EP1639574B1 - Methods for driving electro-optic displays - Google Patents

Methods for driving electro-optic displays Download PDF

Info

Publication number
EP1639574B1
EP1639574B1 EP04777306.4A EP04777306A EP1639574B1 EP 1639574 B1 EP1639574 B1 EP 1639574B1 EP 04777306 A EP04777306 A EP 04777306A EP 1639574 B1 EP1639574 B1 EP 1639574B1
Authority
EP
European Patent Office
Prior art keywords
pixels
frame
scanning
pixel
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04777306.4A
Other languages
German (de)
French (fr)
Other versions
EP1639574A1 (en
EP1639574A4 (en
Inventor
Karl R. Amundson
Robert W. Zehner
Ara Knaian
Benjamin Zion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Corp
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/814,205 external-priority patent/US7119772B2/en
Application filed by E Ink Corp filed Critical E Ink Corp
Priority to EP15000723.5A priority Critical patent/EP2947647A3/en
Publication of EP1639574A1 publication Critical patent/EP1639574A1/en
Publication of EP1639574A4 publication Critical patent/EP1639574A4/en
Application granted granted Critical
Publication of EP1639574B1 publication Critical patent/EP1639574B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/068Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2044Display of intermediate tones using dithering

Definitions

  • This invention relates to methods for driving electro-optic displays.
  • the methods of the present invention are especially, though not exclusively, intended for use in driving bistable electrophoretic displays.
  • optical-optic as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material.
  • the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • gray state is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states.
  • extreme states are white and deep blue, so that an intermediate "gray state” would actually be pale blue. Indeed, as already mentioned the transition between the two extreme states may not be a color change at all.
  • bistable and “bistability” are used herein in their conventional meaning in the imaging art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element.
  • WO 02/079869 some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
  • impulse is used herein in its conventional meaning in the imaging art of the integral of voltage with respect to time.
  • bistable electro-optic media act as charge transducers, and with such media an alternative definition of impulse, namely the integral of current over time (which is equal to the total charge applied) may be used.
  • the appropriate definition of impulse should be used, depending on whether the medium acts as a voltage-time impulse transducer or a charge impulse transducer.
  • electro-optic displays are known, for example the rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783 ; 5,777,782 ; 5,760,761 ; 6,054,071 6,055,091 ; 6,097,531 ; 6,128,124 ; 6,137,467 ; and 6,147,791 and the electrochromic type; see, for example O'Regan, B., et al., Nature 1991, 353, 737 ; and Wood, D., Information Display, 18(3), 24 (March 2002 ). See also Bach, U., et al., Adv.
  • Nanochromic films of this type are also described, for example, in U.S. Patent No. 6,301,038 , International Application Publication No. WO 01/27690 , and in U.S. Patent Application 2003/0214695 .
  • WO 99/67678 WO 00/05704 ; WO 00/38000 ; WO 00/38001 ; WO00/36560 ; WO 00/67110 ; WO 00/67327 ; WO 01/07961 ; WO 01/08241 ; WO 03/092077 ; WO 03/107315 ; WO 2004/017035 ; and WO 2004/023202 .
  • microcell electrophoretic display A related type of electrophoretic display is a so-called "microcell electrophoretic display".
  • the charged particles and the suspending fluid are not encapsulated within capsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film.
  • a carrier medium typically a polymeric film.
  • electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode
  • many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798 , and U.S. Patents Nos. 5,872,552 ; 6,144,361 ; 6,271,823 ; 6,225,971 ; and 6,184,856 .
  • Dielectrophoretic displays which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346 .
  • Other types of electro-optic displays may also be capable of operating in shutter mode.
  • LC displays liquid crystal
  • Twisted nematic liquid crystals act are not bi- or multi-stable but act as voltage transducers, so that applying a given electric field to a pixel of such a display produces a specific gray level at the pixel, regardless of the gray level previously present at the pixel.
  • LC displays are only driven in one direction (from non-transmissive or "dark” to transmissive or “light”), the reverse transition from a lighter state to a darker one being effected by reducing or eliminating the electric field.
  • bistable electro-optic displays act, to a first approximation, as impulse transducers, so that the final state of a pixel depends not only upon the electric field applied and the time for which this field is applied, but also upon the state of the pixel prior to the application of the electric field.
  • general grayscale image flow suffers from an "accumulation of errors" phenomenon which may produce deviations in gray levels apparent to the average observer on certain types of images. This accumulation of errors phenomenon applies to errors of all the types listed above. As described in the aforementioned 2003/0137521 , compensating for such errors is possible, but only to a limited degree of precision. Thus, general grayscale image flow requires very precise control of applied impulse to give good results, and empirically it has been found that, in the present state of the technology of electro-optic displays, general grayscale image flow is infeasible in a commercial display.
  • electro-optic medium have a built-in resetting (error limiting) mechanism, namely their extreme (typically black and white) optical states, which function as "optical rails".
  • error limiting error limiting
  • a specific impulse has been applied to a pixel of an electro-optic display, that pixel cannot get any whiter (or blacker).
  • whiter or blacker
  • all the electrophoretic particles are forced against one another or against the capsule wall, and cannot move further, thus producing a limiting optical state or optical rail.
  • This invention seeks to provide methods for achieving fine control of gray levels in displays driven by pulse width modulation.
  • pulse width modulation driving of active matrix displays is effected by scanning the matrix multiple times, with the drive voltage being applied during none, some or all of the scans, depending upon the change desired in the gray level of the specific pixel.
  • Each scan may be regarded as a frame of the drive waveform, with the complete addressing pulse being a superframe formed by a plurality of successive frames.
  • the drive voltage is only applied to any specific pixel electrode for one line address time during each scan, the drive voltage persists on the pixel electrodes during the time between successive selections of the same line, only slowly decaying, so that the pixel is driven between successive selections of the same line.
  • each row of the matrix needs to be individually selected during each frame so that for high resolution displays (for example, 800 x 600 pixel displays) in practice the frame rate cannot exceed about 50 to 100 Hz; thus each frame typically lasts 10 to 20 ms. Frames of this length lead to difficulties in fine control of gray scale with many fast switching electro-optic medium.
  • some encapsulated electrophoretic media substantially complete a switch between their extreme optical states (a transition of about 30 L* units) within about 100 ms, and with such a medium a 20 ms frame corresponds to a gray scale shift of about 6 L* units.
  • This invention provides a method for driving an electro-optic display having a plurality of pixels divided into a plurality of groups, wherein a complete rewriting of the display is achieved by a pulse width modulation method by scanning the matrix a plurality of times in respective frame periods being equal in length, each time supplying each pixel with either a drive voltage or a non-drive voltage.
  • This method comprises:
  • This method may hereinafter for convenience be referred to as the "interrupted scanning" method of the present invention.
  • the interrupted scanning method may include multiple pause periods; thus the method may comprise scanning the groups of pixels during at least first, second and third frame periods, and interrupting the scanning of the groups of pixels during at least first and second pause periods between successive frame periods.
  • the first, second and third frame periods may be substantially equal in length, and the total length of the pause periods be equal to one frame period or one frame period minus one pause period.
  • the pixels are arranged in a matrix having a plurality of rows and a plurality of columns with each pixel defined by the intersection of a given row and a given column, and each group of pixels comprises one row or one column of the matrix.
  • the interrupted scanning method is preferably DC balanced, i.e., the scanning of the display is preferably effected such that, for any series of transitions undergone by a pixel, the integral of the applied voltage with time is bounded.
  • the method of the present invention as described above may be carried out with any of the aforementioned types of electro-optic media.
  • the method of the present invention may be used with electro-optic displays comprising an electrochromic or rotating bichromal member electro-optic medium, an encapsulated electrophoretic medium, or a microcell electrophoretic medium.
  • electro-optic displays comprising an electrochromic or rotating bichromal member electro-optic medium, an encapsulated electrophoretic medium, or a microcell electrophoretic medium.
  • Other types of electro-optic media may also be employed.
  • the present invention makes use of pause periods between adjacent frames of a transition; such pause periods are discussed in more detail below with reference to the interrupted scanning method of the present invention.
  • the pixels are divided into a series of groups (normally a plurality of rows), each of these plurality of groups is selected in succession (i.e., typically the rows of the matrix are scanned) and there is applied to each of the pixels in the selected group either a drive voltage or a non-drive voltage.
  • the scanning of all the groups of pixels is completed within a frame period.
