CN112958862B - 电火花线切割加工电极丝轨迹补偿方法 - Google Patents

电火花线切割加工电极丝轨迹补偿方法 Download PDF

Info

Publication number
CN112958862B
CN112958862B CN202110239615.XA CN202110239615A CN112958862B CN 112958862 B CN112958862 B CN 112958862B CN 202110239615 A CN202110239615 A CN 202110239615A CN 112958862 B CN112958862 B CN 112958862B
Authority
CN
China
Prior art keywords
wire
electrode
machining
electrode wire
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110239615.XA
Other languages
English (en)
Other versions
CN112958862A (zh
Inventor
陈志�
周洪冰
颜昭君
张迎东
施宗材
吴程
李治作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110239615.XA priority Critical patent/CN112958862B/zh
Publication of CN112958862A publication Critical patent/CN112958862A/zh
Application granted granted Critical
Publication of CN112958862B publication Critical patent/CN112958862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本发明公开了一种电火花线切割加工电极丝轨迹补偿方法,包括如下步骤:对加工时的电极丝进行受力分析,建立电极丝的力学模型;根据力学模型,建立电极丝的挠曲线方程;通过理论拟合,得出电极丝的最大挠曲变形的理论模型;通过实验测量,得出电极丝的最大挠曲变形准确数值模型;根据最大挠曲变形的理论模型和最大挠曲变形的准确数值模型,对不同形状的电火花线切割加工进行补偿。本发明能够准确地预测出电火花线切割时的拐角、圆弧和椭圆误差,并减小加工误差,简单成本低且高效地提高了拐角、圆弧和椭圆等形状的加工精度,实用性强。

