WO2002000384A1 - Procede et appareil d'usinage par fils a decharge electrique - Google Patents

Procede et appareil d'usinage par fils a decharge electrique Download PDF

Info

Publication number
WO2002000384A1
WO2002000384A1 PCT/JP2000/004254 JP0004254W WO0200384A1 WO 2002000384 A1 WO2002000384 A1 WO 2002000384A1 JP 0004254 W JP0004254 W JP 0004254W WO 0200384 A1 WO0200384 A1 WO 0200384A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
electric discharge
gas
workpiece
wire electric
Prior art date
Application number
PCT/JP2000/004254
Other languages
English (en)
French (fr)
Inventor
Akihiro Goto
Toshio Moro
Seiji Satou
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2000/004254 priority Critical patent/WO2002000384A1/ja
Priority to CNB00812065XA priority patent/CN1184045C/zh
Priority to US10/048,571 priority patent/US6639172B1/en
Priority to CH00367/02A priority patent/CH695885A5/de
Priority to DE10084936T priority patent/DE10084936T1/de
Priority to KR10-2002-7002618A priority patent/KR100454838B1/ko
Publication of WO2002000384A1 publication Critical patent/WO2002000384A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/101Supply of working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/34Working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/36Supply or regeneration of working media

Definitions

  • the present invention relates to an improvement in a wire electric discharge machining method and apparatus for processing a workpiece by generating a discharge in a gap between a wire electrode and a workpiece.
  • EDM has established a solid position as a machining technology for dies and the like, and has been widely used in the dies and machining fields of the automobile industry, the home appliance industry, the semiconductor industry, and the like.
  • Fig. 6 is an explanatory view of the mechanism of electric discharge machining, where 1 is an electrode, 2 is a workpiece, 3 is an arc column, 4 is a machining fluid, and 5 is machining waste generated by electric discharge machining. is there. While the following cycles (a) to (e) (corresponding to (a) to (e) in FIG. 6) are repeated, removal processing of the workpiece 2 by electric discharge proceeds. That is, (a) formation of the arc column 3 by the generation of electric discharge, (b) local melting and vaporization of the working fluid 4 by the thermal energy of the electric discharge, (c) generation of a vaporizing explosive force of the working fluid 4, (d) (E) Cooling, solidification, and insulation recovery between the electrodes.
  • FIG. 7 is an explanatory view showing an example of a machining process of wire electric discharge machining.
  • la is a wire electrode
  • 2 is a workpiece
  • 4a is water as a machining fluid
  • 6 is an initial hole
  • Fig. 7 (a) shows the first cut, which is rough machining
  • Fig. 7 (b) shows the second cut, which is medium finishing after rough machining
  • Fig. 7 (c) shows the final finish machining Indicates a third cut.
  • FIG. 7 (a) shows an example of the first-piece machining in which the wire electrode 1a is passed through the initial hole 6 and the workpiece 2 is cut through.
  • the surface roughness and precision are finished in the subsequent processing, so not so severe surface roughness and precision are required, and it is important to increase the processing speed especially to improve productivity It is.
  • wire electric discharge machining in order to increase the machining speed, water 4a is strongly sprayed between the gaps in order to efficiently discharge machining chips from the gaps.
  • a method of immersing the workpiece 2 by storing the water 4a in a processing tank (not shown) is used. Can be.
  • FIG. 8 shows an example of the voltage and current waveforms between the electrodes, where V is the voltage between the electrodes, I is the current between the electrodes, and t is the time.
  • the state at the timing T1 in FIG. 8 is a state in which a voltage is applied between the wire electrode 1a and the pole of the workpiece 2.
  • a voltage is applied between the poles, a positive and negative polarities attract each other, so that the wire electrode 1a having low rigidity is pulled toward the workpiece 2 by this electrostatic force. This causes the vibration of the wire electrode 1a.
  • the state at the timing T2 in FIG. 8 is a state in which the discharge energy generates the vaporizing explosive force of the machining fluid (for example, (c) in FIG. 6), and the wire electrode 1a is A large force acts in the direction opposite to the workpiece 2 due to the vaporizing explosive force, generating vibration. Due to such vibrations, there is a problem that unevenness is generated in the shape of the workpiece 2, which leads to deterioration of accuracy.
  • the semiconductor industry which is the field of application of wire electric discharge machining, for example, in the processing of IC lead frame dies, etc., for workpieces with a shape accuracy of 1 m and surface roughness of 1 / mR max or less.
  • Applications that require extremely high precision and extremely smooth surface roughness and that require an increase in productivity are increasing, especially in such applications due to the vibration of the wire electrode as described above. The problem was noticeable.