  • the scanning of the groups of pixels is repeated, and, in a typical electro-optic display, the scanning will be repeated more than once during the group of frames (conveniently referred to as a superframe) required for a complete rewriting of the display.
  • a fixed scan rate is used for updating, for example 50 Hz, which allows for 20 msec frames.
  • this frame length may provide insufficient resolution for optimal waveform performance.
  • frames of length t/2 are desirable, for example 10 msec frames in a normally 20 msec frame length waveform. It is possible to combine frames of differing delay times to generate a pulse resolution of n/2.
  • a single frame of length 1.5*t may be inserted at the beginning of the waveform, and a similar frame at the end of the waveform (immediately before the terminating 0 V frame, which should occur at the ordinary frame rate and which is normally used at the end of the waveform to prevent undesirable effects caused by varying residual voltages on pixels).
  • the two longer frames can be realized by simply adding a 0.5*t delay time between the scanning of two adjacent frames.
  • the waveform would then have the structure:
  • the initial and final frames plus their respective delays would amount to 30 msec each.
  • the initial and final pulses are allowed to vary by 10 msec in length, by using the following algorithm:
  • n-PP SS uncompensated n-prepulse slide show
  • this invention provides an "interrupted scanning" method for driving a bistable electrophoretic display having a plurality of pixels divided into a plurality of groups.
  • the optical state of a pixel is controlled by a pulse width modulation method by scanning the matrix a plurality of time.
  • the method comprises selecting each of the plurality of groups of pixels in succession and applying to each of the pixels in the selected group either a drive voltage or a non-drive voltage, the scanning of all the groups of pixels being completed in a first frame period.
  • the scanning of the groups of pixels is repeated during a second frame period (it being understood that any specific pixel may have the drive voltage applied during the first frame period and the non-drive voltage applied during the second frame period, or vice versa ).
  • the scanning of the groups of pixels is interrupted during a pause period between the first and second frame periods, this pause period being not longer than the first or second frame period.
  • the first and second frame periods are equal in length, and the length of the pause period is a sub-multiple (desirably, one half, one fourth etc.) of the length of one of the frame periods.
  • the interrupted scanning method may include multiple pause periods between different pairs of adjacent frame periods. Such multiple pause periods are preferably of substantially equal length, and the total length the multiple pause periods is preferably equal to either one complete frame period, or equal to one frame period less one pause period. For example, as discussed in more detail below, one embodiment of the first method might use multiple 20 ms frame periods, and either three or four 5 ms pause periods.
  • the groups of pixels will of course typically be the rows of a conventional row/column active matrix pixel array.
  • the interrupted scanning method comprises selecting each of the plurality of groups of pixels in succession (i.e., typically, scanning the rows of the matrix) and applying to each of the pixels in the selected group either a drive voltage or a non-drive voltage, the scanning of all the groups of pixels being completed in a first frame period.
  • the scanning of the groups of pixels is repeated, and in a typical electro-optic display, the scanning will be repeated more than once during the superframe required for a complete rewriting of the display.
  • the scanning of the groups of pixels is interrupted during a pause period between the first and second frame periods, this pause period being not longer than the first or second frame period.
  • a drive voltage is only applied to any specific pixel electrode for one line address time during each scan, the drive voltage persists on the pixel electrodes during the time between successive selections of the same line, only slowly decaying, so that the pixel continues to driven during the time when other lines of the matrix are being selected, and the interrupted scanning method relies upon this continued driving of the pixel during its "non-selected" time. Ignoring for the moment the slow decay of the voltage on the pixel electrode during its non-selected time, a pixel which is set to the driving voltage during the frame period immediately preceding the pause period will continue to experience the driving voltage during the pause period, so that for such a pixel the preceding frame period is in effect lengthened by the length of the pause period.
  • a pixel which is set to the non-driving (typically zero) voltage during the frame period immediately preceding the pause period will continue to experience the zero voltage during the pause period. It may be desirable to adjust the length of the pause period to allow for the slow decay of the voltage on the pixel electrode in order to ensure that the total impulse delivered to the pixel during the pause period has the desired value.
  • a 10 ms pause period may be inserted between two successive 20 ms frames, and this simple modification halves the maximum possible difference between the applied impulse and the impulse ideally needed to complete a given transition, thereby in practice approximately halving the maximum deviation in achieved gray scale level.
  • the 10 ms pause period is conveniently inserted after the penultimate frame in each superframe but may be inserted at other points in the superframe if desired.
  • the pause periods can of course be of any number and length required to achieve the desired control over the impulse applied.
  • the drive scheme could be modified to include three 5 ms pause periods after different 20 ms drive frames, desirably with the addition to the drive scheme of three further 20 ms drive frames not followed by pause periods.
  • This modified drive scheme permits one to apply to any given pixel impulses of:
  • bistable electro-optic media require application of impulses of both polarities.
  • some drive schemes such as slide show drive schemes, before a new image is written to the display, all the pixels of the display are first driven to one extreme optical state, either black or white, and thereafter the pixels are driven to their final gray states by impulses of a single polarity.
  • Such drive schemes can be modified in accordance with the interrupted scanning method in the manner already described.
  • Other drive schemes require application of impulses of both polarities to drive the pixels to their final gray states.
  • the impulses of the two polarities may be applied in separate frames or impulses of the two polarities may be applied in the same frames, for example using a tri-level drive scheme in which the common front electrode is held at a voltage of V/2, while individual pixel electrodes are held at 0, V/2 or V.
  • the interrupted scanning method is desirably effected by providing at least two separate pause periods, one following a frame in which impulses of one polarity are applied and the second following a frame in which impulses of the opposed polarity are applied.
  • the interrupted scanning method may make use of only a single pause period since, as will be apparent from the foregoing discussion, the effect of including a pause period after a frame is to increase the magnitude of the impulse applied to any pixel to which a driving voltage was applied in the frame, regardless of the polarity of this driving voltage.
  • bistable electro-optic media are desirably driven with drive schemes which achieve long term direct current (DC) balance, and such DC balance is conveniently effected using a drive scheme in which a DC balance section, which does not substantially change the gray level of the pixel, is applied before the main drive section, which does change the gray level, the two sections being chosen so that the algebraic sum of the impulses applied is zero or at least very small.
  • a DC balance section which does not substantially change the gray level of the pixel
  • the main drive section which does change the gray level
  • DC balance section it is not necessary that the DC balance section be modified in a manner which is an exact mirror image of the modification of the main drive section, since the DC balance section can have gaps (zero voltage frames) and most electro-optic medium are not harmed by short term DC imbalances.
  • DC balance can be achieved by making the first frame of the drive scheme 30 ms in duration. Applying or not applying a driving voltage to a pixel during this frame brings the overall impulse to a multiple of 20 units, so that this impulse can readily be balanced later.
  • the first two frames of the drive scheme can similarly be 25 and 30 ms in duration (in either order), again bringing the overall impulse to a multiple of 20 units.
  • the interrupted scanning method of the present invention requires a trade-off between increased addressing time caused by the need to include one additional frame in each superframe for each pause period inserted, and the improved control of impulse and hence gray scale produced by the method.
  • the interrupted scanning method can provide very substantial improvement in impulse control with only modest increase in addressing time; for example, the drive scheme described above in which a superframe comprising ten 20 ms frames is modified to include three 5 ms pause periods yields a four-fold improvement in impulse accuracy at the cost of less than a 40 per cent increase in addressing time.
  • the method of the present invention may make use of various additional variations and techniques described in the aforementioned applications, especially the aforementioned WO 03/044765 and PCT/US2004/010091 . It will be appreciated that in the overall waveform used to drive an electro-optic display, in at least some cases certain transitions may be effected in accordance with the present invention, while other transitions may not make use of the method of the present invention but may make use of other types of transitions described below. For example, the method of the present invention may make use of any one or more of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