Description

电火花线切割加工电极丝轨迹补偿方法
技术领域
本发明具体涉及一种电火花线切割加工电极丝轨迹补偿方法。
背景技术
电火花线切割技术是在加工时,将工件接入脉冲电源正极,采用钼丝或者铜丝作为切割电极丝,接入高频脉冲电源负极,采用火花放电对工件进行切割的技术。当脉冲电源通电时,由于电极丝与工件距离很近,会产生强大的电场,此时电极丝的电子或者离子从表面脱离,经过电场的加速后,高速电子或离子轰击工件表面,将动能化为热能,产生高温,电极间隙内形成高温熔化或者汽化工件。加工时切割装置会喷射工作液,汽化的工作液和工件材料会膨胀,并在工作液的冲刷下,被裹挟带出放电通道。电火花线切割技术可以无视工件硬度、脆性和强度等性质对工件进行加工,可以再利用材料,易于实现自动化加工,加工时不存在切削力,如今广泛应用于模具加工和精密加工领域。
对于电火花线切割加工来说,形状精度是评价电火花线切割加工方式的优劣的重要指标之一。其中,工件的转角误差是影响工件形状精度的一种重要形式,经过许多实践证明,电火花线切割在加工拐角、圆弧或者椭圆时,具有一定的几何误差,加工出的角度有所偏差。随着高端加工需求增大,工件形状越来越复杂,加工精度要求越来越高,原有加工方式加工许多带有锐角、直角、钝角、圆弧等过渡方式的复杂零件,所累积误差会导致无法获得所需的精度。在现有技术中,加工人员通过对工件的多次修正,让工件达到较高的工件形状精度。但是,多次精修会导致加工效率在一定程度上降低,同时准确度不高;增大了电极丝和工件损耗,浪费材料;并且有些时候由于误差过大,无法进行修整;多次精修无法保证大批量的生产中工件的合格率,同时费时费力,不适应现在的自动化生产加工。
发明内容
本发明的目的在于提供一种电火花线切割加工电极丝轨迹补偿方法,能够有效地补偿电火花线切割加工电极丝轨迹,让加工更加精确高效。
本发明提供的这种电火花线切割加工电极丝轨迹补偿方法,包括如下步骤:
S1.对加工时的电极丝进行受力分析,建立电极丝的力学模型;
S2.根据步骤S1所述的力学模型,建立电极丝的挠曲线方程;
S3.通过理论拟合,得出电极丝的最大挠曲变形的理论模型;
S4.通过实验测量,得出电极丝的最大挠曲变形的准确数值模型;
S5.根据步骤S3所述的最大挠曲变形的理论模型和步骤S4所述的最大挠曲变形的准确数值模型,对不同形状的电火花线切割加工进行补偿。
步骤S1所述的电极丝的力学模型,具体所受力为电极丝张紧力、脉冲放电力和电磁力;定义F为电极丝张紧力,y为电极丝挠曲变形的大小,ym为在H/2处取得挠曲变形的最大值,yu为在工件上下表面的挠曲变形值,z为竖直方向的量,q为电极丝所受合力的均布载荷,H为工件厚度,L为上下喷嘴的距离。
步骤S2所述的电极丝的挠曲线方程,具体为,根据弦振动方程,挠曲线方程定义为:
Figure BDA0002961620620000021
其中F为电极丝张紧力,E0为电极丝的杨氏模量,I0为电极丝的惯性矩,y为挠曲变形的距离,z为竖直方向的量,q为电极丝所受合力的均布载荷。
步骤S3所述电极丝的最大挠曲变形的理论模型,具体为采用高次曲线拟合方法获得:
在H/2处取得挠曲变形的最大值
Figure BDA0002961620620000022
在工件上下表面的挠曲变形值
Figure BDA0002961620620000023
其中,F为电极丝张紧力,E0为电极丝的杨氏模量,I0为电极丝的惯性矩,q为合力的均布载荷,H为工件厚度,L为上下喷嘴的距离。
步骤S4所述的电极丝的最大挠曲变形的准确数值模型,具体为基于实际的电火花加工参数和测量求出的误差,采用广义回归的方式求得电极丝所受合力的均布载荷:
Figure BDA0002961620620000031
其中,I为加工电流,Ton为脉冲时间,Toff为脉冲休止时间,WS为线速度;
将q代入ym的方程中得到最大挠曲变形准确数值模型为
Figure BDA0002961620620000032
所述的电火花线切割加工电极丝轨迹补偿方法,还包括对机床螺纹间隙的补偿;加工拐角时,由于有电极丝前进和电极丝回退两个过程,所以会产生两段误差;在电极丝前进时,多前进一个机床螺纹间隙,在电极丝回退时,多回退一个机床螺纹间隙。
步骤S5所述的对不同形状的电火花线切割加工进行补偿,具体包括对于锐角、直角和钝角的加工:进行电火花线切割加工轨迹考虑时,加工进入拐角前,电极丝多前进一段设定距离,设定距离的值为在H/2处取得挠曲变形的最大值ym,随后再返回实际的原轨迹,按原轨迹进行加工。
