WO2002012624A1 - Sizing dispersion - Google Patents
Sizing dispersion Download PDFInfo
- Publication number
- WO2002012624A1 WO2002012624A1 PCT/SE2001/001700 SE0101700W WO0212624A1 WO 2002012624 A1 WO2002012624 A1 WO 2002012624A1 SE 0101700 W SE0101700 W SE 0101700W WO 0212624 A1 WO0212624 A1 WO 0212624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sizing
- starch
- aqueous dispersion
- sizing agent
- weight
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/76—Processes or apparatus for adding material to the pulp or to the paper characterised by choice of auxiliary compounds which are added separately from at least one other compound, e.g. to improve the incorporation of the latter or to obtain an enhanced combined effect
- D21H23/765—Addition of all compounds to the pulp
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/16—Sizing or water-repelling agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/28—Starch
- D21H17/29—Starch cationic
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/47—Condensation polymers of aldehydes or ketones
Definitions
- the present invention refers to an aqueous dispersion of a sizing agent comprising starch having aromatic groups containing less than 95 weight % of amylopectine and condensed sulfonate.
- the invention further encompasses a method for the preparation of an aqueous dispersion and the use of an aqueous dispersion as a stock or surface size.
- Aqueous dispersions or emulsions of sizing agents are used in papermaking in order to give paper and paper board improved resistance to wetting and penetration by various liquids.
- Dispersions of sizing agents generally contain an aqueous phase and finely divided particles or droplets of the sizing agent dispersed therein.
- the dispersions are usually prepared by homogenizing the sizing agent, water insoluble material in an aqueous phase in the presence of a dispersant using high shear forces and fairly high temperatures.
- Dispersants conventionally used include anionic, amphoteric and cationic high molecular weight polymers, e.g. lignosulfonates, starches, polyamines, polyamideamines, and vinyl addition polymers. The polymers can be used singly, together or in combination with other compounds to form a dispersant system.
- the size dispersions will be anionic or cationic in nature.
- the sizing dispersions are usually added to an aqueous suspension containing cellulosic fibres, optional fillers and various additives.
- the cellulosic suspension contains a certain amount of non-fibrous material, for example fillers, colloidal substances, charged polymers and various charged contaminants, i.e. anionic trash, electrolytes, charged polymers etc..
- the charged contaminants has an influence on the sizing efficiency and commonly impairs the sizing performance.
- High amounts of charged contaminants such as high contents of salts in the suspension renders a suspension which is increasingly difficult to size, i.e. to obtain a paper with satisfactory sizing properties.
- Other compounds contained in the suspension which deteriorates sizing are various lipophilic wood extractives which may come from recycled fibres and mechanical pulps. An increased amount of added sizing agent often improve sizing, however, leading to higher costs as well an increased accumulation of sizing agents in the white water.
- the present invention refers to an aqueous dispersion of a sizing agent comprising starch having aromatic groups containing less than 95 weight % of amylopectine and a condensation product of aromatic sulfonic acids and aldehyde.
- the present invention further also encompasses a method for the preparation of an aqueous dispersion as well the use of the dispersion as a stock size and surface size.
- the sizing agent of the dispersion according to the present invention is suitably any sizing agent known, such as non-cellulose-reactive agents including rosin, e.g. disproportionated rosin, hydrogenated rosin, polymerized rosin, formaldehyde-treated rosin, esterified rosin, fortified rosin and mixtures of such treatments and so treated rosins, fatty acids and derivatives thereof, e.g. fatty acid esters and amides like bis-stearamide, resin and derivatives thereof, e.g. hydrocarbon resins, resin acids, resin acid esters and amides, waxes, e.g.
- non-cellulose-reactive agents including rosin, e.g. disproportionated rosin, hydrogenated rosin, polymerized rosin, formaldehyde-treated rosin, esterified rosin, fortified rosin and mixtures of such treatments and so treated rosins, fatty acids and derivatives thereof,
- the sizing agent is a cellulose-reactive sizing agent.
- the cellulose-reactive sizing agents comprised in the sizing dispersion can be selected from any cellulose-reactive agents known in the art.
- the sizing agent is selected from the group consisting of hydrophobic ketene dinners, ketene multimers, acid anhydrides, organic isocyanates, carbamoyl chlorides and mixtures thereof, preferably ketene dimers and acid anhydrides, most preferably ketene dimers.
- Suitable ketene dimers have the general formula (I) below, wherein R 1 and R 2 represent saturated or unsaturated hydrocarbon groups, usually saturated hydrocarbons, the hydrocarbon groups suitably having from 8 to 36 carbon atoms, usually being straight or branched chain alkyl groups having 12 to 20 carbon atoms, such as hexadecyl and octadecyl groups.