  • This invention relates to methods for driving electro-optic displays. The methods of the present invention are especially, though not exclusively, intended for use in driving bistable electrophoretic displays.
  • This application is closely related to International Applications PCT/US02/37241 (Publication No. WO 03/044765 ) and PCT/US2004/10091 , and the following description will assume that the reader is familiar with the contents of these documents.
  • The term "electro-optic" as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • The term "gray state" is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate "gray state" would actually be pale blue. Indeed, as already mentioned the transition between the two extreme states may not be a color change at all.
  • The terms "bistable" and "bistability" are used herein in their conventional meaning in the imaging art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in International Application WO 02/079869 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called "multi-stable" rather than bistable, although for convenience the term "bistable" may be used herein to cover both bistable and multi-stable displays.
  • The term "impulse" is used herein in its conventional meaning in the imaging art of the integral of voltage with respect to time. However, some bistable electro-optic media act as charge transducers, and with such media an alternative definition of impulse, namely the integral of current over time (which is equal to the total charge applied) may be used. The appropriate definition of impulse should be used, depending on whether the medium acts as a voltage-time impulse transducer or a charge impulse transducer.
  • As described in the aforementioned WO 03/044765 and PCT/US2004/10091 , several types of electro-optic displays are known, for example the rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783 ; 5,777,782 ; 5,760,761 ; 6,054,071 6,055,091 ; 6,097,531 ; 6,128,124 ; 6,137,467 ; and 6,147,791 and the electrochromic type; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Patent No. 6,301,038 , International Application Publication No. WO 01/27690 , and in U.S. Patent Application 2003/0214695 .
  • Another type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display. Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe such displays; see for example, U.S. Patents Nos. 5,930,026 ; 5,961,804 ; 6,017,584 ; 6,067,185 ; 6,118,426 ; 6,120,588 ; 6,120,839 ; 6,124,851 ; 6,130,773 ; 6,130,774 ; 6,172,798 ; 6,177,921 ; 6,232,950 ; 6,249,721 ; 6,252,564 ; 6,262,706 ; 6,262,833 ; 6,300,932 ; 6,312,304 ; 6,312,971 ; 6,323,989 ; 6,327,072 ; 6,376,828 ; 6,377,387 ; 6,392,785 ; 6,392,786 ; 6,413,790 ; 6,422,687 ; 6,445,374 ; 6,445,489 ; 6,459,418 ; 6,473,072 ; 6,480,182 ; 6,498,114 ; 6,504,524 ; 6,506,438 ; 6,512,354 ; 6,515,649 ; 6,518,949 ; 6,521,489 ; 6,531,997 ; 6,535,197 ; 6,538,801 ; 6,545,291 ; 6,580,545 ; 6,639,578 ; 6,652,075 ; 6,657,772 ; 6,664,944 ; 6,680,725 ; 6,683,333 ; 6,704,133 ; 6,710,540 ; 6,721,083 ; 6,724,519 ; and 6,727,881 ; and U.S. Patent Applications Publication Nos. 2002/0019081 ; 2002/0021270 ; 2002/0053900 ; 2002/0060321 ; 2002/0063661 ; 2002/0063677 ; 2002/0090980 ; 2002/0106847 ; 2002/0113770 ; 2002/0130832 ; 2002/0131147 ; 2002/0145792 ; 2002/0171910 ; 2002/0180687 ; 2002/0180688 ; 2002/0185378 ; 2003/0011560 ; 2003/0011868 ; 2003/0020844 ; 2003/0025855 ; 2003/0034949 ; 2003/0038755 ; 2003/0053189 ; 2003/0102858 ; 2003/0132908 ; 2003/0137521 ; 2003/0137717 ; 2003/0151702 ; 2003/0189749 ; 2003/0214695 ; 2003/0214697 ; 2003/0222315 ; 2004/0008398 ; 2004/0012839 ; 2004/0014265 ; 2004/0027327 ; 2004/0075634; and 2004/0094422 ; and International Applications Publication Nos. WO 99/67678 ; WO 00/05704 ; WO 00/38000 ; WO 00/38001 ; WO00/36560 ; WO 00/67110 ; WO 00/67327 ; WO 01/07961 ; WO 01/08241 ; WO 03/092077 ; WO 03/107315 ; WO 2004/017035 ; and WO 2004/023202 .
  • Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called "polymer-dispersed electrophoretic display" in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned 2002/0131147 . Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
  • A related type of electrophoretic display is a so-called "microcell electrophoretic display". In a microcell electrophoretic display, the charged particles and the suspending fluid are not encapsulated within capsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, International Application Publication No. WO 02/01281 , and U.S. Patent Application Publication No. 2002/0075556 , both assigned to Sipix Imaging, Inc.
  • Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798 , and U.S. Patents Nos. 5,872,552 ; 6,144,361 ; 6,271,823 ; 6,225,971 ; and 6,184,856 . Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346 . Other types of electro-optic displays may also be capable of operating in shutter mode.
  • The bistable or multi-stable behavior of particle-based electrophoretic displays, and other electro-optic displays displaying similar behavior (such displays may hereinafter for convenience be referred to as "impulse driven displays"), is in marked contrast to that of conventional liquid crystal ("LC") displays. Twisted nematic liquid crystals act are not bi- or multi-stable but act as voltage transducers, so that applying a given electric field to a pixel of such a display produces a specific gray level at the pixel, regardless of the gray level previously present at the pixel. Furthermore, LC displays are only driven in one direction (from non-transmissive or "dark" to transmissive or "light"), the reverse transition from a lighter state to a darker one being effected by reducing or eliminating the electric field. Finally, the gray level of a pixel of an LC display is not sensitive to the polarity of the electric field, only to its magnitude, and indeed for technical reasons commercial LC displays usually reverse the polarity of the driving field at frequent intervals. In contrast, bistable electro-optic displays act, to a first approximation, as impulse transducers, so that the final state of a pixel depends not only upon the electric field applied and the time for which this field is applied, but also upon the state of the pixel prior to the application of the electric field.
  • It might at first appear that the ideal method for addressing such an impulse-driven electro-optic display would be so-called "general grayscale image flow" in which a controller arranges each writing of an image so that each pixel transitions directly from its initial gray level to its final gray level. However, inevitably there is some error in writing images on an impulse-driven display. Some such errors encountered in practice include:
    1. (a) Prior State Dependence; With at least some electro-optic media; the impulse required to switch a pixel to a new optical state depends not only on the current and desired optical state, but also on the previous optical states of the pixel.
    2. (b) Dwell Time Dependence; With at least some electro-optic media, the impulse required to switch a pixel to a new optical state depends on the time that the pixel has spent in its various optical states. The precise nature of this dependence is not well understood, but in general, more impulse is required that longer the pixel has been in its current optical state.
    3. (c) Temperature Dependence; The impulse required to switch a pixel to a new optical state depends heavily on temperature.
    4. (d) Humidity Dependency; The impulse required to switch a pixel to a new optical state depends, with at least some types of electro-optic media, on the ambient humidity.
    5. (e) Mechanical Unformity; The impulse required to switch a pixel to a new optical state may be affected by mechanical variations in the display, for example variations in the thickness of an electro-optic medium or an associated lamination adhesive. Other types of mechanical non-uniformity may arise from inevitable variations between different manufacturing batches of medium, manufacturing tolerances and materials variations.
    6. (f) Voltage Errors; The actual impulse applied to a pixel will inevitably differ slightly from that theoretically applied because of unavoidable slight errors in the voltages delivered by drivers.
  • As described in the aforementioned WO 03/044765 and PCT/US2004/10091 , general grayscale image flow suffers from an "accumulation of errors" phenomenon which may produce deviations in gray levels apparent to the average observer on certain types of images. This accumulation of errors phenomenon applies to errors of all the types listed above. As described in the aforementioned 2003/0137521 , compensating for such errors is possible, but only to a limited degree of precision. Thus, general grayscale image flow requires very precise control of applied impulse to give good results, and empirically it has been found that, in the present state of the technology of electro-optic displays, general grayscale image flow is infeasible in a commercial display.
  • Almost all electro-optic medium have a built-in resetting (error limiting) mechanism, namely their extreme (typically black and white) optical states, which function as "optical rails". After a specific impulse has been applied to a pixel of an electro-optic display, that pixel cannot get any whiter (or blacker). For example, in an encapsulated electrophoretic display, after a specific impulse has been applied, all the electrophoretic particles are forced against one another or against the capsule wall, and cannot move further, thus producing a limiting optical state or optical rail. Because there is a distribution of electrophoretic particle sizes and charges in such a medium, some particles hit the rails before others, creating a "soft rails" phenomenon, whereby the impulse precision required is reduced when the final optical state of a transition approaches the extreme black and white states, whereas the optical precision required increases dramatically in transitions ending near the middle of the optical range of the pixel.
  • Various types of drive schemes for electro-optic displays are known which take advantage of optical rails. For example, Figures 9 and 10 of the aforementioned WO 03/044765 , and the related description, describe a "slide show" drive scheme in which the entire display is driven to both optical rails before any new image is written. Such a slide show drive scheme produces accurate grayscale levels, but the flashing of the display as it is driven to the optical rails is distracting to the viewer. It has also been suggested (see U.S. Patent No. 6,531,997 ) that a similar drive scheme be employed in which only the pixels, whose optical states need to be changed in the new image, be driven to the optical rails. However, this type of "limited slide show" drive scheme is, if anything, even more distracting to the viewer, since the solid flashing of a normal slide show drive scheme is replaced by image dependent flashing, in which features of the old image and the new image flash in reverse color on the screen before the new image is written.
  • Obviously, a pure general grayscale image flow drive scheme cannot rely upon using the optical rails to prevent errors in gray levels since in such a drive scheme any given pixel can undergo an infinitely large number of changes in gray level without ever touching either optical rail.
  • This invention seeks to provide methods for achieving fine control of gray levels in displays driven by pulse width modulation.