  • the present invention has been made to solve the above problems, An object of the present invention is to obtain a highly productive wire electric discharge machining method and apparatus suitable for high precision machining. It is another object of the present invention to obtain a wire electric discharge machining method and apparatus suitable for high quality machining.
  • the wire electric discharge machining method according to the present invention is a wire electric discharge machining method for machining the workpiece by generating a discharge in the air between the wire electrode and the workpiece. Processing is performed while supplying.
  • a wire electric discharge machining method is a wire electric discharge machining method for machining the workpiece by generating an electric discharge between a wire electrode and the workpiece, wherein the rough machining is performed in a machining fluid.
  • the method includes a first step to be performed and a second step to perform finishing processing in the air, wherein the processing is performed while supplying a pressurized gas between the electrodes during the processing in the second step.
  • the gas includes at least one of oxygen, nitrogen, hydrogen, an inert gas, and an insulating gas.
  • a wire electric discharge machine is a wire electric discharge machine for processing a workpiece by generating a discharge between a wire electrode and a workpiece, and supplying a pressurized gas between the poles.
  • the wire electric discharge machining device is a wire electric discharge machining device that generates electric discharge between a wire electrode and a workpiece to process the workpiece.
  • a machining liquid supply means for supplying a machining liquid at an increased pressure between the poles and a gas supply means for supplying a pressurized gas between the poles may be provided.
  • the wire electric discharge machining apparatus comprises the machining fluid supply means and the gas supply means by supplying a pressure fluid into the nozzle and comprising a switching means for switching the pressure fluid to a machining fluid or a gas.
  • the gas includes at least one of oxygen, nitrogen, hydrogen, an inert gas, and an insulating gas.
  • FIG. 1 is an explanatory diagram showing an example of a wire electric discharge machining method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a shift amount of a wire electrode by wire electric discharge machining.
  • C is an explanatory diagram showing an example of wire electric discharge machining in a machining fluid.
  • FIG. 4 is an explanatory diagram showing an example of wire electric discharge machining in a gas.
  • FIG. 5 is a diagram showing a configuration example of gas supply means for supplying gas between the poles in the wire electric discharge machine according to the embodiment of the present invention.
  • FIG. 6 is an explanatory view of a mechanism of electric discharge machining.
  • FIG. 7 is an explanatory diagram showing an example of a machining process of wire electric discharge machining.
  • FIG. 8 is a diagram showing an example of voltage and current waveforms between the electrodes.
  • FIG. 1 is an explanatory view showing an example of a wire electric discharge machining method according to an embodiment of the present invention.
  • la is a wire electrode
  • 2 is a workpiece
  • 4a is a working fluid
  • 7 is a gas such as air
  • FIG. 1 (a) shows a first cut which is rough machining
  • FIG. 1 (b) shows a second cut which is finish machining after rough machining.
  • the names of the first cut and the second cut are for convenience only, and do not necessarily mean that wire electric discharge machining is completed in two machining operations. In the case of processing that requires high accuracy for the workpiece, the processing may be performed seven or eight times.
  • Firth Tokato is a process in which the wire electrode 1 a is passed through the initial hole 6 and the workpiece 2 is cut through. Since the first cut finishes the surface roughness and accuracy in the subsequent processing, not so severe surface roughness and accuracy are required, and it is important to increase the processing speed especially to improve productivity.
  • processing is performed with water 4a, which is a processing liquid, interposed between the poles.
  • water 4a which is a processing liquid, interposed between the poles.
  • machining is performed in the machining fluid even after the first cut, but it is suitable for high-precision machining because of problems such as the vibration of the wire electrode 1a as shown in the background art. Absent.
  • the present invention is intended to improve the shape accuracy and surface roughness of a workpiece by performing the finishing without interposing a machining liquid between the poles in the finishing.
  • the processing is performed in the gas 7 instead of the processing fluid 4a. Is what you do.
  • aerial wire electric discharge machining vibrations and the like of the wire electrode 1a can be suppressed as described below.
  • the electrostatic force acting on the wire electrode 1a and the workpiece 2 is proportional to the dielectric constant between the poles.
  • the intervening substance is gas 7 as compared to the case where the substance is water 4a
  • the electrostatic force is several tenths (for example, the dielectric constant is the smallest in vacuum, Is about 80 times that of vacuum).