步骤S5所述的对不同形状的电火花线切割加工进行补偿,具体包括对于圆的加工:进行电火花切割加工轨迹的考虑时,加工需要减少半径,补偿圆环宽度,补偿圆环宽度为R1-R0,其中R1为实际加工的半径,R0为加工圆的半径,求得补偿圆环宽度:
Figure BDA0002961620620000033
其中ym为在H/2处取得挠曲变形的最大值。
步骤S5所述的对不同形状的电火花线切割加工进行补偿,具体包括对于椭圆的加工:采用四心法拟合椭圆,具体包括:
令实际椭圆的方程为
Figure BDA0002961620620000034
其中a为加工椭圆与x轴的交点到原点的距离,b为加工椭圆与y轴的交点到原点的距离;
第一个圆的半径为
Figure BDA0002961620620000041
其中α为加工椭圆与x轴的交点和加工椭圆与y轴的交点的连线对水平方向的夹角;
求得O1的坐标为(-(a-r1),0),O2与O1关于y轴对称;
第二个圆的半径为
Figure BDA0002961620620000042
求得O3的坐标为(0,r2-b),O3与O4关于x轴对称;
通过四个圆心O1、O2、O3和O4与对应的半径r1和r2求得椭圆的轮廓;在加工时,将O1、O2对应的半径r1和O3、O4对应的半径r2减少一个补偿圆环宽度大小。
本发明提供的这种电火花线切割加工电极丝轨迹补偿方法,能够准确地预测出电火花线切割时的拐角、圆弧和椭圆误差,并减小加工误差,简单成本低且高效地提高了拐角、圆弧和椭圆等形状的加工精度,实用性强。
附图说明
图1为本发明方法的流程示意图。
图2为本发明方法的加工时电极丝在加工间隙受力情况示意图。
图3为本发明方法的锐角未使用补偿法实际加工轨迹与补偿法加工轨迹示意图。
图4为本发明方法的直角未使用补偿法实际加工轨迹与补偿法加工轨迹示意图。
图5为本发明方法的钝角未使用补偿法实际加工轨迹与补偿法加工轨迹示意图。
图6为本发明方法的圆未使用补偿法实际加工轨迹与加工轨迹示意图。
图7为本发明方法的四心法拟合的椭圆未使用补偿法实际加工轨迹与加工轨迹示意图。
具体实施方式
如图1为本发明方法的流程示意图:本发明提供的这种电火花线切割加工电极丝轨迹补偿方法,包括如下步骤:
S1.对加工时的电极丝进行受力分析,建立电极丝的力学模型;具体为脉冲放电力、电磁力和电极丝张紧力;电极丝张紧力理想状态应当是沿着电极丝垂直分布,但是由于脉冲放电力和电磁力改变了电极丝的形状,所以会产生与进给方向相同的分力。脉冲放电力取决于放电参数与工件材料,与机床的进给方向相反,是变形和振动的主要来源,导致实际加工轨迹与CNC编程轨迹不符合的主要因素。其包括:火花放电反作用力、材料去除爆炸力、电介质气泡扩散和破裂力等。并且由于火花放电反作用力、材料去除爆炸力、电介质气泡扩散和破裂力等的大小和作用点等具有随机性,难以准确测量,根据统计学规律,一般设为均匀分布在电极间隙内的电极丝上。电磁力由通电的电极丝的电磁感应效应产生,由脉冲电流和工件材料决定,铁磁体为吸引力,顺磁体为排斥力。工件为顺磁体(铜、铝)时,根据麦克斯韦方程,电极丝产生的磁通量为轴对称分布,所以为电磁力为0;铁磁体(铁、铁合金)时,因为工件的电磁感应,工件内的磁通量明显大于工件外的磁通量,所以表现为吸引力。
如图2为本发明方法的加工时电极丝在加工间隙受力情况示意图。其中,F为电极丝张紧力,ym为在H/2处取得挠曲变形的最大值,yu为在工件上下表面的挠曲变形值,z为竖直方向的量,q为合力的均布载荷,H为工件厚度,L为上下喷嘴的距离。电极丝张紧力F沿着竖直方向。
S2.根据步骤S1所述的力学模型,建立电极丝的挠曲线方程;具体为,根据弦振动方程:
基于经典二维弦线振动方程,电极丝的运动状态遵从方程:
Figure BDA0002961620620000051
对其做出假设:上喷嘴到工件的距离与下喷嘴到工件的距离相同;电极丝张紧力保持不变,电极丝的质量均匀分布;忽略变形时间,挠曲是一个静态的过程;合力为均匀分布的作用力q。此时,与时间t有关的微分均为0,可以获得简化的方程,电极丝运动状态方程定义为:
Figure BDA0002961620620000052
其中F为电极丝张紧力,E0为电极丝的杨氏模量,I0为电极丝的惯性矩,y为挠曲变形的大小,z为竖直方向的量,q为电极丝所受合力的均布载荷。
S3.通过理论拟合,得出电极丝的最大挠曲变形的理论模型;具体为,采用高次曲线拟合方法:由于y是关于z的四次方程,设方程:
y(z)=az4+bz3+cz2+dz+e
上述假设可以转化为下列条件:
Figure BDA0002961620620000061
结合四次方程和边界条件,解得:
Figure BDA0002961620620000062
代入弯矩公式
Figure BDA0002961620620000063
和弯矩平衡公式
Figure BDA0002961620620000064
求得y关于z的准确计算方程:
Figure BDA0002961620620000065
在H/2处取得挠曲变形的最大值
Figure BDA0002961620620000066
在工件上下表面的挠曲变形值
Figure BDA0002961620620000067
此时的
Figure BDA0002961620620000068
其中,F为电极丝张紧力,E0为电极丝的杨氏模量,I0为电极丝的惯性矩,y为挠曲变形的大小,z为竖直方向的量,q为电极丝所受合力的均布载荷,H为工件厚度,L为上下喷嘴的距离。
S4.通过实验测量,得出电极丝的最大挠曲变形准确数值模型;具体为基于实际的电火花加工参数和测量求出的误差,采用广义回归的方式求得电极丝所受合力的均布载荷:
Figure BDA0002961620620000071
其中,I为加工电流,Ton为脉冲时间,Toff为脉冲休止时间,WS为线速度;
将q代入ym的方程中得到最大挠曲变形准确数值模型
Figure BDA0002961620620000072
S5.根据步骤S3所述的最大挠曲变形的理论模型和步骤S4所述的最大挠曲变形的准确数值模型,对不同形状的电火花线切割加工进行补偿。同时,电火花线切割加工电极丝轨迹补偿方法还包括对机床螺纹间隙的补偿,加工拐角时,由于有电极丝前进和电极丝回退两个过程,所以会产生两段误差;在电极丝前进时,多前进一个机床螺纹间隙,在电极丝回退时,需要多回退一个机床螺纹间隙。
在本实施例中,取螺纹间隙0.05mm,加工拐角时,由于有进/退两个过程,所以会产生两段误差,在进时,需要多进0.05mm,退时,需要多退0.05mm。
如图3为本发明方法的锐角未使用补偿法实际加工轨迹与补偿法加工轨迹示意图。如图4为本发明方法的直角未使用补偿法实际加工轨迹与补偿法加工轨迹示意图。如图5为本发明方法的钝角未使用补偿法实际加工轨迹与补偿法加工轨迹示意图。如图3~5所示未采取补偿法对误差进行修正时,锐角、直角和钝角的实际加工示意轨迹为实线,可以明显地发现,无论是锐角、直角还是钝角,均无法获得准确完美的尖角,为了加工形状准确,需要尽可能地减小误差。
通过上述公式计算出误差后,在进行电火花线切割加工轨迹编程时,在平面直角坐标系中做出拐角的电火花线切割加工轨迹示意图与目标图形,并进行对比分析。考虑进入拐角前,电极丝多前进一段距离,距离值为在H/2处取得挠曲变形的最大值ym,随后再返回实际的原轨迹,按原轨迹进行加工,具体示意如图3~5的虚线所示。
如图6为本发明方法的圆未使用补偿法实际加工轨迹与加工轨迹示意图。当加工圆的半径为R0时,电火花线切割编程轨迹示意如虚线所示,圆的实际加工示意轨迹为实线。在平面直角坐标系中做出圆的电火花线切割实际加工轨迹示意图与目标图形,并进行对比分析。通过实际加工轨迹与电火花线切割编程轨迹图对比分析发现,如果按照实际圆的半径R0设计加工轨迹,因为电极丝的挠曲滞后变形,会导致实际加工出圆的半径R1相对R0增大了一个值。因此,对于圆的加工,进行电火花切割加工轨迹的考虑时,加工需要减少半径,补偿圆环宽度,补偿圆环宽度为R1-R0,其中R1为实际加工的半径,R0为加工圆的半径,求得补偿宽度:
Figure BDA0002961620620000081
其中ym为在H/2处取得挠曲变形的最大值。
如图7为本发明方法的四心法拟合的椭圆未使用补偿法实际加工轨迹与加工轨迹示意图。对于椭圆的加工,采用四心法拟合椭圆,具体为:
令实际椭圆的方程为
Figure BDA0002961620620000082
其中a为加工椭圆与x轴的交点到原点的距离,b为加工椭圆与y轴的交点到原点的距离;
第一个圆的半径为
Figure BDA0002961620620000083
其中α为加工椭圆与x轴的交点和加工椭圆与y轴的交点的连线对水平方向的夹角;
求得O1的坐标为(-(a-r1),0),O2与O1关于y轴对称;
第二个圆的半径为
Figure BDA0002961620620000084
求得O3的坐标为(0,r2-b),O3与O4关于x轴对称;
通过四个圆心O1、O2、O3和O4与对应的半径r1和r2求得椭圆的轮廓。在加工时,将O1、O2对应的半径r1和O3、O4对应的半径r2减少一个补偿圆环宽度大小。
根据上述关于圆或者圆弧的加工步骤可以获得较为精确的圆弧,从而提高拟合椭圆的加工精度。