  • When driving an active matrix display having a bistable electro-optic medium to write gray scale images thereon, it is desirable to be able to apply a precise amount of impulse to each pixel, so as to achieve accurate control of the gray scale displayed. The driving method used may rely modulation of the voltage applied to each pixel and/or modulation of the "width" (duration) for which the voltage is applied. Since voltage modulated drivers and their associated power supplies are relatively costly, pulse width modulation is commercially attractive. However, during the scanning of an active matrix display using such pulse width modulation, conventional driver circuitry only allows one to apply a single voltage to any given pixel during any one scan of the matrix. Consequently, pulse width modulation driving of active matrix displays is effected by scanning the matrix multiple times, with the drive voltage being applied during none, some or all of the scans, depending upon the change desired in the gray level of the specific pixel. Each scan may be regarded as a frame of the drive waveform, with the complete addressing pulse being a superframe formed by a plurality of successive frames. It should be noted that, although the drive voltage is only applied to any specific pixel electrode for one line address time during each scan, the drive voltage persists on the pixel electrodes during the time between successive selections of the same line, only slowly decaying, so that the pixel is driven between successive selections of the same line.
  • As already mentioned, each row of the matrix needs to be individually selected during each frame so that for high resolution displays (for example, 800 x 600 pixel displays) in practice the frame rate cannot exceed about 50 to 100 Hz; thus each frame typically lasts 10 to 20 ms. Frames of this length lead to difficulties in fine control of gray scale with many fast switching electro-optic medium. For example, some encapsulated electrophoretic media substantially complete a switch between their extreme optical states (a transition of about 30 L* units) within about 100 ms, and with such a medium a 20 ms frame corresponds to a gray scale shift of about 6 L* units. Such a shift is too large for accurate control of gray scale; the human eye is sensitive to differences in gray levels of about 1 L* unit, and controlling the impulse only in graduations equivalent to about 6 L* units is likely to give rise to visible artifacts, such as "ghosting" due to prior state dependence of the electro-optic medium. More specifically, ghosting may be experienced because, as discussed in some of the aforementioned patents and applications, the variation of gray level with applied impulse is not linear, and the total impulse needed for any specific change in gray level may vary with the time at which the impulse is applied and the intervening gray levels. For example, in a simple 4 gray level (2 bit) display having gray levels 0 (black), 1 (dark gray), 2 (light gray) and 3 (white), driven by a simple pulse width modulation drive scheme, these non-linearities may result in the actual gray level achieved after a notional 0-2 transition being different from the gray level achieved after a notional 1-2 transition, with the production of highly undesirable visual artifacts. This invention provides methods for achieving fine control of gray levels in displays driven by pulse width modulation, thus avoiding the aforementioned problems.
  • This invention provides a method for driving an electro-optic display having a plurality of pixels divided into a plurality of groups, wherein a complete rewriting of the display is achieved by a pulse width modulation method by scanning the matrix a plurality of times in respective frame periods being equal in length, each time supplying each pixel with either a drive voltage or a non-drive voltage. This method comprises:
    1. (a) selecting each of the plurality of groups of pixels in succession and applying to each of the pixels in the selected group either the drive voltage or the non-drive voltage, the scanning of all the groups of pixels being completed in a first frame period;
    2. (b) repeating the scanning of the groups of pixels during a second frame period equal in length to the first frame period; and
    3. (c) interrupting the scanning of the groups of pixels during a pause period between the first and second frame periods, this pause period having a length equal to a sub-multiple of the length of one of first and second frame periods.
  • This method may hereinafter for convenience be referred to as the "interrupted scanning" method of the present invention.
  • The interrupted scanning method may include multiple pause periods; thus the method may comprise scanning the groups of pixels during at least first, second and third frame periods, and interrupting the scanning of the groups of pixels during at least first and second pause periods between successive frame periods. The first, second and third frame periods may be substantially equal in length, and the total length of the pause periods be equal to one frame period or one frame period minus one pause period. Typically, in the interrupted scanning method, the pixels are arranged in a matrix having a plurality of rows and a plurality of columns with each pixel defined by the intersection of a given row and a given column, and each group of pixels comprises one row or one column of the matrix. The interrupted scanning method is preferably DC balanced, i.e., the scanning of the display is preferably effected such that, for any series of transitions undergone by a pixel, the integral of the applied voltage with time is bounded.
  • The method of the present invention as described above may be carried out with any of the aforementioned types of electro-optic media. Thus, the method of the present invention may be used with electro-optic displays comprising an electrochromic or rotating bichromal member electro-optic medium, an encapsulated electrophoretic medium, or a microcell electrophoretic medium. Other types of electro-optic media may also be employed.
  • As mentioned above, the present invention makes use of pause periods between adjacent frames of a transition; such pause periods are discussed in more detail below with reference to the interrupted scanning method of the present invention. Typically, in an active matrix display, the pixels are divided into a series of groups (normally a plurality of rows), each of these plurality of groups is selected in succession (i.e., typically the rows of the matrix are scanned) and there is applied to each of the pixels in the selected group either a drive voltage or a non-drive voltage. The scanning of all the groups of pixels is completed within a frame period. The scanning of the groups of pixels is repeated, and, in a typical electro-optic display, the scanning will be repeated more than once during the group of frames (conveniently referred to as a superframe) required for a complete rewriting of the display. Normally, a fixed scan rate is used for updating, for example 50 Hz, which allows for 20 msec frames. However, this frame length may provide insufficient resolution for optimal waveform performance. In many cases, frames of length t/2 are desirable, for example 10 msec frames in a normally 20 msec frame length waveform. It is possible to combine frames of differing delay times to generate a pulse resolution of n/2. To take one specific case a single frame of length 1.5*t may be inserted at the beginning of the waveform, and a similar frame at the end of the waveform (immediately before the terminating 0 V frame, which should occur at the ordinary frame rate and which is normally used at the end of the waveform to prevent undesirable effects caused by varying residual voltages on pixels). The two longer frames can be realized by simply adding a 0.5*t delay time between the scanning of two adjacent frames. The waveform would then have the structure:
  • t ms frame : t/2 ms delay : t ms frame [...] t ms frame : t/2 ms delay : t ms frame (all outputs to 0V)
  • For a normal frame length of 20 msec, the initial and final frames plus their respective delays would amount to 30 msec each.
  • Using this waveform, structure, the initial and final pulses are allowed to vary by 10 msec in length, by using the following algorithm:
    1. (a) If the length of the initial pulse is evenly divisible by t, then the first frame consists of a 0 V drive, and a corresponding number of frames of t ms are activated to achieve the desired pulse length; or
    2. (b) If the length of the initial pulse leaves a remainder of t/2 when divided by t, then the first frame of 1.5*t is active, and a corresponding number of t msec frames following the initial frame are activated to achieve the desired pulse length.
  • The same algorithm is followed for the final pulse.
  • Since the improvements provided by the present invention can be applied to a wide variety of methods for driving electro-optic displays described in the aforementioned WO 03/044765 and PCT/US2004/10091 , the following description will assume familiarity with the basic driving methods shown in Figures 1-10 of WO 03/044765 and the related description. In particular Figures 9 and 10 of this application describe so-called uncompensated n-prepulse slide show (n-PP SS) waveforms having three basic sections. First, the pixels are erased to a uniform optical state, typically either white or black. Next, the pixels are driven back and forth between two optical states, again typically white and black. Finally, the pixel is addressed to a new optical state, which may be one of several gray states. The final (or writing) pulse is referred to as the addressing pulse, and the other pulses (the first (or erasing) pulse and the intervening (or blanking) pulses) are collectively referred to as prepulses
  • One major shortcoming of this type of waveform is that it has large-amplitude optical flashes between images. This can be improved by shifting the update sequence by one superframe time for half of the pixels, and interleaving the pixels at high resolution, as discussed in WO 03/044765 with reference to Figures 9 and 10 thereof. Possible patterns include every other row, every other column, or a checkerboard pattern. Note, this does not mean using the opposite polarity, i.e. "from black" versus "from white", since this would result in non-matching gray scales on neighboring pixels. Instead, this can be accomplished by delaying the start of the update by one "superframe" (a grouping of frames equivalent to the maximum length of a black-white update) for half of the pixels (i.e. the first set of pixels completes the erase pulse, then the second set of pixels begin the erase pulse as the first set of pixels begin the first blanking pulse). This will require the addition of one superframe for the total update time, to allow for this synchronization.
  • As already mentioned, this invention provides an "interrupted scanning" method for driving a bistable electrophoretic display having a plurality of pixels divided into a plurality of groups. The optical state of a pixel is controlled by a pulse width modulation method by scanning the matrix a plurality of time. The method comprises selecting each of the plurality of groups of pixels in succession and applying to each of the pixels in the selected group either a drive voltage or a non-drive voltage, the scanning of all the groups of pixels being completed in a first frame period. The scanning of the groups of pixels is repeated during a second frame period (it being understood that any specific pixel may have the drive voltage applied during the first frame period and the non-drive voltage applied during the second frame period, or vice versa). In the interrupted scanning method invention, the scanning of the groups of pixels is interrupted during a pause period between the first and second frame periods, this pause period being not longer than the first or second frame period. In this method, the first and second frame periods are equal in length, and the length of the pause period is a sub-multiple (desirably, one half, one fourth etc.) of the length of one of the frame periods.
  • The interrupted scanning method may include multiple pause periods between different pairs of adjacent frame periods. Such multiple pause periods are preferably of substantially equal length, and the total length the multiple pause periods is preferably equal to either one complete frame period, or equal to one frame period less one pause period. For example, as discussed in more detail below, one embodiment of the first method might use multiple 20 ms frame periods, and either three or four 5 ms pause periods.
