WO2001080287A2 - Process for fabricating thin film transistors - Google Patents

Process for fabricating thin film transistors Download PDF

Info

Publication number
WO2001080287A2
WO2001080287A2 PCT/US2001/012429 US0112429W WO0180287A2 WO 2001080287 A2 WO2001080287 A2 WO 2001080287A2 US 0112429 W US0112429 W US 0112429W WO 0180287 A2 WO0180287 A2 WO 0180287A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
process according
semiconductor material
polyimide
Prior art date
Application number
PCT/US2001/012429
Other languages
French (fr)
Other versions
WO2001080287A3 (en
Inventor
Kevin L. Denis
Yu Chen
Paul S. Drzaic
Joseph M. Jacobson
Peter T. Kazlas
Original Assignee
E Ink Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation filed Critical E Ink Corporation
Priority to EP01927094A priority Critical patent/EP1275156B1/en
Priority to JP2001577586A priority patent/JP2003531487A/en
Priority to AU2001253575A priority patent/AU2001253575A1/en
Priority to AT01927094T priority patent/ATE438927T1/en
Priority to DE60139463T priority patent/DE60139463D1/en
Publication of WO2001080287A2 publication Critical patent/WO2001080287A2/en
Publication of WO2001080287A3 publication Critical patent/WO2001080287A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • This invention relates to a process for fabricating thin film transistors.
  • TFT's Thin film transistors
  • TFT's Thin film transistors
  • TFT's Thin film transistors
  • electrophoretic displays see, for example, WO-A-00/67327; WO-A-01/08241; WO-A-01/17029; WO-A-01/17040; and WO-A-01/17041.
  • WO-A-00/67327; WO-A-01/08241; WO-A-01/17029; WO-A-01/17040; and WO-A-01/17041 The disclosures of all these applications are herein incorporated by reference.
  • TFT's fabricated on such flexible substrates could form the basis for large displays which would be light-weight yet rugged, thus permitting their use in mobile devices.
  • TFT's based upon amorphous silicon semiconductors are attractive for use on such flexible substrates since they allow fabrication with a minimum number of process steps and with a low thermal budget.
  • Amorphous silicon transistors have been fabricated on ultra-thin stainless steel substrates (see, for example, Ma et al., Applied Physics Letters, 74(18), 2661 (1999)) and on polyimide films (see Gleskova et al., IEEE Electron Device Letters,
  • the polyimide used in the process described in the latter paper, sold commercially under the name "Kapton” has a glass transition temperature of only about 300°C, which restricts the temperatures which can be employed during the fabrication process, and results in a less satisfactory amorphous silicon semiconductor layer.
  • This polyimide also has a high moisture absorption (about 4 percent by weight) and such high moisture absorption can result in swelling of the substrate and consequent cracking of thin layers deposited on the substrate, or delamination of thin layers from the substrate.
  • stainless steel substrates can withstand process temperatures much higher than 300°C, such substrates require both passivation and planarization steps before transistors can be fabricated thereon.
  • Stainless steel substrates do, however, have the advantages of high dimensional stability and ease of handling in a manufacturing environment.
  • polyimides possess properties which render them very suitable for use as substrates in the fabrication of TFT's. These polyimide substrates may be used with or without a metal backing layer.
  • this invention provides a process for forming at least one transistor on a substrate by depositing on the substrate at least one layer of semiconductor material.
  • the substrate comprises a polyphenylene polyimide.
  • This process is especially intended for the formation of amorphous silicon transistors, and in such a case the semiconductor material is of course an amorphous silicon.
  • This invention also provides a transistor formed on a substrate comprising a polyphenylene polyimide, the substrate bearing at least one transistor.
  • Preferred polyphenylene polyimides for use in the present process are those sold commercially under the trade names Upilex-S and Upilex-NT by
  • R is an alkylene group.
  • polyimides are derivatives of biphenyl- 3,3',4,4'-tetracarboxylic acid and an ⁇ , ⁇ -alkanediamine, for example 1,6- hexamethylene diamine (formally hexane-l,6-diamine).
  • ⁇ , ⁇ -alkanediamine for example 1,6- hexamethylene diamine (formally hexane-l,6-diamine).
  • Upilex-S is a simple polyimide film, while
  • Upilex-NT is surface-treated on one face to facilitate hot lamination of the film, without adhesive, to ceramics or metal foils.
  • the Upilex NT may be laminated to a stainless steel backing film.
  • Another preferred polyimide for use in the present process is Upilex-50SS, from the same manufacturer.
  • Polyphenylene polyimides have glass transition temperatures considerably higher, and water absorptions considerably lower, than those of the other polyimides previously used as transistor substrates.
  • the commercial Upilex materials already mentioned have glass transition temperatures in excess of 400°C and water absorptions not greater than about 1.4 percent. These high glass transition temperatures allow the use of higher temperatures (greater than about 300°C, and preferably greater than about 400°C) in the fabrication process than has hitherto been possible with the polyimides previously used as transistor substrates, and these higher process temperatures result in higher quality silicon layers having higher mobility and low off-state current leakage.
  • Polyphenylene polyimides also have the advantages of high dimensional stability during processing and smooth surfaces, which is important for the deposition of the thin layers of material used in the formation of thin film transistors; for example, the aforementioned Upilex- 5 OSS has a dimensional stability of about 0.01% and an average surface roughness of about 20 to 30 nm.
  • An additional advantage of polyphenylene polyimides is their low coefficients of thermal expansion, which are typically about 2-10 x 10 "6 °C _1 , in contrast to the 35 x 10 "6 °C _I typical of the polyimides previously used.
  • the polyphenylene polyimide substrate used in the present process may or may not have a metal backing layer on its surface opposite to that on which the semiconductor material is to be deposited.
  • a metal backing layer is useful in enhancing the mechanical integrity of the film during the transistor fabrication process, thus avoiding, for example, any tendency for the polyimide film to stretch or otherwise distort during handling, and thus reducing distortion of the substrate during formation of the transistors thereon.
  • a metal backing layer can act as a light barrier to decrease any unwanted photo-effects in the semiconductor material (for example, photogenerated current in an amorphous silicon film) caused by light incident on the rear surface of the polyimide film.
  • the metal backing layer need not be continuous; this layer may have apertures extending through it to reduce its stiffness and thus give the metal- backed substrate more flexibility. If such apertures are to be provided, for obvious reasons it is desirable that they be formed in a regular pattern, and accordingly some or all of the apertures may be used for mechanical registration of the substrate with apparatus used in the fabrication process. Indeed, in some cases, a patterned metal backing layer might be used as a shadow mask for exposure of photoresist in a patterning step during formation of the transistors on the substrate. Alternatively or in addition, it may be advantageous to incorporate a dye into the polyimide itself to refuse or eliminate such undesirable photo-effects.
  • a passivating layer of silica, aluminum nitride, silicon nitride or other material on the substrate prior to the deposition of the transistors on this substrate.
  • a passivating layer will have a thickness in the range of about 20 to about 100 nm. Passivation is useful not only for increasing the surface resistance of the polyimide surface, and thus for increasing electrical insulation between adjacent conductors, but also for increasing the dimensional stability of the substrate by preventing the substrate absorbing water during processing, and for the latter purpose it is desirable to place the passivating layer on both surfaces of the substrate.
  • baking it is also desirable to heat treat (“bake") the substrate to remove water from the substrate prior to the deposition of the passivating layer; such baking will generally be carried out at a temperature of at least about 150°C for a period of at least about 1 minute, and preferably for about 3 minutes.
  • the shrinkage rate of a free-standing polyimide film can be reduced by two orders of magnitude after 10 hours of heating at 275°C, and by 2.4 orders of magnitude after 100 hours at the same temperature.
  • a polyimide film (brand not specified) shrank at 3 ppm hr "1 . Accordingly, if such post-baking of the passivated substrate is desired, it should be carried out at a temperature of at least 250°C for a period of at least 5 hours.
  • the substrate could be pre- baked in a conveyor oven immediately before deposition of the layers required to form the transistor.
  • the surface electrical resistivity of polyphenylene polyimides is, however, so high (typically > 10 16 ⁇ ) that in many cases it may be possible to obtain adequate electrical insulation between adjacent conductors without such a passivating layer.
  • the passivating layer is omitted, it is still advantageous to bake the substrate before deposition of the semiconductor layer thereon in order to drive off water and any other volatile materials absorbed on the polyimide, thus reducing swelling of the polyimide due to water absorption and increasing the dimensional stability of the polyimide during the formation of transistors thereon.
  • Such baking is desirably effected at a temperature greater than 250°C for a period of at least 1 hour.
  • the substrate is heated to 350°C, close to its glass transition temperature, for a period of 4 hours.
  • the first step (after any passivation and/or pre-baking of the substrate in the ways already described) is the deposition of a metal layer on the substrate.
  • the preferred metal for this purpose is chromium. It is generally preferred to deposit the chromium or other metal as a continuous film, typically having a thickness in the range of 50 to 200 nm, and thereafter to pattern the metal film, typically by conventional photolithographic techniques, prior to the deposition of the semiconductor material, to form the gate electrodes and the select lines of the transistor array to be formed.
  • the next step in the process is normally the deposition of a layer of dielectric material, for example silicon nitride; this deposition is conveniently effected by plasma enhanced chemical vapor deposition.
  • the semiconductor material preferably amorphous silicon
  • the amorphous silicon layer (and the associated dielectric layer) can, in an appropriate design, be left unpatterned so that the amorphous silicon layer extends continuously between pairs of adjacent transistors.
  • a layer of n-type silicon is deposited over the amorphous silicon, again conveniently by plasma enhanced chemical vapor deposition.
  • a metal layer for example an aluminum layer, is deposited over the n-type silicon layer, this metal layer conveniently being deposited by thermal evaporation.
  • the metal layer can then be patterned to form source and drain electrodes by conventional photolithographic techniques, and the patterned metal layer used as an etch mask for a reactive ion etch of the n-type silicon layer; etching with a carbon tetrafluoride/oxygen mixture has been found satisfactory.
  • the accompanying drawing shows a single transistor of a transistor array (generally designated 10) formed on a polyphenylene polyimide substrate 12.
  • This substrate 12 is shown in the drawing provided with a stainless steel metal backing layer 14 through which extend regularly-spaced apertures 16, only one of which is visible in the drawing.
  • the presence of the metal backing layer 14 is optional in the process of the present invention, although such a metal backing layer does provide additional mechanical integrity to the substrate and may thus facilitate handling of the substrate, especially when the invention is to be carried out on roll-to-roll coating apparatus.
  • a passivating layer 18 formed of silica or silicon nitride.
  • the presence of such a passivating layer 18 is optional, and in some cases the passivatmg layer 18 may be omitted, since the high surface resistivity of the polyphenylene polyimide provides sufficient insulation between adjacent transistors. Care should, however, be taken in eliminating the passivating layer 18 since if this layer is not present out-gassing from the polyimide substrate 12 may tend to cause delamination of various layers from this substrate.
  • the transistor array comprises a layer 26 of n-type silicon and a metal electrode layer 28; both of these layers are patterned using any conventional process to provide the source and drain electrodes of the transistors.
  • a second preferred embodiment of the invention is generally similar to that described above, but used a polyimide substrate without a metal backing or passivating layer.
  • the aforementioned Upilex -50SS was first baked for 4 hours at 350°C to remove water and any other solvents present.
  • a layer of chrome 100 nm. thick was deposited upon the baked substrate by thermal evaporation and photolithographically patterned to form the gate electrodes and select lines of the final transistor array.
  • a 320 nm. layer of silicon nitride dielectric was deposited on the substrate by plasma enhanced chemical vapor deposition (PECVD) using a silane/ammonia mixture; during this deposition, the substrate reached its maximum processing temperature of 350°C.
  • PECVD plasma enhanced chemical vapor deposition
  • a 160 nm layer of amorphous silicon semiconductor material was then deposited by PECVD from pure silane, followed by deposition of a 40 nm layer of n-type amorphous silicon by PECVD from a silane/phosphine mixture.
  • a layer of aluminum was deposited on the substrate and patterned photolithographically to form the source and drain electrodes of the transistor array.
  • the substrate was then subjected to a reactive ion etch using a carbon tetrafluoride/oxygen mixture to pattern the n-type silicon layer using the patterned aluminum layer as an etch mask; for the reasons already explained, the amorphous silicon and silicon nitride layers were not patterned during this step.
  • a low resolution patterning step was used to pattern the amorphous silicon and silicon nitride layers to enable electrical contact to be made with the select bond line sites.
  • the thin film transistor array thus fabricated can be used directly in the manufacturer of an electrophoretic display, or other types of display, without further processing.
  • the thin film transistor array shown in the drawing could be incorporated into an electrophoretic display by the process described in WO-A-00/36465; the entire disclosure of this co-pending application is herein incorporated by reference.
  • the thin film transistor arrays produced by the process of the present invention are especially intended for use in electrophoretic displays, especially encapsulated electrophoretic displays such as those described in U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588;
  • the present invention is not restricted to the fabrication of bottom gate transistors such as that shown in the accompanying drawings, the court also be used in the fabrication of top gate transistors, in which the source and drain electrodes are first fabricated on the substrate (with or without a passivating layer), then an amorphous silicon layer and a dielectric layer are formed on top of the electrodes, and finally the gate electrodes are formed as the top layer of the structure. Accordingly, the foregoing description is to be construed in an illustrative and not in a limitative sense.
  • the process of the present invention provides a process for forming transistors on a flexible substrate which permits the use of higher processing temperatures than prior art processes, and which can thus produce semiconductor layers of higher quality than prior art processes.
  • the substrate used in the present process has a coefficient of thermal expansion which closely matches that of most semiconductor layers, so reducing the risk of cracking and/or delamination of the semiconductor layer due to differences in thermal expansion between this layer and the substrate.
  • the present invention provides a process which is well-adapted to roll-to-roll operation, and thus the present process is very suitable for the fabrication of large area transistor arrays on flexible substrates.

