähr 0,05 bis 3 m2/g des Katalysators. Die Metalloberflä-
35 ehe wird mittels J. LeMaitre et al. in "Characterization of Heterogeneous Catalysts", Hrsg. Francis Delanney, D, New York 1984, S. 310-324, beschriebenen Chemisorptionsverfahren bestimmt.
Die erfindungsgemäß verwendeten makroporösen Heterogenkatalysato- 40 ren können technisch durch verschiedene an sich bekannte Verfahren, zum Beispiel durch Auftragen mindestens eines Metalls der VII. bis X. Nebengruppe des Periodensystems der Elemente auf einen geeigneten makroporösen Träger hergestellt werden.
45 Die Auftragung kann durch Tränken des Trägers mit wäßrigen Metallsalzlösungen auf den Träger, wie z..B. wäßrige Palladiumsalzlösungen, .durch Aufsprühen entsprechender Metallsalzlösungen auf den Träger oder durch andere geeignete Verfahren erreicht werden. Als Metallsalze der VII. bis X. Nebengruppe des Periodensystems der Elemente eignen sich Nitrate, Nitrosylnitrate, Halogenide, Carbonate, Carboxylate, Acetylacetonate, Chlorokomplexe, Nitro- komplexe oder Aminkomplexe der entsprechenden Metalle, wobei Nitrate und Nitrosylnitrate bevorzugt sind. Bei Katalysatoren die mehrere Metalle der VII. bis X. Nebengruppe des Periodensystems enthalten, können die Metallsalze bzw. deren Lösungen gleichzeitig oder nacheinander aufgebracht werden.
Die mit Metallsalzlösungen beschichteten bzw. getränkten Träger werden anschließend, vorzugsweise bei Temperaturen zwischen 100 °C und 150°C getrocknet und wahlweise bei Temperaturen zwischen 200°C und 600°C, vorzugsweise 350°C bis 450°C, calciniert . Bei ge- trennten Auftränkung wird der Katalysator nach jedem Tränkschritt getrocknet und wahlweise calciniert, wie oben beschrieben. Die Reihenfolge, in der die Aktivkomponenten aufgetränkt werden, ist dabei frei wählbar.
Anschließend werden die beschichteten und getrockneten sowie wahlweise calcinierten Träger durch Behandlung im Gasstrom, der freien Wasserstoff enthält, bei Temperaturen von 30°C bis 600°C, vorzugsweise zwischen 150°C und 450°C aktiviert. Vorzugsweise besteht der Gasstrom aus 50 bis 100 Vol.-% H2 und 0 bis 50 Vol.-% N2.
Die zur Herstellung der erfindungsgemäß verwendeten Katalysatoren verwendbaren Trägermaterialien sind solche, die makroporös sind und einen mittleren Porendurchmesser von mindestens 50 nm, vor- zugsweise mindestens 100 nm , insbesondere 500 nm, aufweisen und deren Oberfläche nach BET höchstens ungefähr 300 m2/g, vorzugsweise ungefähr 15 m2/g, weiter bevorzugt ungefähr 10 m2/g, insbesondere ungefähr 5 m2/g und weiter bevorzugt höchstens 3 m2/g aufweist.
Die Oberfläche des Trägers wird bestimmt nach dem BET-Verfahren durch N2-Adsorption, insbesondere nach DIN 66131. Die Bestimmung von Porendurchmesser und Porenverteilung erfolgt durch Hg-Porosi- metrie, insbesondere nach DIN 66133.
Obwohl prinzipiell alle bei der Katalysatorherstellung bekannten Trägermaterialien, d.h. die die oben definierte Makroporosität aufweisen, eingesetzt werden können, werden vorzugsweise Aktivkohle, Siliciumcarbid, Siliciumoxid, Mullit, Cordierit, Aluminiu- moxid, Titanoxid, Zirkoniumoxid, Magnesiumoxid, Zinkoxyd oder de- ren Gemische, weiter bevorzugt Aluminiumoxid und Zirkoniumdioxid und Mullit, eingesetzt, besonders bevorzugt Aluminiumoxid.