  • In this interrupted scanning method, the groups of pixels will of course typically be the rows of a conventional row/column active matrix pixel array. The interrupted scanning method comprises selecting each of the plurality of groups of pixels in succession (i.e., typically, scanning the rows of the matrix) and applying to each of the pixels in the selected group either a drive voltage or a non-drive voltage, the scanning of all the groups of pixels being completed in a first frame period. The scanning of the groups of pixels is repeated, and in a typical electro-optic display, the scanning will be repeated more than once during the superframe required for a complete rewriting of the display. The scanning of the groups of pixels is interrupted during a pause period between the first and second frame periods, this pause period being not longer than the first or second frame period.
  • Although a drive voltage is only applied to any specific pixel electrode for one line address time during each scan, the drive voltage persists on the pixel electrodes during the time between successive selections of the same line, only slowly decaying, so that the pixel continues to driven during the time when other lines of the matrix are being selected, and the interrupted scanning method relies upon this continued driving of the pixel during its "non-selected" time. Ignoring for the moment the slow decay of the voltage on the pixel electrode during its non-selected time, a pixel which is set to the driving voltage during the frame period immediately preceding the pause period will continue to experience the driving voltage during the pause period, so that for such a pixel the preceding frame period is in effect lengthened by the length of the pause period. On the other hand, a pixel which is set to the non-driving (typically zero) voltage during the frame period immediately preceding the pause period will continue to experience the zero voltage during the pause period. It may be desirable to adjust the length of the pause period to allow for the slow decay of the voltage on the pixel electrode in order to ensure that the total impulse delivered to the pixel during the pause period has the desired value.
  • To take a simple example of the interrupted scanning method for purposes of illustration, consider a simple pulse width modulated drive scheme having a superframe consisting of a plurality of (say 10) 20 ms frames. Typically, the last frame of the superframe will set all pixels to the non-driving voltage, since bistable electro-optic displays are normally only driven when the displayed image is to be changed, or at relatively long intervals when it is deemed desirable to refresh the displayed image, so that each superframe will typically be followed by a lengthy period in which the display is not driven, and it is highly desirable to set all pixels to the non-driving voltage at the end of the superframe in order to prevent rapid changes in some pixels during this lengthy non-driven period. To modify such a drive scheme in accordance with the interrupted scanning method of the present invention, a 10 ms pause period may be inserted between two successive 20 ms frames, and this simple modification halves the maximum possible difference between the applied impulse and the impulse ideally needed to complete a given transition, thereby in practice approximately halving the maximum deviation in achieved gray scale level. The 10 ms pause period is conveniently inserted after the penultimate frame in each superframe but may be inserted at other points in the superframe if desired.
  • In practice, it is desirable, in this example, not only to insert the 10 ms pause period but also to insert one additional 20 ms frame into each superframe. The unmodified drive scheme enables one to apply to any given pixel impulses of:
    • 0, 20, 40, 60...160, 180 units
    where one impulse unit is defined as the impulse resulting from application of the driving voltage for 1 ms. Thus, the maximum difference between the available impulses and the ideal impulse for a given transition is 10 units. (Since the last frame of the superframe sets all pixels to the non-driving voltage, only the first nine frames of the superframe are available for application of the driving voltage.) As already explained, any pixel which is set to the driving voltage in the frame preceding the pause period continues to experience this driving voltage for a period equal to the frame period plus the pause period, and thus experiences an impulse of 30 units instead of 20 units for this frame. Accordingly, the modified drive scheme permits one to apply to any given pixel impulses of:
    • 0, 20, 30, 40, 50, 60 units etc.
    Insertion of the additional frame into the superframe is desirable to enable the modified drive scheme to deliver an impulse of exactly 180 units. Since any impulse which is an exact multiple of 20 units requires that the relevant pixel be set to the non-driving voltage during the frame preceding the pause period, achieving an impulse of exactly 180 units requires an 11-frame superframe, so that any pixel to receive the 180 impulse can be set to the driving voltage during 9 frames, to the non-driving voltage during the frame preceding the pause period, and (as always) to the non-driving voltage during the last frame of the superframe. Thus, when using the modified drive scheme, the maximum difference between the available impulses and the ideal impulse for a given transition is reduced to 5 units. (Although the modified drive scheme is not capable of applying an impulse of 10 units, in practice this is of little consequence. To produce reasonably consistent gray scale levels, the number of available impulse levels has to be substantially larger than the number of gray levels of the display, so that it is unlikely that any gray scale transition will require an impulse as small as 10 units.)
  • The pause periods can of course be of any number and length required to achieve the desired control over the impulse applied. For example, instead of modifying the aforementioned drive scheme to include one 10 ms pause period, the drive scheme could be modified to include three 5 ms pause periods after different 20 ms drive frames, desirably with the addition to the drive scheme of three further 20 ms drive frames not followed by pause periods. This modified drive scheme permits one to apply to any given pixel impulses of:
    • 0, 20, 25, 30, 35 ....170, 175, 180 units
    thereby reducing the maximum difference between the available impulses and the ideal impulse for a given transition is reduced to 2.5 units, a four-fold reduction as compared with the original unmodified drive scheme.
  • The preceding discussion of the interrupted scanning method has ignored the question of polarity of the applied impulses. As discussed above and in the aforementioned WO 03/044765 , bistable electro-optic media require application of impulses of both polarities. In some drive schemes, such as slide show drive schemes, before a new image is written to the display, all the pixels of the display are first driven to one extreme optical state, either black or white, and thereafter the pixels are driven to their final gray states by impulses of a single polarity. Such drive schemes can be modified in accordance with the interrupted scanning method in the manner already described. Other drive schemes require application of impulses of both polarities to drive the pixels to their final gray states. The impulses of the two polarities may be applied in separate frames or impulses of the two polarities may be applied in the same frames, for example using a tri-level drive scheme in which the common front electrode is held at a voltage of V/2, while individual pixel electrodes are held at 0, V/2 or V. When the impulses of the two polarities are applied in separate frames, the interrupted scanning method is desirably effected by providing at least two separate pause periods, one following a frame in which impulses of one polarity are applied and the second following a frame in which impulses of the opposed polarity are applied. However, when using a drive scheme in which impulses of both polarities are applied in the same frames, the interrupted scanning method may make use of only a single pause period since, as will be apparent from the foregoing discussion, the effect of including a pause period after a frame is to increase the magnitude of the impulse applied to any pixel to which a driving voltage was applied in the frame, regardless of the polarity of this driving voltage.
  • Also as discussed in the aforementioned WO 03/044765 and above, many bistable electro-optic media are desirably driven with drive schemes which achieve long term direct current (DC) balance, and such DC balance is conveniently effected using a drive scheme in which a DC balance section, which does not substantially change the gray level of the pixel, is applied before the main drive section, which does change the gray level, the two sections being chosen so that the algebraic sum of the impulses applied is zero or at least very small. If the main drive section is modified in accordance with the interrupted scanning method, it is highly desirable that the DC balance section be modified to prevent the additional impulses caused by the insertion of the pause periods accumulating to cause substantial DC imbalance. However, it is not necessary that the DC balance section be modified in a manner which is an exact mirror image of the modification of the main drive section, since the DC balance section can have gaps (zero voltage frames) and most electro-optic medium are not harmed by short term DC imbalances. Thus, in the drive scheme discussed above using a single 10 ms pause period inserted among ten 20 ms frames, DC balance can be achieved by making the first frame of the drive scheme 30 ms in duration. Applying or not applying a driving voltage to a pixel during this frame brings the overall impulse to a multiple of 20 units, so that this impulse can readily be balanced later. In the drive scheme using three 5 ms pause periods, the first two frames of the drive scheme can similarly be 25 and 30 ms in duration (in either order), again bringing the overall impulse to a multiple of 20 units.
  • From the foregoing description, it will be seen that the interrupted scanning method of the present invention requires a trade-off between increased addressing time caused by the need to include one additional frame in each superframe for each pause period inserted, and the improved control of impulse and hence gray scale produced by the method. However, the interrupted scanning method can provide very substantial improvement in impulse control with only modest increase in addressing time; for example, the drive scheme described above in which a superframe comprising ten 20 ms frames is modified to include three 5 ms pause periods yields a four-fold improvement in impulse accuracy at the cost of less than a 40 per cent increase in addressing time.
  • The method of the present invention may make use of various additional variations and techniques described in the aforementioned applications, especially the aforementioned WO 03/044765 and PCT/US2004/010091 . It will be appreciated that in the overall waveform used to drive an electro-optic display, in at least some cases certain transitions may be effected in accordance with the present invention, while other transitions may not make use of the method of the present invention but may make use of other types of transitions described below. For example, the method of the present invention may make use of any one or more of:
    • non-contiguous addressing (see the aforementioned PCT/US2004/ 010091 , Paragraphs [0142] to [0234] and Figures 1-12);
    • DC balanced addressing, as partially discussed above (but see also the aforementioned PCT/US2004/010091 , Paragraphs [0235] to [0260] and Figures 13-21);
    • defined region updating (see the aforementioned PCT/US2004/010091 , Paragraphs [0261] to [0280]);
    • compensation voltage addressing (see the aforementioned PCT/US2004/ 010091 , Paragraphs [0284] to [0308] and Figure 22);
    • DTD integral reduction addressing (see the aforementioned PCT/US2004/010091 , Paragraphs [0309] to [0326] and Figure 23); and
    • remnant voltage addressing (see the aforementioned WO 03/044,765 , pages 59 to 62).