  • the vaporization explosive force due to the discharge is generated by the liquid interposed between the poles, when only the gas 7 exists between the poles, the wire electrode 1a is hardly affected by the vaporization explosive force. Therefore, vibration of the wire electrode 1a can be suppressed.
  • FIG. 2 is an explanatory diagram of the amount of shift of the wire electrode by wire electric discharge machining (the amount by which the wire electrode is sequentially shifted toward the workpiece in accordance with the number of times of machining), and FIG. FIG. 2 (b) shows a second cut, and FIG. 2 (c) shows a third cut.
  • FIG. 2 is an explanatory diagram of the amount of shift of the wire electrode by wire electric discharge machining (the amount by which the wire electrode is sequentially shifted toward the workpiece in accordance with the number of times of machining), and FIG. FIG. 2 (b) shows a second cut, and FIG. 2 (c) shows a third cut.
  • the shift amount is a value determined by the processing amount under a certain processing condition.
  • the amount of processing under certain processing conditions varies greatly depending on the feed speed of the wire electrode, the finishing condition of the previous conditions, and the like. For this reason, it is necessary to use a sequence of conditions for wire electric discharge machining, from rough machining to finishing, in which the wire electrode shift amount and wire electrode feed speed are selected from the results of various machining tests. . This indicates that processing is inflexible. For example, the amount of processing is slightly reduced, and it is difficult to perform appropriate processing even if additional processing is performed to finish the dimensions.
  • FIG. 3 is an explanatory view showing an example of wire electric discharge machining in a machining fluid, in which la is a wire electrode, 2 is a workpiece, and A is a machining direction. ) Shows the state of machining under the final finishing conditions, with the goal of machining to the target addition position. However, the actual machining result is different from the target, and the example in Fig. 3 (a) shows a case where a little is left behind. If the difference between the target processing position and the actual processing position is, for example, 2 m, if the wire electrode 1a is moved 2 zm closer to the workpiece 2 as additional processing, the target processing position will be completed.
  • FIG. 4 is an explanatory diagram showing an example of aerial wire electrical discharge machining, in which la is a wire electrode, 2 is a workpiece, and A is a machining progress direction.
  • the discharge gap g is narrow, so that the processing can be performed closer to the target dimensions. . That is, it is suitable for high precision processing.
  • the reason for this is that in order to accurately obtain the processing dimensions, it is necessary to perform the processing under conditions that match the surface roughness before processing, the processing conditions, the moving speed of the wire electrode, and the like. This is because the error at different times becomes smaller as the discharge gap g is smaller.
  • FIG. 5 is an explanatory view showing a configuration example of a gas supply means for supplying a pressurized gas between the electrodes in order to prevent the adhesion of the processing waste, in which la is a wire electrode, and 2 is a workpiece.
  • 7 is a gas
  • 7a is a gas flow
  • 8 is a gas supply means.
  • the gas supply means 8 supplies the gas 7 from around the wire electrode 1a toward the gap between the wire electrode 1a and the workpiece 2 (in the Z direction in FIG. 5) (the gas supply shown in FIG. 5).
  • Stream 7a) This can be realized by forming a nozzle around the pole 1a and supplying a pressurized gas.
  • the processing waste can be blown off by the pressure of the gas 7. Therefore, it is possible to improve the machining speed of the aerial wire electric discharge machining and to prevent a decrease in machining accuracy.
  • the piping is switched by switching valves and the like, and the nozzle is formed in a nozzle formed around the wire electrode 1a.
  • the working fluid supply means and the gas supply means can be switched and used.
  • the gas 7 supplied between the electrodes by the gas supply means 8 as nitrogen gas
  • the surface of the workpiece can be nitrided, the hardness of the surface of the workpiece can be improved, and the surface of the workpiece can be improved. Durability can be improved.
  • the gas 7 supplied to the gap between the electrodes by the gas supply means 8 as hydrogen gas
  • impurities such as oxygen on the surface of the workpiece can be removed as H 20. it can.
  • the gas 7 supplied between the electrodes by the gas supply means 8 as an inert gas, a chemical reaction in the plasma due to electric discharge is suppressed, and the surface of the workpiece is suppressed. Removal processing can be performed without changing the material of the surface.
  • the gap between the electrodes for discharge can be reduced, and high-precision machining can be performed.
  • the wire electric discharge machining method according to the present invention is particularly suitable for being used in a high-precision electric discharge machining operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