Weiterhin können die erfindungsgemäß verwendeten makroporösen He- terogenkatalysatoren technisch nach dem aus der EP-A- 653 243 bekannten Verfahren hergestellt werden, bei dem Aktivmetall und Makroporen in einem Schritt eingebracht werden. Nach dem aus der EP-A- 653 243 bekannten Verfahren werden die erfindungsgemäß verwendeten makroporösen Heterogenkatalysatoren durch Lösen eines wasserlöslichen Salzes eines Metalls der VII. bis X. Nebengruppe des Periodensystems der Elemente in einem organischen Lösungsmittel, Versetzen der so erhaltenen Lösung mit einem organischen Polymeren, das in der Lage ist, mindestens das Zehnfache seines Eigengewichts an Wasser zu binden, anschließendem Vermischen des Polymeren mit einem Katalysatorträgermaterial und Formen der so erhaltenen Masse, Trocknen und Calcinieren hergestellt.
Als wasserlösliche Salze eines Metalls der VII. bis X. Nebengruppe des Periodensystems der Elemente eignen sich bevorzugt Ni - träte, Nitosylnitrate, Halogenide, Carbonate, Carboxylate, Ace- tylacetonate, Chlorokomplexe, Nitrokomplexe oder Aminkomplexe der entsprechenden Metalle, wobei Nitrate und Nitrosylnitrate besonders bevorzugt sind. Bevorzugte Lösungsmittel sind mit Wasser mischbare Lösungsmittel wie Alkohole, Ether und Amine. Als Alko- hole sind insbesondere Cl-C4-Alkohole wie Methanol, Ethanol, iso- Propanol und n-Butanol zu nennen; als Ether kommt z.B Tetrahydrofuran in Betracht. Geeignete Amine sind beispielsweise Ammoniak, Monoamine wie Diethylamin, Methylamin, Triethylamin, Ethylamain, Propylamin und Butylamin.
Als organisches Polymer werden bevorzugt vernetzte Polymere aus Acrylsäure, Acrylsäure und Acrylamid sowie aus Acrylamid eingesetzt, wobei teilweise neutralisierte Natriumpolyacrylate, die schwach vernetzt sind, besonders bevorzugt sind. Als chemische Vernetzer kommen beispielsweise Diole wie Ethylenglykol, Poly- ethylenglykol und Polyole, Diamine, Diene in Mengen von 0,1 bis 5 Gew.-%, bezogen auf das Polymer, in Frage.
Bevorzugte Trägermaterialien sind Aktivkohle, Siliciumcarbid, Aluminiumoxid, Titanoxid, Mullit, Cordierit, Zirkoniumoxid, Magnesiumoxid, Zinkoxyd oder deren Gemische, weiter bevorzugt Aluminiumoxid und Zirkoniumdioxid und Mullit, eingesetzt, besonders bevorzugt Aluminiumoxid.
Weitere Details zur Herstellung der erfindungsgemäß verwendeten makroporösen Katalysatoren unter Einbringung von Aktivmetall und Makroporen in einem Schritt sind der EP-A- 653 243 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird.
Weiterhin können die erfindungsgemäß verwendeten makroporösen Ka- talysatoren unter Verwendung von Porenbildnern nach dem aus der EP-A 842 699 bekannten Verfahren technisch hergestellt werden. Als Porenbildner können dabei alle wassermischbaren Polymere eingesetzt werden, sofern sie eine Molmasse von mehr als ungefähr 6.000 bis 500.000 g/mol aufweisen. Ihr Molekulargewicht beträgt vorzugsweise ungefähr 10.000 bis ungefähr 200.000 g/mol, weiter bevorzugt ungefähr 13.000 bis ungefähr 150.000 g/Mol und insbesondere ungefähr 13.000 bis ungefähr 50.000 g/mol. Beispiele für verwendbare Polymere schließen Polyvinylchlorid, Copolymere eines Olefins mit polaren Comonomeren, wie z.B. Ethylen oder Propylen mit Polyvinylchlorid, Polyvinylidenchloridcopolymere, ABS-Harze, Polyethylencopolymere mit Vinylacetat, Alkylacrylate, Acrylsäure, chlorierte Polyethylene, chorsul onoierte Polyethylene, thermoplastische Polyurethane, Polyamide wie z.B Nylon-5, Nylon-12, Ny- lon-6,6, Nylon-6,10, Nylon-11, Fluor enthaltende Harze wie z.B. Polyvinylidenfluorid, Polychlortrifluorethylen, Acrylnitril-