- the ketene dimers may be liquid at ambient temperature, i.e. at 25 °C, suitably at 20 °C.
- Suitable acid anhydrides can be characterised by the general formula (II) below, wherein R 3 and R 4 can be identical or different and represent saturated or unsaturated hydrocarbon groups suitably containing from 8 to 30 carbon atoms, or R 3 and R 4 together with the -C-O-C- moiety can form a 5 to 6 membered ring, optionally being further substituted with hydrocarbon groups containing up to 30 carbon atoms.
- acid anhydrides which are used commercially include alkyl and alkenyl succinic anhydrides and particularly isooctadecenyl succinic anhydride.
- Suitable ketene dimers, acid anhydrides and organic isocyanates include the compounds disclosed in U.S. Pat. No. 4,522,686, which is hereby incorporated herein by reference.
- suitable carbamoyl chlorides include those disclosed in U.S. Pat. No. 3,887,427 which is also incorporated herein by reference.
- the starch comprised in the dispersion according to the invention has aromatic groups and contains less than 95 weight % of amylopectin.
- Starch contains primarily two components namely amylos and amylopectin.
- Amylos is a linear polymer whereas amylopectin is a branched polymer having a molecular weight considerably higher than the molecular weight of amylos.
- the aromatic starch has an amylopectin content less than 92 weight %, more preferably less than 90 weight %, and even more preferably less than 85 weight %.
- the starch comprised in the dispersion of the present invention is suitably a cationic starch having an aromatic group, i.e.
- pyridinium and quinolinium as well as derivatives of these groups where one or more substituents attached to said aromatic groups can be selected from hydroxyl, halides, e.g. chloride, nitro, and hydrocarbon groups having from 1 to 4 carbon atoms.
- Particularly suitable starches comprised in the sizing dispersion include t ose comprising the general structural formula (I):
- R 3 wherein P is a residue of the starch polysaccharide;
- A is a group attaching N to the polysaccharide residue, suitably a chain of atoms comprising C and H atoms, and optionally O and/or N atoms, usually an alkylene group with from 2 to 18 and suitably 2 to 8 carbon atoms, optionally interrupted or substituted by one or more heteroatoms, e.g. O or N, e.g.
- R- and R 2 are each H or, preferably, a hydrocarbon group, suitably alkyl, having from 1 to 3 carbon atoms, suitably 1 or 2 carbon atoms;
- R 3 is an aromatic hydrocarbon group including aralkyl groups, e.g.
- n is an integer from about 2 to about 300,000, suitably from 5 to 200,000 and preferably from 6 to 125,000 or, alternatively, ,, R 2 and R 3 together with N form a aromatic group containing from 5 to 12 carbon atoms; and
- X " is an anionic counterion, usually a halide like chloride.
- the aromatic group modified cationic or amphoteric starch can have a degree of substitution varying over a wide range; the degree of cationic substitution (DS C ) can be from 0,01 to 0,5, suitably from 0,02 to 0,3, preferably from 0,025 to 0,2, the degree of aromatic substitution (DS H ) can be from from 0,01 to 0,5, suitably from 0,02 to 0,3, preferably from 0,025 to 0,2, and the degree of anionic substitution (DS A ) can be from 0 to 0,2, suitably from 0 to 0, 1 , preferably from 0 to 0,05.
- benzyl chloride and benzyl bromide the reaction products of epichlorohydrin and dialkylamines having at least one substituent comprising an aromatic group as defined above, including 3-dialkylamino-1 ,2-epoxypropanes; and cationic agents such as, for example, the reaction product of epichlorohydrin and tertiary amines having at least one substituent comprising an aromatic group as defined above, including trialkylamines, alkaryldialkylamines, e.g. dimethylbenzylamine; arylamines, e.g. pyridine and quinoljne.
- N-(3-chloro-2-hydroxypropyl)-N-(aIkaryl)-N,N-di(lower alkyl)ammonium chloride where the alkaryl and lower alkyl groups are as defined above, particularly N-(3-chloro-2-hydroxypropyl)-N-benzyl-N,N-dimethylammonium chloride; and N-(3-chloro-2-hydroxypropyl) pyridinium chloride.
- the starch is suitably rendered cationic by using any of the cationic agents known in the art before or after the hydrophobic modification.
- Suitable cationic and/or aromatic modifying agents, aromatic group modified starches and methods for their preparation include those described in U.S. Patent Nos. 4,687,519 and 5,463,127; International Patent Application WO 94/24169, European Patent Application No. 189 935; and S.P. Patel, R.G. Patel and V.S. Patel, Starch/Starke, 41 (1989), No. 5, pp. 192-196, the teachings of which are hereby incorporated herein by reference.