Claims (8)

1.一种电火花线切割加工电极丝轨迹补偿方法,包括如下步骤:
S1.对加工时的电极丝进行受力分析,建立电极丝的力学模型;
S2.根据步骤S1所述的力学模型,建立电极丝的挠曲线方程;
S3.通过理论拟合,得出电极丝的最大挠曲变形的理论模型;所述电极丝的最大挠曲变形的理论模型,具体为采用高次曲线拟合方法获得:
在H/2处取得挠曲变形的最大值
Figure FDA0003418747230000011
在工件上下表面的挠曲变形值
Figure FDA0003418747230000012
其中,F为电极丝张紧力,E0为电极丝的杨氏模量,I0为电极丝的惯性矩,q为合力的均布载荷,H为工件厚度,L为上下喷嘴的距离;
S4.通过实验测量,得出电极丝的最大挠曲变形的准确数值模型;
S5.根据步骤S3所述的最大挠曲变形的理论模型和步骤S4所述的最大挠曲变形的准确数值模型,对不同形状的电火花线切割加工进行补偿。
2.根据权利要求1所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于步骤S1所述的电极丝的力学模型,具体所受力为电极丝张紧力、脉冲放电力和电磁力;定义F为电极丝张紧力,y为电极丝挠曲变形的大小,ym为在H/2处取得挠曲变形的最大值,yu为在工件上下表面的挠曲变形值,z为竖直方向的量,q为电极丝所受合力的均布载荷,H为工件厚度,L为上下喷嘴的距离。
3.根据权利要求2所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于步骤S2所述的电极丝的挠曲线方程,具体为,根据弦振动方程,挠曲线方程定义为:
Figure FDA0003418747230000013
其中F为电极丝张紧力,E0为电极丝的杨氏模量,I0为电极丝的惯性矩,y为挠曲变形的距离,z为竖直方向的量,q为电极丝所受合力的均布载荷。
4.根据权利要求3所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于步骤S4所述的电极丝的最大挠曲变形的准确数值模型,具体为基于实际的电火花加工参数和测量求出的误差,采用广义回归的方式求得电极丝所受合力的均布载荷:
Figure FDA0003418747230000021
其中,I为加工电流,Ton为脉冲时间,Toff为脉冲休止时间,WS为线速度;
将q代入ym的方程中得到最大挠曲变形准确数值模型为
Figure FDA0003418747230000022
式中,H为工件厚度,F为电极丝张紧力。
5.根据权利要求4所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于所述的电火花线切割加工电极丝轨迹补偿方法,还包括对机床螺纹间隙的补偿;加工拐角时,由于有电极丝前进和电极丝回退两个过程,所以会产生两段误差;在电极丝前进时,多前进一个机床螺纹间隙,在电极丝回退时,多回退一个机床螺纹间隙。
6.根据权利要求5所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于步骤S5所述的对不同形状的电火花线切割加工进行补偿,具体包括对于锐角、直角和钝角的加工:进行电火花线切割加工轨迹考虑时,加工进入拐角前,电极丝多前进一段设定距离,设定距离的值为在H/2处取得挠曲变形的最大值ym,随后再返回实际的原轨迹,按原轨迹进行加工。
7.根据权利要求6所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于步骤S5所述的对不同形状的电火花线切割加工进行补偿,具体包括对于圆的加工:进行电火花切割加工轨迹的考虑时,加工需要减少半径,补偿圆环宽度,补偿圆环宽度为R1-R0,其中R1为实际加工的半径,R0为加工圆的半径,求得补偿圆环宽度:
Figure FDA0003418747230000023
其中ym为在H/2处取得挠曲变形的最大值。
8.根据权利要求7所述的电火花线切割加工电极丝轨迹补偿方法,其特征在于步骤S5所述的对不同形状的电火花线切割加工进行补偿,具体包括对于椭圆的加工:采用四心法拟合椭圆,具体包括:
令实际椭圆的方程为
Figure FDA0003418747230000031
其中a为加工椭圆与x轴的交点到原点的距离,b为加工椭圆与y轴的交点到原点的距离;
第一个圆的半径为
Figure FDA0003418747230000032
其中α为加工椭圆与x轴的交点和加工椭圆与y轴的交点的连线对水平方向的夹角;
求得O1的坐标为(-(a-r1),0),O2与O1关于y轴对称;
第二个圆的半径为
Figure FDA0003418747230000033
求得O3的坐标为(0,r2-b),O3与O4关于x轴对称;
通过四个圆心O1、O2、O3和O4与对应的半径r1和r2求得椭圆的轮廓;在加工时,将O1、O2对应的半径r1和O3、O4对应的半径r2减少一个补偿圆环宽度大小。
CN202110239615.XA 2021-03-04 2021-03-04 电火花线切割加工电极丝轨迹补偿方法 Active CN112958862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110239615.XA CN112958862B (zh) 2021-03-04 2021-03-04 电火花线切割加工电极丝轨迹补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110239615.XA CN112958862B (zh) 2021-03-04 2021-03-04 电火花线切割加工电极丝轨迹补偿方法

Publications (2)

Publication Number Publication Date
CN112958862A CN112958862A (zh) 2021-06-15
CN112958862B true CN112958862B (zh) 2022-02-22

Family

ID=76276439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110239615.XA Active CN112958862B (zh) 2021-03-04 2021-03-04 电火花线切割加工电极丝轨迹补偿方法