Meth (methyl) acrylat-Copolymere, wie z.B. Methacrylnitril-Styrol- Copolmere, Polyalkyl (meth) acrylate, Celluloseacetat, Cellulose- aceatbutyrat , Polycarbonate, Polysulfone, Polyphenyloxid, Polyester, wie z.B. Butylentherephtalat und Polyvinylalkohol, wobei Polyvinylalkohol besonders bevorzugt ist.
Für die Herstellung der erfindungsgemäß verwendeten makroprösen Katalysatoren wird zunächst eine Aluminiumlegierung aus Aluminium und dem Aktivmetall der VII. bis X. Nebengruppe des Perioden- Systems der Elemente in bekannter Weise gemäß dem aus der DE 2 159 736 bekannten Verfahren hergestellt.
Gemäß EP-A-0 842 699 erfolgt dann die Herstellung einer Knetmasse aus dieser Legierung, einem Verformungsmittel, Wasser und dem Po- renbildner, Verformen dieser Knetmasse zu Formkörpern, Calcinie- ren des Formkörpers und schließlich das Behandeln des calcinier- ten Formkörpers mit einem Alkalimetallhydroxid.
Weitere Details dieses technischen Herstellungsverfahrens für die erfindüngsgemäß verwendeten makroporösen Katalysatoren sind der EP-A- 842 699 zu entnehmen, deren diesbezüglicher Inhalt durch Bezugnahme vollständig in die vorliegende Anmeldung einbezogen wird. Bevorzugt werden die erfindungsgemäß verwendeten makroporösen Katalysatoren durch Auftränken mindestens eines Metalls der VII. bis X. Nebengruppe des Periodensystems der Elemente auf einen geeigneten makroporösen Träger hergestellt.
Gewünschtenfalls können die erfindungsgemäß verwendeten makroporösen Katalysatoren zusätzlich durch Basen dotiert werden, um eine Rückspaltung des Polymers während der Hydrierung vor allem bei hohen Hydriertemperaturen zu vermeiden. Geeignete Basen sind beispielsweise basische Oxide wie Alkali- oder Erdalkalimetalloxide wie beispielsweise Natriumoxide, Kaliumoxide, Calciumoxide, Bariumoxide. Besonders bevorzugt sind Natriumoxide. Diese Oxide, bzw. ihre Precursor wie die jeweiligen Hydroxide, Carbonate oder Hydroxidcarbonate, können beispielsweise durch Tränkung in über- stehender Lösung, Sprühimprägnierung oder während der Aufbauag- glomeration des Trägers in Konzentrationen von 0,05 - 5 %, bezogen auf das Gewicht des Katalysators, auf den Katalysator aufgebracht werden. Gegebenenf lls schliesst sich eine Temperung zur thermischen Zersetzung der Precursor an.
Die erfindungsgemäß verwendeten makroporösen Katalysatoren können vor Ihrem Einsatz in der Hydrierung mit Wasserstoff vorreduziert werden .
Die erfindungsgemäß anwendbaren makroporösen Katalysatoren können in Form von Pulver, beispielsweise bei der Durchführung des Verfahrens in Suspensionsfahrweise, oder zweckmäßigerweise als Formkörper, z.B. in Form von Strängen, Zylindern, Kugeln, Ringen oder Splitt, insbesondere bei einer Festbettanordnung des Katalysa- tors, im erfindungsgemäßen Verfahren eingesetzt werden.
Die erfindungsgemäße Hydrierung kann diskontinuierlich oder kontinuierlich ausgeübt werden, wobei aus wirtschaftlichen Gründen in der Regel die kontinuierliche Betriebsweise bevorzugt wird. Dabei kann die Hydrierung in herkömmlichen für kontinuierliche Verfahren geeigneten Reaktoren oder Reaktoranordnungen in Suspen- sions- oder Festbettf hrweise, beispielsweise in Schlaufenreaktoren oder Rührreaktoren bei Suspensionsfahrweise oder bei Festbettfahrweise in Rohrreaktoren oder Festbettreaktoren ausgeführt werden, wobei die Festbettfahrweise bevorzugt ist.
Die erfindungsgemäße Hydrierung wird bei Wasserstoff rücken von 1 bis 200 bar Wasserstoff, bevorzugt bei 1 bis 50 bar, besonders bevorzugt bei 5 bis 25 bar, und Temperaturen von 20 bis 200°C, be- vorzugt bei 50 bis 150 C, besonders bevorzugt 70 bis 140°C, durchgeführt. Die Verweilzeit richtet sich nach dem gewünschten Farbzahlergebnis und beträgt üblicherweise maximal ca. 20 h, bevorzugt 15 h, insbesondere bevorzugt maximal ca. 10 h.
Bei der kontinuierlichen Betriebsweise beträgt die Katalysatorbelastung üblicherweise 0,05 bis 2,0 kg Polymerisat / (1 Katalysator * h) , bevorzugt 0,1 bis 1,0 kg Polymerisat / (1 Katalysator * h) , besonders bevorzugt 0,1 bis 0,5 kg Polymerisat / (1 Katalysator * h) . Als Hydriergase können beliebige Gase verwendet werden, die freien Wasserstoff enthalten und keine schädlichen Mengen an Katalysatorgiften, beispielsweise Kohlenmonoxid, aufweisen. Vorzugsweise wird reiner Wasserstoff als Hydriergas verwendet.
Die erfindungsgemäße Hydrierung kann in An- und Abwesenheit eines Lösungs- oder Verdünnungsmittels durchgeführt werden. Als Lö- sungs- oder Verdünnungsmittel kann jedes geeignete Lösungs- oder Verdünnunsmittel eingesetzt werden, das mit dem zu hydrierenden Polymerisat eine homogenen Lösung bildet und unter den Reaktions- bedingungen weitgehend inert ist, beispielsweise Ether wie Tetra - hydrofuran, Dioxan oder aliphatische Alkohole, in denen der Al- kylrest vorzugsweise eine Länge von 1 bis 10 Kohlenstoffatomen aufweist, wie z.B. Methanol, Ethanol und Propanol. Vorzugsweise wird Tetrahydrofuran und/oder Methanol eingesetzt.
Die Menge des eingesetzten Lösungs- oder Verdünnungsmittel ist nicht in besonderer Weise eingeschränkt und kann je nach Bedarf frei gewählt werden, wobei jedoch solche Mengen bevorzugt sind, die zu einer 10 bis 90 Gew.-%igen, bevorzugt 20 bis 50 Gew.-%igen Lösung des zur Hydrierung vorgesehenen Polymerisats führen.
BEISPIELE
Herstellungsbeispiel A
72,7 g einer Palladiumnitratlösung (11 Gew.-% Palladium) wurden in 4000 ml Wasser und 100 g eines hochmolekularen Natriumpoly- acrylats ( Aqualic®, Fa. BASFAG) versetzt. Nach 60 Minuten wurde die erhaltenen gelartige Masse mit 5527 g Pseudoböhmit in einem Mix-Muller 70 Minuten verknetet. Während dieser Zeit wurden 200 g einer 25-%igen wäßrigen Ammoniaklösung und 900ml Wasser zugegeben. Die Masse wurde in einem Extruder zu 4mmm Strängen verformt, die anschließend bei 120°C getrocknet und sodann eine Stunde bei 500°C getempert wurden. Der Katalysator A enthielt 0,21 Gew.-% Palladium und einen Makroporenanteil von ungefähr 38%. Die BET- Oberfläche betrug 235 m2/g. Herstellungsbeispiel B
47 g einer wässrigen Palladiumnitratlösung (11 Gew.-% Palladium) wurden mit 680 ml Wasser verdünnt und auf 2253 g eines makroporö- sen Aluminiumträger in Strangform ( 4mm Stränge, alpha A1203, BET- Oberflache 8m/g) aufgesprüht. Die Trocknung und Temperung erfolgte wie bei Katalysator A beschrieben. Der Katalysator B enthielt 0,22 Gew.-% Palladium und einen Makroporenanteil von ungefähr 36%.
Herstellungsbeispiel C