- the starch suitably cationic or amphoteric can be present in the dispersion in amounts varying within wide limits depending on, inter alia, the molecular weight of the compounds, the degree of ionic substitution of the compounds, i.e. the charge density, the desired overall charge of the dispersion and the hydrophobic material used.
- the starch can be present in an amount of up to 100% by weight, suitably from 0.1 to 35% by weight and preferably from 1 to 30% by weight, based on the hydrophobic material.
- the dispersion according to the invention further comprises condensed sulfonates such as the condensation product of aromatic sulfonic acids and aldehyde.
- condensed sulfonate is meant a sulfonate, suitably a polymeric sulfonate, obtained by a condensation reaction.
- the dispersion comprises a condensation product of aromatic sulfonic acids and formaldehyde.
- the condensation products are generally polyelectrolytes and readily soluble in water.
- aromatic sulfonic acids can be used such as aromatic sulfonic acids containing one aromatic ring, usually having six carbon atoms, and aromatic sulfonic acids containing two or more aromatic rings having six carbon atoms as well as fused aromatic sulfonic acids.
- the aromatic sulfonic acid is selected from naphthalene, naphthalene reacted with cresol, diphenyl ether, toluene, isopropylbenzene, cresol, phenol,.
- the condensation products are formed by reacting the aromatic compound with sulfuric acid thereby forming sulfonic acid and thereafter adding the aldehyde whereby the condensation product is obtained.
- the aqueous dispersion comprises a condensation product of naphthalene sulfonic acid and formaldehyde, a condensation polymer commonly referred to as condensated naphthalene sulfonate.
- the amount of condensed sulfonates present in the dispersion can vary within wide limits depending on, inter alia, the type of stock, and other compounds present in the aqueous dispersion like stabilisers, dispersion agent and sizing agents.
- the dispersion contains from about 1 up to about 20 % by weight based on the sizing agent of condensed sulfonate, suitably from about 1 up to about 15 % by weight, preferably from about 2 up to about 10 % by weight based on the sizing agent.
- the dispersions according to the present invention can be anionic or cationic depending on the amount of starch and/or further additives such as dispersing/stabilising agents and protecting compounds contained in the dispersions.
- anionic or cationic dispersions is understood that the dispersant is anionic or cationic, i.e. has an overall anionic or cationic charge.
- the dispersant (system) refers to any compounds present in the dispersion which facilitate the formation of a dispersion/emulsion such as charged polymers (polyelectrolytes) and surfactants.
- Suitable additives can be any dispersing/stabilising agents and protecting agent known in the art such as non-ionic polymers; cationic, anionic and amphoteric polymers derived from natural sources, i.e.
- polysaccharides like starch, guar gum, cellulose, chitins, chitosans, glycans, galactans, glucans, xanthan gums, mannans, dextrins, etc.
- synthetic organic polymers like condensation products, e.g. anionic polyurethanes and polymeric anionic compounds based on naphthalene, e.g. condensated naphthalene sulfonates, and further vinyl addition polymers formed from monomers with anionic groups, e.g.
- the dispersion comprises cellulose-reactive sizing agents having a sizing agent contents of from about 0.1 to about 50% by weight, suitably above 20% by weight.
- Dispersions containing a ketene dimer sizing agent according to the invention may have ketene dimer contents within the range of from 5 to 50% by weight and preferably from about 10 to about 35% by weight.
- Dispersions, or emulsions, containing an acid anhydride sizing agent according to the invention may have acid anhydride contents within the range of from about 0.1 to about 30% by weight and usually from about 1 to about 20% by weight.
- Dispersions of non-cellulose-reactive sizing agents generally can have sizing agent contents of from 5 to 50% by weight and preferably from 10 to 35% by weight.
- dispersion is meant both dispersion and emulsion depending on the physical state of the sizing agent.
- the dispersions according to the invention can be prepared by a method comprising homogenising a sizing agent, suitably under pressure, in the presence of an aqueous phase and a starch preferably at a temperature where the sizing agent is liquid.
- a sizing agent suitably under pressure
- the obtained aqueous emulsion which contains droplets of the sizing agent, normally having a size of from 0.1 to 3.5 ⁇ m in diameter, is then cooled.
- Suitable temperatures for ketene dimer sizing agents are from about 55°C to 95°C whereas lower temperatures can be employed for acid anhydrides.
- the amount of sizing agent added to the stock can be from 0.01 to 5% by weight suitably from 0.05 to 1.0% by weight, based on the dry weight of cellulosic fibres and optional fillers, where the dosage is mainly dependent on the quality of the pulp or paper to be sized, the sizing agent used and the level of sizing desired.
- the dispersions of the present invention are preferably used in the manufacture of paper from a stock containing cellulosic fibers, and optional fillers, having a high conductivity.