明 細 書 ワイヤ放電加工方法及び装置 技術分野
この発明は、 ワイヤ電極と被加工物との極間間隙に放電を発生させて 被加工物を加工する、 ワイヤ放電加工方法及び装置の改良に関するもの である。 背景技術
放電加工は金型等の加工技術として確固たる地位を築いており、 自動 車産業、 家電産業、 半導体産業等の金型加工の分野において多用されて きた。
第 6図は、 放電加工のメカニズムの説明図であり、 図において、 1は 電極、. 2は被加工物、 3はアーク柱、 4は加工液、 5は放電加工により 生成された加工屑である。 以下の (a ) 乃至 (e ) のサイクル (第 6図 の (a ) 乃至 (e ) に対応) を繰返しながら被加工物 2の放電による除 去加工が進行する。 すなわち、 (a ) 放電の発生によるアーク柱 3の形 成、 (b )放電の熱エネルギによる局部的溶融及び加工液 4の気化、 (c ) 加工液 4の気化爆発力の発生、 (d ) 溶融部 (加工屑 5 ) の飛散、 (e ) 加工液による冷却、 凝固、 極間の絶縁回復、 である。
この発明は、 放電加工の中でも、 く り貫き加工、 切断加工等に使用さ れるワイヤ放電加工に関するものである。 ワイヤ放電加工は、 特に高精 度化への要求が強まっており、 例えば、 半導体業界等で使用される高精 度金型の加工では、 l〜2 m程度の高い加工精度が要求されるように なってきている。 第 7図は、 ワイヤ放電加工の加工プロセスの例を示す説明図であり、 図において、 l aはワイヤ電極、 2は被加工物、 4 aは加工液である水、 6はイニシャルホールであり、 第 7図の (a ) は荒加工であるファース トカットを、 第 7図の (b ) は荒加工後の中仕上げ加工であるセカンド カットを、 第 7図の (c ) は最終仕上げ加工であるサードカツトを示し ている。
第 7図の (a ) のファーストカヅトの加工例は、 イニシャルホール 6 にワイヤ電極 1 aを通し、 被加工物 2をく り貫く加工を示している。 こ のようなファーストカツトの場合、 後の加工で面粗さ及び精度を仕上げ るため、 それほど厳しい面粗さ及び精度は要求されず、 生産性向上のた めに特に加工速度を上げることが重要である。 ワイヤ放電加工において、 加工速度を上げるためには、 極間からの加工屑の排出を効率的に行うた め、 水 4 aを極間に強く吹きかけることが行われる。 また、 極間への水 4 aのかかりのむらを無くし、 ワイヤ電極 1 aの断線を防止するために、 図示しない加工槽の中に水 4 aを溜めて被加工物 2を浸漬する方法が用 いられる。
以上にような従来のワイヤ放電加工では、 ファーストカヅト (第 7図 の (a ) )後のセカンドカット (第 7図の (b ) )及びサードカツト (第 7図の (c ) ) 等の加工も、 加工液である水 4 a中で行われる。
第 8図は、 極間の電圧及び電流波形の一例を示したものであり、 図に おいて、 Vは極間電圧、 Iは極間電流、 tは時間である。 第 8図のタイ ミング T 1における状態は、 ワイヤ電極 1 aと被加工物 2の極間に電圧 が印加された状態である。 極間に電圧が印加されるとプラス極性とマイ ナス極性は互いに引き合う力が働くため、 この静電力により剛性の小さ いワイヤ電極 1 aは被加工物 2側に引っ張られることになる。 これが、 ワイヤ電極 1 aの振動の原因となり、 このような振動により高精度加工 が困難になるという問題点があった。
また、 第 8図のタイミング T 2における状態は、 放電エネルギにより 加工液の気化爆発力が発生した状態 (例えば、 第 6図の (c ) ) であり、 ワイヤ電極 1 aには、 加工液の気化爆発力により被加工物 2と反対方向 に大きな力が作用し、 振動が発生する。 このような振動により、 被加工 物 2の形状に凹凸が生じ、 精度の悪化につながるという問題点があった。 ワイヤ放電加工の利用分野である半導体業界等において、 例えば、 I Cリードフレームの金型等の加工においては、 形状精度が 1 m、 面粗 さが 1 / mR m a x以下というような被加工物に対して極めて高精度か つ非常に滑らかな面粗さが求められると共に生産性の向上が必要な用途 が増加しており、 特にこのような用途では、 前記のようなワイヤ電極の 振動等に起因する問題点が顕著であった。
このような液中ワイヤ放電加工の問題点を解決するための方策として、 極間に加工液を介在させずに大気中でワイヤ放電加工を行う、 気中ワイ ャ放電加工に関する技術が開示されている' (東京農工大学安達他、 「気 中放電加工によるセカンドカッ トの高精度化」 、 型技術、 第 1 4卷、 第 7号、 1 9 9 9年、 1 5 4頁、 日刊工業新聞社) 。 この技術では、 大気 中におけるワイヤ放電加工により被加工物切断面の真直精度を向上する ことができることが開示されており、 高精度化の観点での意義は大きい が、 加工速度が加工液中での加工の 1 0分の 1程度であり、 生産性が低 いため実用化が困難であるという問題点があった。 また、 より高精度化 を要求される用途又は被加工物表面の高品位化を要求される用途等への 対応については、 何ら開示がなされていない。 発明の開示
この発明は、 前記のような課題を解決するためになされたものであり、 高精度加工に適した生産性の高いワイヤ放電加工方法及び装置を得るこ とを目的とする。 また、 高品位加工に適したワイヤ放電加工方法及び装 置を得ることを目的とする。
この発明に係るワイヤ放電加工方法は、 ワイヤ電極と被加工物との極 間に気中にて放電を発生させて前記被加工物を加工するワイヤ放電加工 方法において、 前記極間に圧力気体を供給しながら加工を行うものであ る。