13 , 8 g einer wässrigen Palladiumnitratlösung (11 Gew.-% Palladium) wurden mit 420 ml Wasser verdünnt und auf 730 g eines ma- kroporösen Aluminiumträger in Kugelform ( 2-4 mm Kugeln, gamma- Al 0 , BET-Oberflache 230 m2/g) aufgesprüht. Die Trocknung und Temperung erfolgte wie bei Katalysator A beschrieben. Der Katalysator C enthielt 0,21 Gew.-% Palladium und einen Makroporenanteil von ungefähr 32%.
Herstellungsbeispiel D
19,8 g einer wässrigen Palladiumnitratlösung (11 Gew.-% Palladium) wurden mit 1000 ml Wasser verdünnt und auf 1042 g eines ma- kroporösen Aluminiumträger in Strangform ( 1,5 mm Stränge, gamma/ theta-Al03, BET-Oberflache 85 m2/g) aufgesprüht. Die Trocknung und Temperung erfolgte wie bei Katalysator A beschrieben. Der Katalysator D enthielt 0,22 Gew.-% Palladium und einen Makroporenanteil von ungefähr 33%.
Herstellungsbeispiel E
59,3 g einer wässrigen Palladiumnitratlösung (12,6 Gew.-% Palladium) wurden mit 940 ml Wasser verdünnt und auf 2993 g eines ma- kroporösen Aluminiumträger in Strangform (4 mm Stränge, alpha- Al 03, BET-Oberflache 6,4 m2/g) aufgesprüht. Die Trocknung und Temperung erfolgte wie bei Katalysator A beschrieben. Der Katalysator E enthielt 0,24 Gew.-% Palladium und einen Makroporenanteil von ungefähr 70 %.
Herstellungsbeispiel F
59,3 g einer wässrigen Palladiumnitratlösung (12,6 Gew.-% Palladium) wurden mit 1020 ml Wasser verdünnt und auf 2993 g eines ma- kroporösen Aluminiumträger in Strangform (4 mm Stränge, alpha- A1203, BET-Oberflache 8,9 m2/g) aufgesprüht. Die Trocknung erfolgte wie bei Katalysator A beschrieben. Anschließend wurde 2 h bei 650 °c getempert. Der Katalysator F enthielt 0,24 Gew.-% Palladium und einen Makroporenanteil von ungefähr 49 %.
Vergleichsherstellungsbeispiel G
3255 g einer wässrigen Palladiumnitratlösung (11 Gew.-% Palladium) wurden mit 79 ml Wasser verdünnt und auf 140 kg eines Aluminiumträger in Kugelform ( 1,5 mm Stränge, gamma-Al203, BET-Ober- flache 230 m2/g) aufgesprüht. Die Trocknung erfolgte bei 120°C, die anschließende Temperung für 6 Stunden bei 300°C. Der Katalysator G enthielt 0,72 Gew.-% Palladium und einen Makroporenanteil von weniger als 10 %.
Vergleichsherstellungsbeispiel H
Siliciumdioxid in Strangform (4mm, BET-Oberflache 140 m2/g) wurde mit einer überstehenden Lösung von Nickel-, Kupfer- und Mangannitrat sowie Phosphorsäure (9,2 Gew.-% Ni, 3,2 Gew.-% Cu, 0,8 Gew.-% Mn und 0,65 Gew.-% Phosphorsäure) zweimal 15 Minuten ge- tränkt. Nach jeder Tränkung wurden die Stränge bei 120°C getrocknet und bei 630°C getempert. Der Katalysator H enthielt 21 Gew.-% NiO, 7,3 Gew.-% CuO, 2 Gew.-% Mn304 und 1,2 Gew.-% H3P04 und einen Makroporenanteil von weniger als 10 %.
Beispiel 1 : PTHF-Diacetat-Herstellung
Zur Herstellung von PTHF-Diacetat wurde ein Gemisch von Tetrahydrofuran (6,0 kg) und Essigsäureanhydrid (320 g) unter Schutzgas 16 h lang bei 50 °C/Normaldruck über einen getrockneten Montmoril- lonit-Katalysator (2 kg Schichtsilikat-Katalysator K 306 der Fa. Süd-Chemie) , der in einem 3 1-Reaktor in Form von 5 mm Kugeln als Festbett angeordnet war, im Umlauf gepumpt. Aus dem Reaktionsgemisch wurden nach destillativer Abtrennung von nicht umgesetztem Tetrahydrofuran 2,97 kg PTHF-Diacetat des Molgewichts Mn = 970 mit einer Farbzahl von 60 APHA erhalten.
Beispiele 2 - 7, Vergleichsbeispiele 1 - 2