- the conductivity of the stock is at least 0.20 mS/cm, suitably at least 0.5 mS/cm, preferably at least 3.5 mS/cm. Very good sizing results have been observed at conductivity levels above 5.0 mS/cm and even above 7.5 mS/cm. Conductivity can be measured by standard equipment such as, for example a WTW LF 539 instrument supplied by Christian Berner.
- High conductivity levels mean high contents of salts (electrolytes), where the various salts can be based on mono-, di- and multivalent cations like alkali metals, e.g. Na + and K + , alkaline earths, e.g. Ca 2+ and Mg 2+ , aluminium ions, e.g.
- the dispersion is particularly useful in the manufacture of paper from stocks having high contents of salts of di- and multivalent cations, and usually the cation content is at least 200 ppm, suitably at least 300 ppm and preferably at least 400 ppm.
- Example 1 An anionic sizing dispersion was prepared containing 8,9 % of a commercial alkyl ketene dimer, 0,89 % of an aromat substituted cationic starch having a DS of 0,065 containing benzyl groups, and 0,22 % of condensated naphthalene sulphonate available under the trade name Tamol ®.
- the anionic dispersion was added in an amount of 0,0125% (test 1) and 0,0140 (test 2) as indicated by table 1 to (dry base) based on the ketene dimer to a cellulosic suspension (dry base) containing 30% Pine, 30% Bee, 40% Eucaluptus, and 15% of precipitated CaCO 3 .
- the conductivity of the suspension was 500 ⁇ S/cm.
- the same anionic sizing dispersion was used as in example 1.
- the same sizing promoter was also used as in example 1 containing benzyl substituted starch having a DS of 0.065 (5 kg/tonne dry stock) and condensated naphtalene sulphonate (0,120 kg/tonne dry stock) available under the trade name Tamol®.
- the anionic sizing dispersion was added to the same cellulosic suspension, however, the conductivity of the suspension was 5000 ⁇ S/cm instead of 500 ⁇ S/cm. Table 2
- the sizing performance of a cationic sizing according to prior art was evaluated using the cobb 60 test.
- the sizing dispersion was prepared by mixing cationic starch having no aromatic groups and lignosulphonate with molten AKD having an AKD content of 15 weight % based on total dispersion.
- the papermaking stock contained 85% of 30:30:40 pine:birch:eucaluptus sulphate pulp and 15 % of precipitated calcium to which CaCI 2 was added.
- Stock consistency was 2.5 g/l having a pH of 8.1 and a conductivity of 500 ⁇ s.
- the dispersion was used in conjunction with a retention and dewatering system comprising a cationic aromatic modified starch having a DS C of 0,065 containing bezene groups and condensated naphtalene sulphonate which were added to the stock separately.
- the cationic aromatic modified starch was added in an amount of 5 kg/ tonne, based on dry stock and the condensated naphtalene sulphonate was added in an amount of 0.5 kg/tonne, repectively.
Landscapes
- Paper (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20037000894A KR20030074587A (en) | 2000-08-07 | 2001-08-02 | Sizing dispersion |
BR0112904-0A BR0112904A (en) | 2000-08-07 | 2001-08-02 | Ironing Scatter |
EP01961489A EP1309757A1 (en) | 2000-08-07 | 2001-08-02 | Sizing dispersion |
AU2001282751A AU2001282751A1 (en) | 2000-08-07 | 2001-08-02 | Sizing dispersion |
JP2002517895A JP2004506104A (en) | 2000-08-07 | 2001-08-02 | Sizing dispersion |
CA002418416A CA2418416A1 (en) | 2000-08-07 | 2001-08-02 | Sizing dispersion |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00850136.3 | 2000-08-07 | ||
EP00850135.5 | 2000-08-07 | ||
EP00850135 | 2000-08-07 | ||
EP00850136 | 2000-08-07 | ||
EP00850137.1 | 2000-08-07 | ||
EP00850137 | 2000-08-07 | ||
EP00850195.9 | 2000-11-16 | ||
EP00850195 | 2000-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002012624A1 true WO2002012624A1 (en) | 2002-02-14 |
Family
ID=27440066
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2001/001700 WO2002012624A1 (en) | 2000-08-07 | 2001-08-02 | Sizing dispersion |