Claims (6)

  1. A method for driving a bistable active matrix electrophoretic display having a plurality of pixels divided into a plurality of groups, wherein a complete rewriting of the display is achieved by a pulse width modulation method by scanning the matrix a plurality of times in respective Frame periods being equal in length, each time supplying each pixel with either a drive voltage or a non-drive voltage, the method comprising:
    (a) scanning the matrix by selecting each of the plurality of groups of pixels in succession and applying to each of the pixels in the selected group either the drive voltage or the non-drive voltage, the scanning of all the groups of pixels being completed in a first of said frame periods; and
    (b) repeating the scanning of the groups of pixels during a second of said frame periods,
    the method being characterized by interrupting the scanning of the groups of pixels during a pause period between the first and second frame periods, this pause period having a length equal to a sub-multiple of the length of one frame period.
  2. A method according to claim 1 wherein the method comprises scanning the groups of pixels during at least first, second and third frame periods, and interrupting the scanning of the groups of pixels during at least first and second pause periods between successive frame periods.
  3. A method according to claim 2 wherein the first, second and third frame periods are substantially equal in length, and the total length of the pause periods is equal to one frame period or one frame period minus one pause period.
  4. A method according to claim 1 wherein the pixels are arranged in a matrix having a plurality of rows and a plurality of columns with each pixel defined by the intersection of a given row and a given column, and wherein each group of pixels comprises one row or one column of the matrix.
  5. A method according to claim 1 wherein the electro-optic display comprises an encapsulated electrophoretic medium.
  6. A method according to claim 1 wherein the electro-optic display comprises a microcell electrophoretic medium.
EP04777306.4A 2003-06-30 2004-06-30 Methods for driving electro-optic displays Expired - Lifetime EP1639574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15000723.5A EP2947647A3 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US48104003P 2003-06-30 2003-06-30
US48105303P 2003-07-02 2003-07-02
US48140503P 2003-09-22 2003-09-22
US10/814,205 US7119772B2 (en) 1999-04-30 2004-03-31 Methods for driving bistable electro-optic displays, and apparatus for use therein
PCT/US2004/021000 WO2005006290A1 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP15000723.5A Division-Into EP2947647A3 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays
EP15000723.5A Division EP2947647A3 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays

Publications (3)

Publication Number Publication Date
EP1639574A1 EP1639574A1 (en) 2006-03-29
EP1639574A4 EP1639574A4 (en) 2009-01-21
EP1639574B1 true EP1639574B1 (en) 2015-04-22

Family

ID=34069332

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15000723.5A Withdrawn EP2947647A3 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays
EP04777306.4A Expired - Lifetime EP1639574B1 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15000723.5A Withdrawn EP2947647A3 (en) 2003-06-30 2004-06-30 Methods for driving electro-optic displays

Country Status (4)

Country Link
EP (2) EP2947647A3 (en)
JP (4) JP5904690B2 (en)
HK (1) HK1150466A1 (en)
WO (1) WO2005006290A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US8373649B2 (en) * 2008-04-11 2013-02-12 Seiko Epson Corporation Time-overlapping partial-panel updating of a bistable electro-optic display
JP5338622B2 (en) * 2009-11-04 2013-11-13 セイコーエプソン株式会社 Electrophoretic display device driving method, electrophoretic display device, and electronic apparatus
JP5540880B2 (en) * 2010-05-18 2014-07-02 セイコーエプソン株式会社 Electrophoretic display device driving method, electrophoretic display device, and electronic apparatus
CA2946099C (en) 2012-02-01 2022-03-15 E Ink Corporation Methods for driving electro-optic displays
US11030936B2 (en) 2012-02-01 2021-06-08 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
JP6186781B2 (en) * 2013-03-19 2017-08-30 セイコーエプソン株式会社 Control device, electro-optical device, electronic apparatus, and control method
IL292427B2 (en) * 2016-07-25 2023-05-01 Magic Leap Inc Imaging modification, display and visualization using augmented and virtual reality eyewear
CN114641820B (en) * 2019-11-14 2024-01-05 伊英克公司 Method for driving electro-optic display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540294A2 (en) * 1991-10-28 1993-05-05 Canon Kabushiki Kaisha Display control device and display apparatus with display control device
US20020005832A1 (en) * 2000-06-22 2002-01-17 Seiko Epson Corporation Method and circuit for driving electrophoretic display, electrophoretic display and electronic device using same
US20020067324A1 (en) * 2000-12-01 2002-06-06 Seiko Epson Corporation Liquid crystal display device, image signal correction circuit, image signal correction method, and electronic devices