Abstract

Transistors are formed by depositing at least one layer of semiconductor material on a substrate comprising a polyphenylene polyimide. The substrate permits the use of processing temperatures in excess of 300 °C during the processes used to form the transistor, thus allowing the formation of high quality silicon semiconductor layers. The substrate also has a low coefficient of thermal expansion, which closely matches that of silicon, thus reducing any tendency for a silicon layer to crack or delaminate.

Description

PROCESS FOR FABRICATING THIN FILM TRANSISTORS
This invention relates to a process for fabricating thin film transistors.
Thin film transistors (TFT's) are known to be useful for, inter alia, controlling various types of display; for example TFT's are commonly used to control liquid crystal displays used in portable computers and similar electronic devices. TFT's can also be used to control electrophoretic displays; see, for example, WO-A-00/67327; WO-A-01/08241; WO-A-01/17029; WO-A-01/17040; and WO-A-01/17041. The disclosures of all these applications are herein incorporated by reference.
Although most TFT's have hitherto been fabricated on rigid substrates, there is increasing interest in fabricating TFT's on flexible substrates, especially flexible polymeric films. TFT's fabricated on such flexible substrates could form the basis for large displays which would be light-weight yet rugged, thus permitting their use in mobile devices. TFT's based upon amorphous silicon semiconductors are attractive for use on such flexible substrates since they allow fabrication with a minimum number of process steps and with a low thermal budget. Amorphous silicon transistors have been fabricated on ultra-thin stainless steel substrates (see, for example, Ma et al., Applied Physics Letters, 74(18), 2661 (1999)) and on polyimide films (see Gleskova et al., IEEE Electron Device Letters,
20(9), 473 (1999)).
However, the polyimide used in the process described in the latter paper, sold commercially under the name "Kapton" (Registered Trade Mark) has a glass transition temperature of only about 300°C, which restricts the temperatures which can be employed during the fabrication process, and results in a less satisfactory amorphous silicon semiconductor layer. This polyimide also has a high moisture absorption (about 4 percent by weight) and such high moisture absorption can result in swelling of the substrate and consequent cracking of thin layers deposited on the substrate, or delamination of thin layers from the substrate. Although stainless steel substrates can withstand process temperatures much higher than 300°C, such substrates require both passivation and planarization steps before transistors can be fabricated thereon. Passivation is required to ensure proper electrical isolation between adjoining metal conductors to be formed on the substrate, and to ensure that potential contaminants within the stainless steel do not diffuse into the transistors. Stainless steel substrates do, however, have the advantages of high dimensional stability and ease of handling in a manufacturing environment.
It has now been discovered that certain types of polyimides possess properties which render them very suitable for use as substrates in the fabrication of TFT's. These polyimide substrates may be used with or without a metal backing layer.
Accordingly, this invention provides a process for forming at least one transistor on a substrate by depositing on the substrate at least one layer of semiconductor material. In the present process, the substrate comprises a polyphenylene polyimide. This process is especially intended for the formation of amorphous silicon transistors, and in such a case the semiconductor material is of course an amorphous silicon.
This invention also provides a transistor formed on a substrate comprising a polyphenylene polyimide, the substrate bearing at least one transistor.
The sole Figure of the accompanying drawing is a schematic cross- section through a single transistor of a thin film transistor array formed on a polyimide substrate by the process of the present invention.
Preferred polyphenylene polyimides for use in the present process are those sold commercially under the trade names Upilex-S and Upilex-NT by
UBE America, Inc., 55 East 59th Street, 18th Floor, New York NY 10022, United
States of America. Both these materials are stated by the manufacturer to be of the formula:
Figure imgf000004_0001
in which R is an alkylene group. These polyimides are derivatives of biphenyl- 3,3',4,4'-tetracarboxylic acid and an α,ω-alkanediamine, for example 1,6- hexamethylene diamine (formally hexane-l,6-diamine). The main difference between the two materials is that Upilex-S is a simple polyimide film, while
Upilex-NT is surface-treated on one face to facilitate hot lamination of the film, without adhesive, to ceramics or metal foils. For purposes of the present invention, the Upilex NT may be laminated to a stainless steel backing film. Another preferred polyimide for use in the present process is Upilex-50SS, from the same manufacturer.
Polyphenylene polyimides have glass transition temperatures considerably higher, and water absorptions considerably lower, than those of the other polyimides previously used as transistor substrates. The commercial Upilex materials already mentioned have glass transition temperatures in excess of 400°C and water absorptions not greater than about 1.4 percent. These high glass transition temperatures allow the use of higher temperatures (greater than about 300°C, and preferably greater than about 400°C) in the fabrication process than has hitherto been possible with the polyimides previously used as transistor substrates, and these higher process temperatures result in higher quality silicon layers having higher mobility and low off-state current leakage. Polyphenylene polyimides also have the advantages of high dimensional stability during processing and smooth surfaces, which is important for the deposition of the thin layers of material used in the formation of thin film transistors; for example, the aforementioned Upilex- 5 OSS has a dimensional stability of about 0.01% and an average surface roughness of about 20 to 30 nm. An additional advantage of polyphenylene polyimides is their low coefficients of thermal expansion, which are typically about 2-10 x 10"6 °C_1, in contrast to the 35 x 10"6 °C_I typical of the polyimides previously used.
Since silicon has a coefficient of thermal expansion of about 3 x 10"6 °C' the coefficient of a polyphenylene polyimide substrate is much more closely matched to a silicon layer deposited thereon, so that the silicon layer is much less prone to cracking and/or delamination. The aforementioned properties of polyphenylene polyimide substrates render the present process well adapted for use in a roll-to-roll process, in which deposition of the semiconductor material is effected on a continuous web of the polyimide substrate.
As already mentioned, the polyphenylene polyimide substrate used in the present process may or may not have a metal backing layer on its surface opposite to that on which the semiconductor material is to be deposited. Such a metal backing layer is useful in enhancing the mechanical integrity of the film during the transistor fabrication process, thus avoiding, for example, any tendency for the polyimide film to stretch or otherwise distort during handling, and thus reducing distortion of the substrate during formation of the transistors thereon. In addition, a metal backing layer can act as a light barrier to decrease any unwanted photo-effects in the semiconductor material (for example, photogenerated current in an amorphous silicon film) caused by light incident on the rear surface of the polyimide film. The metal backing layer need not be continuous; this layer may have apertures extending through it to reduce its stiffness and thus give the metal- backed substrate more flexibility. If such apertures are to be provided, for obvious reasons it is desirable that they be formed in a regular pattern, and accordingly some or all of the apertures may be used for mechanical registration of the substrate with apparatus used in the fabrication process. Indeed, in some cases, a patterned metal backing layer might be used as a shadow mask for exposure of photoresist in a patterning step during formation of the transistors on the substrate. Alternatively or in addition, it may be advantageous to incorporate a dye into the polyimide itself to refuse or eliminate such undesirable photo-effects.
As in certain prior art processes, it may be desirable to deposit a passivating layer of silica, aluminum nitride, silicon nitride or other material on the substrate prior to the deposition of the transistors on this substrate. Typically, such a passivating layer will have a thickness in the range of about 20 to about 100 nm. Passivation is useful not only for increasing the surface resistance of the polyimide surface, and thus for increasing electrical insulation between adjacent conductors, but also for increasing the dimensional stability of the substrate by preventing the substrate absorbing water during processing, and for the latter purpose it is desirable to place the passivating layer on both surfaces of the substrate. It is also desirable to heat treat ("bake") the substrate to remove water from the substrate prior to the deposition of the passivating layer; such baking will generally be carried out at a temperature of at least about 150°C for a period of at least about 1 minute, and preferably for about 3 minutes.