また、 この発明に係るワイヤ放電加工方法は、 ワイヤ電極と被加工物 との極間に放電を発生させて前記被加工物を加工するワイヤ放電加工方 法において、 加工液中にて荒加工を行う第 1の工程と、 気中にて仕上げ 加工を行う第 2の工程とを備え、 前記第 2の工程における加工中に前記 極間に圧力気体を供給しながら加工を行うものである。
また、 この発明に係るワイヤ放電加工方法は、 前記気体が酸素、 窒素、 水素、 不活性ガス及び絶縁ガスの中の少なくとも 1種類からなるもので ある。
この発明に係るワイャ放電加工装置は、 ヮィャ電極と被加工物との極 間に放電を発生させて前記被加工物を加工するワイヤ放電加工装置にお いて、 前記極間に圧力気体を供給する気体供給手段を備えたものである c また、 この発明に係るワイヤ放電加工装置は、 ワイヤ電極と被加工物 との極間に放電を発生させて前記被加工物を加工するワイヤ放電加工装 置において、 前記極間に加工液を圧力を上昇させて供給する加工液供給 手段と、 前記極間に圧力気体を供給する気体供給手段とを備えたもので める。
また、 この発明に係るワイヤ放電加工装置は、 ノズル内に圧力流体を 供給し、 この圧力流体を加工液又は気体に切換える切換手段を備えるこ とにより、 前記加工液供給手段及び気体供給手段を構成するものである < また、 この発明に係るワイヤ放電加工装置は、 前記気体が酸素、 窒素、 水素、 不活性ガス及び絶縁ガスの中の少なくとも 1種類からなるもので ある。 図面の簡単な説明
第 1図は、 この発明の実施の形態に係るワイヤ放電加工方法の一例を 示す説明図である。
第 2図は、 ワイヤ放電加工によるワイヤ電極の寄せ量の説明図である c 第 3図は、 加工液中でのワイヤ放電加工の例を示す説明図である。 第 4図は、 気体中でのワイヤ放電加工の例を示す説明図である。
第 5図は、 この発明の実施の形態に係るワイヤ放電加工装置における 極間に気体を供給する気体供給手段の構成例を示す図である。
第 6図は、 放電加工のメカニズムの説明図である。
第 7図は、 ワイヤ放電加工の加工プロセスの例を示す説明図である。 第 8図は、 極間の電圧及び電流波形の一例を示す図である。 発明を実施するための最良の形態
第 1図は、 この発明の実施の形態に係るワイヤ放電加工方法の一例を 示す説明図であり、 図において、 l aはワイヤ電極、 2は被加工物、 4 aは加工液である水、 6はイニシャルホール、 7は空気等の気体であり、 第 1図の (a ) は荒加工であるファーストカットを、 第 1図の (b ) は 荒加工後の仕上げ加工であるセカンドカツトを示している。 ファースト 力ット及びセカンドカツ トという名称は便宜上のものであり、 必ずしも ワイヤ放電加工が 2回の加工で終了するものではない。 被加工物への要 求精度が高い加工では、 7回、 8回と加工を行う場合もある。
次に、 加工方法の概略について説明する。 第 1図の (a ) のファース トカヅトは、 イニシャルホール 6にワイヤ電極 1 aを通し、 被加工物 2 をく り貫く加工である。 ファーストカッ トでは、 後の加工で面粗さ及び 精度を仕上げるため、 それほど厳しい面粗さ及び精度は要求されず、 生 産性向上のために特に加工速度を上げることが重要であり、 背景技術の 第 7図と同様に加工液である水 4 aを極間に介在させて加工を行う。 通常のワイヤ放電加工では、 ファーストカッ ト後も、 加工液中で加工 が進められるが、 背景技術に示したようにワイヤ電極 1 aの振動等の問 題があるため、 高精度加工には適さない。 この発明は、 仕上げ加工にお いて、 極間に加工液を介在させずに加工を行い、 被加工物の形状精度及 び面粗さを改善するものである。
第 1図の (b ) の仕上げ加工であるセカンドカットでは、 ワイヤ電極 1 aの振動を抑えて加工精度を改善するために、 加工液 4 a中での加工 ではなく、 気体 7中での加工を行うものである。 このような気中ワイヤ 放電加工により、 以下に示すようにワイヤ電極 1 aの振動等を抑えるこ とができる。
すなわち、 極間に電圧が印加されたときにワイヤ電極 1 aと被加工物 2に作用する静電力は極間の誘電率に比例するため、 同じ極間距離とし て計算すると、 極間の介在物が水 4 aである場合に比べて、 極間の介在 物が気体 7である場合は、 前記静電力が数十分の一となる (例えば、 誘 電率は真空中が最も小さく、 水中では真空中の約 8 0倍である) 。 また、 放電による気化爆発力は極間に介在する液体により生ずるため、 極間に 気体 7しか存在しない場合には、 ワイヤ電極 1 aは気化爆発力の影響を ほとんど受けない。 したがって、 ワイヤ電極 1 aの振動等を抑えること ができる。
以上のように、 気中放電加工ではワイヤ電極 1 aの振動等を抑えるこ とができるため、 被加工物の形状精度及び面粗さが向上する。 また、 気中ワイヤ放電は、 加工条件毎のワイヤ電極の寄せ量の許容範 囲が広がるという利点がある。 第 2図は、 ワイヤ放電加工によるワイヤ 電極の寄せ量 (ワイヤ電極を加工の回数に応じて順次被加工物側にずら していく量) の説明図であり、 第 2図の (a ) はファーストカヅトを、 第 2図の (b ) はセカンドカットを、 第 2図の (c ) はサードカヅトを 示している。 第 2図において、 l aはワイヤ電極、 2は被加工物、 Aは 加工進行方向 (被加工物 2に対するワイヤ電極 1 aの相対移動方向) で ある。 寄せ量は、 ある加工条件における加工量により決定される値であ る。 しかし、 ある加工条件による加工量は、 ワイヤ電極の送り速度及び 前条件の仕上がり具合等で大きく変わる量である。 そのため、 ワイヤ放 電加工の加工条件は、 荒加工から仕上げ加工までワイヤ電極の寄せ量及 びワイャ電極の送り速度等を各種の加工テストの結果から選ばれた条件 による条件列を用いる必要がある。 このことは、 加工の融通が利かない ことを示しており、 例えば、 加工量が少し少なくなり、 追加工を行い寸 法を仕上げようとしても適切な加工が困難になる。