PCT/SE2001/001699 WO2002012623A1 (en) | 2000-08-07 | 2001-08-02 | Process for sizing paper |
PCT/SE2001/001701 WO2002012626A1 (en) | 2000-08-07 | 2001-08-02 | A process for the production of paper |
PCT/SE2001/001698 WO2002012622A1 (en) | 2000-08-07 | 2001-08-02 | Process for sizing paper |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2001/001699 WO2002012623A1 (en) | 2000-08-07 | 2001-08-02 | Process for sizing paper |
PCT/SE2001/001701 WO2002012626A1 (en) | 2000-08-07 | 2001-08-02 | A process for the production of paper |
PCT/SE2001/001698 WO2002012622A1 (en) | 2000-08-07 | 2001-08-02 | Process for sizing paper |
Country Status (17)
Country | Link |
---|---|
EP (4) | EP1309757A1 (en) |
JP (4) | JP2004514796A (en) |
KR (4) | KR20030074587A (en) |
CN (4) | CN1215221C (en) |
AR (4) | AR030314A1 (en) |
AT (2) | ATE547562T2 (en) |
AU (6) | AU2001282751A1 (en) |
BR (4) | BR0112905B1 (en) |
CA (4) | CA2418424C (en) |
CZ (1) | CZ304877B6 (en) |
ES (3) | ES2382790T5 (en) |
MX (5) | MX252220B (en) |
NO (1) | NO332614B1 (en) |
NZ (1) | NZ523956A (en) |
PT (3) | PT1309758E (en) |
TR (1) | TR200300157T2 (en) |
WO (4) | WO2002012624A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005060921A (en) * | 2003-07-31 | 2005-03-10 | Kao Corp | Powdery composition for paper-making |
CN107164993A (en) * | 2017-04-14 | 2017-09-15 | 南通强生石墨烯科技有限公司 | Graphene sizing composition and preparation method thereof |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ304557B6 (en) * | 2000-08-07 | 2014-07-09 | Akzo Nobel N. V. | Process for producing paper |
MX252220B (en) * | 2000-08-07 | 2007-12-09 | Akzo Nobel Nv | Process for sizing paper. |
CA2424377C (en) | 2000-10-04 | 2013-07-09 | Donald J. Merkley | Fiber cement composite materials using sized cellulose fibers |
WO2002033164A2 (en) | 2000-10-17 | 2002-04-25 | James Hardie Research Pty Limited | Method for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
PL370668A1 (en) * | 2001-03-09 | 2005-05-30 | James Hardie Research Pty.Limited | Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility |
CA2500545A1 (en) * | 2002-10-01 | 2004-04-15 | Akzo Nobel N.V. | Cationised polysaccharide product |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US7303654B2 (en) | 2002-11-19 | 2007-12-04 | Akzo Nobel N.V. | Cellulosic product and process for its production |
RU2005124843A (en) | 2003-01-09 | 2006-01-20 | Джеймс Харди Интернейшенел Файненс Б.В. (Nl) | FIBER-CEMENT COMPOSITE MATERIALS WITH BLEACHED CELLULOSE FIBERS |
FI20030490A (en) * | 2003-04-01 | 2004-10-02 | M Real Oyj | Process for making fiber composition |
US20050022956A1 (en) * | 2003-07-29 | 2005-02-03 | Georgia-Pacific Resins Corporation | Anionic-cationic polymer blend for surface size |
US7658819B2 (en) | 2004-12-30 | 2010-02-09 | Akzo Nobel N.V. | Composition |
US7604715B2 (en) | 2005-11-17 | 2009-10-20 | Akzo Nobel N.V. | Papermaking process |
US7682485B2 (en) | 2005-12-14 | 2010-03-23 | Akzo Nobel N.V. | Papermaking process |
ATE550487T1 (en) | 2005-12-14 | 2012-04-15 | Akzo Nobel Nv | PAPER MAKING PROCESS |
AU2007236561B2 (en) | 2006-04-12 | 2012-12-20 | James Hardie Technology Limited | A surface sealed reinforced building element |
WO2008066489A1 (en) | 2006-12-01 | 2008-06-05 | Akzo Nobel N.V. | Packaging laminate |
RU2444440C2 (en) * | 2006-12-01 | 2012-03-10 | Акцо Нобель Н.В. | Packing laminate |
EP2132381A1 (en) | 2007-04-05 | 2009-12-16 | Akzo Nobel N.V. | Process for improving optical properties of paper |
EP2239370B1 (en) | 2009-04-09 | 2012-06-20 | Kompetenzzentrum Holz GmbH | Dry and wet strength improvement of paper products with cationic tannin |
MX369909B (en) * | 2009-12-18 | 2019-11-26 | Hercules Inc | Paper sizing composition. |
KR20130059317A (en) | 2010-03-29 | 2013-06-05 | 아크조 노벨 케미칼즈 인터내셔널 비.브이. | Process of producing a cellulosic fibre web |
MX2012010957A (en) | 2010-03-29 | 2012-11-12 | Akzo Nobel Chemicals Int Bv | Process of producing a cellulosic fibre web. |