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
EP0186519A2 (en) * 1984-12-27 1986-07-02 Epid Inc. Writing information in a display device
US5245328A (en) * 1988-10-14 1993-09-14 Compaq Computer Corporation Method and apparatus for displaying different shades of gray on a liquid crystal display
US5745094A (en) 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
JP3548811B2 (en) * 1995-06-26 2004-07-28 カシオ計算機株式会社 Active matrix liquid crystal display device and method of driving active matrix liquid crystal display element
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6639578B1 (en) 1995-07-20 2003-10-28 E Ink Corporation Flexible displays
US6664944B1 (en) 1995-07-20 2003-12-16 E-Ink Corporation Rear electrode structures for electrophoretic displays
US6515649B1 (en) 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US6710540B1 (en) 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6866760B2 (en) 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US7023420B2 (en) 2000-11-29 2006-04-04 E Ink Corporation Electronic display with photo-addressing means
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
DE19621320A1 (en) 1996-05-28 1997-12-11 Teves Gmbh Alfred Arrangement for recording and evaluating yaw movements
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6055091A (en) 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US6721083B2 (en) 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
DE69830566T2 (en) 1997-02-06 2006-05-11 University College Dublin ELECTROCHROMIC SYSTEM
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
JP3900663B2 (en) * 1997-06-25 2007-04-04 ソニー株式会社 Optical spatial modulation element and image display device
US6252564B1 (en) 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US6232950B1 (en) 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6177921B1 (en) 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
US6822782B2 (en) 2001-05-15 2004-11-23 E Ink Corporation Electrophoretic particles and processes for the production thereof
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6054071A (en) 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6462837B1 (en) * 1998-03-05 2002-10-08 Ricoh Company, Ltd. Gray-scale conversion based on SIMD processor
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
JP2002507765A (en) 1998-03-18 2002-03-12 イー−インク コーポレイション Electrophoretic display and system for addressing the display
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
CA2323879C (en) 1998-04-10 2007-01-16 E Ink Corporation Electronic displays using organic-based field effect transistors
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
DE69940112D1 (en) 1998-04-27 2009-01-29 E Ink Corp ALTERNATIVELY WORKING MICRO-ENCAPSED ELECTROPHORETIC IMAGE INDICATION
CA2330950A1 (en) 1998-05-12 1999-11-18 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
EP1145072B1 (en) 1998-06-22 2003-05-07 E-Ink Corporation Method of addressing microencapsulated display media
ATE228681T1 (en) 1998-07-08 2002-12-15 E Ink Corp METHOD AND DEVICE FOR MEASURING THE STATE OF AN ELECTROPHORETIC DISPLAY DEVICE
US20030102858A1 (en) 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
ATE349722T1 (en) 1998-07-08 2007-01-15 E Ink Corp IMPROVED COLOR MICRO-ENCAPSULED ELECTROPHORETIC DISPLAY
WO2000005704A1 (en) 1998-07-22 2000-02-03 E-Ink Corporation Electronic display
US7256766B2 (en) 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6184856B1 (en) 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
WO2000020923A1 (en) 1998-10-07 2000-04-13 E Ink Corporation Illumination system for nonemissive electronic displays
WO2000020921A1 (en) 1998-10-07 2000-04-13 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
WO2000036560A1 (en) 1998-12-18 2000-06-22 E Ink Corporation Electronic ink display media for security and authentication
US6724519B1 (en) 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
WO2000038001A1 (en) 1998-12-21 2000-06-29 E Ink Corporation Protective electrodes for electrophoretic displays
WO2000038000A1 (en) 1998-12-22 2000-06-29 E Ink Corporation Method of manufacturing of a discrete electronic device
US6993418B2 (en) 1999-03-16 2006-01-31 Sigma Systems Corporation Method and apparatus for latent temperature control for a device under test
US6327072B1 (en) 1999-04-06 2001-12-04 E Ink Corporation Microcell electrophoretic displays
CA2365847A1 (en) 1999-04-06 2000-10-12 Gregg M. Duthaler Methods for producing droplets for use in capsule-based electrophoretic displays
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6504524B1 (en) 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7119772B2 (en) * 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
EP1188107A1 (en) 1999-05-03 2002-03-20 E Ink Corporation Display unit for electronic shelf price label system
CA2372101A1 (en) 1999-05-05 2000-11-09 E Ink Corporation Minimally-patterned semiconductor devices for display applications
JP5394601B2 (en) 1999-07-01 2014-01-22 イー インク コーポレイション Electrophoretic medium provided with spacer
WO2001007961A1 (en) 1999-07-21 2001-02-01 E Ink Corporation Use of a storage capacitor to enhance the performance of an active matrix driven electronic display
WO2001008241A1 (en) 1999-07-21 2001-02-01 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device
WO2001008242A1 (en) 1999-07-21 2001-02-01 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
WO2001017029A1 (en) 1999-08-31 2001-03-08 E Ink Corporation Transistor for an electronically driven display
AU7094400A (en) 1999-08-31 2001-03-26 E-Ink Corporation A solvent annealing process for forming a thin semiconductor film with advantageous properties
CA2385721C (en) 1999-10-11 2009-04-07 University College Dublin Electrochromic device
US6672921B1 (en) 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
AU2001253575A1 (en) 2000-04-18 2001-10-30 E-Ink Corporation Process for fabricating thin film transistors
JP3357666B2 (en) * 2000-07-07 2002-12-16 松下電器産業株式会社 Display device and display method
US20020060321A1 (en) 2000-07-14 2002-05-23 Kazlas Peter T. Minimally- patterned, thin-film semiconductor devices for display applications
US6816147B2 (en) 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
AU2002230610A1 (en) 2000-12-05 2002-06-18 E-Ink Corporation Portable eclectronic apparatus with additional electro-optical display
AU2002250304A1 (en) 2001-03-13 2002-09-24 E Ink Corporation Apparatus for displaying drawings
WO2002079869A1 (en) 2001-04-02 2002-10-10 E Ink Corporation Electrophoretic medium with improved image stability
US6580545B2 (en) 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
WO2002093245A1 (en) 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic displays containing magnetic particles
US6982178B2 (en) 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
EP1406235A1 (en) * 2001-07-09 2004-04-07 Matsushita Electric Industrial Co., Ltd. Plasma display panel driving method and plasma display panel driver
ATE349028T1 (en) 2001-07-09 2007-01-15 E Ink Corp ELECTRO-OPTICAL DISPLAY AND ADHESIVE COMPOSITION
AU2002354672A1 (en) 2001-07-09 2003-01-29 E Ink Corporation Electro-optical display having a lamination adhesive layer
US6967640B2 (en) 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US6819471B2 (en) 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
CN1589462B (en) * 2001-11-20 2013-03-27 伊英克公司 Methods for driving bistable electro-optic displays
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
WO2003050607A1 (en) 2001-12-13 2003-06-19 E Ink Corporation Electrophoretic electronic displays with films having a low index of refraction
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
JP2005524110A (en) 2002-04-24 2005-08-11 イー−インク コーポレイション Electronic display device
US7223672B2 (en) 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US6958848B2 (en) 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
EP1512137A2 (en) 2002-06-13 2005-03-09 E Ink Corporation Methods for driving electro-optic displays
US6842279B2 (en) 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
WO2004023202A1 (en) 2002-09-03 2004-03-18 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
KR100857745B1 (en) * 2003-03-31 2008-09-09 이 잉크 코포레이션 Methods for driving bistable electro-optic displays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540294A2 (en) * 1991-10-28 1993-05-05 Canon Kabushiki Kaisha Display control device and display apparatus with display control device
US20020005832A1 (en) * 2000-06-22 2002-01-17 Seiko Epson Corporation Method and circuit for driving electrophoretic display, electrophoretic display and electronic device using same
US20020067324A1 (en) * 2000-12-01 2002-06-06 Seiko Epson Corporation Liquid crystal display device, image signal correction circuit, image signal correction method, and electronic devices

Also Published As

Publication number Publication date
JP5904690B2 (en) 2016-04-20
JP2007529018A (en) 2007-10-18
WO2005006290A1 (en) 2005-01-20
HK1150466A1 (en) 2011-12-30
JP2014211651A (en) 2014-11-13
JP5931038B2 (en) 2016-06-08
JP2016194724A (en) 2016-11-17
JP2014074913A (en) 2014-04-24
EP1639574A1 (en) 2006-03-29
EP2947647A3 (en) 2015-12-16
EP1639574A4 (en) 2009-01-21
EP2947647A2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
US11545065B2 (en) Methods for driving electro-optic displays
EP2277162B1 (en) Methods for driving electro-optic displays
US9177511B2 (en) Electrophoretic display device and driving method thereof
JP6033526B2 (en) Method for driving a video electro-optic display
US7193625B2 (en) Methods for driving electro-optic displays, and apparatus for use therein
EP1446791B1 (en) Methods for driving electrophoretic displays
JP6075934B2 (en) Method for driving an electro-optic display
US20070057905A1 (en) Electrophoretic display activation with blanking frames
EP1512137A2 (en) Methods for driving electro-optic displays
JP5931038B2 (en) Method for driving an electro-optic display
CN100504997C (en) Methods for driving electro-optic displays
JP2024109814A (en) Method for reducing image artifacts during partial updating of an electrophoretic display - Patents.com
EP1665210A1 (en) Electrophoretic display activation with symmetric data frames
EP3420553B1 (en) Methods and apparatus for driving electro-optic displays
EP1911016A2 (en) Methods for driving electro-optic displays
US20060170667A1 (en) Electrophoretic display with reduced power consumption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: AMUNDSON, KARL, R.

Inventor name: ZEHNER, ROBERT, W.

Inventor name: ZION, BENJAMIN

Inventor name: KNAIAN, ARA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AMUNDSON, KARL, R.

Inventor name: ZEHNER, ROBERT, W.

Inventor name: ZION, BENJAMIN

Inventor name: KNAIAN, ARA

RIC1 Information provided on ipc code assigned before grant

Ipc: G09G 3/30 20060101ALI20070725BHEP

Ipc: G09G 3/36 20060101ALI20070725BHEP

Ipc: G09G 3/34 20060101AFI20070725BHEP

Ipc: G09G 3/32 20060101ALI20070725BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20081222

17Q First examination report despatched

Effective date: 20090831

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 723647

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004047065

Country of ref document: DE

Effective date: 20150603

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 723647

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150723

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004047065

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150630

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160125

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004047065

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240629

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240629