第 3図は、 加工液中でのワイヤ放電加工の例を示す説明図であり、 図 において、 l aはワイヤ電極、 2は被加工物、 Aは加工進行方向である c 第 3図の (a ) は最終仕上げ条件での加工の様子を示しており、 目標加 ェ位置まで加工することを目標としている。 しかし、 実際の加工結果は 目標と異なり、 第 3図の (a ) の例では少し取り残した場合を示してい る。 この目標加工位置と実際の加工位置との差を例えば 2〃mとしたと き、 追加工としてワイヤ電極 1 aを被加工物 2側に 2 z m寄せて加工を 行えば目標加工位置まで仕上がると考えがちであるが、 実際には、 前の 仕上げ加工の際の加工面の状態、 ワイヤ電極の送り速度等と、 追加工の 際のそれらとが異なるため、 ねらい通りの寸法には仕上がらない場合が 多い。 例えば、 第 3図の (b ) のように追加工での加工位置と目標加工 位置との間にはずれが生じる。
第 4図は、 気中ワイヤ放電加工の例を示す説明図であり、 図において、 l aはワイヤ電極、 2は被加工物、 Aは加工進行方向である。 第 3図と 同様の加工を行う場合において、 第 4図の (b ) のような追加工を気中 において行うと、 放電ギャップ gが狭いため、 狙った寸法により近い加 ェができるようになる。 すなわち、 高精度加工に適している。 この理由 は、 加工寸法を精度よく出すためには、 加工前の面粗さ、 加工条件、 ヮ ィャ電極の移動速度等の合致した条件で加工を行う必要があるが、 これ らの条件が異なったときの誤差が、 放電ギヤップ gが狭いほど小さくな るためである。 このことは、 荒加工から仕上げ加工までの一連の加工プ 口セスの中で、 狙った形状に加工ができるということだけでなく、 形状 寸法がずれてしまったときにも、 追加工により簡単に形状修正ができる ということを意味している。 ' 以上のように、 気中ワイヤ放電加工は高精度加工に有効であるが、 背 ,景技術に示したように加工速度が液中ワイヤ放電加工と比べて遅くなる という問題点がある。 この原因の主なものは、 液中放電加工のように放 電により発生する気化爆発力がなくなるため被加工物の除去量が減るこ と、 及び放電により除去された加工屑がワイヤ電極および被加工物表面 に付着し加工を不安定にするためである。 また、 このような不安定加工 は被加工物の加工精度を低下させる。
第 5図は、 前記の加工屑の付着を防止するために、 極間に圧力気体を 供給する気体供給手段の構成例を示す説明図であり、 図において、 l a はワイヤ電極、 2は被加工物、 7は気体、 7 aは気体の流れ、 8は気体 供給手段である。 気体供給手段 8は、 ワイヤ電極 1 aの周囲からワイヤ 電極 1 aと被加工物 2との極間に向けて (第 5図では Z方向) 、 気体 7 を供給する (第 5図の気体の流れ 7 a ) ものであり、 例えば、 ワイヤ電 極 1 aの周囲にノズルを形成して圧力気体を供給すること等により実現 できる。 このような気体供給手段 8の構成により、 加工屑を気体 7の圧 力により吹き飛ばすことができる。 したがって、 気中ワイヤ放電加工の 加工速度を向上できると共に加工精度の低下を防止することができる。
また、 荒加工を液中ワイヤ放電加工により行い、 仕上げ加工を気中ヮ ィャ放電加工により行う場合に、 配管をバルブ等の切換えにより切換え、 前記ワイヤ電極 1 aの周囲に形成したノズル内に供給する流体を、 加工 液又は気体に切換えることにより、 加工液供給手段と気体供給手段とを 切換えて使用することができる。 このような、 荒加工と仕上げ加工の切 換えにより、 被加工物の加工をさらに効率的に行うことができる。
また、 気中ワイヤ放電加工において、 気体供給手段 8により極間に供 給する気体 7を酸素ガスとすることで、 空気中での加工に比べて加工速 度が約倍になることがわかっている。 これは、 酸素ガスを供給すること で、 放電により溶融した被加工物を吹き飛ばす効果及び酸素により放電 のエネルギが被加工物に吸収されやすくなり被加工物の除去量が増すた めと考えられる。 また、 酸素を極間に供給することで、 放電によるブラ ズマ中で化学反応を起こし、 被加工物表面の炭素又は硫黄等の不純物を C 0 2、 S 0 2などの気体にして除去することが可能である。
また、 気体供給手段 8により極間に供給する気体 7を窒素ガスとする ことにより、 被加工物表面を窒化することができ、 被加工物表面の硬度 を向上することができ、 被加工物の耐久性を向上することができる。 また、 気体供給手段 8により極間に供給する気体 7を水素ガスとする ことにより、 放電によるプラズマ中で化学反応を起こし、 被加工物表面 の酸素等の不純物を H 2 0として除去することができる。
また、 気体供給手段 8により極間に供給する気体 7を不活性ガスとす ることにより、 放電によるプラズマ中での化学反応を抑え、 被加工物表 面の物質に変化を加えず除去加工を進めることができる。
また、 気体供給手段 8により極間に供給する気体 7を S F 6又は C F 4等の絶縁ガスとすることにより、 放電の極間間隙を小さくし、 さらに 高精度加工を行うことができる。 産業上の利用可能性
以上のように、 この発明に係るワイヤ放電加工方法は、 特に高精度放 電加工作業に用いられるのに適している。