It may also be advantageous to post-bake the passivated substrate. According to a paper by Philips Research Laboratories entitled "AMLCDs and Electronics on Polymer Substrates" (Euro Display 1996), the shrinkage rate of a free-standing polyimide film can be reduced by two orders of magnitude after 10 hours of heating at 275°C, and by 2.4 orders of magnitude after 100 hours at the same temperature. In one specific experiment described in this paper, after 100 baking at 275°C, a polyimide film (brand not specified) shrank at 3 ppm hr"1. Accordingly, if such post-baking of the passivated substrate is desired, it should be carried out at a temperature of at least 250°C for a period of at least 5 hours. It has not been determined experimentally whether these results apply the substrate in the form of a tensioned roll, nor has it been determined experimentally whether the reduction in shrinkage still applies after the pre-baked substrate is cooled, unrolled, exposed to the processing necessary to form transistors thereon, re-rolled under tension and reheated several days later, as is necessary for formation of transistors on the substrate in a roll-to-roll process. Alternatively, the substrate could be pre- baked in a conveyor oven immediately before deposition of the layers required to form the transistor. The surface electrical resistivity of polyphenylene polyimides is, however, so high (typically > 1016 Ω) that in many cases it may be possible to obtain adequate electrical insulation between adjacent conductors without such a passivating layer. If the passivating layer is omitted, it is still advantageous to bake the substrate before deposition of the semiconductor layer thereon in order to drive off water and any other volatile materials absorbed on the polyimide, thus reducing swelling of the polyimide due to water absorption and increasing the dimensional stability of the polyimide during the formation of transistors thereon. Such baking is desirably effected at a temperature greater than 250°C for a period of at least 1 hour. In one preferred embodiment described below, the substrate is heated to 350°C, close to its glass transition temperature, for a period of 4 hours.
The presently preferred embodiments of the invention described below use an inverted transistor design, in which the gate electrodes lie adjacent the substrate. To form such inverted transistors, the first step (after any passivation and/or pre-baking of the substrate in the ways already described) is the deposition of a metal layer on the substrate. The preferred metal for this purpose is chromium. It is generally preferred to deposit the chromium or other metal as a continuous film, typically having a thickness in the range of 50 to 200 nm, and thereafter to pattern the metal film, typically by conventional photolithographic techniques, prior to the deposition of the semiconductor material, to form the gate electrodes and the select lines of the transistor array to be formed. The next step in the process is normally the deposition of a layer of dielectric material, for example silicon nitride; this deposition is conveniently effected by plasma enhanced chemical vapor deposition. The semiconductor material, preferably amorphous silicon, is then deposited, again conveniently by plasma enhanced chemical vapor deposition. As discussed in the aforementioned WO-A-00/67327, the amorphous silicon layer (and the associated dielectric layer) can, in an appropriate design, be left unpatterned so that the amorphous silicon layer extends continuously between pairs of adjacent transistors. Next, a layer of n-type silicon is deposited over the amorphous silicon, again conveniently by plasma enhanced chemical vapor deposition. Finally, normally after a cleaning step to remove residues from the chemical vapor deposition processes, a metal layer, for example an aluminum layer, is deposited over the n-type silicon layer, this metal layer conveniently being deposited by thermal evaporation. The metal layer can then be patterned to form source and drain electrodes by conventional photolithographic techniques, and the patterned metal layer used as an etch mask for a reactive ion etch of the n-type silicon layer; etching with a carbon tetrafluoride/oxygen mixture has been found satisfactory.
Preferred embodiments of the invention will now be described in more detail, though by way of illustration only, with reference to the accompanying drawing, which shows a schematic cross-section through a single transistor formed on a polyphenylene polyimide substrate by the process of the present invention.
The accompanying drawing shows a single transistor of a transistor array (generally designated 10) formed on a polyphenylene polyimide substrate 12.
This substrate 12 is shown in the drawing provided with a stainless steel metal backing layer 14 through which extend regularly-spaced apertures 16, only one of which is visible in the drawing. As already mentioned, the presence of the metal backing layer 14 is optional in the process of the present invention, although such a metal backing layer does provide additional mechanical integrity to the substrate and may thus facilitate handling of the substrate, especially when the invention is to be carried out on roll-to-roll coating apparatus.
On the upper surface of the substrate 12 (as shown in the drawing), there is deposited a passivating layer 18 formed of silica or silicon nitride. As previously mentioned, the presence of such a passivating layer 18 is optional, and in some cases the passivatmg layer 18 may be omitted, since the high surface resistivity of the polyphenylene polyimide provides sufficient insulation between adjacent transistors. Care should, however, be taken in eliminating the passivating layer 18 since if this layer is not present out-gassing from the polyimide substrate 12 may tend to cause delamination of various layers from this substrate.
On the upper surface of passivating layer 18, there are deposited an array of spaced metal gate electrodes 20 (only one of which is seen in the drawing), and above the electrodes 20 are deposited successively a dielectric layer 22, formed of silicon nitride, and a layer 24 of amorphous silicon. As discussed in the aforementioned WO-A-00/67327, the dielectric layer 22 and the amorphous silicon layer 24 can be left unpatterned, and avoiding the need to pattern these layers substantially reduces the cost of the transistor array. Finally, the transistor array comprises a layer 26 of n-type silicon and a metal electrode layer 28; both of these layers are patterned using any conventional process to provide the source and drain electrodes of the transistors.
A second preferred embodiment of the invention is generally similar to that described above, but used a polyimide substrate without a metal backing or passivating layer. In this second preferred embodiment, the aforementioned Upilex -50SS was first baked for 4 hours at 350°C to remove water and any other solvents present. A layer of chrome 100 nm. thick was deposited upon the baked substrate by thermal evaporation and photolithographically patterned to form the gate electrodes and select lines of the final transistor array. Next, a 320 nm. layer of silicon nitride dielectric was deposited on the substrate by plasma enhanced chemical vapor deposition (PECVD) using a silane/ammonia mixture; during this deposition, the substrate reached its maximum processing temperature of 350°C.
A 160 nm layer of amorphous silicon semiconductor material was then deposited by PECVD from pure silane, followed by deposition of a 40 nm layer of n-type amorphous silicon by PECVD from a silane/phosphine mixture.
Following these PECVD steps, a layer of aluminum was deposited on the substrate and patterned photolithographically to form the source and drain electrodes of the transistor array. The substrate was then subjected to a reactive ion etch using a carbon tetrafluoride/oxygen mixture to pattern the n-type silicon layer using the patterned aluminum layer as an etch mask; for the reasons already explained, the amorphous silicon and silicon nitride layers were not patterned during this step. Finally, a low resolution patterning step was used to pattern the amorphous silicon and silicon nitride layers to enable electrical contact to be made with the select bond line sites.
The thin film transistor array thus fabricated can be used directly in the manufacturer of an electrophoretic display, or other types of display, without further processing. For example, the thin film transistor array shown in the drawing could be incorporated into an electrophoretic display by the process described in WO-A-00/36465; the entire disclosure of this co-pending application is herein incorporated by reference. In some cases, it is desirable to provide a barrier layer covering the thin film transistors to protect the transistors against the effects of solvents or other materials which may tend to diffuse out of the electrophoretic display.
The thin film transistor arrays produced by the process of the present invention are especially intended for use in electrophoretic displays, especially encapsulated electrophoretic displays such as those described in U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588;
6,120,839; 6,124,851; 6,130,773; 6,130,774; and 6,172,798, and in International Applications Publication Nos. WO 97/04398; WO 98/03896; WO 98/19208; WO 98/41898; WO 98/41899; WO 99/10769; WO 99/10768; WO 99/10767; WO 99/53373; WO 99/56171; WO 99/59101; WO 99/47970; WO 00/03349; WO 00/03291; WO 99/67678; WO 00/05704; WO 99/53371; WO 00/20921; WO
00/20922; WO 00/20923; WO 00/26761; WO 00/36465; WO 00/38000; WO 00/38001; WO 00/36560; WO 00/20922; WO 00/36666; WO 00/59625; WO 00/67110; WO 00/67327 and WO 01/02899. The entire disclosures of all these patents and published applications are herein incorporated by reference. Numerous changes and modifications can be made in the preferred embodiments of the present process already described without departing from the spirit and skill of the invention. For example, the present invention is not restricted to the fabrication of bottom gate transistors such as that shown in the accompanying drawings, the court also be used in the fabrication of top gate transistors, in which the source and drain electrodes are first fabricated on the substrate (with or without a passivating layer), then an amorphous silicon layer and a dielectric layer are formed on top of the electrodes, and finally the gate electrodes are formed as the top layer of the structure. Accordingly, the foregoing description is to be construed in an illustrative and not in a limitative sense.
From the foregoing, it will be seen that the process of the present invention provides a process for forming transistors on a flexible substrate which permits the use of higher processing temperatures than prior art processes, and which can thus produce semiconductor layers of higher quality than prior art processes. The substrate used in the present process has a coefficient of thermal expansion which closely matches that of most semiconductor layers, so reducing the risk of cracking and/or delamination of the semiconductor layer due to differences in thermal expansion between this layer and the substrate. The present invention provides a process which is well-adapted to roll-to-roll operation, and thus the present process is very suitable for the fabrication of large area transistor arrays on flexible substrates.