EP2402503A1 (en) | 2010-06-30 | 2012-01-04 | Akzo Nobel Chemicals International B.V. | Process for the production of a cellulosic product |
US8852400B2 (en) | 2010-11-02 | 2014-10-07 | Ecolab Usa Inc. | Emulsification of alkenyl succinic anhydride with an amine-containing homopolymer or copolymer |
JP6366161B2 (en) * | 2010-12-28 | 2018-08-01 | 星光Pmc株式会社 | Water dispersible sizing agent, paper manufacturing method and paperboard manufacturing method |
CN102493275A (en) * | 2011-12-08 | 2012-06-13 | 山东轻工业学院 | Stable ASA (Alkenyl Succinic Anhydride) papermaking sizing emulsion and preparation method thereof |
DE102011088201B4 (en) * | 2011-12-10 | 2017-02-02 | Friedrich-Schiller-Universität Jena | Process water purification process in the paper industry |
CN102864686A (en) * | 2012-09-29 | 2013-01-09 | 上海东升新材料有限公司 | Sizing agent emulsion and preparation method for same |
NZ707368A (en) * | 2012-11-08 | 2018-06-29 | Solenis Technologies Cayman Lp | Composition and use of hydrogenated alkyl ketene dimers |
BR112015013927A2 (en) | 2012-12-20 | 2017-07-11 | Akzo Nobel Chemicals Int Bv | use of a polyquaternary polymer; potassium ore foam flotation method for the recovery of potassium minerals; and pulp |
NL2011609C2 (en) | 2013-10-14 | 2015-04-16 | Univ Delft Tech | Extracellular polymers from granular sludge as sizing agents. |
CN106917324B (en) * | 2015-12-25 | 2019-11-08 | 艺康美国股份有限公司 | A kind of paper-making sizing method and its paper of preparation |
FR3059345B1 (en) * | 2016-11-29 | 2020-06-12 | Centre Technique De L'industrie, Des Papiers, Cartons Et Celluloses | BINDING COMPOSITION BASED ON VEGETABLE FIBERS AND MINERAL FILLERS, ITS PREPARATION AND ITS USE |
CN107574721B (en) * | 2017-10-27 | 2020-05-26 | 齐鲁工业大学 | Filter paper with functions of absorbing and desorbing boric acid and preparation method thereof |
CN110485199A (en) * | 2018-05-15 | 2019-11-22 | 上海东升新材料有限公司 | Dehydroabietic acid lignin emulsifier and the AKD lotion prepared with the emulsifier |
CN110685187A (en) * | 2019-09-10 | 2020-01-14 | 佛山市顺德区文达创盈包装材料科技有限公司 | Internal sizing composition for paper pulp and application method and application thereof |
CN114573755B (en) * | 2022-05-05 | 2022-07-29 | 山东奥赛新材料有限公司 | Preparation method of cationic emulsifier for rosin size |
KR102658058B1 (en) * | 2022-05-25 | 2024-04-15 | 주식회사 써모랩코리아 | Pulp mold packaging |
WO2024105160A1 (en) * | 2022-11-17 | 2024-05-23 | Sca Forest Products Ab | Production of hydrophobic paper |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1588416A (en) * | 1976-09-08 | 1981-04-23 | Laporte Industries Ltd | Process and compositions for the treatment of cellulosic materials |
US4687519A (en) * | 1985-12-20 | 1987-08-18 | National Starch And Chemical Corporation | Paper size compositions |
US6001166A (en) * | 1995-11-03 | 1999-12-14 | Basf Aktiengesellschaft | Aqueous alkyldiketene dispersions and their use as size for paper |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1177512A (en) * | 1966-04-15 | 1970-01-14 | Nalco Chemical Co | Improved Papermaking Process |
US3409500A (en) † | 1966-10-28 | 1968-11-05 | American Cyanamid Co | Method of sizing paper with cationic polyamine and carboxylic anhydride |
US3499824A (en) † | 1967-02-27 | 1970-03-10 | American Cyanamid Co | Aqueous cationic emulsions of papersizing isocyanates and manufacture of paper therewith |
CA1044859A (en) † | 1974-07-31 | 1978-12-26 | Emil D. Mazzarella | Method of sizing paper |
US4374673A (en) * | 1980-12-31 | 1983-02-22 | Hercules Incorporated | Stable dispersions of fortified rosin |
JPS57161197A (en) * | 1981-03-27 | 1982-10-04 | Arakawa Rinsan Kagaku Kogyo Kk | Ketene dimer type size agent |
DE3203189A1 (en) † | 1982-01-30 | 1983-08-04 | Bayer Ag, 5090 Leverkusen | SIZE AND ITS USE |
JPS6414397A (en) * | 1987-02-02 | 1989-01-18 | Nissan Chemical Ind Ltd | Papermaking method |