Claims

請 求 の 範 囲
1 . ワイヤ電極と被加工物との極間に気中にて放電を発生させて前記 被加工物を加工するワイヤ放電加工方法において、
前記極間に圧力気体を供給しながら加工を行うことを特徴とするワイ ャ放電加工方法。
2 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工方法において、
加工液中にて荒加工を行う第 1の工程と、
気中にて仕上げ加工を行う第 2の工程とを備え、
前記第 2の工程における加工中に前記極間に圧力気体を供給しながら 加工を行うことを特徴とするワイヤ放電加工方法。
3 . 請求の範囲 1又は 2において、 前記気体が酸素、 窒素、 水素、 不 活性ガス及び絶縁ガスの中の少なくとも 1種類からなることを特徴とす るワイヤ放電加工方法。
4 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工装置において、 '
前記極間に圧力気体を供給する気体供給手段を備えたことを特徴とす るワイヤ放電加工装置。
5 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工装置において、
前記極間に加工液を圧力を上昇させて供給する加工液供給手段と、 前記極間に圧力気体を供給する気体供給手段とを備えたことを特徴と するワイヤ放電加工装置。
6 . 請求の範囲 5において、 ノズル内に圧力流体を供給し、 この圧力 流体を加工液又は気体に切換える,切換手段を備えることにより、 前記加 ェ液供給手段及び気体供給手段を構成することを特徴とするワイヤ放電 加工装置。
7 . 請求の範囲 4〜 6のいずれかにおいて、 前記気体が酸素、 窒素、 水素、 不活性ガス及び絶縁ガスの中の少なくとも 1種類からなることを 特徴とするワイヤ放電加工装置。
補正書の請求の範囲
[ 2 0 0 1年 7月 2 4日 (2 4 . 0 7 . 0 1 ) 国際事務局受理:出願当初の請求の範囲 3及び 7は補正された;出願当初の請求の範囲 1及び 4は取り下げられた;
他の請求の範囲は変更なし。 (2頁) ]
1 . (削除)
2 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工方法において、 ' 加工液中にて荒加工を行う第 1の工程と、
気中にて仕上げ加工を行う第 2の工程とを備え、
前記第 2の工程における加工中に前記極間に圧力気体を供給しながら 加工を行うことを特徴とするワイヤ放電加工方法。
3 . (補正後) 請求の範囲 2において、 前記気体が酸素、 窒素、 水素、 不活性ガス及び絶縁ガスの中の少なくとも 1種類からなることを特徴と するワイヤ放電加工方法。
4 . (削除)
5 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工装置において、
前記極間に加工液を圧力を上昇させて供給する加工液供給手段と、 前記極間に圧力気体を供給する気体供給手段とを備えたことを特徴と するワイヤ放電加工装置。
6 . 請求の範囲 5において、 ノズル内に圧力流体を供給し、 この圧力 流体を加工液又は気体に切換える切換手段を備えることにより、 前記加 補正された用紙 (条約第 19条) ェ液供給手段及び気体供給手段を構成することを特徴とするワイヤ放電 加工装置。
7 . (補正後) 請求の範囲 5又は 6において、 前記気体が酸素、 窒素、 水素、 不活性ガス及び絶縁ガスの中の少なくとも 1種類からなることを 特徴とするワイヤ放電加工装置。
補正された用紙 (条約第 19条) 条約 1 9条に基づく説明書
1. 請求の範囲第 1項と第 4項は削除する。
2. 補正された請求の範囲第 3項と第 7項は、 出願時の請求の範囲第 1項と 第 4項を削除したことにより、 削除した請求の範囲の引用を止めて 請求の範囲を減縮したものである。
PCT/JP2000/004254 2000-06-28 2000-06-28 Procede et appareil d'usinage par fils a decharge electrique WO2002000384A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2000/004254 WO2002000384A1 (fr) 2000-06-28 2000-06-28 Procede et appareil d'usinage par fils a decharge electrique
CNB00812065XA CN1184045C (zh) 2000-06-28 2000-06-28 金属丝放电加工方法及装置
US10/048,571 US6639172B1 (en) 2000-06-28 2000-06-28 Method of and apparatus for wire electric discharge machining capable of machining the machining subject coarsely in a dielectric fluid and finely in a gaseous environment
CH00367/02A CH695885A5 (de) 2000-06-28 2000-06-28 Verfahren und Vorrichtung zum Drahtfunkenerosionsbearbeiten.
DE10084936T DE10084936T1 (de) 2000-06-28 2000-06-28 Verfahren und Vorrichtung zum Bearbeiten durch elektrische Drahtentladung
KR10-2002-7002618A KR100454838B1 (ko) 2000-06-28 2000-06-28 와이어 방전가공 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004254 WO2002000384A1 (fr) 2000-06-28 2000-06-28 Procede et appareil d'usinage par fils a decharge electrique

