WO2002003003A1 - Procede d'echange thermique - Google Patents

Procede d'echange thermique Download PDF

Info

Publication number
WO2002003003A1
WO2002003003A1 PCT/JP2001/005719 JP0105719W WO0203003A1 WO 2002003003 A1 WO2002003003 A1 WO 2002003003A1 JP 0105719 W JP0105719 W JP 0105719W WO 0203003 A1 WO0203003 A1 WO 0203003A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
exhaust gas
concentration
heat exchanger
rotor
Prior art date
Application number
PCT/JP2001/005719
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Fukutani
Toshihiro Ohkohchi
Shuichi Tsuboi
Tomoharu Miyamoto
Original Assignee
Alstom Power N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Power N.V. filed Critical Alstom Power N.V.
Priority to AU2001267901A priority Critical patent/AU2001267901A1/en
Publication of WO2002003003A1 publication Critical patent/WO2002003003A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/041Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/08Preheating the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/32Nox
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a method for exchanging heat between a high-temperature exhaust gas discharged from a furnace such as a billet heating furnace and a billet heat treatment furnace and combustion air from a wrench installed in the furnace.
  • Rotary regenerative heat exchangers have been used to recover waste heat from the high-temperature exhaust gas discharged from the furnace and preheat the burner air. As shown in Fig. 1, this rotary regenerative heat exchanger has an outlet inside the housing 1 while flowing exhaust gas to one side of the housing 1 divided into two by a sector plate 2 and combustion air to the other. Is rotated to perform heat exchange.
  • a heat storage body 4 made of corrugated steel plate or the like is provided in the mouth 3, and a number of flow paths 6 are formed in parallel with the rotating shaft 5.
  • the heat storage element is heated to a high temperature when rotated to the exhaust gas side to recover exhaust heat, and heats the combustion air flowing through the flow path 6 when rotated to the combustion air side.
  • the mouth 3 is normally rotated continuously at a constant speed of about 1 to 5 rpm. This regenerative heat exchanger is a highly efficient waste heat recovery facility by preventing seal leaks from leaking from the outside of the mouth around the mouth and the circumvent leak from the outside of the mouth. ing.
  • the usable temperature of the regenerative heat exchanger was low, but recently it can be used for heat recovery from high-temperature exhaust gas, and the preheating temperature of the combustion air rises accordingly,
  • the combustion temperature of the burner to which the combustion air is supplied is also increasing. As a result, it is becoming to exceed environmental standards generation amount of the NO x is increased.
  • the present invention solves the above-mentioned conventional problems, reduces the load on the rotating motor, suppresses the wear of the seal portion, and can simultaneously perform heat recovery from exhaust gas and reduction of heat. This was done to provide an exchange method.
  • the heat exchange method of the present invention made to solve the above-mentioned problem detects NOx concentration in exhaust gas discharged from a furnace equipped with a rotary regenerative heat exchanger that preheats combustion air with exhaust gas.
  • the furnace may be a slab heating furnace or a slab heat treatment furnace.
  • the concentration of N 0 ⁇ ⁇ ⁇ in the exhaust gas of a furnace in which a rotary regeneration type heat exchanger is installed is detected and fed back, and the rotational speed of the rotor is controlled in accordance with the N 0 concentration. Therefore, there is no need to constantly increase the number of revolutions in the evening. Therefore, load on the motor and wear of the seal can be suppressed.
  • the concentration of NOx in the exhaust gas increases, the number of revolutions of the exhaust gas is increased to increase the exhaust gas circulating amount, thereby making it possible to reduce NOx.
  • FIGS. 1A and 1B are a cross-sectional view and a plan view of a rotary regenerative heat exchanger.
  • FIG. 2 is a system diagram showing an embodiment of the present invention.
  • Figure 3 is Ru graph der showing the relationship between the low evening speed and N 0 X reduction rate in the embodiment.
  • reference numeral 10 denotes a furnace such as a slab heating furnace or a slab heat treatment furnace. Pana installed in furnace 10. The combustion air supplied from the blower 12 is heat-exchanged with the high-temperature exhaust gas discharged from the furnace 10 in the rotary regenerative heat exchanger and sent to the burner 11.
  • the structure of the rotary regenerative heat exchanger used here is the same as that shown in FIG. 1, except that a rotary speed controller 13 is connected to the rotary motor 13 of the rotor 3.
  • the exhaust gas discharge path is provided with NOx concentration measuring means 15 for detecting NO and concentration in the exhaust gas. This means even the NOx concentration meter may be one that calculates the concentration of NO x by detecting the gas concentration in the exhaust gas (e.g., oxygen concentration).
  • the rotation speed of the mouth 3 is kept at the low speed range of 5 rpm or less as before, and the NO, concentration in the exhaust gas may exceed the standard. Only increase the rotation speed.
  • a rotary regenerative heat exchanger was installed in a billet heating furnace to recover heat from exhaust gas.
  • the environmental standard is NO concentration of 8 ppm in exhaust gas.
  • the conditions were 900 ° C on the exhaust gas inlet side of the rotary regenerative heat exchanger and 700 ° C on the preheated air temperature, and feedback control was performed to increase the number of revolutions per night in accordance with the detected rate of increase in exhaust gas. .
  • Fig. 3 shows the relationship between the rotational speed and the NO and reduction rate of the rotor. As a result, during the heating period, etc., the NO and concentration increased, so that the rotation speed in the evening rose temporarily to 30 rpm, but at other times, the rotation speed in the mouth and evening became 5 rpm.
  • the exhaust gas N ⁇ x concentration was 80 ppm.
  • the rotor in the case of the conventional method that does not control the rotation speed of the furnace, always operate the rotor at 30 rpm so that the exhaust gas concentration can clear the environmental standards even during the furnace heating period. I had to.
  • the wear of the seal portion was remarkable and the replacement had to be performed every year, but in the method of the present invention, the wear of the seal portion was reduced, and the replacement was completed every two years. .
  • the average motor load was also reduced by half.
  • the NCK concentration in the exhaust gas of the furnace is detected and the feedback control of the rotational speed of the furnace is performed. not necessary to increase the rotational speed of Isseki, to enhance the mouth Isseki rotational speed only when the increased concentration of NO x in exhaust gas to increase the exhaust gas circulation amount, and can be reduced in NO x low reduction Become. Therefore, there is an advantage that the load on the module and the wear of the seal portion can be suppressed as compared with the conventional case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

明 細 書 ' 熱交換方法 発明の属する技術分野
本発明は、 鋼片加熱炉ゃ鋼片熱処理炉などの炉から排出される高温の排ガスと、 その炉に設置されたパーナの燃焼空気との間の熱交換方法に関するものである。
従来の技術
炉から排出される高温の排ガスから廃熱を回収し、 パーナの燃焼空気を予熱す るために、 従来から回転再生式熱交換器が使用されている。 この回転再生式熱交 換器は、 図 1に示すようにセクタ一プレート 2により 2分割されたハウジング 1 の片側に排ガスを、 他方に燃焼空気を流しながらこのハウジング 1の内部で口一 夕 3を回転させて熱交換を行わせるものである。
口一夕 3には波板鋼鈑等よりなる蓄熱体 4が設けられており、 回転軸 5と平行 に多数の流路 6が形成されている。 蓄熱体は、 排ガス側に回転したときに高温に 加熱されて排熱回収を行い、 燃焼空気側に回転したときに流路 6内を流れる燃焼 空気を加熱する。 口一夕 3は通常は 1〜5 r p m程度の一定速度で連続回転され る。 この回転再生式熱交換器は、 口一夕 3の回転に伴うェントレインドリークや 口一夕 3の外周からのサーカムリークをシールで防止することにより、 効率のよ ぃ排熱回収設備となっている。
従来は回転再生式熱交換器の使用可能な温度は低かつたのであるが、 最近では 高温の排ガスからの熱回収にも使用できるようになり、 それに連れて燃焼空気の 予熱温度が上昇し、 その燃焼空気が供給されるパーナの燃焼温度も上昇している。 その結果、 N Oxの発生量が増加して環境基準を上回るようになりつつある。
そこで特開平一 3 1 3 5 0 8号公報に示されるように、 口一夕 3の回転数を増 加させることにより回転再生式熱交換器内部でのェントレインドリ一クを積極的 に増やし、 排ガスの一部を燃焼ガス側に移行させて酸素濃度を下げ、 Ν Ο»発生 を抑制する排ガス循環技術が開発されている。 この技術を用いれば、 排ガスから の熱回収と N O«低減とを同時に行うことができる。 しかしこの公報記載の方法では、 炉の最大出力時にも N O ,の発生量を環境基 準以下とすることができるよう、 口一夕 3の回転数を高めに設定しておく必要が あり、 そのために回転モ一夕の負荷が大きくなつて多くの電力を消費するという 問題がある。 また、 常に口一夕 3を高速回転させているためにシ一ル部が磨耗し やすく、 頻繁に交換しなければならないという問題がある。
発明の要約
本発明は上記した従来の問題点を解決し、 回転モー夕の負荷を軽減でき、 シー ル部の磨耗を抑制でき、 しかも排ガスからの熱回収と Ν Ο »低減とを同時に行う ことができる熱交換方法を提供するためになされたものである。
上記の課題を解決するためになされた本発明の熱交換方法は、 排ガスにより燃 焼空気を予熱する回転再生式熱交換器が設置されている炉から排出される排ガス 中の N O x濃度を検出し、 N O x濃度が増加したとき回転再生式熱交換器の口一夕 回転数を高め、 N O x濃度が減少したとき回転再生式熱交換器のロー夕回転数を 低くするよう、 口一夕の回転数制御を行うことを特徴とするものである。 なお、 炉としては鋼片加熱炉または鋼片熱処理炉を挙げることができる。
本発明によれば、 回転再生式熱交換器が設置されている炉の排ガス中の N 0 « 濃度を検出してフィードバックし、 N 0濃度に応じてロー夕の回転数制御を行 うようにしたので、 常時ロー夕の回転数を高めておく必要はない。 従ってモー夕 の負荷やシール部の磨耗を抑制できる。 しかも排ガス中の N O x濃度が高まった ときには口一夕回転数を高めて排ガス循環量を増加させ、 N O x低減を図ること が可能となる。
図面の簡単な説明