KR0159921B1 (en) * | 1988-10-03 | 1999-01-15 | 마이클 비. 키한 | A composition comprising cathionic and anionic polymer process thereof |
GB8920456D0 (en) * | 1989-09-11 | 1989-10-25 | Albright & Wilson | Active sizing compositions |
US5595629A (en) * | 1995-09-22 | 1997-01-21 | Nalco Chemical Company | Papermaking process |
JP3496906B2 (en) * | 1996-04-09 | 2004-02-16 | ハイモ株式会社 | Method for improving drainage of paperboard |
GB9610955D0 (en) * | 1996-05-24 | 1996-07-31 | Hercules Inc | Sizing composition |
TW577875B (en) * | 1997-01-31 | 2004-03-01 | Shionogi & Co | Pyrrolidine derivatives with inhibitory activity for phospholipase A2 |
SE9704931D0 (en) | 1997-02-05 | 1997-12-30 | Akzo Nobel Nv | Sizing of paper |
US6033524A (en) * | 1997-11-24 | 2000-03-07 | Nalco Chemical Company | Selective retention of filling components and improved control of sheet properties by enhancing additive pretreatment |
EP0953680A1 (en) * | 1998-04-27 | 1999-11-03 | Akzo Nobel N.V. | A process for the production of paper |
JPH11315491A (en) * | 1998-04-30 | 1999-11-16 | Japan Pmc Corp | Resin composition for paper making and paper making |
BR9911453A (en) * | 1998-06-24 | 2001-03-20 | Akzo Nobel Nv | Ionic polyurethanes |
FI109218B (en) | 1998-09-04 | 2002-06-14 | Kemira Chemicals Oy | A bonding compound used for neutral gluing of paper or paperboard and a method of making paper or paperboard |
AU6333599A (en) | 1998-10-16 | 2000-05-08 | Basf Aktiengesellschaft | Aqueous sizing agent dispersions adjusted to be anionic or cationic and designedfor paper sizing |
CA2315676C (en) * | 1999-05-28 | 2009-10-13 | Nalco Chemical Company | Selective retention of filling components and improved control of sheet properties by enhancing additive pretreatment |
MX252220B (en) * | 2000-08-07 | 2007-12-09 | Akzo Nobel Nv | Process for sizing paper. |
-
2001
- 2001-08-02 MX MXPA03000869 patent/MX252220B/en active IP Right Grant
- 2001-08-02 KR KR20037000894A patent/KR20030074587A/en active IP Right Grant
- 2001-08-02 KR KR20037001171A patent/KR20030042445A/en not_active Application Discontinuation
- 2001-08-02 WO PCT/SE2001/001700 patent/WO2002012624A1/en active IP Right Grant
- 2001-08-02 AU AU2001282751A patent/AU2001282751A1/en not_active Abandoned
- 2001-08-02 BR BRPI0112905-8A patent/BR0112905B1/en not_active IP Right Cessation
- 2001-08-02 AU AU2001280361A patent/AU2001280361B2/en not_active Ceased
- 2001-08-02 AT AT01958738T patent/ATE547562T2/en active
- 2001-08-02 ES ES01958738.5T patent/ES2382790T5/en not_active Expired - Lifetime
- 2001-08-02 AU AU8035901A patent/AU8035901A/en active Pending
- 2001-08-02 WO PCT/SE2001/001699 patent/WO2002012623A1/en not_active Application Discontinuation
- 2001-08-02 ES ES01958740T patent/ES2384994T3/en not_active Expired - Lifetime
- 2001-08-02 CA CA002418424A patent/CA2418424C/en not_active Expired - Fee Related
- 2001-08-02 KR KR20037001382A patent/KR100520230B1/en not_active IP Right Cessation
- 2001-08-02 MX MXPA03001056 patent/MX259234B/en active IP Right Grant
- 2001-08-02 BR BRPI0112906-6A patent/BR0112906B1/en not_active IP Right Cessation
- 2001-08-02 PT PT01958740T patent/PT1309758E/en unknown
- 2001-08-02 EP EP01961489A patent/EP1309757A1/en not_active Withdrawn
- 2001-08-02 CA CA2418400A patent/CA2418400C/en not_active Expired - Fee Related
- 2001-08-02 MX MXPA03000790 patent/MX255774B/en active IP Right Grant
- 2001-08-02 PT PT01958738T patent/PT1309755E/en unknown
- 2001-08-02 EP EP01958740A patent/EP1309758B1/en not_active Expired - Lifetime
- 2001-08-02 EP EP01958739A patent/EP1309756B1/en not_active Expired - Lifetime
- 2001-08-02 AU AU2001280360A patent/AU2001280360A1/en not_active Abandoned
- 2001-08-02 ES ES01958739T patent/ES2388659T3/en not_active Expired - Lifetime
- 2001-08-02 CA CA002418413A patent/CA2418413C/en not_active Expired - Fee Related
- 2001-08-02 EP EP01958738.5A patent/EP1309755B2/en not_active Expired - Lifetime
- 2001-08-02 JP JP2002517894A patent/JP2004514796A/en active Pending