Claims

CLAIMS 1. A process for forming at least one transistor (10) on a substrate (12), which process comprises depositing on the substrate (12) at least one layer of semiconductor material (24, 26), characterized in that the substrate (12) comprises a polyphenylene polyimide.
2. A process according to claim 1 characterized in that the polyphenylene polyimide is a derivative of biphenyl-3,3',4,4'-tetracarboxylic acid. 3. A process according to claim 2 characterized in that the polyimide is a derivative of biphenyl-3,
3',4,4'-tetracarboxylic acid and an α,ω- alkanediamine.
4. A process according to any one of the preceding claims characterized in that a passivating layer (18) is deposited on one or both surfaces of the substrate (12) before the semiconductor material (24, 26) is deposited thereon.
5. A process according to claim 4 characterized in that the passivating layer (18) comprises silicon dioxide or aluminum nitride, and/or has a thickness in the range of 20 to 100 nm.
6. A process according to claim 4 or 5 characterized in that the substrate (12) is heated to a temperature greater than 150°C for a period of at least 1 minute before deposition of the passivating layer (18).
7. A process according to any one of claims 4 to 6 characterized in that the substrate (12) is heated to a temperature greater than 250°C for a period of at least 5 hours after deposition of the passivatmg layer (18).
8. A process according to any one of the preceding claims characterized in that the substrate (12) is heated to a temperature greater than 250°C for a period of at least 1 hour before deposition of the semiconductor material (24, 26).
9. A process according to any one of the preceding claims characterized in that the substrate (12) comprises a metal layer (14) on the side thereof remote from the semiconductor material (24, 26).
10. A process according to claim 9 characterized in that the metal layer (14) has apertures (16) extending therethrough.
11. A process according to any one of the preceding claims characterized in that the deposition of the semiconductor material (24) is effected at a temperature in excess of 300°C.
12. A process according to any one of the preceding claims characterized in that the semiconductor material (24) comprises amorphous silicon.
13. A process according to claim 12 characterized in that the amorphous silicon is not patterned so that it extends continuously between at least some pairs of adj acent transistors.
14. A process according to any one of the preceding claims characterized in that deposition of the semiconductor material (24, 26) is effected on a continuous web of substrate (12).
15. A substrate (12) comprising a polyphenylene polyimide, the substrate bearing at least one transistor (10).
16. A substrate according to claim 15 characterized by any one or more of the features defined in any of claims 2 to 14.
PCT/US2001/012429 2000-04-18 2001-04-17 Process for fabricating thin film transistors WO2001080287A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01927094A EP1275156B1 (en) 2000-04-18 2001-04-17 Process for fabricating thin film transistors
JP2001577586A JP2003531487A (en) 2000-04-18 2001-04-17 Process for manufacturing thin film transistor
AU2001253575A AU2001253575A1 (en) 2000-04-18 2001-04-17 Process for fabricating thin film transistors
AT01927094T ATE438927T1 (en) 2000-04-18 2001-04-17 PROCESS FOR PRODUCING THIN FILM TRANSISTORS
DE60139463T DE60139463D1 (en) 2000-04-18 2001-04-17 PROCESS FOR THE MANUFACTURE OF THIN FILM TRANSISTORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19773100P 2000-04-18 2000-04-18
US60/197,731 2000-04-18

Publications (2)

Publication Number Publication Date
WO2001080287A2 true WO2001080287A2 (en) 2001-10-25
WO2001080287A3 WO2001080287A3 (en) 2002-05-23

Family

ID=22730530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/012429 WO2001080287A2 (en) 2000-04-18 2001-04-17 Process for fabricating thin film transistors

Country Status (9)

Country Link
US (2) US6825068B2 (en)
EP (1) EP1275156B1 (en)
JP (1) JP2003531487A (en)
KR (1) KR100767233B1 (en)
CN (1) CN1237623C (en)
AT (1) ATE438927T1 (en)
AU (1) AU2001253575A1 (en)
DE (1) DE60139463D1 (en)
WO (1) WO2001080287A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168800A (en) * 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc Thin film transistor substrate
US6885032B2 (en) 2001-11-21 2005-04-26 Visible Tech-Knowledgy, Inc. Display assembly having flexible transistors on a flexible substrate

Families Citing this family (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US6866760B2 (en) * 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US7327511B2 (en) * 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US20020113770A1 (en) 1998-07-08 2002-08-22 Joseph M. Jacobson Methods for achieving improved color in microencapsulated electrophoretic devices
US7119772B2 (en) 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7119759B2 (en) * 1999-05-03 2006-10-10 E Ink Corporation Machine-readable displays
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US6816147B2 (en) 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
KR100586241B1 (en) * 2000-10-28 2006-06-02 엘지.필립스 엘시디 주식회사 An array substrate for liquid crystal display device and method of manufacturing there of
AU2002230610A1 (en) * 2000-12-05 2002-06-18 E-Ink Corporation Portable eclectronic apparatus with additional electro-optical display
JP4198999B2 (en) * 2001-03-13 2008-12-17 イー インク コーポレイション Equipment for displaying drawings
US20050156340A1 (en) 2004-01-20 2005-07-21 E Ink Corporation Preparation of capsules
EP1666964B1 (en) * 2001-04-02 2018-12-19 E Ink Corporation Electrophoretic medium with improved image stability
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
WO2002093246A1 (en) 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic particles
US6982178B2 (en) 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
ATE349028T1 (en) * 2001-07-09 2007-01-15 E Ink Corp ELECTRO-OPTICAL DISPLAY AND ADHESIVE COMPOSITION
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
AU2002354672A1 (en) * 2001-07-09 2003-01-29 E Ink Corporation Electro-optical display having a lamination adhesive layer
US6819471B2 (en) * 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
US6825970B2 (en) * 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
JP3631992B2 (en) * 2001-11-13 2005-03-23 日東電工株式会社 Printed circuit board
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
JP4615860B2 (en) 2001-11-20 2011-01-19 イー インク コーポレイション Multi-stable electro-optical display driving method, device controller, and multi-stable electro-optical display
US6885146B2 (en) 2002-03-14 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising substrates, contrast medium and barrier layers between contrast medium and each of substrates
US6950220B2 (en) * 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US7223672B2 (en) 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US7190008B2 (en) 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7110164B2 (en) * 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7554712B2 (en) 2005-06-23 2009-06-30 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US20110199671A1 (en) * 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
CN101373581B (en) 2002-06-13 2014-07-16 伊英克公司 Methods for driving electro-optic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
JP2005537519A (en) 2002-09-03 2005-12-08 イー−インク コーポレイション Electro-optic display
WO2004023202A1 (en) 2002-09-03 2004-03-18 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
KR100985418B1 (en) * 2002-11-26 2010-10-05 이 잉크 코포레이션 Flexible electronic circuits and displays
US20170052422A1 (en) * 2002-11-26 2017-02-23 E Ink Corporation Flexible electronic circuits and displays
CN101118362A (en) 2002-12-16 2008-02-06 伊英克公司 Backplanes for electro-optic displays
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US6987603B2 (en) 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US7339715B2 (en) 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
ATE485535T1 (en) 2003-03-27 2010-11-15 E Ink Corp ELECTRO-OPTICAL ASSEMBLY
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
JP4921163B2 (en) * 2003-05-06 2012-04-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Drive voltage reduction in switchable elements
EP1639574B1 (en) 2003-06-30 2015-04-22 E Ink Corporation Methods for driving electro-optic displays
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
WO2005010598A2 (en) 2003-07-24 2005-02-03 E Ink Corporation Electro-optic displays
WO2005020199A2 (en) * 2003-08-19 2005-03-03 E Ink Corporation Methods for controlling electro-optic displays
EP1665214A4 (en) 2003-09-19 2008-03-19 E Ink Corp Methods for reducing edge effects in electro-optic displays
ATE405916T1 (en) * 2003-10-08 2008-09-15 E Ink Corp ELECTRICAL WETTING DISPLAYS
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
US7551346B2 (en) 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
EP1680774B9 (en) 2003-11-05 2018-05-16 E Ink Corporation Electrophoretic medium for electro-optic displays
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US7206119B2 (en) 2003-12-31 2007-04-17 E Ink Corporation Electro-optic displays, and method for driving same
US7075703B2 (en) 2004-01-16 2006-07-11 E Ink Corporation Process for sealing electro-optic displays
US7388572B2 (en) * 2004-02-27 2008-06-17 E Ink Corporation Backplanes for electro-optic displays
US7492339B2 (en) * 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20050253777A1 (en) * 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
JP2006003775A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Display substrate
KR100626007B1 (en) * 2004-06-30 2006-09-20 삼성에스디아이 주식회사 TFT, manufacturing method of the TFT, flat panel display device with the TFT, and manufacturing method of flat panel display device
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
WO2006015044A1 (en) 2004-07-27 2006-02-09 E Ink Corporation Electro-optic displays
US7259106B2 (en) * 2004-09-10 2007-08-21 Versatilis Llc Method of making a microelectronic and/or optoelectronic circuitry sheet
TWI253759B (en) * 2004-11-22 2006-04-21 Au Optronics Corp Method and apparatus for forming thin film transistor
JP2008521065A (en) 2005-01-26 2008-06-19 イー インク コーポレイション Electrophoretic display using gaseous fluid
US8576162B2 (en) * 2005-03-14 2013-11-05 Sipix Imaging, Inc. Manufacturing processes of backplane for segment displays
US8357616B2 (en) * 2005-04-14 2013-01-22 President And Fellows Of Harvard College Adjustable solubility in sacrificial layers for microfabrication
US20080043318A1 (en) 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
KR101269304B1 (en) 2005-10-18 2013-05-29 이 잉크 코포레이션 Components for electro-optic displays
US20070091417A1 (en) * 2005-10-25 2007-04-26 E Ink Corporation Electrophoretic media and displays with improved binder
US7621794B2 (en) * 2005-11-09 2009-11-24 International Display Systems, Inc. Method of encapsulating an organic light-emitting device
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
TWI350793B (en) 2006-03-08 2011-10-21 E Ink Corp Methods for production of electro-optic displays
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US7932548B2 (en) 2006-07-14 2011-04-26 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7477444B2 (en) 2006-09-22 2009-01-13 E Ink Corporation & Air Products And Chemical, Inc. Electro-optic display and materials for use therein
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
TWI386313B (en) 2007-01-22 2013-02-21 E Ink Corp Multi-layer sheet for use in electro-optic displays
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US10319313B2 (en) 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
WO2009117730A1 (en) 2008-03-21 2009-09-24 E Ink Corporation Electro-optic displays and color filters
ES2823736T3 (en) 2008-04-11 2021-05-10 E Ink Corp Procedures for exciting electro-optical display devices
JP5346078B2 (en) * 2008-05-20 2013-11-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermal and dimensionally stable polyimide films and methods related thereto
EP2366270A4 (en) 2008-12-02 2013-04-10 Univ Arizona Method of preparing a flexible substrate assembly and flexible substrate assembly therefrom
US9991311B2 (en) 2008-12-02 2018-06-05 Arizona Board Of Regents On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US9721825B2 (en) 2008-12-02 2017-08-01 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US9601530B2 (en) 2008-12-02 2017-03-21 Arizona Board Of Regents, A Body Corporated Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US20100159635A1 (en) * 2008-12-24 2010-06-24 Weyerhaeuser Company Method of patterning conductive layer and devices made thereby
US8457013B2 (en) 2009-01-13 2013-06-04 Metrologic Instruments, Inc. Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
US8234507B2 (en) 2009-01-13 2012-07-31 Metrologic Instruments, Inc. Electronic-ink display device employing a power switching mechanism automatically responsive to predefined states of device configuration
TWI484273B (en) 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
EP2436029A4 (en) 2009-05-29 2013-04-10 Univ Arizona Method of providing a flexible semiconductor device at high temperatures and flexible semiconductor device thereof
CN104656977B (en) 2009-10-28 2018-01-26 伊英克公司 Electro-optic displays with touch sensor
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
JP2013511600A (en) * 2009-11-20 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thin film transistor composition and method related thereto
US8319299B2 (en) * 2009-11-20 2012-11-27 Auman Brian C Thin film transistor compositions, and methods relating thereto
KR101125567B1 (en) * 2009-12-24 2012-03-22 삼성모바일디스플레이주식회사 Polymer substrate and method of manufacturing the same and display device including the polymer substrate and method of manufacturing the display device
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
JP2011233858A (en) * 2010-04-09 2011-11-17 Dainippon Printing Co Ltd Method for manufacturing substrate for thin film element, method for manufacturing thin film element, method for manufacturing thin film transistor, thin film element and thin film transistor
KR101793352B1 (en) 2010-04-09 2017-11-02 이 잉크 코포레이션 Methods for driving electro-optic displays
WO2012021197A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
WO2012021196A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method for manufacturing electronic devices and electronic devices thereof
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
KR101101943B1 (en) * 2010-05-31 2012-01-02 한국철강 주식회사 Method for heating a substrate of solar cell
US8383469B2 (en) * 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
JP2012238687A (en) * 2011-05-11 2012-12-06 Sony Corp Semiconductor package, semiconductor device manufacturing method and solid state image pickup device
US20130125910A1 (en) 2011-11-18 2013-05-23 Avon Products, Inc. Use of Electrophoretic Microcapsules in a Cosmetic Composition
US11467466B2 (en) 2012-04-20 2022-10-11 E Ink Corporation Illumination systems for reflective displays
WO2013159093A1 (en) 2012-04-20 2013-10-24 E Ink Corporation Illumination systems for reflective displays
WO2014106955A1 (en) * 2013-01-07 2014-07-10 株式会社ニコン Composition, laminate, method for producing laminate, transistor, and method for producing transistor
WO2014110394A1 (en) 2013-01-10 2014-07-17 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
CN105917265B (en) 2014-01-17 2019-01-15 伊英克公司 Electro-optic displays with two-phase electrode layer
WO2017034645A2 (en) 2015-06-09 2017-03-02 ARIZONA BOARD OF REGENTS, a body corporate for THE STATE OF ARIZONA for and on behalf of ARIZONA STATE UNIVERSITY Method of providing an electronic device and electronic device thereof
WO2015156891A2 (en) 2014-01-23 2015-10-15 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US10381224B2 (en) 2014-01-23 2019-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
KR20160119195A (en) 2014-02-07 2016-10-12 이 잉크 코포레이션 Electro-optic display backplane structures
US10317767B2 (en) 2014-02-07 2019-06-11 E Ink Corporation Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces
US10446585B2 (en) 2014-03-17 2019-10-15 E Ink Corporation Multi-layer expanding electrode structures for backplane assemblies
EP3143641A4 (en) 2014-05-13 2018-01-17 Arizona Board of Regents, a Body Corporate of the State of Arizona acting for and on behalf of Arizona State University Method of providing an electronic device and electronic device thereof
ES2959493T3 (en) 2014-11-07 2024-02-26 E Ink Corp Electro-optic tile
US10446582B2 (en) 2014-12-22 2019-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an imaging system and imaging system thereof
US9741742B2 (en) 2014-12-22 2017-08-22 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Deformable electronic device and methods of providing and using deformable electronic device
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
US10475396B2 (en) 2015-02-04 2019-11-12 E Ink Corporation Electro-optic displays with reduced remnant voltage, and related apparatus and methods
US10997930B2 (en) 2015-05-27 2021-05-04 E Ink Corporation Methods and circuitry for driving display devices
EP3314328B1 (en) 2015-06-29 2021-03-03 E Ink Corporation Electro-optic display device and method of manufacturing thereof
WO2017184816A1 (en) 2016-04-22 2017-10-26 E Ink Corporation Foldable electro-optic display apparatus
US10527899B2 (en) 2016-05-31 2020-01-07 E Ink Corporation Backplanes for electro-optic displays
WO2018160546A1 (en) 2017-02-28 2018-09-07 E Ink Corporation Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits
WO2018183240A1 (en) 2017-03-28 2018-10-04 E Ink Corporation Porous backplane for electro-optic display
TWI682261B (en) 2017-05-19 2020-01-11 美商電子墨水股份有限公司 Foldable electro-optic display including digitization and touch sensing
US11404013B2 (en) 2017-05-30 2022-08-02 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
EP3631575A4 (en) 2017-05-30 2021-01-13 E Ink Corporation Electro-optic displays
US10882042B2 (en) 2017-10-18 2021-01-05 E Ink Corporation Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing
US10824042B1 (en) 2017-10-27 2020-11-03 E Ink Corporation Electro-optic display and composite materials having low thermal sensitivity for use therein
CN111226163B (en) 2017-11-03 2021-10-22 伊英克公司 Process for producing electro-optic displays
US11081066B2 (en) 2018-02-15 2021-08-03 E Ink Corporation Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
PL3834038T3 (en) 2018-08-07 2024-04-02 E Ink Corporation Flexible encapsulated electro-optic media
US11353759B2 (en) 2018-09-17 2022-06-07 Nuclera Nucleics Ltd. Backplanes with hexagonal and triangular electrodes
KR102577837B1 (en) 2018-10-15 2023-09-12 이 잉크 코포레이션 Digital microfluidic delivery device
US11145262B2 (en) 2018-11-09 2021-10-12 E Ink Corporation Electro-optic displays
EP3894934A4 (en) 2018-12-13 2022-07-20 E Ink Corporation Illumination systems for reflective displays
TWI728631B (en) 2018-12-28 2021-05-21 美商電子墨水股份有限公司 Electro-optic displays
EP3903303A4 (en) 2018-12-30 2022-09-07 E Ink California, LLC Electro-optic displays
JP7407293B2 (en) 2020-02-07 2023-12-28 イー インク コーポレイション Electrophoretic display layer with thin film top electrode
JP2023529136A (en) 2020-06-03 2023-07-07 イー インク コーポレイション A foldable electrophoretic display module including a non-conductive support plate
TW202314665A (en) 2021-08-18 2023-04-01 美商電子墨水股份有限公司 Methods for driving electro-optic displays
WO2023164078A1 (en) 2022-02-25 2023-08-31 E Ink Corporation Electro-optic displays with edge seal components and methods of making the same
US11830449B2 (en) 2022-03-01 2023-11-28 E Ink Corporation Electro-optic displays
US20230350263A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Electro-optic display stacks with segmented electrodes and methods of making the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2098800A (en) * 1981-05-18 1982-11-24 Hitachi Ltd Resin encapsulated semiconductor devices
US4758875A (en) * 1981-04-30 1988-07-19 Hitachi, Ltd. Resin encapsulated semiconductor device
EP0336536A2 (en) * 1988-02-15 1989-10-11 Hitachi Chemical Co., Ltd. Organic-solvent soluble polyimide and production thereof
EP0345064A1 (en) * 1988-06-01 1989-12-06 Sharp Kabushiki Kaisha Liquid crystal display device
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
EP0811648A1 (en) * 1996-06-07 1997-12-10 Unitika Limited Polyimide precursor solution, process for the production thereof, coating or film obtained therefrom and process for producing the film
US6013335A (en) * 1993-07-30 2000-01-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for processing the same
WO2000046854A1 (en) * 1999-02-05 2000-08-10 Alien Technology Corporation Apparatuses and methods for forming assemblies

Family Cites Families (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25363E (en) 1961-10-27 1963-04-02 Magnetic writing materials set
US3384565A (en) 1964-07-23 1968-05-21 Xerox Corp Process of photoelectrophoretic color imaging
JPS4915377B1 (en) 1968-10-04 1974-04-15
US3892568A (en) 1969-04-23 1975-07-01 Matsushita Electric Ind Co Ltd Electrophoretic image reproduction process
US3612758A (en) 1969-10-03 1971-10-12 Xerox Corp Color display device
US3870517A (en) * 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3668106A (en) 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3792308A (en) 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
US3670323A (en) 1970-12-14 1972-06-13 Zenith Radio Corp Image-display devices comprising particle light modulators with storage
JPS4917079B1 (en) 1970-12-21 1974-04-26
US3850627A (en) 1971-01-06 1974-11-26 Xerox Corp Electrophoretic imaging method
JPS5121531B2 (en) 1971-07-29 1976-07-03
US4273672A (en) 1971-08-23 1981-06-16 Champion International Corporation Microencapsulation process
GB1458045A (en) 1973-08-15 1976-12-08 Secr Defence Display systems
US4001140A (en) 1974-07-10 1977-01-04 Ncr Corporation Capsule manufacture
US4045327A (en) 1974-08-28 1977-08-30 Matsushita Electric Industrial Co., Ltd. Electrophoretic matrix panel
US4041481A (en) 1974-10-05 1977-08-09 Matsushita Electric Industrial Co., Ltd. Scanning apparatus for an electrophoretic matrix display panel
JPS584762B2 (en) 1976-02-20 1983-01-27 株式会社日立製作所 Percent display device
FR2351191A1 (en) 1976-05-11 1977-12-09 Thomson Csf PERFECTED ELECTROPHORESIS DEVICE
US4088395A (en) 1976-05-27 1978-05-09 American Cyanamid Company Paper counter-electrode for electrochromic devices
US4068927A (en) 1976-09-01 1978-01-17 North American Philips Corporation Electrophoresis display with buried lead lines
US4071430A (en) 1976-12-06 1978-01-31 North American Philips Corporation Electrophoretic image display having an improved switching time
US4203106A (en) 1977-11-23 1980-05-13 North American Philips Corporation X-Y addressable electrophoretic display device with control electrode
US4261653A (en) 1978-05-26 1981-04-14 The Bendix Corporation Light valve including dipolar particle construction and method of manufacture
US4324456A (en) 1979-08-02 1982-04-13 U.S. Philips Corporation Electrophoretic projection display systems
US4218302A (en) 1979-08-02 1980-08-19 U.S. Philips Corporation Electrophoretic display devices
JPS56104387A (en) 1980-01-22 1981-08-20 Citizen Watch Co Ltd Display unit
US4305807A (en) 1980-03-13 1981-12-15 Burroughs Corporation Electrophoretic display device using a liquid crystal as a threshold device
US4311361A (en) 1980-03-13 1982-01-19 Burroughs Corporation Electrophoretic display using a non-Newtonian fluid as a threshold device
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4390403A (en) 1981-07-24 1983-06-28 Batchelder J Samuel Method and apparatus for dielectrophoretic manipulation of chemical species
US4450440A (en) 1981-12-24 1984-05-22 U.S. Philips Corporation Construction of an epid bar graph
US4522472A (en) 1982-02-19 1985-06-11 North American Philips Corporation Electrophoretic image display with reduced drives and leads
FR2527843B1 (en) 1982-06-01 1986-01-24 Thomson Csf ELECTRODE COMPRISING AN ELECTROCHROMIC POLYMER FILM WHICH CAN BE USED IN AN ENERGY STORAGE OR DISPLAY DEVICE
FR2527844B1 (en) 1982-06-01 1986-01-24 Thomson Csf ELECTROCHROMIC DEVICE THAT CAN BE USED FOR ENERGY STORAGE AND ELECTROCHROMIC DISPLAY SYSTEM
US4439507A (en) 1982-09-21 1984-03-27 Xerox Corporation Layered photoresponsive imaging device with photogenerating pigments dispersed in a polyhydroxy ether composition
GB8328750D0 (en) 1983-10-27 1983-11-30 Philp R Contact-less electronic connectors
US4514583A (en) * 1983-11-07 1985-04-30 Energy Conversion Devices, Inc. Substrate for photovoltaic devices
JPS614020A (en) 1984-06-18 1986-01-09 Nissha Printing Co Ltd Multicolor liquid crystal display device
US4655897A (en) 1984-11-13 1987-04-07 Copytele, Inc. Electrophoretic display panels and associated methods
JPH0616506B2 (en) 1984-12-26 1994-03-02 株式会社半導体エネルギー研究所 Method for selectively forming a coating around the side of a laminate
US4648956A (en) 1984-12-31 1987-03-10 North American Philips Corporation Electrode configurations for an electrophoretic display device
US4741604A (en) 1985-02-01 1988-05-03 Kornfeld Cary D Electrode arrays for cellular displays
US4643528A (en) 1985-03-18 1987-02-17 Manchester R & D Partnership Encapsulated liquid crystal and filler material
US4598960A (en) 1985-04-29 1986-07-08 Copytele, Inc. Methods and apparatus for connecting closely spaced large conductor arrays employing multi-conductor carrier boards
JPS6258222A (en) 1985-09-09 1987-03-13 Ricoh Co Ltd Matrix type display device
US4686524A (en) 1985-11-04 1987-08-11 North American Philips Corporation Photosensitive electrophoretic displays
JPS6293974A (en) * 1985-10-19 1987-04-30 Nitto Electric Ind Co Ltd Thin film transistor array
US4742345A (en) 1985-11-19 1988-05-03 Copytele, Inc. Electrophoretic display panel apparatus and methods therefor
JPS62163316A (en) * 1986-01-14 1987-07-20 Canon Inc Manufacture of semiconductor element
US4746917A (en) 1986-07-14 1988-05-24 Copytele, Inc. Method and apparatus for operating an electrophoretic display between a display and a non-display mode
US4850919A (en) 1986-09-11 1989-07-25 Copytele, Inc. Monolithic flat panel display apparatus and methods for fabrication thereof
JPH0682894B2 (en) * 1986-09-27 1994-10-19 住友ベ−クライト株式会社 Method for manufacturing flexible printed circuit board
US5194852A (en) 1986-12-01 1993-03-16 More Edward S Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information
US4892607A (en) 1986-12-04 1990-01-09 Copytele, Inc. Chip mounting techniques for display apparatus
US5279694A (en) 1986-12-04 1994-01-18 Copytele, Inc. Chip mounting techniques for display apparatus
US5028841A (en) 1989-07-18 1991-07-02 Copytele, Inc. Chip mounting techniques for display apparatus
US4833464A (en) 1987-09-14 1989-05-23 Copytele, Inc. Electrophoretic information display (EPID) apparatus employing grey scale capability
US4883561A (en) 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
US5070326A (en) 1988-04-13 1991-12-03 Ube Industries Ltd. Liquid crystal display device
US4947159A (en) 1988-04-18 1990-08-07 501 Copytele, Inc. Power supply apparatus capable of multi-mode operation for an electrophoretic display panel
DE3851223T2 (en) 1988-05-03 1994-12-22 Copytele Inc Monolithic flat panel display device.
US5731116A (en) 1989-05-17 1998-03-24 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5502889A (en) 1988-06-10 1996-04-02 Sheldahl, Inc. Method for electrically and mechanically connecting at least two conductive layers
US4931019A (en) 1988-09-01 1990-06-05 Pennwalt Corporation Electrostatic image display apparatus
US5119218A (en) 1988-09-28 1992-06-02 Ube Industries, Ltd. Liquid crystal display device having varistor elements
NL8802409A (en) 1988-09-30 1990-04-17 Philips Nv DISPLAY DEVICE, SUPPORT PLATE PROVIDED WITH DIODE AND SUITABLE FOR THE DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SUPPORT PLATE.
US4947157A (en) 1988-10-03 1990-08-07 501 Copytele, Inc. Apparatus and methods for pulsing the electrodes of an electrophoretic display for achieving faster display operation
JPH02131221A (en) 1988-11-11 1990-05-21 Pioneer Electron Corp Photoconduction type liquid crystal light valve
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US5041824A (en) 1989-03-02 1991-08-20 Copytele, Inc. Semitransparent electrophoretic information displays (EPID) employing mesh like electrodes
US5587264A (en) 1989-03-16 1996-12-24 Dai Nippon Printing Co. Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5053763A (en) 1989-05-01 1991-10-01 Copytele, Inc. Dual anode flat panel electrophoretic display apparatus
US5302235A (en) 1989-05-01 1994-04-12 Copytele, Inc. Dual anode flat panel electrophoretic display apparatus
JPH03109526A (en) 1989-06-20 1991-05-09 Japan Synthetic Rubber Co Ltd Active matrix substrate for liquid crystal display device
US5066946A (en) 1989-07-03 1991-11-19 Copytele, Inc. Electrophoretic display panel with selective line erasure
US5220316A (en) 1989-07-03 1993-06-15 Benjamin Kazan Nonlinear resistor control circuit and use in liquid crystal displays
JPH0344621A (en) 1989-07-12 1991-02-26 Alps Electric Co Ltd Method and device for displaying and display medium tube used therein
US5128785A (en) 1989-08-08 1992-07-07 Ube Industries, Ltd. Liquid crystal display device substantially free from cross-talk having varistor layers coupled to signal lines and picture electrodes
US5254981A (en) 1989-09-15 1993-10-19 Copytele, Inc. Electrophoretic display employing gray scale capability utilizing area modulation
JP2712046B2 (en) 1989-10-18 1998-02-10 宇部興産株式会社 Liquid crystal display
CA2027440C (en) 1989-11-08 1995-07-04 Nicholas K. Sheridon Paper-like computer output display and scanning system therefor
US5128226A (en) 1989-11-13 1992-07-07 Eastman Kodak Company Electrophotographic element containing barrier layer
US5077157A (en) 1989-11-24 1991-12-31 Copytele, Inc. Methods of fabricating dual anode, flat panel electrophoretic displays
EP0443571A3 (en) 1990-02-23 1992-04-15 Ube Industries, Ltd. Liquid crystal display panel
JPH063528B2 (en) * 1990-03-16 1994-01-12 富士ゼロックス株式会社 Light modulation display element and display method
JPH049916A (en) 1990-04-27 1992-01-14 Victor Co Of Japan Ltd Recording device and recording head
JP2554769B2 (en) 1990-05-16 1996-11-13 株式会社東芝 Liquid crystal display
GB2244860A (en) 1990-06-04 1991-12-11 Philips Electronic Associated Fabricating mim type device array and display devices incorporating such arrays
US5206749A (en) 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5250938A (en) 1990-12-19 1993-10-05 Copytele, Inc. Electrophoretic display panel having enhanced operation
US5362671A (en) 1990-12-31 1994-11-08 Kopin Corporation Method of fabricating single crystal silicon arrayed devices for display panels
US5223823A (en) 1991-03-11 1993-06-29 Copytele, Inc. Electrophoretic display panel with plural electrically independent anode elements
JP2603037B2 (en) 1991-03-11 1997-04-23 コピイテル,インコーポレイテッド Electrophoretic display panel having a plurality of electrically independent anode elements
US5187609A (en) 1991-03-27 1993-02-16 Disanto Frank J Electrophoretic display panel with semiconductor coated elements
JPH04313266A (en) * 1991-04-10 1992-11-05 Fuji Xerox Co Ltd Thin-film semiconductor device
DE4113791A1 (en) * 1991-04-26 1992-10-29 Solvay Deutschland METHOD FOR THE SEPARATION OF A BOR AND NITROGEN CONTAINING LAYER
US5315312A (en) 1991-05-06 1994-05-24 Copytele, Inc. Electrophoretic display panel with tapered grid insulators and associated methods
US5375044A (en) 1991-05-13 1994-12-20 Guritz; Steven P. W. Multipurpose optical display for articulating surfaces
US5223115A (en) 1991-05-13 1993-06-29 Copytele, Inc. Electrophoretic display with single character erasure
JP3086718B2 (en) 1991-06-24 2000-09-11 株式会社東芝 Liquid crystal display device
US5689282A (en) 1991-07-09 1997-11-18 U.S. Philips Corporation Display device with compensation for stray capacitance
JPH0519306A (en) 1991-07-16 1993-01-29 Nippon Sheet Glass Co Ltd Fully solid-state dimming device and dimming method with the same
GB9115402D0 (en) 1991-07-17 1991-09-04 Philips Electronic Associated Matrix display device and its method of operation
WO1993004411A1 (en) 1991-08-16 1993-03-04 Eastman Kodak Company Migration imaging with dyes or pigments to effect bleaching
US5216416A (en) 1991-08-19 1993-06-01 Copytele, Inc. Electrophoretic display panel with interleaved local anode
WO1993005425A1 (en) 1991-08-29 1993-03-18 Copytele, Inc. Electrophoretic display panel with internal mesh background screen
US5463492A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light modulating film of improved clarity for a light valve
US5463491A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light valve employing a film comprising an encapsulated liquid suspension, and method of making such film
US5247290A (en) 1991-11-21 1993-09-21 Copytele, Inc. Method of operation for reducing power, increasing life and improving performance of epids
US5266937A (en) 1991-11-25 1993-11-30 Copytele, Inc. Method for writing data to an electrophoretic display panel
US5174882A (en) 1991-11-25 1992-12-29 Copytele, Inc. Electrode structure for an electrophoretic display apparatus
EP0618715A4 (en) 1991-12-13 1996-12-18 Ace Denken Kk Electronic notepad.
JP3203736B2 (en) * 1992-02-13 2001-08-27 株式会社日立製作所 Tape carrier package for liquid crystal driver and liquid crystal display device
US5293528A (en) 1992-02-25 1994-03-08 Copytele, Inc. Electrophoretic display panel and associated methods providing single pixel erase capability
US5412398A (en) 1992-02-25 1995-05-02 Copytele, Inc. Electrophoretic display panel and associated methods for blinking displayed characters
US5298833A (en) 1992-06-22 1994-03-29 Copytele, Inc. Black electrophoretic particles for an electrophoretic image display
US5270843A (en) 1992-08-31 1993-12-14 Jiansheng Wang Directly formed polymer dispersed liquid crystal light shutter displays
US5705424A (en) 1992-09-11 1998-01-06 Kopin Corporation Process of fabricating active matrix pixel electrodes
TW226478B (en) 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
US5345251A (en) 1993-01-11 1994-09-06 Copytele, Inc. Electrophoretic display panel with interleaved cathode and anode
US5402145A (en) 1993-02-17 1995-03-28 Copytele, Inc. Electrophoretic display panel with arc driven individual pixels
TW241377B (en) 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
JPH07152024A (en) 1993-05-17 1995-06-16 Sharp Corp Liquid crystal display element
EP0635748B1 (en) * 1993-07-23 2001-12-12 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for producing the same
US5477073A (en) 1993-08-20 1995-12-19 Casio Computer Co., Ltd. Thin film semiconductor device including a driver and a matrix circuit
JPH09502540A (en) 1993-09-09 1997-03-11 コピイテル,インコーポレイテッド Selective character addressable electrophoretic display panel
JPH09505900A (en) 1993-10-01 1997-06-10 コピイテル,インコーポレイテッド Electrophoretic display panel with selective character address controllability
US5545291A (en) 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US5904545A (en) 1993-12-17 1999-05-18 The Regents Of The University Of California Apparatus for fabricating self-assembling microstructures
US5383008A (en) 1993-12-29 1995-01-17 Xerox Corporation Liquid ink electrostatic image development system
US5508720A (en) 1994-02-02 1996-04-16 Copytele, Inc. Portable telecommunication device with removable electrophoretic display
WO1995026545A1 (en) 1994-03-18 1995-10-05 Philips Electronics N.V. Active matrix display device and method of driving such
US5744283A (en) 1994-04-12 1998-04-28 U.S. Philips Corporation Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material
EP0706678B1 (en) 1994-04-28 1999-02-24 Koninklijke Philips Electronics N.V. Method of photolithographically producing a copper pattern on a plate of an electrically insulating material
US5543589A (en) 1994-05-23 1996-08-06 International Business Machines Corporation Touchpad with dual sensor that simplifies scanning
CA2191084A1 (en) 1994-05-26 1995-12-07 Wei-Hsin Hou Fluorinated dielectric suspensions for electrophoretic image displays and related methods
US5623585A (en) 1994-07-15 1997-04-22 Eastman Kodak Company Method and apparatus for parallel processing of a document image
GB2292119B (en) 1994-08-10 1998-12-30 Chemitech Inc A process for producing a magnetic display sheet using microcapsules
US5709979A (en) 1994-10-21 1998-01-20 Sheldahl, Inc. Printed wiring board with photoimageable dielectric base substrate and method of manufacture therefor
EP0709713A3 (en) 1994-10-31 1997-03-26 Fujikura Ltd Electrically controlled color display device and method
CN1116623C (en) 1994-11-07 2003-07-30 美国3M公司 Signage articles and methods of making same
US5650872A (en) 1994-12-08 1997-07-22 Research Frontiers Incorporated Light valve containing ultrafine particles
US5745094A (en) * 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
NO952545D0 (en) 1995-06-23 1995-06-23 Opticon As Procedure for writing data in an optical memory
NO301506B1 (en) 1995-06-23 1997-11-03 Opticom As Method of optical data storage and data-carrying medium
NO303098B1 (en) 1995-06-23 1998-05-25 Opticom As Optical data storage medium with diffractive optical elements and method for writing and reading data therein
NO302987B1 (en) 1995-07-18 1998-05-11 Opticom As Optical logic element and methods for its preparation and optical addressing, respectively, and use thereof in an optical logic device
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6727881B1 (en) * 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
JP3444035B2 (en) * 1995-08-01 2003-09-08 宇部興産株式会社 Polyimide film
FR2740318B1 (en) 1995-10-31 1999-03-05 Moulinex Espana Sa ELECTRIC TOASTER
US5650199A (en) 1995-11-22 1997-07-22 Aem, Inc. Method of making a multilayer electronic component with inter-layer conductor connection utilizing a conductive via forming ink
US5717514A (en) 1995-12-15 1998-02-10 Xerox Corporation Polychromal segmented balls for a twisting ball display
US5737115A (en) 1995-12-15 1998-04-07 Xerox Corporation Additive color tristate light valve twisting ball display
DE69614370T2 (en) 1995-12-30 2001-11-22 Casio Computer Co Ltd DISPLAY DEVICE FOR DISPLAY OPERATION ACCORDING TO LIGHT SIGNAL AND CONTROL METHOD THEREFOR
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US5786875A (en) 1996-03-15 1998-07-28 Brader; Lawrence Allen Thermal liquid crystal display using thermoelectric link
WO1997035298A2 (en) 1996-03-18 1997-09-25 Philips Electronics N.V. Display device
US5709976A (en) * 1996-06-03 1998-01-20 Xerox Corporation Coated papers
JP3262514B2 (en) 1996-06-07 2002-03-04 ユニチカ株式会社 Polyimide precursor solution, polyimide coating film or polyimide film obtained therefrom, and production method thereof
CN1182435C (en) 1996-06-12 2004-12-29 奥普蒂科姆公司 Optical logic element and optical logic device
GB9613065D0 (en) 1996-06-21 1996-08-28 Philips Electronics Nv Electronic device manufacture
US6055091A (en) * 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US6027958A (en) 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US5969376A (en) 1996-08-23 1999-10-19 Lucent Technologies Inc. Organic thin film transistor having a phthalocyanine semiconductor layer
JP3082679B2 (en) * 1996-08-29 2000-08-28 日本電気株式会社 Thin film transistor and method of manufacturing the same
JPH1093090A (en) * 1996-09-13 1998-04-10 Toshiba Corp Semiconductor device, its manufacture, and organic resin substrate for semiconductor device
US5894367A (en) 1996-09-13 1999-04-13 Xerox Corporation Twisting cylinder display using multiple chromatic values
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US5866284A (en) 1997-05-28 1999-02-02 Hewlett-Packard Company Print method and apparatus for re-writable medium
DE69839882D1 (en) * 1997-06-06 2008-09-25 Ibiden Co Ltd MULTILAYER PRINTED PCB AND METHOD FOR THE PRODUCTION THEREOF
NO972803D0 (en) 1997-06-17 1997-06-17 Opticom As Electrically addressable logic device, method of electrically addressing the same and use of device and method
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6177921B1 (en) * 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6130774A (en) 1998-04-27 2000-10-10 E Ink Corporation Shutter mode microencapsulated electrophoretic display
US6497969B2 (en) * 1997-09-05 2002-12-24 Nessdisplay Co., Ltd. Electroluminescent device having an organic layer including polyimide
US5936259A (en) 1997-10-16 1999-08-10 Lucent Technologies Inc. Thin film transistor and organic semiconductor material thereof
JP3571198B2 (en) * 1997-10-30 2004-09-29 株式会社半導体エネルギー研究所 Method for manufacturing display device
GB9726094D0 (en) 1997-12-10 1998-02-11 Philips Electronics Nv Thin film transistors and electronic devices comprising such
EP0924551A1 (en) 1997-12-18 1999-06-23 The Technology Partnership Public Limited Company Method and apparatus for matrix addressing of an electrophoretic display device
JP2004506309A (en) * 1997-12-31 2004-02-26 エルパック(ユーエスエー)、インコーポレイテッド Molded electronic package, manufacturing method and shielding method
JP3566524B2 (en) 1998-01-14 2004-09-15 キヤノン株式会社 Electrophoretic display
US6054071A (en) * 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
SE513858C2 (en) * 1998-03-06 2000-11-13 Ericsson Telefon Ab L M Multilayer structure and method of manufacturing multilayer modules
JP3691956B2 (en) * 1998-03-18 2005-09-07 株式会社東芝 Interconnector and liquid crystal display device
US7075502B1 (en) * 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
DE69918308T2 (en) * 1998-04-10 2004-10-21 E Ink Corp ELECTRONIC DISPLAY BASED ON ORGANIC FIELD EFFECT TRANSISTORS
TW430827B (en) * 1998-05-22 2001-04-21 Advanced Refractory Tech Resistors with low temperature coefficient of resistance and methods of making
TW410478B (en) * 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US6239896B1 (en) 1998-06-01 2001-05-29 Canon Kabushiki Kaisha Electrophotographic display device and driving method therefor
GB9812742D0 (en) * 1998-06-12 1998-08-12 Philips Electronics Nv Active matrix electroluminescent display devices
GB9812739D0 (en) * 1998-06-12 1998-08-12 Koninkl Philips Electronics Nv Active matrix electroluminescent display devices
CA2336101A1 (en) * 1998-07-08 2000-01-20 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
EP1118039B1 (en) * 1998-10-07 2003-02-05 E Ink Corporation Illumination system for nonemissive electronic displays
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6724519B1 (en) * 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
EP1737054B1 (en) 1999-01-29 2012-04-11 Seiko Epson Corporation Piezoelectric transducer
JP4582914B2 (en) * 1999-04-06 2010-11-17 イー インク コーポレイション Method for making droplets for use in capsule-based electromotive displays
US6842657B1 (en) * 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US6323034B1 (en) * 1999-08-12 2001-11-27 Industrial Technology Research Institute Amorphous TFT process
US6545291B1 (en) * 1999-08-31 2003-04-08 E Ink Corporation Transistor design for use in the construction of an electronically driven display
EP1224505B1 (en) * 1999-10-11 2005-01-12 University College Dublin Electrochromic device
US6197663B1 (en) * 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758875A (en) * 1981-04-30 1988-07-19 Hitachi, Ltd. Resin encapsulated semiconductor device
GB2098800A (en) * 1981-05-18 1982-11-24 Hitachi Ltd Resin encapsulated semiconductor devices
EP0336536A2 (en) * 1988-02-15 1989-10-11 Hitachi Chemical Co., Ltd. Organic-solvent soluble polyimide and production thereof
EP0345064A1 (en) * 1988-06-01 1989-12-06 Sharp Kabushiki Kaisha Liquid crystal display device
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US6013335A (en) * 1993-07-30 2000-01-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method for processing the same
EP0811648A1 (en) * 1996-06-07 1997-12-10 Unitika Limited Polyimide precursor solution, process for the production thereof, coating or film obtained therefrom and process for producing the film
WO2000046854A1 (en) * 1999-02-05 2000-08-10 Alien Technology Corporation Apparatuses and methods for forming assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885032B2 (en) 2001-11-21 2005-04-26 Visible Tech-Knowledgy, Inc. Display assembly having flexible transistors on a flexible substrate
JP2003168800A (en) * 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc Thin film transistor substrate