図 1 ( a) 、 ( b ) は回転再生式熱交換器の断面図例及び平面図例である。 図 2は本発明の実施形態を示す系統図である。
図 3は実施例におけるロー夕回転数と N 0 X低減率との関係を示すグラフであ る。
好適な実施例
以下に本発明の好ましい実施形態を示す。
図 2において、 1 0は鋼片加熱炉または鋼片熱処理炉等の炉であり、 1 1はこ の炉 10に設置されたパーナである。 ブロワ 12から供給される燃焼空気は回転 再生式熱交換器において炉 10から排出される高温の排ガスと熱交換され、 バ一 ナ 11に送られる。
ここで用いられる回転再生式熱交換器の構造は図 1に示したものと同じである が、 ロー夕 3の回転モータ 13には回転数の制御器 14が接続されている。 排ガ ス排出経路には N Ox濃度計測手段 15が設けられており、 排ガス中の NO,濃度 を検出する。 この手段は NOx濃度計であっても、 排ガス中のガス濃度 (例えば 酸素濃度) を検出して NOx濃度を演算するものであってもよい。
制御器 14は N 0 x濃度に応じて口一夕 3の回転数制御を行うことができるもの で、 N Ox濃度が増加したとき口一夕回転数を高め、 NOx濃度が減少したとき口 一夕回転数を低くするよう、 ロー夕の回転数制御を行う。 これにより排ガス中の NO,濃度が低いときには口一夕 3の回転数を従来と同様に 5 r pm以下の低速 域に留め、 排ガス中の NO,濃度が璋境基準を上回るおそれが生じた場合にのみ ロー夕回転数を高める。
このようにロー夕 3の回転数を高めると、 口一夕 3の内部において排ガスの一 部が燃焼空気側に移行するェントレインドリークが発生し、 パーナ 11に供給さ れる燃焼空気中の酸素濃度が低下する。 その結果 NO,の発生量が低下するので、 制御器 14はロー夕回転数を低くする。 このようなフィードバック制御を行うこ とにより、 ロー夕 3の回転数を無用に高めておく必要がなくなり、 モータの負荷 やシール部の磨耗を抑制できる。
以下に本発明の実施例を示す。
鋼片加熱炉に回転再生式熱交換器を設置し、 排ガスからの熱回収を行わせた。 なお環境基準は、 排ガス NO濃度 8 Oppmである。 回転再生式熱交換器の排 ガス入側温度 900°C、 予熱空気温度 700°Cの条件とし、 検出された排ガスの 増加率に応じて口一夕の回転数を増加させるフィードバック制御を行った。 なお 図 3にロー夕の回転数と NO,低減率との関係を示した。 その結果、 加熱期等に は NO,濃度が増加するためロー夕の回転数が一時的に 30 r pmまで上昇する ことがあつたが、 それ以外の時間は口一夕の回転数が 5 r pmで排ガス N〇x濃 度が 80 p pmとなった。 なお、 ロー夕の回転数制御を行わない従来法の場合には、 炉の加熱期等にも排 ガス濃度が環境基準をクリャできるように、 常に口一夕を 3 0 r p mで運転しな ければならなかった。
その結果、 従来はシール部の摩耗が著しくその交換を 1年毎に行わねばならな かったが、 本発明の方法ではシール部の摩耗が減少し、 2年毎の交換で済むよう になった。 また平均的なモー夕負荷も従来の半分に減少させることができた。 以上に説明したように、 本発明によれば炉の排ガス中の N CK濃度を検出して、 ロー夕の回転数のフィードバック制御を行うようにしたので、 炉の最大負荷時に 対応させて常時口一夕の回転数を高めておく必要はなく、 排ガス中の N Ox濃度 が高まったときにのみ口一夕回転数を高めて排ガス循環量を増加させ、 N Ox低 減を図ることが可能となる。 従って従来に比較してモ一夕の負荷やシール部の磨 耗を抑制できる利点がある。

Claims

請 求 の 範 囲
1 . 排ガスにより燃焼空気を予熱する回転再生式熱交換器が設置されている 炉から排出される排ガス中の N Ox濃度を検出し、 N O,濃度が増加したとき回転 再生式熱交換器のロー夕回転数を高め、 N Ox濃度が減少したとき回転再生式熱 交換器の口一夕回転数を低くするよう、 ロー夕の回転数制御を行うことを特徴と する熱交換方法。
2 . 炉が鋼片加熱炉または鋼片熱処理炉である請求項 1.記載の熱交換方法。
PCT/JP2001/005719 2000-06-30 2001-07-02 Procede d'echange thermique WO2002003003A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001267901A AU2001267901A1 (en) 2000-06-30 2001-07-02 Heat exchange method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-197706 2000-06-30
JP2000197706A JP3683780B2 (ja) 2000-06-30 2000-06-30 熱交換方法

Publications (1)

Publication Number Publication Date
WO2002003003A1 true WO2002003003A1 (fr) 2002-01-10

Family

ID=18695993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005719 WO2002003003A1 (fr) 2000-06-30 2001-07-02 Procede d'echange thermique

Country Status (4)

Country Link
JP (1) JP3683780B2 (ja)
AU (1) AU2001267901A1 (ja)
TW (1) TW483984B (ja)
WO (1) WO2002003003A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809169A (zh) * 2012-07-19 2012-12-05 黑龙江建龙钢铁有限公司 一种粗苯管式炉余热利用装置
CN105972945A (zh) * 2016-06-17 2016-09-28 瑞基科技发展有限公司 脱硝催化剂蒸汽干燥室

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336736A (en) * 1976-09-16 1978-04-05 Osaka Gas Co Ltd Waste heat recovery type combustion arrangement
JPS59130949U (ja) * 1983-02-17 1984-09-03 トヨタ自動車株式会社 燃焼炉のNOx制御装置
JPH06313508A (ja) * 1993-04-27 1994-11-08 Nippon Steel Corp 熱交換方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336736A (en) * 1976-09-16 1978-04-05 Osaka Gas Co Ltd Waste heat recovery type combustion arrangement
JPS59130949U (ja) * 1983-02-17 1984-09-03 トヨタ自動車株式会社 燃焼炉のNOx制御装置
JPH06313508A (ja) * 1993-04-27 1994-11-08 Nippon Steel Corp 熱交換方法

Also Published As

Publication number Publication date
AU2001267901A1 (en) 2002-01-14
TW483984B (en) 2002-04-21
JP3683780B2 (ja) 2005-08-17
JP2002013894A (ja) 2002-01-18

Similar Documents

Publication Publication Date Title
CN107655027A (zh) 回转式空气预热器及其二次风侧减漏风防堵塞的方法
CN104169647B (zh) 氧燃烧锅炉系统
CN109340811A (zh) 一种回转式空气预热器逆流换热防堵装置
TW201102602A (en) Regenerative heat exchanger and method of reducing gas leakage therein
US20090095440A1 (en) Method for optimised operation of an air preheater and air preheater
CN107726355A (zh) 回转式空气预热器及其一次风侧减漏风防堵塞的方法
CN107842872A (zh) 回转式空气预热器及其减漏风防堵塞的方法
WO2002003003A1 (fr) Procede d'echange thermique
CN207262470U (zh) 回转式空气预热器
CN209013228U (zh) 基于燃用烟煤、无烟煤锅炉回转式空预器的热一次风循环防堵装置
CN208595552U (zh) 一种回转式空气预热器本体热风传递防堵装置
JP2002370012A (ja) 排煙処理装置
US6863523B2 (en) Crossflow air heater bypass
JP2936449B2 (ja) 蓄熱式交番燃焼バーナシステムを備えた加熱炉の操炉方法
CN209470246U (zh) 一种回转式空气预热器逆流换热防堵装置
JP2003322329A (ja) 回転再生式空気予熱器とそのスートブロワ方法
JPS61107002A (ja) ボイラの風煙道系における回転再生式空気予熱器
JP2012047406A (ja) 火力発電用予熱システム
JP4413033B2 (ja) 発電システム
JPH06313508A (ja) 熱交換方法
WO2013064953A1 (en) Rotary regenerative heat exchanger
WO2002003004A1 (fr) Procede de mise en oeuvre d'echangeur thermique rotatif a regeneration
CN216114133U (zh) 一种用于空预器积灰堵塞的改进装置
JP2002021779A (ja) 通風機軸封機構
JP2003240271A (ja) デシカント除湿方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IN KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205 DATED 11.03.2003)

122 Ep: pct application non-entry in european phase