Publications (1)

Publication Number Publication Date
WO2002000384A1 true WO2002000384A1 (fr) 2002-01-03

Family

ID=11736197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004254 WO2002000384A1 (fr) 2000-06-28 2000-06-28 Procede et appareil d'usinage par fils a decharge electrique

Country Status (6)

Country Link
US (1) US6639172B1 (ja)
KR (1) KR100454838B1 (ja)
CN (1) CN1184045C (ja)
CH (1) CH695885A5 (ja)
DE (1) DE10084936T1 (ja)
WO (1) WO2002000384A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX358687B (es) * 2013-10-04 2018-08-31 Sicpa Holding Sa Metodo y sistema para marcar un objeto que tiene una superficie de un material conductor.
CN103920945A (zh) * 2014-04-01 2014-07-16 北京冶科纳米科技有限公司 五氧化二铌靶坯的电火花线切割方法
WO2020031251A1 (ja) * 2018-08-07 2020-02-13 三菱電機株式会社 放電加工装置および放電加工方法
FR3124751A1 (fr) * 2021-06-30 2023-01-06 Vulkam Procédé d’électroérosion d’un échantillon en alliage métallique amorphe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239622A (ja) * 1996-03-02 1997-09-16 Sodick Co Ltd 気中放電加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427588A (en) * 1942-10-17 1947-09-16 United Aircraft Corp Apparatus for burning holes in metal
JPH0271928A (ja) * 1988-09-01 1990-03-12 Mitsubishi Electric Corp ワイヤ放電加工におけるワイヤ径補正量の算出方法
JPH05329655A (ja) * 1992-05-28 1993-12-14 I N R Kenkyusho:Kk プラズマ加工装置
JPH06108249A (ja) * 1992-09-29 1994-04-19 Chugai Ro Co Ltd 放電装置
US6130395A (en) * 1998-06-17 2000-10-10 Sodick Co., Ltd. Method and apparatus for achieving a fine surface finish in wire-cut EDM
CH694082A5 (de) * 1998-10-16 2004-07-15 Mitsubishi Electric Corp Drahtelektroentladungsbearbeitungsapparat.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239622A (ja) * 1996-03-02 1997-09-16 Sodick Co Ltd 気中放電加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Masanori KUNIEDA, "Houden Kakou ni Break Through wo motarasu Gijutsu Doukou", Kikai Gijutsu, Vol. 48, No. 5, March, 2000 (Tokyo), pages 18-22, especially pages 21-22. *

Also Published As

Publication number Publication date
CN1371314A (zh) 2002-09-25
KR100454838B1 (ko) 2004-11-03
DE10084936T1 (de) 2002-09-19
KR20020027598A (ko) 2002-04-13
US6639172B1 (en) 2003-10-28
CH695885A5 (de) 2006-10-13
CN1184045C (zh) 2005-01-12

Similar Documents

Publication Publication Date Title
EP0583473B1 (en) Method and device for treatment of articles in gas-discharge plasma
Beravala et al. Experimental investigations to evaluate the effect of magnetic field on the performance of air and argon gas assisted EDM processes
US6744002B1 (en) Method and apparatus for electrodischarge wire machining
JP4652446B2 (ja) 硬質被膜の脱膜方法
WO2002000384A1 (fr) Procede et appareil d&#39;usinage par fils a decharge electrique
US6713705B1 (en) Wire electric discharge machining method and wire electric discharge machine utilizing pressurized gas for removing machining solution
US6903297B2 (en) Wire electric-discharge machining method and device
US6833523B2 (en) Wire cut electric discharge machine with fluid cooler and method of machining
WO2000029154A1 (fr) Appareil et procede de traitement de surface par decharge
JPS61103725A (ja) ワイヤカツト放電加工方法
WO2002000383A1 (fr) Procede d&#39;usinage par fils a decharge electrique
CN112958862B (zh) 电火花线切割加工电极丝轨迹补偿方法
JP2962583B2 (ja) ラジカル反応による無歪精密数値制御加工方法及びその装置
WO2002055250A1 (fr) Dispositif et procede d&#39;usinage par etincelage a fil
WO2002040209A1 (fr) Procede et appareil pour l&#39;usinage par decharge electrique a fil
JPS61131824A (ja) 数値制御装置
JP2002254247A (ja) 型彫り微細放電加工による高効率孔加工方法
RU2709548C1 (ru) Способ электроэрозионной обработки поверхности молибдена
JPH0751945A (ja) 放電加工方法
JP2002283143A (ja) ワイヤ放電加工方法
JPH06216079A (ja) ラジカル反応を用いた加工法および加工装置
JP2002273627A (ja) 微細軸成形方法及び装置
JPH05295569A (ja) プラズマ加工装置
JPS59227316A (ja) ワイヤ放電加工装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CH CN DE JP KR US

WWE Wipo information: entry into national phase

Ref document number: 10048571

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 00812065X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027002618

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027002618

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027002618

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607