Also Published As

Publication number Publication date
CN1441967A (en) 2003-09-10
KR100767233B1 (en) 2007-10-17
JP2003531487A (en) 2003-10-21
AU2001253575A1 (en) 2001-10-30
DE60139463D1 (en) 2009-09-17
WO2001080287A3 (en) 2002-05-23
US20020019081A1 (en) 2002-02-14
ATE438927T1 (en) 2009-08-15
US20050067656A1 (en) 2005-03-31
US7365394B2 (en) 2008-04-29
US6825068B2 (en) 2004-11-30
EP1275156B1 (en) 2009-08-05
KR20020089479A (en) 2002-11-29
EP1275156A2 (en) 2003-01-15
CN1237623C (en) 2006-01-18

Similar Documents

Publication Publication Date Title
EP1275156B1 (en) Process for fabricating thin film transistors
US7763957B2 (en) Active matrix type display device and method of manufacturing the same
US8017431B2 (en) Method for manufacturing semiconductor device
US7056838B2 (en) Fabrication method for organic semiconductor transistor having organic polymeric gate insulating layer
US20120280235A1 (en) Thin film fet device and method for forming the same
KR100695154B1 (en) Silicon thin film transistor and manufacturing method of gate insulator and the same adopting the method
US20040183763A1 (en) Liquid crystal display having aluminum wiring
US7525135B2 (en) Semiconductor device and display device
JP2008147207A (en) Thin-film transistor substrate
JP4579054B2 (en) Thin film transistor mounted panel and method for manufacturing the same
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
JPH04184424A (en) Display device and production thereof
JPH1152413A (en) Liquid crystal display element and its production
JP2003068755A (en) Thin film transistor and manufacturing method thereof
Theiss et al. Amorphous silicon TFTs on steel-foil substrates
JPH06168970A (en) Manufacture of semiconductor element
JPS63250178A (en) Manufacture of thin film semiconductor device
JP2714017B2 (en) Method of manufacturing thin film transistor array for liquid crystal display panel
Cherenack et al. Self-aligned Amorphous Silicon Thin Film Transistors with Mobility above 1 cm2V− 1s− 1 fabricated at 300° C on Clear Plastic Substrates
KR100624430B1 (en) Fabrication method of poly crystalline Si TFT
Takechi et al. Development of rollable silicon thin‐film‐transistor backplanes utilizing a roll‐to‐roll continuous lamination process
JPH0487341A (en) Polycrystalline silicon thin-film transistor
Kunigunde et al. Self-aligned Amorphous Silicon Thin Film Transistors with Mobility above 1 cm 2 V− 1 s− 1 fabricated at 300° C on Clear Plastic Substrates
JPH0541390A (en) Manufacture of thin film transistor
JPH06260504A (en) Method of manufacturing thin film transistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001927094

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 577586

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027013880

Country of ref document: KR

Ref document number: 018081681

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027013880

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001927094

Country of ref document: EP