In einem 300 ml-Rührau oklav wurde jeweils 15 g der Katalysatoren A, B, C oder D beziehungsweise der Vergleichskatalysatoren E oder F vorgelegt und mit 150 g des Polytetrahydrofuran-Diacetats hergestellt nach Beispiel 1 versetzt. Die Hydrierung wurde mit reinem Wasserstoff bei einem konstanten Druck von 10 bar und einer Temperatur von 120°C durchgeführt. Die Farbzahl des PTHF-Diacetats wurde nach einer Reaktionszeit von 5, 10 und 20 Stunden bestimmt. Die Ergebnisse sind tabellarisch zusammengestellt. Tabelle
Figure imgf000013_0001
n.b. nicht bestimmt
Der Vergleich der jeweils erfindungsgemäßen Beispiele unter Verwendung der Katalysatoren A bis F mit den nichterfindungsgemäßen Vergleichsbeispielen unter Verwendung der nichterfindungsgemäßen Katalysatoren G und H zeigt, daß nach dem erfindungsgemäßen Verfahren in Gegenwart von Wasserstoff nach kürzerer Reaktionszeit Polytetrahydrofurandiester. mit einer deutlich geringeren Farbzahl erhalten werden. Für das erfindungsgemäße Verfahren werden aufgrund der deutlich kürzeren Reaktionszeiten kleinere Reaktoren benötigt, was einen erheblichen wirtschaf lichen Vorteil zur Folge hat.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polytetrahydrofuran, Tetrahy- drofuran-Copolymeren, Diestern oder Monoestern dieser Polymere mit niedriger Farbzahl, dadurch gekennzeichnet , daß die durch kationische Polymerisation von Tetrahydrofuran erhaltenen Polymerisate in Gegenwart eines makroporösen, geträgerten Heterogenkatalysators, der als Aktivmetall mindestens ein Me- tall der VII. bis X. Nebengruppe des Periodensystems der Elemente enthält, hydriert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Polymerisation bei Wasserstoffdrücken von 1 bis 200 bar und Temperaturen von 20 bis 200°C durchführt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der makroporösen Heterogenkatalysators als Aktivmetalle Palladium, Ruthenium, Rhenium, Nickel, Eisen und/oder Cobalt oder ein Gemisch aus zwei oder mehr dieser Aktivmetalle enthält.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Makroporosität des Heterogenkatalysators bei mehr als 10 Vol.-% liegt.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man Alumniniumoxid und/oder Zirkoniumdioxid als Trägermaterial verwendet.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der Heterogenkatalysator eine Metalloberfläche von 0,01 bis 10 m2/g aufweist.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Heterogenkatalysator eine BET-Oberflache von 0.1 bis 300 m2/g aufweist.
8. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeich- net, daß der Heterogenkatalysator einen Gehalt an Aktivmetall von 0,01 bis 10 Gew.-% aufweist.
PCT/EP2001/008525 2000-08-16 2001-07-24 Verbessertes verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl WO2002014405A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01960543A EP1311583A1 (de) 2000-08-16 2001-07-24 Verbessertes verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl
JP2002519539A JP2004506763A (ja) 2000-08-16 2001-07-24 低い色価を有するポリテトラヒドロフランの改善された製造方法
US10/343,982 US6852869B2 (en) 2000-08-16 2001-07-24 Method for the production of polytetrahydrofuran with low color index
AU2001282013A AU2001282013A1 (en) 2000-08-16 2001-07-24 Improved method for the production of polytetrahydrofuran with low colour index
KR10-2003-7002245A KR20030031155A (ko) 2000-08-16 2001-07-24 색지수가 낮은 폴리테트라히드로푸란의 개선된 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10040091A DE10040091A1 (de) 2000-08-16 2000-08-16 Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran mit niedriger Farbzahl
DE10040091.4 2000-08-16

Publications (1)

Publication Number Publication Date
WO2002014405A1 true WO2002014405A1 (de) 2002-02-21

Family

ID=7652663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/008525 WO2002014405A1 (de) 2000-08-16 2001-07-24 Verbessertes verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl

Country Status (9)

Country Link
US (1) US6852869B2 (de)
EP (1) EP1311583A1 (de)
JP (1) JP2004506763A (de)
KR (1) KR20030031155A (de)
CN (1) CN1446241A (de)
AU (1) AU2001282013A1 (de)
DE (1) DE10040091A1 (de)
MY (1) MY136238A (de)
WO (1) WO2002014405A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467685A (zh) * 2018-10-12 2019-03-15 中国石油化工股份有限公司 一种阻燃生物基聚酯及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305806B2 (en) * 1999-10-14 2007-12-11 Stewart Systems, Inc. Pattern former for wrapped bakery products and method for loading and unloading bakery products
DE10130782A1 (de) * 2001-06-26 2003-01-02 Basf Ag Katalysator und Verfahren zur Herstellung von Polytetrahydrofuran
DE10140949A1 (de) * 2001-08-21 2003-03-06 Basf Ag Verfahren zur Herstellung einer alkoholischen Lösung von Polytetrahydrofuran mit endständigen OH-Gruppen
JP7031276B2 (ja) * 2017-12-15 2022-03-08 三菱ケミカル株式会社 ポリアルキレンエーテルグリコール組成物の製造方法
PT3995541T (pt) * 2019-07-02 2023-06-26 Mitsubishi Chem Corp Composição de éter de polialquilenoglicol e método para a sua produção

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480124A (en) * 1981-03-27 1984-10-30 Basf Aktiengesellschaft Process for the purifying of polytetramethylene ether glycol or corresponding diester
EP0302332A2 (de) * 1987-08-01 1989-02-08 BASF Aktiengesellschaft Verfahren zur Reinigung von Polyoxibutylenpolyoxialkylenglykolen
US5110779A (en) * 1989-01-09 1992-05-05 The Dow Chemical Company Polymer hydrogenation catalysts
US5516851A (en) * 1993-11-16 1996-05-14 Basf Aktiengesellschaft Supported catalysts
EP0814098A2 (de) * 1996-06-19 1997-12-29 Basf Aktiengesellschaft Verfahren zur Umsetzung einer organischen Verbindung in Gegenwart eines geträgerten Rutheniumkatalysators
EP0842699A2 (de) * 1996-10-18 1998-05-20 Basf Aktiengesellschaft Metall-Festbettkatalysator nach Raney, Verfahren zu seiner Herstellung sowie ein Verfahren zur Hydrierung von Polymeren unter Verwendung dieses Katalysators