Country Status (1)

Country Link
CN (1) CN112958862B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685876B (zh) * 2022-11-14 2023-03-21 英诺威讯智能科技(杭州)有限公司 一种基于轨迹补偿的平面激光切割控制方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029971A1 (de) * 1979-08-09 1981-02-26 Mitsubishi Electric Corp Bearbeitungsvorrichtung zur bearbeitung eines werkstuecks durch elektrische entladung unter elektrischer stromzufuhr zum werkstueck und einer elektrode
JPS57114328A (en) * 1980-12-29 1982-07-16 Fanuc Ltd Method for measuring deflection of wire electrode
DE4228328C2 (de) * 1992-08-26 1999-02-11 Agie Sa Maschine und Verfahren zum funkenerosiven Drahtschneiden mit einer im Querschnitt verformten Drahtelektrode
TW330872B (en) * 1995-10-04 1998-05-01 Ind Tech Res Inst Method and apparatus used on wire-cut electric discharge machine for automatically compensating machining parameters
JP4559526B2 (ja) * 2008-06-10 2010-10-06 ファナック株式会社 ワイヤカット放電加工機の制御装置およびワイヤカット放電加工機の加工経路作成装置
CN102218574B (zh) * 2010-04-16 2013-02-13 昆山徕通机电科技有限公司 对线形刀具加工位置挠曲进行量测与补偿的装置及方法
CN106338965A (zh) * 2016-10-25 2017-01-18 哈尔滨理工大学 一种基于误差补偿的拐角加工精度控制方法
CN106502204A (zh) * 2016-12-12 2017-03-15 常州机电职业技术学院 数控车削细长轴挠度误差动态补偿方法
CN107942936B (zh) * 2017-11-28 2021-02-23 清华大学 一种五轴侧铣加工刀具与工件变形误差补偿方法
CN108519759B (zh) * 2018-04-12 2020-11-03 佛山金皇宇企业孵化器有限公司 一种切割机床锯切型材的长度补偿方法
JP6526364B1 (ja) * 2018-06-12 2019-06-05 三菱電機株式会社 ワイヤ放電加工機および真直度算出方法
CN110988633B (zh) * 2019-12-20 2021-10-26 中南大学 一种电火花线切割加工过程自适应调整的多功能监测方法

Also Published As

Publication number Publication date
CN112958862A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US8642915B2 (en) Wire electric discharge machining apparatus
CN112958862B (zh) 电火花线切割加工电极丝轨迹补偿方法
CN104308297A (zh) 一种高速电火花线切割机构
KR100472294B1 (ko) 와이어 방전가공방법 및 장치
EP2295180B1 (en) Wire electric discharge machining method, apparatus therefor, wire electric discharge machining program creating device, and computer-readable recording medium in which program for creating wire electric discharge machining program is stored
Hashim et al. A review on electrical discharge machining servomechanism system
Rai et al. Parametric optimization of WEDM using grey relational analysis with Taguchi method
CN102658403A (zh) 一种电火花加工模具的基板电极及用于加工模具的方法
Chen et al. Study on magnetic field distribution and electro-magnetic deformation in wire electrical discharge machining sharp corner workpiece
Patil et al. Experimental investigation of angular error during taper cutting of titanium (ASTM grade 2) using WEDM process
KR100454838B1 (ko) 와이어 방전가공 방법 및 장치
Song et al. V-grooving using a strip EDM
Yan et al. Design and experimental study of a power supply for micro-wire EDM
Lin et al. An effective-wire-radius compensation scheme for enhancing the precision of wire-cut electrical discharge machines
Chen et al. Study of an ultrafine w-EDM technique
Singh et al. Optimization of process parameters in die sinking EDM—a review
CN202922056U (zh) 一种电火花加工模具的基板电极
Saindane et al. Electrical Discharge Machining–A State of Art
Nakagawa et al. High accuracy control with lateral dimension estimator for wire EDM
WO2002000383A1 (fr) Procede d'usinage par fils a decharge electrique
Damotharan et al. Optimisation of Machining parameter in Wire cut EDM for cemented tungsten carbide using Taguchi technique
Nandakumar et al. Study of brass wire and cryogenic treated brass wire on titanium alloy using cnc wedm
JP6153780B2 (ja) 放電加工方法
GHIORGHE et al. Study On The Influence Of Wedm Processing Regimes On The Quality Of Armor Steel
CN110216341B (zh) 一种火花机的摇动加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant