JPH0487341A - Polycrystalline silicon thin-film transistor - Google Patents

Polycrystalline silicon thin-film transistor

Info

Publication number
JPH0487341A
JPH0487341A JP20288790A JP20288790A JPH0487341A JP H0487341 A JPH0487341 A JP H0487341A JP 20288790 A JP20288790 A JP 20288790A JP 20288790 A JP20288790 A JP 20288790A JP H0487341 A JPH0487341 A JP H0487341A
Authority
JP
Japan
Prior art keywords
substrate
polycrystalline silicon
tft
tpt
mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20288790A
Other languages
Japanese (ja)
Inventor
Michio Arai
三千男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP20288790A priority Critical patent/JPH0487341A/en
Publication of JPH0487341A publication Critical patent/JPH0487341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a substrate at low cost, small coefficient of thermal expansion and which is heat-resistant by a method wherein a material which contains silicon oxide in a specific amount is used as the substrate. CONSTITUTION:As a substrate to form a polycrystalline silicon TFT, a material 7913 which contains about 80 to 99.5% of SiO2 is used. As other compositions, boron oxide, aluminum oxide and barium oxide are contained. As shown in the table, the material is not inferior to a quartz substrate with regard to a coefficient of thermal expansion and the mobility of electrons in a polycrystalline silicon layer for the TFT; the TFT whose cost is about 1/10 of the quartz substrate can be obtained. The mobility of the electrons in the polycrystalline silicon layer of the TFT is decided approximately by a heat- treatment condition to solid-grow an amorphous silicon layer at the manufacturing process of the TFT. It is considered that the mobility is increased by a high-temperature heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多結晶シリコンの薄膜トランジスタ(以下TP
Tという)の基板に係り、特に大面積の基板上に多数個
のTPTを形成する場合に適したTPT用の基板;二関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polycrystalline silicon thin film transistor (hereinafter referred to as TP).
A substrate for TPT, which is particularly suitable for forming a large number of TPTs on a large-area substrate;

〔従来の技術〕[Conventional technology]

近年、液晶表示装置の駆動スイッチ素子や密着型イメー
ジセンサの駆動回路用素子として有用である多結晶シリ
コンを用いたTPTの研究が進んでいる。
In recent years, research has been progressing on TPT using polycrystalline silicon, which is useful as a drive switch element for liquid crystal display devices and a drive circuit element for contact image sensors.

これら多結晶シリコンを用いたTPTを形成する基板と
して、従来石英基板が用いられていたが。
A quartz substrate has conventionally been used as a substrate for forming TPT using polycrystalline silicon.

最近、600℃以下の製造工程でも多結晶シリコンTP
Tの作成が可能となり、低コストのガラス基板2例えば
コーニング社製のコーニング7059(商品番号)が用
いられるようになった。
Recently, polycrystalline silicon TP can be used even in manufacturing processes at temperatures below 600°C.
It has become possible to create T, and a low-cost glass substrate 2 such as Corning 7059 (product number) manufactured by Corning Corporation has come to be used.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

ところが、TPTの製造工程には複数回の熱処理とマス
クパターニングが繰り返されるため、特に大面積の基板
に多数個の多結晶シリコンTPTを同時(−作成する場
合、基板の熱膨張係数が大きいと問題を生ずる。
However, since the TPT manufacturing process involves repeating heat treatment and mask patterning multiple times, problems arise especially when creating a large number of polycrystalline silicon TPTs on a large substrate at the same time, especially if the substrate has a large coefficient of thermal expansion. will occur.

即ち、複数回のパターニングと熱処理を繰り返す時、熱
膨張状態の基板が元に戻らないうち(二。
That is, when patterning and heat treatment are repeated multiple times, the thermally expanded substrate does not return to its original state (2).

次のマスク合せを行うこととなり、マスクの位置合わせ
が不正確になって製品の歩留りが著しく悪化する。
The next mask alignment will be performed, and the mask alignment will become inaccurate, resulting in a significant deterioration in product yield.

後述の第1表に示す如く、ガラス基板では石英基板;二
比較して、その熱膨張係数は1桁以上も多く上記の問題
点を生じ易い。
As shown in Table 1 below, glass substrates have thermal expansion coefficients that are one order of magnitude higher than those of quartz substrates, and are more likely to cause the above-mentioned problems.

一方9石英基板を用いると、上記の問題点は解決される
が2石英のコストが高いため、製品のコストアップとな
り、特に大面積基板C二は不適である0 従りて2本発明の目的は、多結晶シリコンTPTの基板
として、低コストで、熱膨張係数が小さく、耐熱性のあ
る基板を提供するものである。
On the other hand, if a quartz substrate is used, the above problems are solved, but the high cost of quartz increases the cost of the product, making it particularly unsuitable for large-area substrates. provides a polycrystalline silicon TPT substrate that is low cost, has a small coefficient of thermal expansion, and is heat resistant.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため2本発明者は鋭意研究の結果、
多結晶シリコンTPTの基板として。
In order to achieve the above object, the inventors of the present invention have conducted extensive research,
As a substrate for polycrystalline silicon TPT.

Sighを80〜99.5%含有する材料を用いること
;二より2石英基板と同様に熱膨張係数が小さく。
Use a material containing 80 to 99.5% Sigh; it has a small coefficient of thermal expansion similar to the 2-2 quartz substrate.

耐熱性があり、しかも石英基板より格段にコストを下げ
た製品を作成し得ることを見出した。
We have discovered that it is possible to create a product that is heat resistant and at a much lower cost than a quartz substrate.

〔実施例〕〔Example〕

本発明の一実施例を第1図、第2図を参照して説明する
An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明のTPTの断面構造図、第2図は該TP
Tの製造工程説明図である。
FIG. 1 is a cross-sectional structural diagram of the TPT of the present invention, and FIG. 2 is a sectional view of the TPT of the present invention.
It is a manufacturing process explanatory diagram of T.

図中、1は本発明の材料を用いた基板、2は多結晶シリ
コン膜、2−1.2−2はn+型領領域あって、各々ソ
ース領域、ドレイン領域として作用する。3はゲート酸
化膜、4はゲート電極、5は酸化シリコン(SiOz)
から成る層間絶縁膜、6はアルミニウム(AJ)配線層
、7は窒化シリコン膜、8は5i(h膜を示す。
In the figure, 1 is a substrate made of the material of the present invention, 2 is a polycrystalline silicon film, and 2-1, 2-2 are n+ type regions, which act as a source region and a drain region, respectively. 3 is a gate oxide film, 4 is a gate electrode, 5 is silicon oxide (SiOz)
6 is an aluminum (AJ) wiring layer, 7 is a silicon nitride film, and 8 is a 5i (h film).

本発明においては多結晶シリコンTPTを作成する基板
として、約80〜99.5%の8i(hを含有する材料
2例えば、コーニング社製の商品番号7913の基板を
用いるものである。なお他の組成としては酸化ホウ素(
BzOs)、酸化アルミニウム(klx Os ) 、
酸化バリウム(Bad)が含まれる。
In the present invention, a material 2 containing approximately 80 to 99.5% 8i (h), for example, a substrate manufactured by Corning Corporation, product number 7913, is used as a substrate for producing a polycrystalline silicon TPT. The composition is boron oxide (
BzOs), aluminum oxide (klxOs),
Contains barium oxide (Bad).

本発明の材料は第1表(−示す如く、熱膨張係数。The materials of the present invention are shown in Table 1 (-coefficient of thermal expansion as shown).

TPTの多結晶シリコン層中の電子の移動度において2
石英基板を用いた場合と遜色なく、シかもコスト:二お
いて石英基板の約1/、oですむTPTを得ることが出
来る。
The electron mobility in the polycrystalline silicon layer of TPT is 2.
It is possible to obtain a TPT that is comparable to the case where a quartz substrate is used, and costs about 1/2 of the cost of a quartz substrate.

動度は、後述のTPTの製造工程(二おいて、アモルフ
ァスシリコン層を固相成長させる際の熱処理条件2二よ
っては望決定され、高温での熱処理がその移動度を増加
するものと考えられる。各基板材料;;よる固相成長条
件を第2表に示す。
The mobility is determined by the heat treatment conditions during the solid phase growth of the amorphous silicon layer in the TPT manufacturing process (2) described below, and it is thought that heat treatment at high temperature increases the mobility. Table 2 shows the solid phase growth conditions for each substrate material.

第2表からも明らかな如く2本発明の基板を用いること
(=より2石英基板と同様に同相成長の際に高温におけ
る熱処理が可能となり、それによって多結晶シリコン層
中の電子の移動度を大きくすることができ2本発明によ
り得られたTPTの特性を向上させることができる。
As is clear from Table 2, by using the substrate of the present invention (=2), it is possible to perform heat treatment at high temperatures during in-phase growth, similar to the quartz substrate, thereby increasing the mobility of electrons in the polycrystalline silicon layer. 2. The characteristics of the TPT obtained by the present invention can be improved.

なお2本発明で用いる基板の5iOzの含有量は。Note that the content of 5iOz in the substrate used in the present invention is as follows.

80%未満であるとその熱膨張係数が大きくなりすぎ、
99.5%以上;二なると、その材料のコストが高価に
なりすぎる。
If it is less than 80%, the coefficient of thermal expansion will be too large,
99.5% or more; otherwise, the cost of the material becomes too expensive.

次に本発明の多結晶シリコンTPTの製造工程を第2図
を参照しつつ説明する。
Next, the manufacturing process of the polycrystalline silicon TPT of the present invention will be explained with reference to FIG.

(I)  コーニング社製の商品番号7913の基板1
上(二減圧CVD法で、基板温度560℃でアモルファ
スシリコン膜を例えば約1000X堆積する。次にこの
アモルファスシリコン膜をN293囲気中で600℃5
0時間熱処理後、さらに950℃で1時間熱処理し、固
相成長させて多結晶シリコン膜2とする。
(I) Board 1 manufactured by Corning Corporation, product number 7913
Above (2) Deposit an amorphous silicon film at a substrate temperature of about 1000X using a low pressure CVD method at a substrate temperature of 560°C.Next, deposit this amorphous silicon film at 600°C in an N293 atmosphere.
After the heat treatment for 0 hour, the polycrystalline silicon film 2 is further heat treated at 950° C. for 1 hour to achieve solid phase growth.

(II)  この多結晶シリコン膜2(二第1のホトマ
スりを用いてパターニングを行い、島状にエツチングす
る(第2図(a)参照)。
(II) This polycrystalline silicon film 2 (patterned using second photolithography and etched into an island shape (see FIG. 2(a)).

1)次にスパッタ法により、  8i(hから成るゲー
ト酸化膜3を例えば約500Xの厚さに形成後。
1) Next, a gate oxide film 3 made of 8i (h) is formed to a thickness of about 500X, for example, by sputtering.

減圧CVD法で多結晶シリコン膜4′を2例えば約10
00〜3000X堆積する。
Polycrystalline silicon film 4' is deposited by low pressure CVD method to
00-3000X deposit.

側 これらの2層を第2のホトマスクを用いてパターニ
ングを行い、ゲート電極4を形成する(第2図(1))
参照)。
Side These two layers are patterned using a second photomask to form the gate electrode 4 (Fig. 2 (1))
reference).

閏 形成したゲート電極4をマスクとして、自己整合法
で、リン(P)イオンの注入を行い、ソース領域2−1
.ドレイン領域2−2を形成する。
Using the formed gate electrode 4 as a mask, phosphorus (P) ions are implanted by a self-alignment method to form the source region 2-1.
.. A drain region 2-2 is formed.

(資) さらに注入したPイオンの活性化を、約600
℃の窒素雰囲気中で行い1次;ニスバッタ法で8i (
h膜から成る層間絶縁膜5を約1000Xの厚さに形成
する(第2図(C)参照)。
(Capital) Furthermore, the activation of the implanted P ions was
℃ in a nitrogen atmosphere; 8i (
An interlayer insulating film 5 made of an H film is formed to a thickness of about 1000× (see FIG. 2(C)).

■ この層間絶縁膜5に第3のホトマスクを用いてパタ
ーニングを行い、コンタクト窓を形成し。
(2) This interlayer insulating film 5 is patterned using a third photomask to form a contact window.

M層を蒸着法またはスパッタ法により形成し。The M layer is formed by vapor deposition or sputtering.

約450℃で30分間シンターする。Sinter at approximately 450°C for 30 minutes.

61DAJ層に第4のホトマスクを用いてパターニング
を行い+AJ配線層6を形成する(第2図(d)参照)
The 61DAJ layer is patterned using a fourth photomask to form the +AJ wiring layer 6 (see FIG. 2(d)).
.

■ 水素化のための窒化シリコン膜7をプラズマCVD
法で1例えば2000X堆積する(第2図(e)参照)
■ Plasma CVD silicon nitride film 7 for hydrogenation
Deposit 1, for example, 2000X using a method (see Figure 2(e)).
.

(3)次にテトラエトキシシラン(TEO8’)を用い
るオゾンCVD法で、ピンホールの少ない緻密な5iC
h膜8を堆積後、熱処理を施して、水素化処理し、第1
図の如き構造のTPTとする。
(3) Next, using the ozone CVD method using tetraethoxysilane (TEO8'), a dense 5iC with few pinholes was formed.
After depositing the h film 8, heat treatment is performed, hydrogenation treatment is performed, and the first
The TPT has a structure as shown in the figure.

上記実施例の製造工程からも明らかな如く、多結晶シリ
コンTPTを作成するのに4回のホトマスクを使用して
パターニングを行い(工程II、IV。
As is clear from the manufacturing process of the above example, patterning was performed using a photomask four times to create the polycrystalline silicon TPT (steps II and IV).

■、■参照)、少くとも6回の熱処理(工程I。(see ■, ■), heat treatment at least six times (step I).

■、■、X参照)を行うことになり、基板の熱膨張係数
が太きいと、第1のホトマスクと第4のホトマスクの位
置合せが正確に行われなくなる。特に大面積の基板を用
いて多数個のTPTを作成する場合に不都合が起り易い
が2本発明の基板を用いることにより解決できた。
(see (1), (2), and In particular, inconveniences are likely to occur when a large number of TPTs are produced using a large-area substrate, but these problems can be solved by using the substrate of the present invention.

なお、上記実施例においては多結晶シリコンTPTの製
造工程において保護膜を2層にして水素化処理を行う例
(二ついて説明したが1本発明はこれに限られず、Pイ
オンの活性化抜水素化処理を行い、酸化シリコン膜から
なる層間絶縁膜を形成する方法等、他の工程で製造する
こともできるのは云うまでもない。
In addition, in the above-mentioned example, in the manufacturing process of polycrystalline silicon TPT, the protective film is made into two layers and the hydrogenation treatment is performed (although two layers were explained, the present invention is not limited to this, and Needless to say, it can be manufactured using other processes, such as a method of performing a chemical treatment and forming an interlayer insulating film made of a silicon oxide film.

〔発明の効果〕〔Effect of the invention〕

本発明の如く多結晶シリコンTPTを製造する基板とし
てSi 02の含有率が80〜99.5%という高い基
板を用いること(二より、熱膨張係数が小さく耐熱性が
あるので、従来のガラス基板を用いたものよりマスク合
せが容易かつ正確に出来る。従って、製品の特性および
歩留りを著しく向上させ・、ことができる。しかも電子
の移動度を、これまた前記ガラス基板を用いたものより
大きくできるのでこの点からも高性能のものとなる。
As a substrate for manufacturing polycrystalline silicon TPT as in the present invention, a substrate with a high content of Si02 of 80 to 99.5% is used (secondly, because it has a small coefficient of thermal expansion and is heat resistant, it is better to use a substrate than a conventional glass substrate). Mask alignment is easier and more accurate than when using a glass substrate.Therefore, product characteristics and yield can be significantly improved.Furthermore, the electron mobility can also be made higher than when using a glass substrate. Therefore, from this point of view as well, it has high performance.

しかも該基板のコストが低いので、従来用いられていた
石英基板より約1/□。のコストで製造することか出来
る。
Moreover, since the cost of the substrate is low, it is approximately 1/□ compared to the conventionally used quartz substrate. It can be manufactured at a cost of

特にこれらの効果は大面積の基板を用いた場合に顕著で
ある。
These effects are particularly noticeable when a large-area substrate is used.

【図面の簡単な説明】 第1図は本発明の多結晶シリコンTPTの断面構造図。 第2図は本発明のTPTの製造工程説明図である0 1・・・本発明の基板、  2・・・多結晶シリコン膜
。 2−1.2−2・・・ソース、ドレイン領域。 3・・・ゲート酸化膜、  4・・・ゲート電極。 5・・・層間絶縁膜、   6・・・M配線層。 7・・・窒化シリコン膜、8・・・8i(h[。 特許出願人  ティーデイ−ケイ株式会社代理人弁理士
 山谷晧榮(外1名) 第2図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional structural diagram of the polycrystalline silicon TPT of the present invention. FIG. 2 is an explanatory diagram of the manufacturing process of TPT of the present invention. 0 1...Substrate of the present invention, 2... Polycrystalline silicon film. 2-1.2-2... Source, drain region. 3... Gate oxide film, 4... Gate electrode. 5... Interlayer insulating film, 6... M wiring layer. 7...Silicon nitride film, 8...8i (h[. Patent applicant: TDT-K Co., Ltd., patent attorney, Akira Yamatani (1 other person) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板として、80〜99.5%の酸化シリコン(SiO
_2)を含有する材料を用いたことを特徴とする多結晶
シリコン薄膜トランジスタ。
As a substrate, 80-99.5% silicon oxide (SiO
A polycrystalline silicon thin film transistor characterized by using a material containing __2).
JP20288790A 1990-07-31 1990-07-31 Polycrystalline silicon thin-film transistor Pending JPH0487341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20288790A JPH0487341A (en) 1990-07-31 1990-07-31 Polycrystalline silicon thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20288790A JPH0487341A (en) 1990-07-31 1990-07-31 Polycrystalline silicon thin-film transistor

Publications (1)

Publication Number Publication Date
JPH0487341A true JPH0487341A (en) 1992-03-19

Family

ID=16464849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20288790A Pending JPH0487341A (en) 1990-07-31 1990-07-31 Polycrystalline silicon thin-film transistor

Country Status (1)

Country Link
JP (1) JPH0487341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441468B1 (en) 1995-12-14 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6867434B2 (en) 1995-11-17 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display with an organic leveling layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867434B2 (en) 1995-11-17 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display with an organic leveling layer
US6441468B1 (en) 1995-12-14 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6445059B1 (en) 1995-12-14 2002-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR100386204B1 (en) * 1995-12-14 2003-06-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semicondoctor device
US6787887B2 (en) 1995-12-14 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
KR100767233B1 (en) Process for fabricating thin film transistors, and substrate
KR100470274B1 (en) Method of phase transition of amorphous material using a cap layer
JPH07140454A (en) Manufacture of glass panel for silicon device
JPS60103676A (en) Manufacture of thin film transistor array
JP2004226890A (en) Liquid crystal display and its manufacturing method
JPS63304670A (en) Manufacture of thin film semiconductor device
JPH0487341A (en) Polycrystalline silicon thin-film transistor
JPS6315468A (en) Manufacture of thin film transistor
JPH03136280A (en) Thin film transistor matrix and manufacture thereof
JPH05235353A (en) Active matrix substrate and manufacture thereof
JPH0393273A (en) Manufacture of thin film semiconductor device
JPS58192375A (en) Manufacture of thin film transistor
JPH05259458A (en) Manufacture of semiconductor device
JPS62124736A (en) Silicon thin-film and manufacture thereof
KR100400753B1 (en) production method of high temperature poly-silicon Thin Film Transistor using metal substrate
JPH02199842A (en) Manufacture of thin-film field-effect transistor element
JP2797361B2 (en) Semiconductor device
KR100372753B1 (en) Fabrication method of polycrystalline silic on thin films
JPH0316214A (en) Manufacture of insulation film
JPH0330296B2 (en)
JPH0265138A (en) Manufacture of thin film transistor
JPH0487340A (en) Manufacture of thin-film transistor
JPH03166767A (en) Thin film transistor
JPH113887A (en) Manufacture of thin film transistor
JP2590607B2 (en) Manufacturing method of liquid crystal display device