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100270423B1 (ko) 1992-09-04 2000-11-01 스타르크, 카르크 규산 알루미늄 형태 촉매를 사용한 폴리테트라메틸렌 에테르 글리콜 디에스테르 제조 방법
DE4433606A1 (de) 1994-09-21 1996-03-28 Basf Ag Verfahren zur Herstellung von Polyetrahydrofuran
DE19649803A1 (de) 1996-12-02 1998-07-23 Basf Ag Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480124A (en) * 1981-03-27 1984-10-30 Basf Aktiengesellschaft Process for the purifying of polytetramethylene ether glycol or corresponding diester
EP0302332A2 (de) * 1987-08-01 1989-02-08 BASF Aktiengesellschaft Verfahren zur Reinigung von Polyoxibutylenpolyoxialkylenglykolen
US5110779A (en) * 1989-01-09 1992-05-05 The Dow Chemical Company Polymer hydrogenation catalysts
US5516851A (en) * 1993-11-16 1996-05-14 Basf Aktiengesellschaft Supported catalysts
EP0814098A2 (de) * 1996-06-19 1997-12-29 Basf Aktiengesellschaft Verfahren zur Umsetzung einer organischen Verbindung in Gegenwart eines geträgerten Rutheniumkatalysators
EP0842699A2 (de) * 1996-10-18 1998-05-20 Basf Aktiengesellschaft Metall-Festbettkatalysator nach Raney, Verfahren zu seiner Herstellung sowie ein Verfahren zur Hydrierung von Polymeren unter Verwendung dieses Katalysators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467685A (zh) * 2018-10-12 2019-03-15 中国石油化工股份有限公司 一种阻燃生物基聚酯及其制备方法和应用
CN109467685B (zh) * 2018-10-12 2021-01-12 中国石油化工股份有限公司 一种阻燃生物基聚酯及其制备方法和应用

Also Published As

Publication number Publication date
MY136238A (en) 2008-08-29
DE10040091A1 (de) 2002-02-28
KR20030031155A (ko) 2003-04-18
US20040024172A1 (en) 2004-02-05
US6852869B2 (en) 2005-02-08
EP1311583A1 (de) 2003-05-21
JP2004506763A (ja) 2004-03-04
AU2001282013A1 (en) 2002-02-25
CN1446241A (zh) 2003-10-01

Similar Documents

Publication Publication Date Title
EP0653243B1 (de) Trägerkatalysatoren
EP1015509B1 (de) Verbessertes verfahren zur herstellung von polytetrahydrofuran
EP1003803A1 (de) Verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl
EP1047721B1 (de) Katalysator und verfahren zur herstellung von polytetrahydrofuran
WO2002014405A1 (de) Verbessertes verfahren zur herstellung von polytetrahydrofuran mit niedriger farbzahl
EP0931105B1 (de) Verfahren zur herstellung von polytetrahydrofuran und polytetrahydrofuranderivaten
EP1404741B1 (de) Katalysator und verfahren zur herstellung von polytetrahydrofuran
DE10245198A1 (de) Katalysator, Verfahren zu dessen Herstellung und Verfahren zur Polymerisation cyclischer Ether an diesem Katalysator
EP0604840B1 (de) Verfahren zur Herstellung von Polyetherglykolen
EP1511788B1 (de) Verfahren zur herstellung von polytetrahydrofuran mit niedrigen farbzahlen
EP0975686B1 (de) Verfahren zur entfärbung von polymerisaten oder copolymerisaten des tetrahydrofurans
EP1924630B1 (de) Verbesserter katalysator und verfahren zur polymerisation cyclischer ether
EP1123340B1 (de) Verfahren zur herstellung von tetrahydrofuranpolymeren
WO2023088940A1 (de) Katalysator mit trilobengeometrie zur herstellung von polytetrahydrofuran
DE10032265A1 (de) Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran und THF-Copolymeren
DE19801419A1 (de) Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran
DE19738863A1 (de) Verbessertes Verfahren zur Herstellung von Polytetrahydrofuran
WO2005028540A1 (de) Verfahren zur herstellung von polytetrahydrofuran oder tetrahydrofuran-copolymeren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001960543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10343982

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018141293

Country of ref document: CN

Ref document number: 2002519539

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037002245

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037002245

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001960543

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001960543

Country of ref document: EP