- 2001-08-02 BR BR0112904-0A patent/BR0112904A/en not_active IP Right Cessation
- 2001-08-02 CN CNB018146902A patent/CN1215221C/en not_active Expired - Fee Related
- 2001-08-02 CZ CZ2003-371A patent/CZ304877B6/en not_active IP Right Cessation
- 2001-08-02 PT PT01958739T patent/PT1309756E/en unknown
- 2001-08-02 WO PCT/SE2001/001701 patent/WO2002012626A1/en active IP Right Grant
- 2001-08-02 AU AU2001280359A patent/AU2001280359B2/en not_active Ceased
- 2001-08-02 CN CNB018146910A patent/CN1302176C/en not_active Expired - Fee Related
- 2001-08-02 KR KR1020037001170A patent/KR100560239B1/en not_active IP Right Cessation
- 2001-08-02 JP JP2002517895A patent/JP2004506104A/en active Pending
- 2001-08-02 CA CA002418416A patent/CA2418416A1/en not_active Abandoned
- 2001-08-02 BR BRPI0112907-4A patent/BR0112907B1/en not_active IP Right Cessation
- 2001-08-02 JP JP2002517897A patent/JP2004506105A/en active Pending
- 2001-08-02 CN CN01814583A patent/CN1449464A/en active Pending
- 2001-08-02 NZ NZ523956A patent/NZ523956A/en not_active IP Right Cessation
- 2001-08-02 WO PCT/SE2001/001698 patent/WO2002012622A1/en active IP Right Grant
- 2001-08-02 TR TR2003/00157T patent/TR200300157T2/en unknown
- 2001-08-02 JP JP2002517893A patent/JP2004506103A/en active Pending
- 2001-08-02 AU AU8036101A patent/AU8036101A/en active Pending
- 2001-08-02 AT AT01958740T patent/ATE553259T1/en active
- 2001-08-02 CN CNB018137164A patent/CN1237228C/en not_active Expired - Fee Related
- 2001-08-03 AR ARP010103722A patent/AR030314A1/en not_active Application Discontinuation
- 2001-08-03 AR ARP010103724A patent/AR031982A1/en not_active Application Discontinuation
- 2001-08-03 AR ARP010103721A patent/AR030313A1/en not_active Application Discontinuation
- 2001-08-03 AR ARP010103723A patent/AR030438A1/en not_active Application Discontinuation
-
2003
- 2003-01-23 MX MXPA03000677A patent/MXPA03000677A/en unknown
- 2003-01-27 MX MX2007016467A patent/MX275177B/en unknown
- 2003-02-04 NO NO20030559A patent/NO332614B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1588416A (en) * | 1976-09-08 | 1981-04-23 | Laporte Industries Ltd | Process and compositions for the treatment of cellulosic materials |
US4687519A (en) * | 1985-12-20 | 1987-08-18 | National Starch And Chemical Corporation | Paper size compositions |
US6001166A (en) * | 1995-11-03 | 1999-12-14 | Basf Aktiengesellschaft | Aqueous alkyldiketene dispersions and their use as size for paper |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005060921A (en) * | 2003-07-31 | 2005-03-10 | Kao Corp | Powdery composition for paper-making |
JP4574271B2 (en) * | 2003-07-31 | 2010-11-04 | 花王株式会社 | Powdery papermaking composition |
CN107164993A (en) * | 2017-04-14 | 2017-09-15 | 南通强生石墨烯科技有限公司 | Graphene sizing composition and preparation method thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002012624A1 (en) | Sizing dispersion | |
US6846384B2 (en) | Process for sizing paper | |
AU2001280359A1 (en) | Process for sizing paper | |
US6306255B1 (en) | Sizing of paper | |
KR100339882B1 (en) | Sizing of paper | |
BRPI0712698A2 (en) | paper sizing | |
US20020096275A1 (en) | Sizing dispersion | |
US20030019599A1 (en) | Sizing dispersion | |
EP1338699A1 (en) | Sizing dispersion | |
RU2243306C2 (en) | Sized paper manufacture process | |
RU2245408C2 (en) | Method of paper smoothing | |
TW593839B (en) | Sizing dispersion | |
PL203567B1 (en) | The method of sizing the paper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020037000894 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001961489 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018137164 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2418416 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002517895 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001961489 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037000894 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020037000894 Country of ref document: KR |